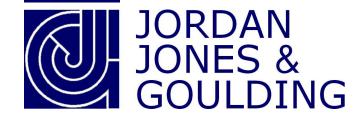
Technical Memorandum

Traffic Forecast Special Report


Manual Gravity Diversion Methodology

Prepared for:

Kentucky Transportation Cabinet

Prepared by: Jordan, Jones & Goulding, Inc. 1050 Monarch Street, Suite 300 Lexington, Kentucky 40513

December 2002

Table of Contents

Page

Table of Contents
Executive Summary
I. Introduction
II. Free-Flow Speed
Facilities without Signals
Signalized Facilities
III. Roadway Capacity
Freeways
Multilane Unsignalized Roads
Two-lane Unsignalized Roads
Signalized Arterials
IV. Traffic Volumes
V. Congested Speed
Exhibit A. Modified BPR Curve7
VI. Diversion Analysis
Modlin Comparison9
Exhibit B. West Liberty Bypass
VII. Conclusion

Appendix - West Liberty Bypass

Traffic Forecast Special Report Manual Gravity Diversion Methodology

EXECUTIVE SUMMARY

It is difficult to accurately predict the traffic volume that will use a new facility without the assistance of a travel demand model to demonstrate area travel patterns and anticipate traffic diversion to the new facility. However, many projects involving new roads occur in relatively rural areas where no travel demand model exists or the model is outdated or irrelevant. For this reason, Jordan, Jones and Goulding, Inc. (JJG) worked together with the Kentucky Transportation Cabinet (KYTC) to develop a standardized procedure for applying manual gravity diversion curves to more accurately forecast the future traffic volume on a new facility. The procedure is built around methodologies contained in NCHRP Report 387¹ and methodologies published by the California Department of Transportation. This report documents this procedure and outlines it use and limitations.

I. INTRODUCTION

Manual gravity diversion is a useful tool in generating traffic forecasts for a new facility when no travel demand model for the study area exists or the travel demand model is outdated or irrelevant. A manual gravity diversion is named for its parts. It is manual in that the diverted volumes are estimated using calculations simple enough to be performed by hand (but often simplified using a spreadsheet). It is a gravity diversion in that trips are diverted to the new route based on its attractiveness, expressed as a distance and travel time advantage over the existing route.

There are several data inputs required to perform a manual gravity diversion for a new facility. Default values are available for most inputs, but it is also noted that more generalized data inputs generate much less reliable traffic forecasts. The required input data are listed below:

- Traffic control data (posted speed, signal information, segment lengths, etc.)
- Physical characteristics (number of lanes, lane widths, turn bays, directional factors, etc.)
- Traffic characteristics (growth rate, K factor, peak hour factor, truck percentage, etc.)
- Base year no build ADT traffic volumes
- Future year no build ADT traffic volumes
- ADT turning movements at major intersections

There are five steps involved in performing a manual gravity diversion for a new facility. These steps form the body of this document. Section II presents the procedures used to estimate free-flow speed. Section III outlines the procedures used to calculate roadway capacity. Section IV reviews some of the concepts involved in generating the no build traffic forecasts, but is not to be considered an all-inclusive approach. Section V demonstrates the application of the BPR curve with some recent modifications to estimate congested travel speed. Section VI outlines the use of the California DOT diversion curves to determine the traffic volume diverted to the new facility. Section VII concludes the report and highlights some potential limitations to the procedure.

¹ "Planning Techniques to Estimate Speed and Service Volumes for Planning Applications," NCHRP Report 387, National Cooperative Highway Research Program, Richard Dowling, et al. Transportation Research Board, Washington, D.C., 1997, pp. 79-84.

II. FREE-FLOW SPEED

Free-flow speed can be determined in two ways. It is preferred to measure free-flow speed in the field under light traffic conditions. However, when this is not possible the free-flow speed can be estimated using one of the following equations.

Facilities without Signals

Facilities without signals are divided into two categories by posted speed limit as follows:

Speed Limit > 50 mph: $S_f (mph) = 0.88 * S_p + 14$ Speed Limit < 50 mph: $S_f (mph) = 0.79 * S_p + 12$

where:

 S_p = posted speed limit (mph)

Signalized Facilities

The free-flow speed for signalized facilities is determined by the following equation:

 $S_{f}(mph) = L / [L/S_{mb} + N * (D/3600)]$

where:

 S_f = free-flow speed for urban interrupted facility (mph)

L = length of facility (miles)

 S_{mb} = midblock free-flow speed (mph)

 $= 0.79 * S_p + 12$

N = number of signalized intersections on length, L, of facility

D = average delay per signal per the following equation:

 $D = DF * 0.5 * C (1 - g/C)^2$

where:

D = total signal delay per vehicle (sec)

g = effective green time (sec)

C = cycle length (sec)

If signal timing data are not available, the following defaults can be used:

C = 120 sec

g/C = 0.45

DF = 0.6 for coordinated signals with highly favorable progression

0.9 for uncoordinated actuated signals

0.9 for coordinated signals with favorable progression

1.0 for uncoordinated fixed time signals

1.2 for coordinated signals with unfavorable progression

Example

US 460 is a two-lane highway through West Liberty, Kentucky. One segment of US 460 is 0.35 miles long, has a posted speed of 35 mph, and terminates at a traffic signal. For this segment, the midblock free-flow speed is 0.79 * 35 mph + 12 or 39.7 mph. The average delay for the signal (using defaults) is 0.9 (uncoordinated actuated) * $0.5 * 120 * (1 - 0.45)^2$ or 16.3 seconds. Therefore, the free-flow speed of the facility is given as 0.35 miles / [(0.35 miles/39.7mph) + 1 signal * (16.3/3600)] or 26 mph.

III. ROADWAY CAPACITY

The Highway Capacity Manual is generally accepted as the standard of practice for determining the capacity of various types of roadways. However, the data requirements are often too extensive to make these procedures accessible for planning purposes. The following equations for four major facility types

were obtained from NCHRP 387 and simplify the application of the HCM methods for use in planning applications.

Freeways

Capacity (vph) = Ideal Cap $*N * F_{hv} * PHF$

where:

Ideal Cap = 2,400 (pcphl) for freeways with 70 mph or greater FFS

- = 2,300 (pcphl) for all other freeways
- N = number of through lanes
- F_{hv} = heavy vehicle adjustment factor
 - = 1.00 / (1.00 + 0.5 * HV) for level terrain
 - = 1.00 / (1.00 + 2.0 * HV) for rolling terrain
 - = 1.00 / (1.00 + 5.0 * HV) for mountainous terrain
 - HV = proportion of heavy vehicles. If unknown, use 0.05 as default.
- *PHF* = peak-hour factor (ratio of the peak 15-min flow rate to the average hourly flow rate) If unknown, use default of 0.90

Multilane Unsignalized Roads

Capacity (vph) = Ideal Cap $*N * F_{hv} * PHF$ where:

Ideal Cap = 2,200 (pcphl) for multilane rural roads with 60 mph FFS

- = 2,100 (pcphl) for multilane rural roads with 55 mph FFS
- = 2,000 (pcphl) for multilane rural roads with 50 mph FFS
- N = number of through lanes
- F_{hv} = heavy vehicle adjustment factor
 - = 1.00 / (1.00 + 0.5 * HV) for level terrain
 - = 1.00 / (1.00 + 2.0 * HV) for rolling terrain
 - = 1.00 / (1.00 + 5.0 * HV) for mountainous terrain
 - HV = proportion of heavy vehicles. If unknown, use 0.05 as default.
- PHF = peak-hour factor (ratio of the peak 15-min flow rate to the average hourly flow rate) If unknown, use 0.90 as default.

Two-Lane Unsignalized Roads

Capacity (vph) = Ideal Cap $*N * F_w * F_{hv} * PHF * F_{dir} * F_{nopass}$ where:

Ideal Cap = 1,600 (pcphl) for all two-lane rural roads

- N = number of lanes
- F_w = lane width and lateral clearance factor
 - = 1 + (W 12) / 30
 - W is the lane width in feet

If W is unknown, use 0.8 if narrow lanes (<12 feet) and/or narrow shoulders (<3 feet) Use 1.0 otherwise

- F_{hv} = heavy vehicle adjustment factor
 - = 1.00 / (1.00 + 1.0 * HV) for level terrain
 - = 1.00 / (1.00 + 4.0 * HV) for rolling terrain
 - = 1.00 / (1.00 + 11.0 * HV) for mountainous terrain

HV = proportion of heavy vehicles. If unknown, use 0.02 as default.

PHF = peak-hour factor (ratio of the peak 15-min flow rate to the average hourly flow rate)

If unknown, use 0.90 as default.

- F_{dir} = directional adjustment factor
 - = 0.71 * 0.58 * (1.00 peak direction proportion)
 - If unknown, use 0.55 as default peak direction proportion.
- F_{nopass} = no-passing zone factor
 - = 1.00 for level terrain
 - = 0.97 0.07 * (NoPass) for rolling terrain
 - = 0.91 0.13 * (NoPass) for mountainous terrain

NoPass is the proportion of length of the facility for which passing is prohibited. If unknown, use 0.6 for rolling terrain and 0.8 for mountainous terrain

Signalized Arterials (and one-way streets)²

Capacity (vph) = Ideal Sat * $N * F_w * F_{hv} * PHF * F_{park} * F_{bay} * F_{CBD} * g/C$ where:

Ideal Sat = ideal saturation flow rate (vehicles per lane per hour green)

= 1,900

- N = number of lanes
- F_w = lane width and lateral clearance factor
 - = 1 + (W 12) / 30

W is the lane width in feet

If W is unknown, use 0.8 if narrow lanes (<12 feet) and/or narrow shoulders (<3 feet) Use 1.0 otherwise

- F_{hv} = heavy vehicle adjustment factor
 - = 1.00 / (1.00 + HV) for level terrain

HV = proportion of heavy vehicles. If unknown, use 0.02 as default.

- PHF = peak-hour factor (ratio of the peak 15-min flow rate to the average hourly flow rate If unknown, use 0.90 as default.
- F_{park} = on-street parking adjustment factor
 - = 0.9 if on-street parking is present and parking time limit is 1 hour or less
 - = 1.0 otherwise
- F_{bay} = left turn bay adjustment factor
 - = 1.1 if exclusive left turn lanes are present, or for one-way streets
 - = 1.0 otherwise
- F_{CBD} = central business district (CBD) adjustment factor
 - = 0.9 if located in CBD
 - = 1.0 elsewhere
- g/C = ratio of effective green time per cycle

If no data are available, use the following defaults:

- = 0.4 if protected left turn phase is present
- = 0.45 if protected left turn phase is not present

Example

The same segment of US 460 in West Liberty, Kentucky, has the following physical characteristics: 11-foot lanes, 7.9 percent heavy vehicles, no on-street parking, no left-turn bays, and it is outside the CBD. Using the default g/C ratio and a local PHF of 0.88, the capacity of the segment is given as 1900 * 2 lanes * 0.97 (F_w) * 0.93 (F_{hv}) * 1.0 (F_{park}) * 1.0 (F_{bay}) * 1.0 (F_{CBD}) * 0.45 (g/C) * 0.88 (PHF), or 1,347 vph.

 $^{^{2}}$ For one-way streets, use 1.1 for the left turn bay adjustment factor (F_{bay}).

IV. TRAFFIC VOLUMES

No build ADT traffic volumes for both the base year and design year of the facility need to be determined, along with turning movements at the major intersections in the study area. The base year traffic volumes are best determined from traffic counts, but can be estimated by analyzing the historical count data for a given roadway segment and inflating the last count by a growth rate. The traffic growth rate will also be applied to the base year traffic volumes to determine the future no build traffic volumes. Traffic growth rates are best determined by statistical analysis of historical count data (linear regression, regression analysis using Box-Cox transformations, etc.). Traffic growth rates should also consider observed trends in socioeconomic growth and anticipated developments in the study area that may impact travel patterns.

Turning movements at the major intersections are also best determined from traffic count data. In the absence of count data, they can be estimated from the approach ADTs using a program that produces reasonable estimates of turning volumes such as the *turns.bat* program. If the turns are estimated using this approach, they should be verified and/or adjusted to accurately reflect local travel patterns. Turning movements must be generated for both the base year and design year ADT traffic volumes.

<u>Example</u>

The base year for a project is 2002, and the design year is 2026. At a given traffic count station in the study area, the following historical count data were observed (growth rate as compared to oldest count):

Year	ADT Count	Growth Rate
2001	12,400	2.8%
1996	11,600	3.2%
1990	9,200	2.8%
1984	7,650	2.4%
1980	6,960	N/A

A linear regression analysis is performed on this data and the Box-Cox transformations of this data to determine the curve of best fit to the count data, as presented below. For this segment, it was determined that the best curve was created using a beta value of 0.2; this value generated a growth rate of 2.6 percent per year. Assuming that the socioeconomic data does not reveal any surprising trends and there are no major developments scheduled that would change affect this analysis, this growth rate would be applied to the 2001 volume at this location to determine both the 2002 base year traffic volume and the 2026 no build design year traffic volume.

			E	Box-Cox Tran	sformations		
		Log Trans.		Beta	Transforma	tions	
YEAR	COUNT	Log(Count)	0.1	0.15	0.2	0.25	0.3
2001	12,400	4.0934	15.665	20.744	27.935	38.210	53.018
1996	11,600	4.0645	15.494	20.471	27.498	37.512	51.902
1990	9,200	3.9638	14.910	19.544	26.026	35.175	48.191
1984	7,650	3.8837	14.455	18.829	24.902	33.409	45.417
1980	6,960	3.8426	14.225	18.470	24.342	32.535	44.054
R ² value:	0.98281	0.98546	0.98554	0.98555	0.98555	0.98552	0.98547

		Proje	ected Volu	mes*	
	YEAR	2002	2006	2026	GR ('02-'28)
	Count	12800	13900	19500	1.8%
	Log(cnt)	13200	14800	26500	2.9%
s	0.1	13100	14700	25300	2.8%
Values	0.15	13100	14600	24700	2.7%
	0.2	13100	14600	24200	2.6%
Beta	0.25	10100 11000	23800	2.5%	
ă	0.3	13000	14500	23300	2.5%
		*Best Esti	mate deter	rmined	

from R² value is highlighted in YELLOW

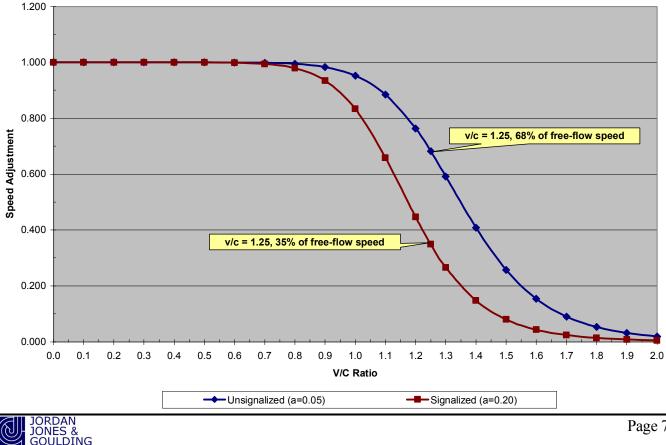
This spreadsheet fits a STRAIGHT LINE to either given or transformed count data and then uses that line to find estimated counts for the current, build, and design years. A Growth rate is then calculated from the build year estimate based on the equation: NewCount = OldCount * (1 + GR)^{Yrs.} The Bay Cov here transformations use the equation: $X = (X^{\beta}, 1)/\beta$

The Box-Cox beta transformations use the equation: Y_{β} = (Y^{β} -1) / β

V. CONGESTED SPEED

Congested speeds are calculated for each segment along the existing route, for both the base year and design year traffic volumes, using the following modified BPR equation:

$$S = S_f / [1 + a * (v/c)^b]$$


where:

- S = congested speed (mph)
- $S_f =$ free-flow speed (mph)
- v = generalized hourly volume (vph, using ADT and default K factor of 10 percent)
- = ADT * 0.10
- c = segment capacity (vph)
- a = 0.05 for facilities with signals spaced 2 miles apart or less
 - = 0.2 for all other facilities

b = 10

Note: A maximum v/c ratio of 1.25 was established to prevent the BPR curve from overestimating delay due to traffic congestion. At this point, the congested speed is adjusted to 35 percent of free-flow for signalized facilities and 68 percent for unsignalized facilities, as presented in Exhibit A. With congestion beyond this point, peak traffic begins spreading to multiple hours and the relationships used in the equation are no longer valid.

Exhibit A. Modified BPR Curve

V/C Ratio vs. Speed

Example

The same 0.35-mile segment of US 460 in West Liberty, Kentucky, has a free-flow speed of 26 mph, an ADT in 2002 of 13,400 which equates to a peak hour volume of 1,340, and a capacity of 1,350 vph. Because it is a signalized facility, a = 0.20. From the modified BPR curve, the congested speed is calculated as 26 mph / $[1 + 0.2 * (1340/1350)^{10}]$ or 22 mph.

VI. DIVERSION ANALYSIS

The following list details the procedure that is followed to apply the manual diversion analysis to each origin-destination (OD) pair in the study area that may use the new bypass facility. This procedure is applied to both the base year and design year volumes.

- 1. Determine the volume of traffic moving between a given OD pair. This volume is determined by starting with the ADT at the origin and reducing it by the percentages of through trips from the estimated turning movements until the destination is reached. The volume moving between the OD pair may also be reduced to account for changes in the ADT along the segment due to local destinations. The procedure is repeated in the opposite direction (starting at the destination) and the two resultant volumes are averaged to determine an approximate volume of traffic moving between the given OD pair.
- 2. Determine the distance between the OD pair using the existing route (d_e) and the best available route (d_b) using the new facility. The distance saved, Δd , is d_b d_e.
- 3. Determine the travel times between the OD pair using the existing route (t_e) and the best available route (t_b) using the new facility, using the *congested travel speeds* to determine travel times. The time saved, Δt , is t_b t_e.
- 4. Calculate the percentage of diverted traffic using the following equation developed by the California Department of Transportation:

 $P = 50 + 50 * (\Delta d + 0.5 * \Delta t) / SQRT [(\Delta d - 0.5 * \Delta t)^{2} + 4.5]$

- 5. Multiply the OD volume by P and assign this volume to the bypass; assign the balance to the existing route.
- 6. Repeat steps 1-5 for every OD pair that may use the new bypass facility.
- 7. For the design year analysis, increase the volume assigned to the new facility by 20 percent to account for observed trends in induced traffic on a new facility. This volume increase is generally observed in the through trips rather than any in-town traffic that may use the facility.

Modlin Comparison

NCHRP Report 365³ references a procedure developed by D.G. Modlin, Jr. in conjunction with the State of North Carolina. The study evaluated travel patterns in several small urban areas and ultimately produced a single regression equation to determine the percentage of through trips on a given highway. The equation is based on four independent variables: functional class of the highway, the ADT at the external station, the percentage of trucks (excluding vans and pickups), the percentage of vans and pickups, and the population of the study area. The equation for estimating the percent through trips at an external station is:

 $Y_i = 76.76 + 11.22*I - 25.74*PA + 42.18*MA + 0.00012*ADT_i + 0.59*PTKS_i - 0.48*PPS_i - 0.000417*POP$ where:

 Y_i = percentage of the ADT at external station *i*, that are through trips

³ "*Travel Estimation Techniques for Urban Planning*," NCHRP Report 365, National Cooperative Highway Research Program, William A. Martin, Nancy A. McGuckin, et al. Transportation Research Board, Washington, D.C., 1998, pp. 49-50.

- I = interstate (0 or 1)
- PA = principal arterial (0 or 1)
- MA = minor arterial (0 or 1)
- ADT_i = average daily traffic at external station *i*
- $PTKS_i$ = percentage of trucks excluding vans and pickups at external station *i*
- PPSi = percentage of vans and pickups at external station I
- POP = population of the study area

The application of this procedure in calculating the traffic diverted to a new facility is to assume that all of the through trips would be diverted to the new route. Obviously this procedure varies a great deal from the manual gravity diversion analysis. The Modlin equation was developed from observed travel trends in the 1970s and 1980s, for a limited number of study areas. It also weighs heavily on functional class, which may not be a good measure to analyze the diverted traffic to a new bypass of a small town where the primary route through town is a minor arterial.

By contrast, the manual gravity diversion uses recent count data and estimates of turning movements through town to determine travel patterns and percentages of through trips. The manual method is based on link speeds and capacities, and takes into account traffic congestion in its calculation of timesavings. For this reason, the manual method is also able to account for trips within town that might choose to use the new facility because of congestion on the main route in town.

The Modlin equation may be used for comparative purposes, to determine if the through traffic it predicts is similar to the volume of through traffic shown by the turning movement estimates. When making this comparison, caution should be used in revising the turning movements to better match the Modlin through traffic volume. Finally, due to the differences already identified, the Modlin equation should not be used to validate the total volume of traffic diverted by the manual gravity method.

Example

Exhibit B presents the critical turning movements and traffic volumes for the West Liberty Bypass. The diverted volume between points A and B is calculated as follows:

1. Location A has a 2002 ADT of 10,800. Location B has a 2002 ADT of 2,500. The volume of traffic moving from A to B is:

10,800 * (5125/5400) * (12200/13400) * (5325/6100) * (3975/5900) * (9000/11000) * (3600/4500) * (5500/7600) * (1200/2750) = 1,100

The volume of traffic moving from B to A is:

2,500 * (1200/1250) * (5500/7600) * 3600/3800) * (9000/11000) * 3975/5500) * 5325/5900) * 12200/13400) * 5125/6400) = 640


Therefore, the traffic volume for OD pair A-B used in the analysis is (1100 + 640) / 2 = 887 (900)

- 2. The existing distance between A-B is 1.6 miles; the new distance is 1.4 miles, giving a distance savings of 0.2 miles.
- 3. The existing congested time between A-B is 5.4 minutes; the new time is 1.9 minutes, giving a time savings of 3.5 minutes.
- 4. The percentage of diverted traffic is therefore calculated to be:

 $P = 50 + 50 * (0.2 + 0.5 * 3.5) / SQRT [(0.2 - 0.5 * 3.5)^2 + 4.5] = 87$ percent

5. Therefore, the volume from OD pair A-B that will use the new bypass is 900 * 0.87 or 774 (800) vehicles, and the volume remaining on the existing route is 100 vehicles.

Exhibit B. West Liberty Bypass

VII. CONCLUSION

The manual gravity diversion methodology is a reasonable approach to forecast the traffic on a new facility in the absence of a travel demand model. The obvious limitations lie in the accuracy of the input data; poor data used to generate the segment capacities will lead to inaccurate congested speeds, poor turning movement data will lead to inaccurate diversion volumes, and poor estimation of traffic growth will lead to inaccurate design year volumes. With these concessions, the manual gravity procedure as stated in this report is an excellent manual approach to determine base year and design year traffic volumes for a new facility.

In order to demonstrate the application of the manual gravity diversion, an evaluation of the traffic diverted to the proposed West Liberty, Kentucky bypass (US 460) is presented in the Appendix.

APPENDIX: WEST LIBERTY BYPASS

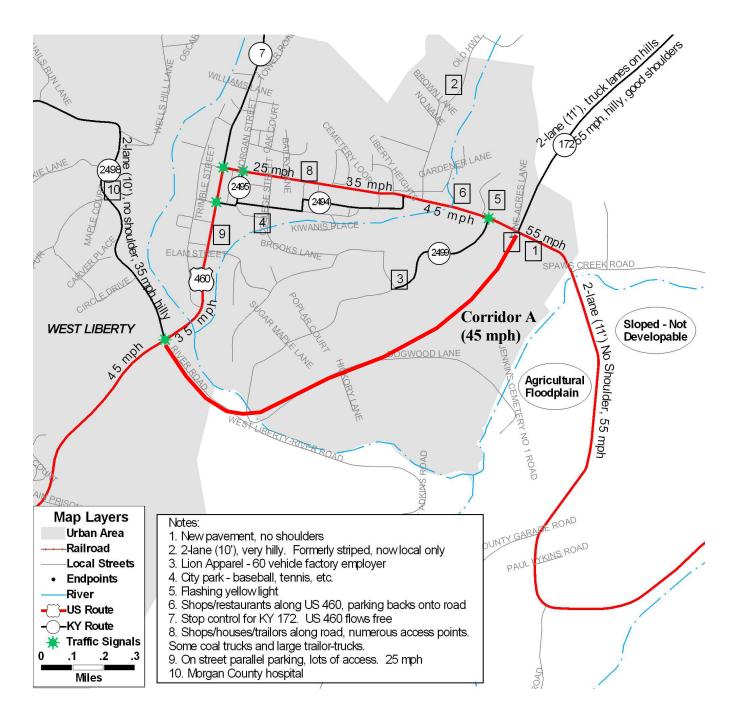
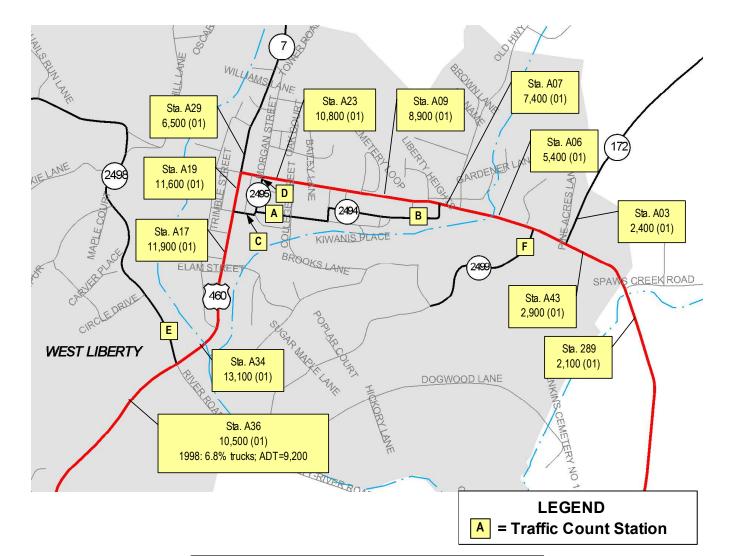



Exhibit A: Site Visit Notes and Proposed Alignment

Exhibit B: Historical Traffic Count Data

Location	Station	Route	Count	Year
А	A15	KY 2494	1,900	2001
В	A08	KY 2494	600	1999
С	A18	KY 2495	2,500	2001
D	A24	KY 2495	2,000	1998
E	A40	KY 2498	2,900	2001
F	A42	KY 2499	900	2001

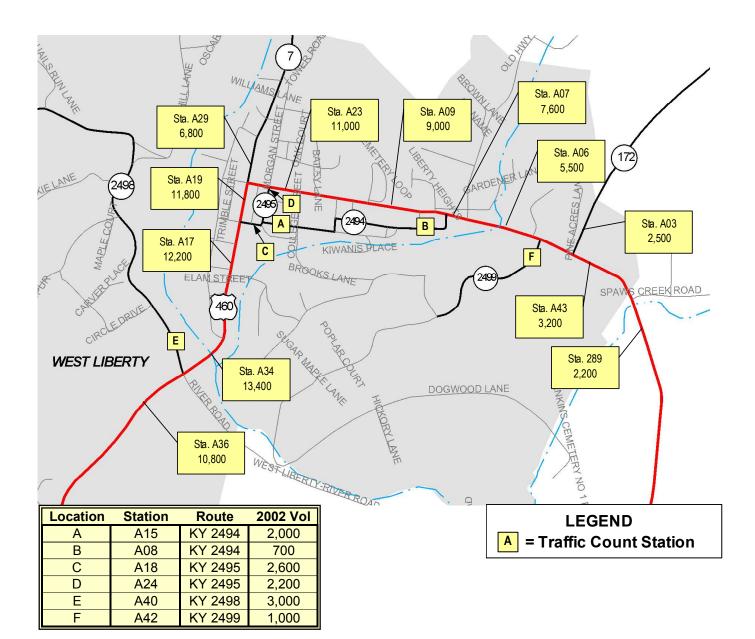
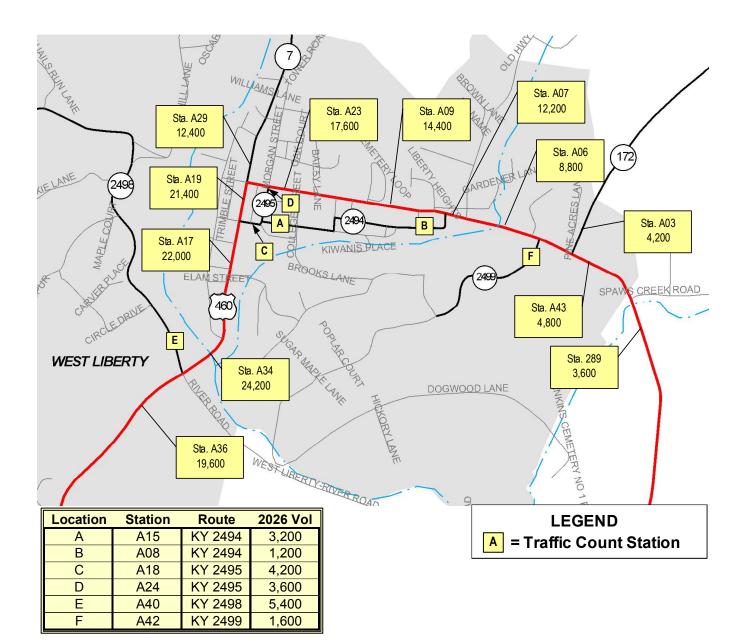
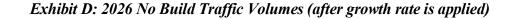
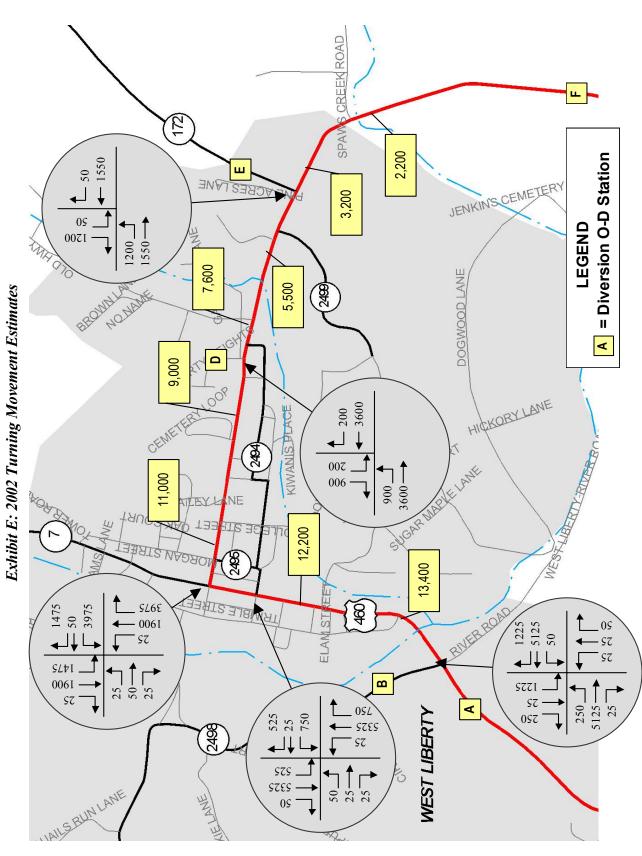
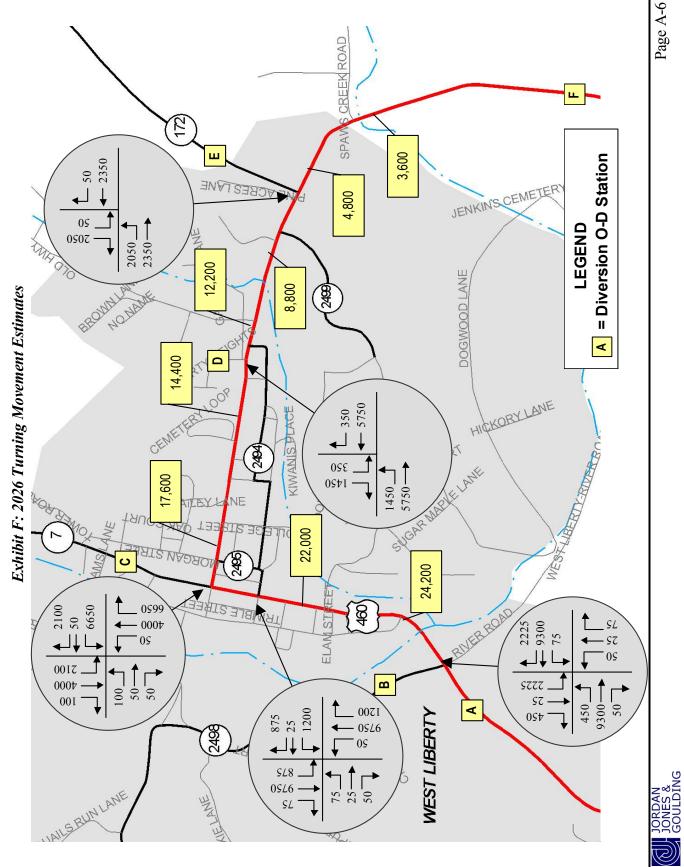
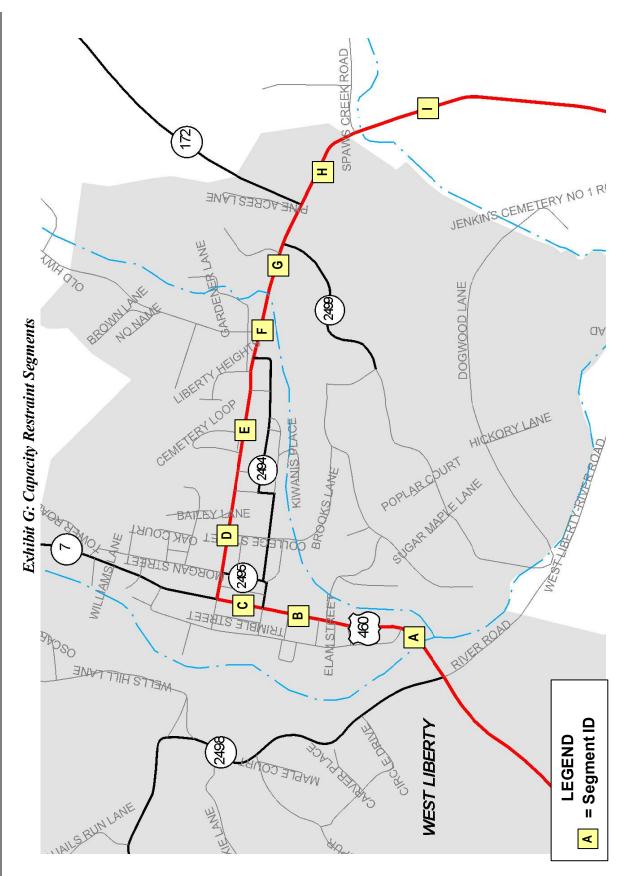




Exhibit C: 2002 No Build Traffic Volumes (after growth rate is applied)





JORDAN JONES & GOULDING


Page A-5

Page A-6

Segment	Α	В	С	D	Е	F	G	н	1
Distance (miles)	0.35	0.18	0.12	0.16	0.43	0.16	0.23	0.23	1.14
Posted Speed (mph)	35	25	25	25	35	45	45	55	55
Midblock Speed (mph)	40	32	32	32	40	48	48	62	62
Number of Signals	1	1	1	2	0	0	1	0	0
Ave. Signal Delay (D)	16.3	16.3	16.3	16.3	N/A	N/A	16.3	N/A	N/A
Free-flow Speed (mph)	26	18	14	11	40	48	25	62	62
Uncongested Time (min)	0.8	0.6	0.5	0.9	0.6	0.2	0.6	0.2	1.1
Ideal Sat. Flow (vph)	1900	1900	1900	1900	1400	1400	1900	1400	1400
Number of Lanes	2	2	2	2	2	2	2	2	2
F.,	0.97	0.97	0.90	0.97	0.90	0.90	0.90	0.90	0.90
F _{hv}	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
F _{park}	1.00	0.90	0.90	0.90			1.00		
F _{bay}	1.00	1.00	1.00	1.00			1.00		
F _{CBD}	1.00	0.90	0.90	0.90			1.00		
F _{dir}					0.97	0.97		0.97	0.97
F _{nopass}					1.00	1.00		0.93	0.93
g/C	0.45	0.45	0.45	0.45			0.45		
PHF	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Capacity (vph)	1348	1092	1017	1092	1996	1996	1255	1852	1852
2002 AADT (vpd)	13400	12200	11800	11000	9000	7600	5500	3200	2200
2002 Vol (vph)	1340	1220	1180	1100	900	760	550	320	220
V/C Ratio	0.99	1.12	1.16	1.01	0.45	0.38	0.44	0.17	0.12
Cong. Spd (mph)	22	11	7	9	40	48	25	62	62
Cong. Time (min)	1.0	1.0	1.0	1.1	0.6	0.2	0.6	0.2	1.1
	0.4632		04.400	47000	44400	40000	0000	4000	
2026 AADT (vpd) 2026 Vol (vph)	24200 2420	22000 2200	21400 2140	17600 1760	14400 1440	12200 1220	8800 880	4800 480	3600 360
V/C Ratio	1.80	2200	2.140	1.61	0.72	0.61	0.70	0.26	0.19
Cong. Spd (mph)	9	6	5	4	40	48	25	62	62
Cong. Time (min)	2.3	1.8	1.4	2.4	0.6	0.2	0.6	0.2	1.1

Exhibit H: Free-flow Speed, Capacity, and Congested Speed Calculations

Report
Special
: Forecast S
Traffic H

Exhibit I: 2002 Manual Gravity Diversion Calculations

O-D Volumes

. •

Diversior	Diversion Analysis	~												
			Medium Heavy	Exist	sting	ž	New	Change	nge			Vehicles	Med. Trucks	Hvy. Trucks
0-D Pair	D-D Pair Volume		Trucks Dist.	Dist.	Time	_	Dist. Time	Dist.	Time	CA Div %	CA Div % % Diverted	Diverted	Diverted	Diverted
A-D			15	1.2	4.7	1.8	2.9		1.8	56.07	56	448	16	15
A-E	887	42	24	1.6	5.4	1. 4	1.9	0.2	3.5	87.29	87	774	37	24
A-F	669	34	19	3.0	6.8	2.8	3.3	0.2	3.5	87.29	87	610	29	19
B-D	191	ω	4	1.2	4.7	1.8	2.9	-0.6	1.8	55.77	56	107	4	4
В-П В	212	12	7	1.6	5.4	4.	1.9	0.2	3.5	87.29	87	185	10	7
В-Г	167	ი	S	3.0	6.8	2.8	3.3	0.2	3.5	87.11	87	145	8	5
ц С	381	23	12	2.3	3.8	3.4	7.2	<u>-</u> -	-3.4	-13.26	0	0	0	12
			-	_		_	•				Total Percentage	2269	104 4.6%	86 3.8%

JORDAN JONES & GOULDING

Page A-9

Report
Special
orecast
Traffic F

Exhibit J: 2026 Manual Gravity Diversion Calculations

O-D Volumes

	Heavy	[ruck_Exist	57	76	65	17	23	19	36	Heavy	ruck_Exist	17	4	47	1	32	8	
	Í	Truc								Í	Truc							
	Medium	Truck_Exist	101	135	116	30	40	34	72	Medium	Truck_Exist	35	8	84	20	57	14	
		Vol_Exist	1533	2046	1759	367	490	421	793		Vol_Exist	1191	285	1145	274	738	177	
		nt. 9			0.75			0.75			nt. 9					0.80	0.19	
		Int. 2 Int. 3 Int. 4 Int. 5 Int. 6 Int. 7 Int. 8 Int. 9		0.47	0.53		0.47	0.53			Int. 2 Int. 3 Int. 4 Int. 5 Int. 6 Int. 7 Int. 8 Int. 9			0.80	0.19	0.91	0.91	
		nt. 7 I		0.72	0.72		0.72	0.72			nt. 7			0.91	0.91	0.91	0.91	
		nt. 6	0.20	0.80	0.80	0.20	0.80	0.80	0.75		nt. 6	0.80	0.19	0.91	0.91	0.76	0.76	
		nt. 5 I	0.82	0.82	0.82	0.82	0.82	0.82	0.53		nt. 5 I	0.91	0.91	0.76	0.76	0.82	0.82	
		Int. 4	0.62	0.62	0.62	0.62	0.62	0.62	0.72		Int. 4	0.91	0.91	0.82	0.82	0.94	0.94	
		Int. 3	0.89	0.89	0.89	0.89	0.89	0.89	0.80		Int. 3	0.76	0.76	0.94	0.94	0.72	0.72	
		Int. 2	0.91	0.91	0.91	0.91	0.91	0.91	0.82		Int. 2	0.82	0.82	0.72	0.72	0.98	0.98	
		Int. 1	0.95	0.95	0.95	0.82	0.82	0.82	0.34		Int. 1	0.81	0.81	0.98	0.98	0.75	0.75	
	Heavy		725	725	725	248	248	248	570	Heavy	Trucks	50	50	172	172	155	155	
	Medium	Trucks	1294	1294	1294	437	437	437	1128	Medium	Trucks	104	104	307	307	277	277	
2		ADT	19600	19600	19600	5400	5400	5400	12400		ADT	3600	3600	4200	4200	3600	3600	
		O-D Pair	A-D	A-E	A-F	B-D	B-E	В-F	C-F	Reverse	O-D Pair	D-A	D-B	E-A	E-B	F-A	F-B	

Diversion Analysis

Diversior	Diversion Analysis													
		Mediu	Heavy	Existin	ting	Ne	New	Change	nge			Vehicles	Med. Trucks	Hvy. Trucks
O-D Pair	Volume	Truck	Trucks	Dist.	Time	Dist.	Time	Dist.	Time	CA Div %	% Diverted	Diverted	Diverted	Diverted
A-D	1362	68		1.2	8.6	1.8	3.1	-0.6	5.5	77.22	17	1052	52	37
A-E	A-E 1596	109	61	1.6	9.4	1. 4	1.9	0.2	7.5	97.79	98	1560	107	61
A-F	1249			3.0	10.7	2.8	3.3	0.2	7.4	97.68	98	1220	84	48
B-D	326			1.2	8.6	1.8	3.1	-0.6	5.5	77.11	77	251	15	10
В-П	382			1.6	9.4	4. 4	1.9	0.2	7.5	97.79	98	374	29	17
В-F	299			3.0	10.7	2.8	3.3	0.2	7.4	97.65	98	292	23	13
Ч-Г С	572			2.3	5.1	3.4	7.8	<u>.</u>	-2.7	-7.01	0	0	0	26
	-		-		•				-		Total	4749	310	213
										_	Percentage		6.5%	4.5%
										Ч	Inflated by 20%	5700	370	260
											Percentage		6.5%	4.6%

JORDAN JONES & GOULDING

Page A-10