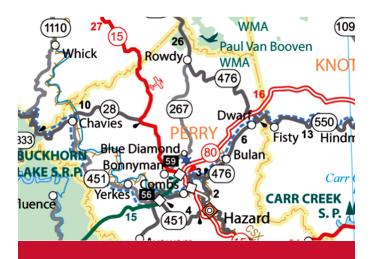


Value Engineering Study Final Report

KY 15 north of Hazard Kentucky Transportation Cabinet (KYTC)

Value Engineering Study Item #10-269.20 VE202104


Perry County, Kentucky

November 29 - December 3, 2021

Prepared by:

FSS

HDR Engineering, Inc. 401 West Main Street Suite 500 Louisville, KY 40202-2936

Disclaimer

The information contained in this report is based on the professional opinions of the Value Engineering (VE) team members as developed during the study. These opinions are based on the information that was provided to the team at the time of the study. As the project continues to develop, recommendations and findings should be reevaluated as new information is received.

All costs displayed in the report are based on best available information at the time of the study and, unless otherwise noted, used the estimate as provided to the VE team. All drawings, graphics, maps, photos, etc., used in the report were supplied by the study sponsor or developed during the study.

The disposition of recommendations is based on the information in this report; it is independent of the resolutions generated after the study. HDR has no participation, direct or indirect, in such decisions.

For any recommendations that are accepted by the owner and design team as a result of this VE study, the responsibility for implementation into the design rests with the designer of record.

Study Statistics		
Baseline Capital Cost:	\$77.8M	
Baseline Lifecycle Cost:	\$123.32M	
Number of Recommendation	ns: 7	
Recommended Lifecycle Co	st Savings	
(VE Strategy 3):	\$43.5M	
Total Number of Team Members: 9		
KYTC Employees:	2	
Others:	7	
Facilitator Consultant:	HDR	

Exec	utive S	Summary	iii
	Introd	duction	iii
	Proje	ct Overview	iii
	Scop	e of VE Study	iii
	VE R	ecommendations and Study Results	iii
	Imple	ementation of Recommendations	vi
1	Introc	duction	1-1
	1.1	Scope of VE Study	1-1
	1.2	VE Team Members	1-1
2	Inform	nation Phase	2-1
	2.1	Information Provided to VE Team	2-1
	2.2	Project History and Purpose and Need	2-2
	2.3	Proposed Improvements	2-4
	2.4	Project Risks	2-5
	2.5	Project Observations	2-5
	2.6	Project Schedule	2-6
	2.7	Project Cost Estimate	2-7
3	Proje	ct Analysis	3-1
	3.1	Cost Model	3-1
	3.2	Value Metrics	3-1
		3.2.1 Performance Attributes	
		3.2.2 Performance Attribute Matrix	
4	Func	tion Analysis Phase	4-1
	4.1	Overview	4-1
	4.2	Function Analysis System Technique Diagram	4-2
5	Creat	tive Phase	5-1
6	Evalu	uation Phase	6-1
	6.1	Evaluation Process	6-1
	6.2	Evaluation Summary	6-2
7	Deve	lopment Phase	7-1
	7.1	Summary of Recommendations	7-1
		7.1.1 FHWA Functional Benefit Criteria	7-2
	7.2	Value Engineering Recommendation Approval	7-3
	7.3	Individual Recommendations	
		VE Recommendation No. 1: Shift KY 28 intersection to the south	
		VE Recommendation No. 2: Use at-grade Intersection at KY 28 VE Recommendation No. 3: Reduce Typical Section	
		VE Recommendation No. 3: Reduce Typical Section VE Recommendation No. 4: Upgrade Existing KY 15 Alignment in lieu of	
		Constructing the Baseline Alternative	7-23

Contents

	VE Recommendation No. 5: Shift alignment west of cemetery and provide Alternative Intersection at KY 28 VE Recommendation No. 6: Shift Access to KY 28 North of Proposed KY 28	7-30
	Interchange	7-41
	VE Recommendation No. 7: Use continuous high T at southern split	7-47
7.4	Performance Assessment	7-53
	7.4.1 Performance Rating	7-53
	7.4.2 Compare Value	
7.6	Design Considerations	7-57

Tables

Table 1. Summary of Recommendationsi	
Table 2. Summary of Value Strategies	v
Table 3. Value Index	/i
Table 4. Information Provided to the VE Team2-	1
Table 5. Cost Estimate – Baseline Concept2-	7
Table 6. Performance Attributes and Description	2
Table 7. Performance Attribute Matrix	
Table 8. Random Function Identification4-	1
Table 9. Creative Idea List	2
Table 10. Idea Evaluation Summary Table6-	3
Table 11. Summary of Recommendations7-	2
Table 12. Performance Attribute Rating Scale	3
Table 13. Performance Matrix7-5	
Table 14. Value Index	6
Table 15. Design Considerations7-5	7

Figures

Figure 1. Team Photo	. 1-2
Figure 2. Project Vicinity Map	.2-3
Figure 3. Selected Typical Section	.2-4
Figure 4. Cost Model	. 3-1
Figure 5. FAST Diagram	.4-3
Figure 6. VE Process Information Flow	. 6-1

Appendices

- Appendix A. Value Methodology Process
- Appendix B. VE Recommendation Approval Form
- Appendix C. VE Study Memo, Agenda and Attendees
- Appendix D. Project Estimate

Executive Summary

Introduction

This report summarizes the events and results of the virtual Value Engineering (VE) study conducted by HDR Engineering, Inc. for the Kentucky Transportation Cabinet (KYTC) on the KY 15 north of Hazard project in Perry County, Kentucky. The VE study consisted of a 5-day workshop that was conducted virtually with a multidisciplinary team on November 29 - December 3, 2021 using Microsoft Teams.

Project Overview

KYTC, in cooperation with the Federal Highway Administration (FHWA), has proposed improvements to approximately 7.5 miles of Kentucky Highway 15 (KY 15) north of Hazard in Perry County, Kentucky. The improvements will result in converting the existing primarily two-lane road to a divided four-lane highway through construction of a new cross-country route to the west of KY 15. The project corridor extends from Bonneyman in the south to Shady Ridge Drive just to the north of the Kentucky Highway 28 (KY 28) intersection.

The proposed project typical section will consist of four lanes (two 12-foot lanes in each direction), shoulders of 12 feet with a 40-foot depressed median. For additional information regarding the preferred alignment, please see Section 2.3, Proposed Improvements.

At the time of the VE study, the total cost of construction, right-of-way, and utilities was estimated at \$77.8 million. An estimate for other items such as construction engineering and design was not provided.

Scope of VE Study

The primary objectives of the study, through execution of the Value Methodology Job Plan (Appendix A), were to:

- Verify or improve on the various design concepts for the identified section of the KY 15 north of Hazard project.
- Conduct a thorough review and analysis of the key project functions using an independent, multidiscipline, cross-functional team.
- Make recommendations that could improve the value of the project through innovative measures aimed at improving the performance while reducing costs of the project.

VE Recommendations and Study Results

The VE team generated 51 ideas for the project. These concepts were compared against the baseline developed by the project team. The concepts that resulted in improved performance were further developed by the VE team and resulted in seven recommendations.

The cost savings are shown in Table 1 (described in more detail within Section 2.3, Proposed Improvements).

Table 1. Summary of Recommendations

#	Decommondation Title	Cost				
#	Recommendation Title	Construction	Life Cycle	Utility	ROW	Total Cost
	Baseline	\$68.90	\$45.51	\$2.16	\$6.75	\$123.32
1	Shift KY 28 Intersection to the South	\$2.59	\$0.47		\$1.75	\$118.51
2	Use At-Grade Intersection at KY 28	\$7.26	\$0.92			\$115.14
3	Reduce Typical Section	\$27.99	\$2.11		\$2.36	\$90.86
4	Upgrade Existing KY 15 Alignment in lieu of Constructing the Baseline Alternative	\$58.42	\$41.73	\$1.16	\$4.75	\$17.26
5	Shift Alignment West of Cemetery and Provide At- Grade Intersection at KY 28	\$5.65	\$1.12			\$116.55
6	Shift Access to KY 28 North of Proposed KY 28 Interchange	\$2.48				\$120.84
7	Use Continuous High T at Southern Split	(\$3.08)	(\$0.84)			\$127.24

The individual recommendations are summarized below; the detailed information about each recommendation is included in Section 7.3.

1—Shift KY 28 Intersection to the South – Improve local operations by realigning KY 28 and connecting KY 28 to the existing KY 15. Construct a Tight Diamond Interchange south of the baseline Tight Diamond Interchange.

2—Use At-Grade Intersection at KY 28 – Eliminate the smaller set of twin bridges by using an innovative at-grade unsignalized continuous green T at the intersection of KY 15 and KY 28 on the baseline alignment. A channelized acceleration lane for traffic turning left onto NB KY 15 will be incorporated.

3—Reduce Typical Section – Reduce the typical section from a 4-lane with 40-foot depressed median to a 2+1 typical section to ensure project fundability while meeting operational requirements of traffic projections and reducing the environmental impacts.

4—Upgrade Existing KY 15 Alignment in lieu of Constructing the Baseline Alternative – Provide a consistent typical 2+1 section along the existing alignment and implement other operational improvements to right-size the project, reduce environmental impacts, and improve the project schedule.

5—Shift Alignment West of Cemetery and Provide At-Grade Intersection at KY 28 – Modify the horizontal curve radius to shift the alignment to the west of Miller cemetery, eliminating twin structures at KY 28 under the new KY 15. Provide a new at-grade intersection or a high green T interchange at KY 15 and KY 28 to improve maintainability.

6—Shift Access to KY 28 North of Proposed KY 28 Interchange – Shift the KY 28 intersection to the north to maintain free-flow between KY 28 and KY 15, reduce conflict points, and eliminate impacts to the cemetery.

7—Use Continuous High T at Southern Split– Construct a continuous high green T intersection at the southern intersection of the newly aligned KY 15 and the existing KY 15 to reduce conflict points and improve operations.

Based on discussions during the presentation the VE facilitator developed several VE strategies as complimentary combinations of individual VE recommendations.

VE Strategy	VE Rec #	Cost	Total				
VE Strategy	VE Rec #	Construction	Life Cycle	Utility	ROW	Savings	
1	1, 3, 7	\$27.51	\$1.74		\$4.11	\$33.36	
2	3, 6, 7	\$27.39	\$1.27		\$2.36	\$31.02	
3	2, 3, 5, 7	\$37.83	\$3.31		\$2.36	\$43.50	
4	4	\$58.42	\$41.73	\$1.16	\$4.75	\$106.06	

Table 2. Summary of Value Strategies

Value Strategy 1 — VE Recommendations 1, 3, and 7 – This strategy suggests a modified 2+1 typical section along the baseline alignment, shifts the KY 28 Tight Diamond Intersection south, and utilizes a continuous high green T intersection at the southern split.

Value Strategy 2 — VE Recommendations 3, 6, and 7 – This strategy suggests a modified 2+1 typical section along the baseline alignment, shifts the KY 28 intersection north, and utilizes a continuous high green T intersection at the southern split.

Value Strategy 3 — VE Recommendations 2, 3, 5, and 7 – This strategy suggests a modified 2+1 typical section along the baseline alignment, shifts the KY 28 intersection west and provides an at-grade intersection, and utilizes a continuous high green T intersection at the southern split.

Value Strategy 4 — VE Recommendation 4 – This strategy proposes utilizing a reduced typical section along the existing KY 15 alignment.

A summary of the cost, performance, and value change of each VE Recommendation is provided in Table 3. The performance scores for each VE strategy were divided by the total cost scores to derive a value index. The value indices for the VE recommendations were then compared against the value index of the baseline concept and the difference is expressed as a percent (\pm %) deviation. Please refer to Section 7.4, Performance Assessment, for more information on the value comparison of the VE recommendations.

Table 3. Value Index

Recommendation	Performance (P)	% Change Performance	Cost (C) \$ millions	Cost Change \$ millions	% Change Cost	Value Index	% Value Improvement
Baseline	499		\$123.3			4.00	
1 - Shift KY 28 Intersection to the South	540	+8.2%	\$118.5	-\$4.81	-3.9%	4.60	+13.0%
2 - Use At-Grade Intersection at KY 28	553	+10.7%	\$115.1	-\$8.18	-6.6%	4.80	+16.7%
3 - Reduce Typical Section	534	+6.9%	\$90.9	-\$32.46	-26.3%	5.90	+32.2%
4 - Upgrade Existing KY 15 Alignment in lieu of Constructing the Baseline Alternative	520	+4.3%	\$17.3	-\$106.06	-86.0%	30.10	+86.7%
5 - Shift Alignment West of Cemetery and Provide At-Grade Intersection at KY 28	538	+7.9%	\$116.5	-\$6.77	-5.5%	4.60	+13.0%
6 - Shift Access to KY 28 North of Proposed KY 28 Interchange	488	-2.1%	\$120.8	-\$2.48	-2.0%	4.00	0.0%
7 - Use Continuous High T at Southern Split	512	+2.6%	\$127.2	+\$3.92	+3.2%	4.00	0.0%

Implementation of Recommendations

To facilitate implementation, a Value Engineering Recommendation Approval Form is included as Appendix B. If the state elects to reject or modify a recommendation, please include a brief explanation of the decision.

The VE team wishes to express its appreciation to the project design managers for the excellent support they provided during the study. We hope that the recommendations and design considerations provided will assist in the management decisions necessary to move the project forward through the project delivery process.

Jose Theiler, PE, CVS® *VE Facilitator*

1 Introduction

This VE report summarizes the events of the virtual VE study conducted for the Kentucky Transportation Cabinet (KYTC) and facilitated by HDR using Microsoft Teams. The subject of the study was the KY 15 north of Hazard project. The VE study was conducted November 29 - December 3, 2021 while the project was in the preliminary design phase.

1.1 Scope of VE Study

Value is expressed as the relationship between functions and resources, where function is measured by the performance attributes defined by the customer, and resources are measured in materials, labor, price, and time required to accomplish that function. VE focuses on improving value by identifying the most resource-efficient way to reliably accomplish a function that meets the performance expectations of the customer.

The primary objectives of the study, through execution of the Value Methodology Job Plan (Appendix A), were to:

- Verify or improve on the various concepts for the identified section of the KY 15 north of Hazard project.
- Conduct a thorough review and analysis of the key project functions using a multidiscipline, cross-functional team.
- Make recommendations that could improve the value of the project through innovative measures aimed at improving the performance while reducing costs of the project.

With this process, the VE team identified the essential project functions and alternative ways to achieve those functions; the team then selected the optimal recommendations to develop into workable solutions for value improvements.

1.2 VE Team Members

The VE study was facilitated by a Certified Value Specialist (CVS) from HDR. Multiple representatives and members of the KYTC project team also participated in the VE process to provide insight into the project's background and design development, as well as their requirements for the project and expectations for the VE study. Their support of this study is greatly appreciated, and the results provided herein reflect the information they provided throughout the study.

The VE team included the following individuals. See Appendix C for details of attendees.

Tim Adams, PE | HDR Erica Albrecht, PE | HDR Rachel Bernhard, EIT, VMA | HDR Andrew Brown, PE | Palmer Justin Harrod | KYTC Will Hume, PE | HDR Brent Sweger, PE | KYTC Jose Theiler, PE, CVS | HDR Clint Young, PE | HMB

Figure 1. Team Photo

2 Information Phase

To successfully identify alternatives, it is essential that the VE team first understand the project objectives and problems that must be solved. The VE team received the documentation and drawings from the project design team as shown in Table 4. The design team also introduced the project and its characteristics on the first day of the study. Project details and challenges as presented by the design team are summarized below.

2.1 Information Provided to VE Team

Table 4 lists the project documents provided to the VE team for use during the study.

Document/Drawing/Schematic	Document Date
Cost Estimate	November 2021
Project Story Map	November 2021
3D Divided Typical Section	November 2021
Cut Slope Recommendations	October 2003
VE Study Prep/Project Overview Meeting Recording	October 2021
Finding of No Significant Impact (FONSI)	June 2004
Google Earth .KMZ File	November 2021
Crash Data	November 2021
KY 15 Profile Roll Plot	November 2021
KY 15 From Campton to Hazard – Programming Study Final Report	April 2013
KY 15 Public Meeting Layouts	November 2021
Traffic Forecast Report	November 2021
HMB Design Baseline Information	November 2021
Project Information Sheet, Location Map, Accident Data, and Estimate	2008
Original Geotechnical Data, Cut Slope Recommendations, Preliminary Exploration Plans	2003

Table 4. Information Provided to the VE Team

2.2 Project History and Purpose and Need

The following project history and information was extracted from the information and documentation provided by KYTC.

KYTC in cooperation with the Federal Highways Administration (FHWA) is proposing improvements to approximately 7.5 miles of Kentucky Highway (KY 15) north of Hazard, Perry County, Kentucky. The existing KY 15 is a major rural arterial, which plays an important system linkage role in the region. However, the current two-lane width, sharp curves, steep grades, and essential lack of median and shoulders have led to traffic congestions and safety concerns. The purpose of the project is to improve traffic congestion and safety. The project will serve to meet current safety, design and economic needs in the area.

This project is Section G of a larger Corridor Planning Study from Campton to Hazard. The planning study was completed in 2013 and was updated again in 2021. Preliminary Line and Grade plans were completed in 2002 that evaluated alignments on existing and two cross country alternatives. The new cross-country alignment west of KY 15 was selected as the revised preferred alignment shown in Figure 2. The FONSI was completed in 2004.

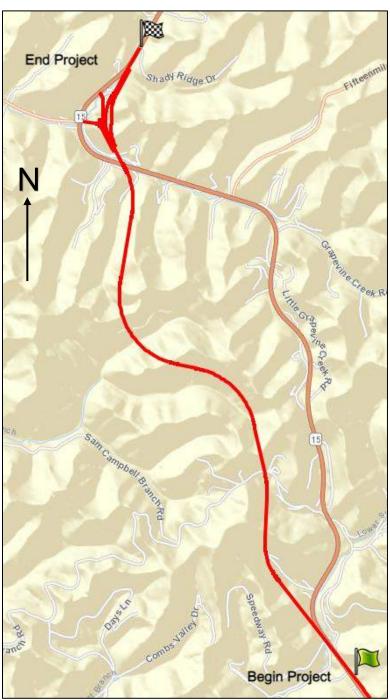
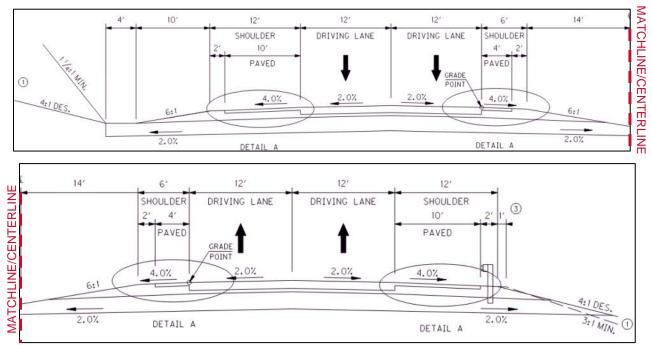



Figure 2. Project Vicinity Map

2.3 Proposed Improvements

A new cross-country roadway will be constructed west of the existing KY 15. It will be a four-lane divided highway with a 40-foot depressed median. The Selected Alternative (Figure 3) has been designed to avoid and minimize impacts to the existing resources to as great an extent as possible and still meet project needs to resolve traffic congestion and safety issues.

Figure 3. Selected Typical Section

2.4 Project Risks

As part of the project briefing, the VE team was given the following project constraints, controlling factors, and other issues that needed to be considered when evaluating ideas. A risk analysis was not completed as part of this VE; however, during the VE study, the team identified several risks.

- o Impacts to cemeteries and churches should be limited
- There is a desire to remain within the existing FONSI footprint, but the potential to reopen environmental documentation/footprint changes is significant
- o Stream impacts should be limited
- Funding constraints are a risk, construction costs are higher in eastern Kentucky per mile than western Kentucky and there is a desire to deliver and economical project
- Traffic counts may be outdated and current traffic demands may not justify the cost of an interchange at KY 28; however, safety improvements may help justify the additional costs
- o The project schedule is aggressive
- o Impacts to the cemetery near KY 28 may impact design progression
- There may be public disapproval of any potential changes that could lead to petition
- There is an opportunity to have the project ready for potential infrastructure funding
- There is an opportunity for this project to take advantage of alternative project delivery
- There is an opportunity for this project to deliver "innovation" (ITS, intersection/interchange at KY 28)

2.5 Project Observations

The first day of the VE study included a presentation from the project design team and a virtual tour of the project using Google Earth and KMZ files. The following summarizes project issues, project drivers, and observations identified during this session:

- o This project is coming off the shelf after quite a bit of time
 - There is a desire to right-size the project and bring it up to date
- Legislature highway plan funding currently includes \$66.6 million, however, of that total, only \$1.5 million for design is funded within the biennium
- Current safety analysis tools were not available the last time this project was analyzed, any potential recommendations will have this technology opportunity
- Cemetery impacts/constraints are significant at KY 28

- Safety concerns at KY 28 may warrant a grade separated interchange or intersection
- There is a desire for corridor consistency, however, traffic volumes may not warrant a full build
 - A similarly low-traffic Mountain Parkway is currently under expansion
- Safety improvements within funding limitations may meet project goals without addressing the desire for corridor consistency
- There may be an opportunity to utilize the existing corridor with a reduced roadway typical section
- Traffic forecasts/assumed growth rates from the 2004 FONSI were calculated using differing methods and may be significantly different than today; the updated traffic forecast report uses a 0.5% growth rate
- There may be advantages to maintaining the existing alignment of KY 15 for structures and local access; some safety improvements will be required
- o Access point safety must be addressed, therefore, a no build is not an option
- o Crashes cluster at access points on curves and not necessarily near KY 28
- Access management near SR 1067 may require attention regardless of whether the existing alignment is retained
- There is a significant drainage area near KY 28 and an existing 12'x10' box culvert under the intersection that will need to be addressed
- o The pavement section thickness may be able to be reduced
- o Earthwork balancing should take place as the design progresses
- There are no pedestrian/bicycle facilities included in the project
- There was a significant increase in crashes in the 2004 FONSI (42% increase from 53 in 1999 to 75 in 2000); however the past 5 year crash data is probably more accurate (while it may include COVID-19 lockdown periods)
- Project limits that included an interchange at KY 28 may be outdated
- Truck traffic operations may be improved by providing truck lanes
- o Alternative project delivery should be considered

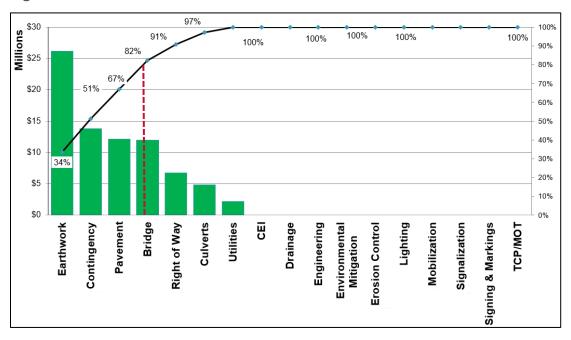
2.6 Project Schedule

The project was at the preliminary design stage with an alignment review scheduled for January 2022. A preferred interchange type at KY 28 will be selected in May 2022 and Phase 1 (50-60% plans) will be completed in July 2022. The project letting is scheduled for 2025 and the construction duration is expected to be 24-30 months. The project delivery is Design-Bid-Build.

2.7 Project Cost Estimate

At the time of the study, the VE team was provided with the most recent cost estimate. An abbreviated estimate is shown in Table 5. See Appendix D for the HMB expanded estimate.

Table 5. Cost Estimate – Baseline Concept					
Cost Item	Cost	Percent of Total	Cumulative Percentage		
Earthwork	\$26,200,000	33.7%	34%		
Contingency	\$13,782,000	17.7%	51%		
Pavement	\$12,121,000	15.6%	67%		
Bridge	\$11,944,800	15.4%	82%		
Right of Way	\$6,748,000	8.7%	91%		
Culverts	\$4,858,840	6.2%	97%		
Utilities	\$2,160,000	2.8%	100%		
Total	\$77,814,640	100.0%	100%		


This page intentionally left blank.

3 Project Analysis

3.1 Cost Model

The VE facilitator prepared a cost model from the cost estimate, which was provided by the project team. The model was organized to identify major construction elements, the design team's estimated costs, and the percent of total project cost for the significant cost items (Figure 4).

The cost model allows the team to focus on project elements with the highest degree of impact and utilize their time most effectively.

3.2 Value Metrics

The value metrics process was used as an analysis tool to evaluate the baseline project and the VE recommendations. Value metrics is a system of techniques predicated on the theory that value is an expression of the relationship between the performance of a function and the cost of acquiring it. It provides a standardized means of identifying, defining, evaluating, and measuring performance. Performance is quantified in terms of how well a set of attributes contribute to the overall functional purpose of a given project.

The basic equation used for calculating value is:

In other words, value is equivalent to the relationship of the resources needed to provide a certain level of performance for a given function. Performance is defined as a set of requirements and attributes of a project's scope that are pertinent to the project's purpose and need. Participant responses are elicited for a series of paired comparisons in which the performance of alternatives are compared, with consideration of the project purpose and need, while taking into account the relative intensity of preference of one criterion over another.

The following pages describe the steps in the value metrics process.

3.2.1 Performance Attributes

Performance attributes are an integral part of the value analysis process. The performance of each project must be properly defined and agreed on by the project team, VE team, and representatives at the beginning of the study. These attributes represent those aspects of a project's scope and schedule that possess a range of potential values.

Performance attributes can generally be divided between project scope components (highway operations, environmental impacts, maintainability, and system preservation) and project delivery components. It is important to make a distinction between performance *attributes* and performance *requirements*. Performance requirements are mandatory and binary in nature. All performance requirements must be met by any VE alternative concept being considered. Performance attributes possess a range of acceptable levels of performance. For example, if the project was the design and construction of a new bridge, a performance requirement might be that the bridge must meet all current seismic design criteria. In contrast, a performance attribute might be project schedule, which means that a wide range of alternatives could be acceptable that had different durations.

Typical standardized project performance attributes are shown below. The VE team, along with the project team, identified and defined the performance attributes for this project and then defined the baseline concept as it pertains to these attributes (Table 6). The following performance attributes were used throughout the study to identify, evaluate, and document ideas and recommendations.

Performance Attribute	Description of Attribute	Baseline Concept
Main Line Operations	An assessment of traffic operations and safety on the main line within the project limits. Operational considerations include level of service relative to the 20- year traffic projections, as well as geometric considerations such as design speed, sight distance, and lane and shoulder widths.	 LOS B, Design Speed: 60 MPH, No design exceptions Four 12' lanes (divided) with 6' inside shoulders (4' paved shoulders, 12' outside shoulders (10' paved), 40' depressed median (6:1)

Table 6. Performance Attributes and Description						
Performance Attribute	Description of Attribute	Baseline Concept				
Local Operations	An assessment of traffic operations and safety on the local roadway infrastructure. Local Operations include frontage roads as well as crossroads. Operational considerations include level of service relative to the 20- year traffic projections; geometric considerations such as design speed, sight distance, lane and shoulder widths; bicycle and pedestrian operations and access.	 Diamond overpass at KY 15/KY 28 (28 goes under), lighting Two lane undivided 11' lanes, 6' shoulders (4' paved), 9% maximum grade Design Speed: 55 MPH Two-way stop signs at approaches 				
Maintainability	An assessment of the long-term maintainability of the facilities and equipment. Maintenance considerations include the overall durability, longevity, and maintainability of structures and systems; ease of maintenance; accessibility and safety considerations for maintenance personnel.	 Asphalt roadway, typical bridge maintenance Lighting 				
Construction Impacts	An assessment of the temporary impacts to the public during construction related to traffic disruptions, detours and delays; impacts to existing utilities; impacts to businesses and residents relative to access, visual effects, noise, vibration, dust, and construction traffic; environmental impacts.	 KY 15 - maintain one lane each direction, minor permissive lane closures Blasting for solid rock removal Nighttime work expected 				
Environmental Impacts	An assessment of the permanent impacts to the environment including ecological (i.e., flora, fauna, air quality, water quality, visual, noise); socioeconomic impacts; impacts to shore edge; impacts to cultural, recreational and historic resources.	 Some stream and wetland impacts - avoids two archaeological sites (rock shelters) Phase II UST/HazMat investigation (two sites, Highwayman Chevron and Hazard Double Kwik #2) 36 residences, six businesses, two churches Three cemeteries (Miller Family, Campbell/Fugate, First Creek) impacting ten graves Endangered Indiana bat 				

Table 6. Performance Attributes and Description							
Performance Attribute	Description of Attribute	Baseline Concept					
Project Schedule	An assessment of the total project delivery from the time as measured from the time of the VE Study to completion of construction.	 January 2022 Alignment Review to feed environmental process start May 2022 preferred alternative (interchange selected) EES June 2022 July 2022 Phase 1 (50-60%) plans Right-of-way start second half of 2022 June/Sept environmental approvals Let project December 2024, pending funding Construction duration 24-30 months Design-Bid-Build 					

3.2.2 Performance Attribute Matrix

The performance attribute matrix was used to determine the relative importance of the performance attributes for the project. The project and VE team evaluated the relative importance of the performance attributes that would be used to evaluate the creative ideas.

These attributes were compared in pairs (Table 7), asking the question: "Which one is more important to the purpose and need of the project?" (e.g., A or B, A or C, A or D, etc.) The letter code (e.g., "A") was entered into the matrix for each pair. After all pairs were discussed they were tallied (after normalizing the scores by adding a point to each attribute) and the percentages calculated. These scores were then used to calculate the value of each recommendation during the VE team's performance evaluation scoring (Section 6).

	Table	7. Pe	rforma	ince A	ttribut	e Matri	x		
Paired Comparison							Total Points	% of Total	
Main Line Operations	Α	Α	A/C	А	A/E	А		5.0	24%
Local Operat	ions	В	B/C	В	B/E	В		4.0	19%
Maintainability C C C C								5.0	24%
Construction Impacts D E D/F								1.5	7%
Environmental Impacts E E								4.0	19%
Project Schedule F								1.5	7%
Total							21.0	100%	

This page intentionally left blank.

4 Function Analysis Phase

4.1 Overview

Function analysis results in a unique view of the project. It transforms project elements into functions, which help guide the VE team in considering the functional concepts of the project–independent of the current design. Functions are defined in verb-noun statements to reduce the needs of the project to their most elemental level (Table 8). Identifying the functions of the major design elements of the project allows a broader consideration of alternative ways to accomplish the functions.

Table 8. Random Function Identification					
Project Element	Functions				
Project Purpose/Need	Reduce Congestion Enhance Safety Improve System Linkage Reduce Conflicts Minimize Environment Impacts Meet Standards Minimize Maintenance Implement Design Introduce Traffic				
Pavement	Support Loads Protect Base Increase Friction Add Lanes Remove Water Improve Geometry Improve Sight Distance Increase Capacity Improve Driver Expectation				
Structures	Span Obstacle Support Loads Create Elevation				
Earthwork	Create Profile Flatten Slopes Clear Space Move Soil Reduce Grades				
Right-of-way	Create Space Control Access				

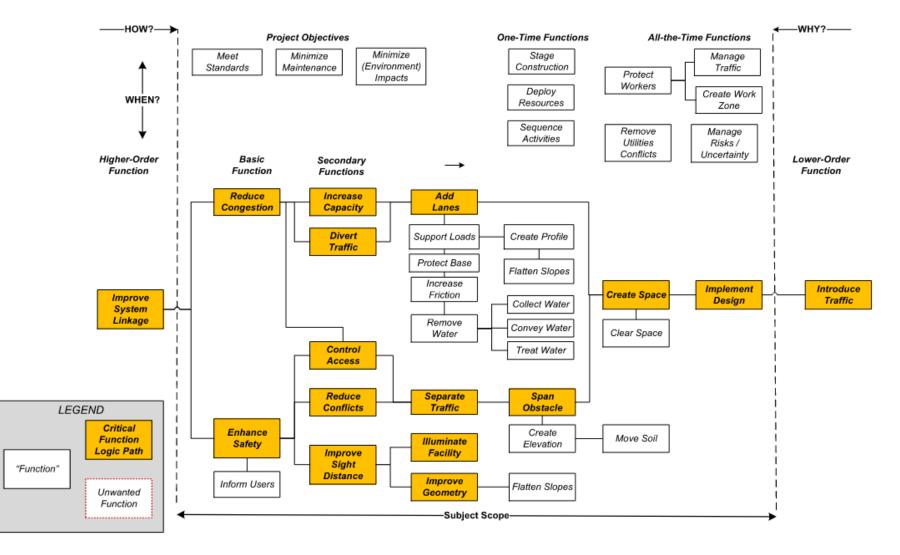

able 8. Random Function Identification

Table 8. Random Function Identification					
Project Element	Functions				
Traffic Control	Separate Traffic Control Access Inform Users Protect Workers Divert Traffic Improve Signage Control Movements				
Drainage	Collect Water Convey Water Treat Water Control Water Discharge Water				
Utilities	Remove Utility Conflicts				
Other	Manage Risks / Uncertainty Stage Construction Deploy Resources Sequence Activities Create Work Zone Illuminate Facility Prepare Site Control Erosion Introduce Technology				

4.2 Function Analysis System Technique Diagram

The Function Analysis System Technique or "FAST" diagram arranges the functions in logical order so that when read from left to right, the functions answer the question "How?" If the diagram is read from right to left, the functions answer the question "Why?" Functions connected with a vertical line are those that happen at the same time as, or are caused by, the function at the top of the column. The FAST diagram (Figure 5) provided the VE team with an understanding of which functions offer the best opportunity for cost or performance improvement.

Figure 5. FAST Diagram

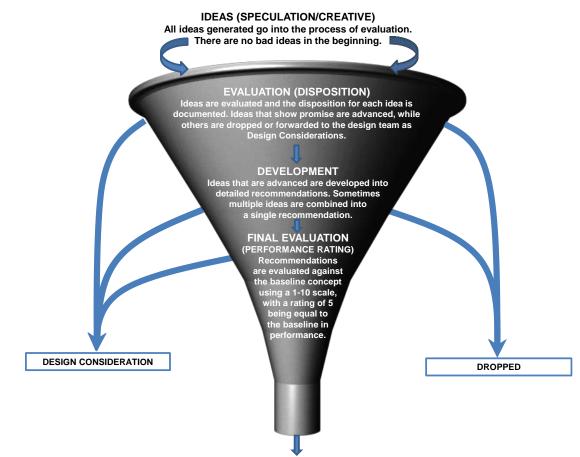
This page intentionally left blank.

5 Creative Phase

During the Creative Phase, the VE team generated ideas on how to perform the various functions. The idea list was grouped by function or major project element. All of the ideas generated are recorded in Table 9. The final disposition of each idea is included at the end of Section 6.

ldea No.	Description					
Function: Control Access						
3	Maintain 1200' between access points throughout corridor					
19	Continuous high T at southern limit of new alignment					
22	Minimize number of access points					
39	Consolidate access points near 1067 before intersecting with KY 15					
40	Use green T intersection at 1067 (existing alignment)					
42	Use r-cuts to reduce access points (baseline alignment)					
43	Combine Rome Napier Br Rd, Baker Ln, and Grapevine Creek Rd					
48	Make crossroad access perpendicular/combine					
49	R-cut for EB KY 28 to NB KY 15					
Function:	Control Traffic					
14	Implement Transportation Systems Management and Operations (TSM&O) strategies/ITS					
Function:	Enhance Safety					
9	Utilize existing alignment with reduced median, make traffic operation improvements					
17	Improve crash hotspot conditions using low cost safety improvements along existing alignment					
23	Reduce design speed on KY 28 to 35 mph					
31	Avoid shaded areas for KY 15/KY 28 intersection/approaches					
32	Utilize ice detection system					
33	Use heated pavement at intersections					
47	Reduce posted speed on existing KY 15 to 35 mph					
Function:	Improve System Linkage					
1	Shift at-grade intersection northwest at KY 15/KY 28 (avoid cemetery and excavation at mountain)					
4	Shift tie in from KY 28 to KY 15 to maintain freeflow from KY 28 to KY 15					
5	Utilize bowtie interchange at KY 15/KY 28					
6	Utilize horsecollar interchange at KY 15/KY 28					

Table 9. Creative Idea List					
ldea No.	Description				
12	Maintain existing alignment, construct high green-T at KY 28 (Option B Rec 6)				
13	Shift diamond south to eliminate long structures over existing KY 15				
15	Eliminate T-intersection at KY 15/KY 28, abandon northern piece of KY 15				
16	Realign KY 15 west at KY 28, increase curve radius to eliminate twin structures (KY 28 under new KY 15)				
20	At-grade unsignalized continuous green T at KY 28 intersection on baseline alignment				
27	Utilize jughandle interchange at KY 15/KY 28				
50	Use existing alignment for one direction of traffic and baseline alignment for the other				
Function:	Inform Users				
37	Use an intersection conflict warning system at KY 15/KY 28 intersection				
38	Implement DMS at high crash areas				
Function:	Minimize Environmental Impacts				
25	Steepen side slopes to reduce earthwork				
29	Allow 7% grades (design exception) for short spans with plateaus				
Function:	Mitigate Risk				
10	Purchase right-of-way and complete design for full build out, construct two lanes at this time				
24	Use performance based approach at rock areas				
34	Allow contractor to use GPS and drone technologies				
36	Investigate mining area reclamation funding sources				
51	Design-Build alternative project delivery				
Function:	Reduce Congestion				
28	Use acceleration lanes in median for trucks at KY 28				
Function: Separate Traffic					
2	Utilize 14' flush median (5 lane section) in lieu of 40-foot depressed median				
8	Use barrier wall for median to reduce typical section baseline alignment				
21	Use barrier wall for median to reduce typical section existing alignment				
26	Split level (bifurcation) typical section to reduce earthwork				
41	Carry passing lane through 1067/KY 15 intersection				
46	Use barrier wall for median to reduce typical section (existing alignment)				
Function:	Span Obstacle				
11	Validate bridge layouts				


ldea No.	Description				
Function: Stage Construction					
35	Phase construction of KY 28 area first then rest of project as a second phase				
Function: Support Loads					
7	Reduce typical section to 2+1 along new alignment				
18	Reduce cross section of new alignment				
30	Reduce pavement section				
44	Reduce typical section to 2+1 along existing alignment and other operational improvements				
45	Use 4+1 in lieu of median (baseline alignment)				

This page intentionally left blank.

6 Evaluation Phase

Although each project is different, the evaluation process for each VE effort can be thought of in its simplest form as a way of combining, evaluating, and narrowing ideas until the VE team agrees on the recommendations to be forwarded. Figure 6 depicts the typical information flow for this part of the Value Methodology Job Plan.

Figure 6. VE Process Information Flow

Final Recommendations

6.1 Evaluation Process

The evaluation process begins by going through the ideas brainstormed during the Creative Phase. Considering the information provided to the VE team at the time of the study and the constraints and controlling decisions that were also given to them, the team discussed the ideas and documented their advantages and disadvantages based on their relationship to the baseline concept.

The VE team also compared each idea with its baseline concept to determine whether the performance of the attribute (as introduced in Section 3.2) was better than, equal to, or worse than the baseline concept. Each idea was then carefully evaluated, with the VE team reaching consensus on the overall ranking of the idea (ranking values 0 through 3, as defined below).

- 3 = Advance for further development
- 2 = Design consideration; include as a comment or consideration for design team
- 1 = Poor Opportunity/dropped from further development
- 0 = Unacceptable impact/fatal flaw

This ranking resulted in the initial disposition of the idea. Those ideas ranked as a 3 were developed further; low-ranking ideas (those ranked 0 or 1) were dropped from further consideration; and those that were ranked 2 were brought forward as ideas the design team should pursue.

6.2 Evaluation Summary

All of the ideas that were generated during the Creative Phase using brainstorming techniques are detailed in Table 10.

ldea #	Description	Advantages	Disadvantages	Rating	Comments				
Funct	Function: Control Access								
3	Maintain 1200' between access points throughout corridor	 Reduces conflict points along mainline 	 Reduces property owner access 	2	Assumed baseline as design progresses.				
19	Continuous high T at southern limit of new alignment	Reduces conflictsImproves operations	 May increase impervious Adds structure Increases maintenance 	3	Moved forward as VE Recommendation 7.				
22	Minimize number of access points	Reduces conflictsImproves operationsReduces access	May require some u-turns or extra pavement	2	Design Consideration #2 for the design team to consider further.				
39	Consolidate access points near 1067 before intersecting with KY 15	 Reduces conflict points Reduces access to mainline 	 Increases cost Increases maintenance May increase right-of-way impacts 	2	Potentially use break-away bollards, islands/curb. Baseline alignment is assumed to resolve safety concerns.				
40	Use green T intersection at 1067 (existing alignment)	Reduces conflicts	 Access control surrounding 1067 may not allow green T 	1	Dropped from further consideration.				
42	Use r-cuts to reduce access points (baseline alignment)	 Reduces access May reduce conflict points 	 Reduces speed of turning vehicles May increase conflicts May not be practical with 40' depressed median Out of direction travel Driver expectancy 	1	Dropped from further consideration.				
43	Combine Rome Napier Br Rd, Baker Ln, and Grapevine Creek Rd	 Reduces conflict points Reduces access to mainline 	 Increases cost Increases maintenance May increase right-of-way impacts 	2	Good idea for design team to pursue.				

Table 10. Idea Evaluation Summary Table									
ldea #	Description	Advantages	Disadvantages	Rating	Comments				
48	Make crossroad access perpendicular/combine	None noted	None noted	1	Assumed baseline as design progresses.				
49	R-cut for EB KY 28 to NB KY 15	 Reduces cost Reduces ramps Reduces structures 	 May require acceleration lane Out of direction travel (minor traffic) Driver expectancy 	3	Combine 20, 28, 37, 49. Moved forward for further consideration in Development Phase; the VE Team looked into adding an R-cut for EB KY 28 to NB KY 15, however, upon further analysis the geometry does not work at this location.				
Funct	Function: Control Traffic								
14	Implement Transportation Systems Management and Operations (TSM&O) strategies/ITS	 Improves operations by adapting real-time traffic Informs public of better/faster routes and/or delays 	 Increases cost May require local agency coordination/agreement Increases maintenance May require larger investment (corridor wide) May require TMC (traffic management centers) 	1	May need to implement corridor- wide to obtain full benefit.				

Table	10. Idea Evaluation Summa	ry Table			
ldea #	Description	Advantages	Disadvantages	Rating	Comments
Funct	ion: Enhance Safety	1		1	
9	Utilize existing alignment with reduced median, make traffic operation improvements	 Reduces footprint Reduces cost Eliminates structures Accomodates future traffic needs Reduces excavation significantly Increases project fundability 	 May require reducing design speed May increase right-of-way impacts/impact additional parcels May increase utility impacts Public opposition May require environmental reevaluation Corridor inconsistency Substandard curves Increases construction impacts to 	3	Combine 9, 12, 21. Moved forward for further consideration in Development Phase but dropped from recommendation. District opposition to be determined. Potential interim solution.
17	Improve crash hotspot conditions using low cost safety improvements along existing alignment	 May reduce number of conflicts May reduce severity of conflicts Informs users Addresses root cause of crashes 	 Increases cost May increase maintenance Access complexity/coordination Increases impacts during construction Public opposition 	2	Originally combined 17, 38, 41 but then separated and dropped from further development because remaining traffic volumes may not warrant significant improvements. Additional investment for improvements may not be worth it since traffic is split between ex
23	Reduce design speed on KY 28 to 35 mph	 Improves stopping distance Reduces severity of conflicts May reduce driver speed prior to end of roadway 	None noted	2	Good idea for design team to pursue.

Table	10. Idea Evaluation Summa	ary Table			
ldea #	Description	Advantages	Disadvantages	Rating	Comments
31	Avoid shaded areas for KY 15/KY 28 intersection/approaches	Reduces icy conditions at critical locations	 May not be practical to reposition intersection, etc. 	2	Should be considered by the project team as design progresses, if possible.
32	Utilize ice detection system	Assists with early deployment of salt trucks	Increases costIncreases maintenance	1	Sensors are common in western and central Kentucky.
33	Use heated pavement at intersections	 Reduces icy conditions at critical locations Relieves some of maintenance snow plow drivers 	 Increases cost Increases maintenance 	1	Experimental pilot project potential.
47	Reduce posted speed on existing KY 15 to 35 mph	 May reduce conflicts Allows for improved intersection flow 	 Public opposition May increase speed differentials Requires additional traffic calming infrastructure 	1	Dropped from further consideration.
Funct	ion: Improve System Linkage	9			
1	Shift at-grade intersection northwest at KY 15/KY 28 (avoid cemetery and excavation at mountain)	 Reduces cemetery impacts May reduce earthwork Eliminates twin structures Reduces severity of conflict points Improves sight distance 	 May require culvert/hydraulics redesign Increase number of conflict points May require additional features (high friction surface, etc.) to address 6% superevevation At-grade intersection at bottom of hill 	3	Same idea as 16. Moved forward as VE Recommendation 5.

Table	10. Idea Evaluation Summa	ry Table			
ldea #	Description	Advantages	Disadvantages	Rating	Comments
4	Shift tie in from KY 28 to KY 15 to maintain freeflow from KY 28 to KY 15	 Reduces cemetery impacts May reduce earthwork Eliminates one tight diamond structure and ramps Reduces number of conflict points on mainline 	 Adds one structure Eliminates direct EB to SB movements Eliminates direct NB to WB movements Driver expectancy 	3	Moved forward as VE Recommendation 6.
5	Utilize bowtie interchange at KY 15/KY 28	None noted	 Increases earthwork significantly Increases footprint 	1	Interchange type not conducive in this application.
6	Utilize horsecollar interchange at KY 15/KY 28	 Eliminates left-turn movements Matches corridor/consistency Right-in, right-out access Reduces ramp work Reduces conflict points May reduce earthwork 	 Winter concerns of interchange in shade Lengthens acceleration/deceleration Truck turning movement is low speed Increases footprint May increase structures 	2	Design team already to investigate this option. Same idea as 27.
12	Maintain existing alignment, construct high green-T at KY 28 (Option B Rec 6)	 None noted 	 None noted 	3	Combine 9, 12, 21. Consider high T. Moved forward as VE Recommendation 4.
13	Shift diamond south to eliminate long structures over existing KY 15	 Eliminates twin bridges May reduce cost Eliminates bridge maintenance May reduce cemetery impacts 	 May increase earthwork Increases length of culverts 	3	Combined 13, 15. Moved forward as VE Recommendation 1.
15	Eliminate T-intersection at KY 15/KY 28, abandon northern piece of KY 15	May reduce structures	None noted	3	<i>Combine 13, 15. Moved forward as VE Recommendation 1.</i>

Table	10. Idea Evaluation Summa	ry Table			
ldea #	Description	Advantages	Disadvantages	Rating	Comments
16	Realign KY 15 west at KY 28, increase curve radius to eliminate twin structures (KY 28 under new KY 15)	None noted	None noted	3	Same idea as 1. Moved forward as VE Recommendation 5.
20	At-grade unsignalized continuous green T at KY 28 intersection on baseline alignment	 Reduces cost Reduces structures Reduces footprint May reduce earthwork Provides crossing vehicle refuge 	 Increases number of conflict points Geometric complexity/superelevatio n compatibility 	3	Combine 20, 28, 37, 49. Moved forward as VE Recommendation 2.
27	Utilize jughandle interchange at KY 15/KY 28	None noted	None noted	1	Same idea as 6. Dropped from further development.
50	Use existing alignment for one direction of traffic and baseline alignment for the other	Reduces earthwork	 Driver expectancy Reduces local access Circuitous route for locals Public opposition Existing alignment substandard curves 	1	Dropped from further consideration.
Funct	ion: Inform Users	'			
37	Use an intersection conflict warning system at KY 15/KY 28 intersection	Informs usersMay reduce conflicts	 Increases cost Increases maintenance 	2	May be needed on at-grade intersection. Design Consideration #3 for the design team to consider further.
38	Implement DMS at high crash areas	None noted	None noted	2	Originally combined 17, 38, 41 but then separated and dropped from further development because remaining traffic volumes may not warrant significant improvements.

ldea #	Description	Advantages	Disadvantages	Rating	Comments
Funct	ion: Minimize Environmenta	l Impacts			·
25	Steepen side slopes to reduce earthwork	Reduces costReduces earthwork	 Requires design exception Complicates maintainability Introduces guardrail hazard Widens clear zone requirement 	1	Dropped from further consideration.
29	Allow 7% grades (design exception) for short spans with plateaus	Reduces excavation significantly	 Requires design exception Precludes at-grade intersection at KY 28 Complicates maintenance May reduce pavement life Slows uphill traffic 	2	Good idea for design team to pursue.
Funct	ion: Mitigate Risk				
10	Purchase right-of-way and complete design for full build out, construct two lanes at this time	 Reduces construction schedule Defers pavement Defers structures Improves fundability 	 May increase cost overall Reduces performance of mainline operations Reduces capacity (for passing vehicles) Reduces separation between opposing traffic Throwaway work/costs Ultimate condition may never be constructed/funded 	3	Combine 7, 10. Moved forward for further consideration in Development Phase but dropped from recommendation. May construct full depth shoulders for truck climbing lanes. May work with 2+1. Kentucky law regarding full build-out and property owner.

ldea #	Description	Advantages	Disadvantages	Rating	Comments
24	Use performance based approach at rock areas	Reduces costReduces earthwork	 May not be applicable to this project May not be practical District opposition to rockfall risk 	1	Dropped from further consideration.
34	Allow contractor to use GPS and drone technologies	None noted	Contractor means and methods	1	Contractor means and methods.
36	Investigate mining area reclamation funding sources	 May supplement funding through grant(s) 	 May impose project restrictions/strings attached Support required Eligibility requirements 	1	Dropped from further consideration.
51	Design-Build alternative project delivery	 Promotes innovation May reduce cost May reduce construction schedule Risk transferred to contractor 	Reduces owner control/input	1	Right-of-way is schedule driver so D- B may not be a good match. If funding was available this could be a potential solution.
Funct	ion: Reduce Congestion	·	·		
28	Use acceleration lanes in median for trucks at KY 28	None noted	None noted	3	Combine 20, 28, 37, 49. Moved forward as VE Recommendation 2.

ldea #	Description	Advantages	Disadvantages	Rating	Comments
Funct	ion: Separate Traffic	·		1	
2	Utilize 14-foot flush median (5 lane section) in lieu of 40-foot depressed median	 Reduces earthwork May reduce structure 	 Reduces space between opposing vehicles Increases pavement May require physical barrier such as guardrail Increases impervious surface 	1	Goes against safety which is a main objective. May need to update SF of baseline bridge estimate to compare apples to apples.
8	Use barrier wall for median to reduce typical section baseline alignment	 Reduces footprint Reduces earthwork May reduce structures 	 Complicates snow/ice removal/maintenance Increases drainage infrastructure Increases drainage maintenance 	1	Dropped from further consideration.
21	Use barrier wall for median to reduce typical section existing alignment	None noted	None noted	3	Combine 9, 12, 21. Moved forward for further consideration in Development Phase but dropped from recommendation.
26	Split level (bifurcation) typical section to reduce earthwork	 Reduces earthwork 	 May require wider footprint May increase right-of-way impacts Increases need for guardrail 	2	Good idea for design team to pursue.
41	Carry passing lane through 1067/KY 15 intersection	None noted	None noted	2	Originally combined 17, 38, 41 but then separated and developed into Design Consideration #1 for the design team to consider further.

Idea					
#	Description	Advantages	Disadvantages	Rating	Comments
46	Use barrier wall for median to reduce typical section (existing alignment)	 Reduces footprint Reduces earthwork May reduce structures 	 Complicates snow/ice removal/maintenance Increases drainage infrastructure Increases drainage maintenance Public opposition 	1	Dropped from further consideration.
Funct	ion: Span Obstacle				
11	Validate bridge layouts	None noted	None noted	2	Typical section/shoulder widths need to be verified. 150' spans suggested.
Funct	ion: Stage Construction				
35	Phase construction of KY 28 area first then rest of project as a second phase	 May improve project fundability May improve cash flow availability May have shovel-ready project sooner 	 Increases mobilization May increase throwaway work/costs Public perception Letting/contract coordination 	1	Right-of-way acquisition process may not coordinate with this idea. Potential to let project with option.
Funct	ion: Support Loads				
7	Reduce typical section to 2+1 along new alignment	 Reduces footprint Reduces earthwork Reduces pavement Reduces structures Accomodates future traffic volumes 	 Inconsistent with corridor Reduces capacity Reduces separation between opposing traffic Reduces future flexibility/expansion potential 	3	Combine 7, 10. Moved forward as VE Recommendation 3.
18	Reduce cross section of new alignment	None noted	None noted	1	Specific strategies already discussed in previous ideas.
30	Reduce pavement section	May reduce cost	May reduce pavement life span	2	Assumed baseline as design progresses.

Table	10. Idea Evaluation Summa	ry Table			
ldea #	Description	Advantages	Disadvantages	Rating	Comments
44	Reduce typical section to 2+1 along existing alignment and other operational improvements	 Reduces earthwork Reduces cost Reduces bridges May reduce right-of-way impacts 	 May increase right-of-way impacts Public opposition Inconsistent with corridor (roadway section) Reduces capacity Does not address substandard curves Reduces separation between opposing traffic 	3	Fundable backup option. Moved forward as VE Recommendation 4.
45	Use 4+1 in lieu of median (baseline alignment)	 Reduces earthwork May reduce structure 	 Reduces space between opposing vehicles Increases pavement May require physical barrier such as guardrail Increases impervious surface 	1	Same idea as 2. Goes against safety which is a main objective. May need to update SF of baseline bridge estimate to compare apples to apples.

This page intentionally left blank.

7 Development Phase

This phase of the Value Methodology Job Plan takes the ideas that ranked the highest in the Evaluation Phase and further develops them into full VE recommendations. In many cases, it is possible that one or more ideas were combined to form an overall recommendation, which was then evaluated further by the VE team.

In the case of this project, of the 51 ideas that were generated during the Creative Phase, 15 of those ideas were evaluated high enough to be developed further and combined. Some of the ideas were deemed more appropriate as a design consideration for the project team, rather than developed into a VE recommendation (Section 7.5). For the Development Phase, narratives, drawings, calculations, and cost estimates were prepared for each recommendation.

The VE recommendation documents in this section are presented as written by the team during the VE study. While they have been edited from the draft VE report to correct errors or better clarify the recommendation, they represent the VE team's findings during the VE study.

Each recommendation consists of a summary of the baseline concept, a description of the suggested change, a listing of its advantages and disadvantages, discussion of schedule and risk impacts (if applicable), a cost comparison, change in performance, and a narrative comparing the baseline design with the recommendation. Sketches, calculations, and performance measure ratings are also presented. The cost comparisons reflect a comparable level of detail as in the baseline estimate.

7.1 Summary of Recommendations

Table 11 is a summary of all recommendations generated and their cost impact to the project.

The recommendations identified all consider multiple aspects of total value, including assessing the impacts to performance, cost, time, and risk in comparison to the baseline concept. The potential of each recommendation summarized in Table 11 is based on the following:

Initial Cost Savings Potential – A quantified indication of the recommendation's impact to the project's initial cost in comparison with the baseline concept. Initial cost savings are conceptual and reflective of the VE team's parametric estimation of possible savings and represent orders of magnitude cost impact of the VE recommendation. Because the cost data depicted represent savings, a number in parentheses represents a cost increase.

Та	ble 11. Summary of Ro	ecommendations	5			
	Recommendation	Cost Savi				
#	Title	Construction	Life Cycle	Utility	ROW	Total Cost
	Baseline	\$68.90	\$45.51	\$2.16	\$6.75	\$123.32
1	Shift KY 28 Intersection to the South	\$2.59	\$0.47		\$1.75	\$118.51
2	Use At-Grade Intersection at KY 28	\$7.26	\$0.92			\$115.14
3	Reduce Typical Section	\$27.99	\$2.11		\$2.36	\$90.86
4	Upgrade Existing KY 15 Alignment in lieu of Constructing the Baseline Alternative	\$58.42	\$41.73	\$1.16	\$4.75	\$17.26
5	Shift Alignment West of Cemetery and Provide At-Grade Intersection at KY 28	\$5.65	\$1.12			\$116.55
6	Shift Access to KY 28 North of Proposed KY 28 Interchange	\$2.48				\$120.84
7	Use Continuous High T at Southern Split	(\$3.08)	(\$0.84)			\$127.24

7.1.1 FHWA Functional Benefit Criteria

Each year, state departments of transportation are required to report on VE recommendations to the Federal Highway Administration (FHWA). In addition to cost implications, FHWA requires state departments of transportation to evaluate each approved recommendation in terms of the project features that recommendation benefits. If a specific recommendation can be shown to provide benefit to more than one feature described below, count the recommendation in each category that is applicable. These same criteria can be found on each of the individual recommendations that follow.

- Safety: Recommendations that mitigate or reduce hazards on the facility.
- **Operations:** Recommendations that improve real-time service and/or local, corridor, or regional levels of service of the facility.
- Environment: Recommendations that successfully avoid or mitigate impacts to natural and or cultural resources.
- **Construction:** Recommendations that improve work zone conditions or expedite the project delivery.

• Right-of-way: Recommendations that lower the impacts or costs of right-of-way.

7.2 Value Engineering Recommendation Approval

The resolution or disposition of recommendations is based on the information in this report and is independent of the proceeding of the VE study. HDR has no participation, direct or indirect, in such decisions. The VE Recommendation Approval form shown in Appendix B is intended to aid the project manager in tracking and informing the state Value Engineer in annual reporting of VE activities to FHWA. Resolution and disposition of recommendations contained in Appendix B are pending.

7.3 Individual Recommendations

Based on the evaluation process, individual recommendations were developed. Each recommendation consists of a summary of the baseline concept, a description of the recommendation, a listing of its advantages and disadvantages, and a brief narrative that includes justification, sketches, photos, assumptions, and calculations as developed by the VE team. Final recommendations can be found beginning on page 7-4.

Idea Nos. 13,15

Baseline Concept

The baseline concept realigns KY 15 and uses a Tight Diamond Interchange at KY 15/KY 28. The Tight Diamond Interchange is located to the northeast of the existing T-intersection. The baseline alignment of the Tight Diamond Interchange impacts the Miller Cemetery and two private properties.

The baseline concept uses the existing KY 15 access to KY 28 for the local roadway connections. To maintain the existing KY 15 roadway, two 500-foot bridges over existing KY 15, Grapevine Creek, and Kennedy Road.

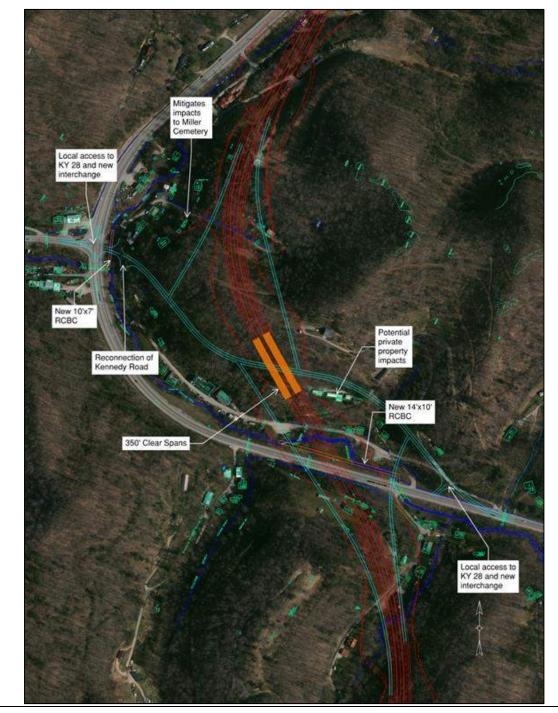
Recommendation Concept

Shift the Tight Diamond Interchange south to eliminate long structures over existing KY 15 and eliminate the T-intersection at KY 15/KY 28. Abandon the northern piece of KY 15.

	Advantages			Disadvantages				
 Eliminates twin bridges Reduces bridge maintenance Mitigates cemetery impacts Reduces impacts to private property 				IncreaAdds	ises le additic	e earthwork ength of culverts onal pavement fo and connection	or KY 28	
Cost Summary		Cons	truction	Right-of-	way	Lifecycle	Total	
Baseline Concept		\$48,42	24,063	\$6,748,0	000	\$725,652	\$56,637,549	
Recommendation C	Concept	\$45,83	81,010	\$5,000,0	000	\$253,383	\$51,454,310	
Cost Avoidance/(Ac	lded Value)	\$2,59	93,052	\$1,748,0	000	\$472,269	\$5,183,239	
		F	HWA Fun	ction Bene	fit			
Safety	Enviro	ironment Construction Right-of-way						
	~						✓	

Idea Nos. 13,15

Discussion/Sketches/Photos/Calculations


Technical Discussion/Sketches

Baseline concept – Includes a proposed Tight Diamond Interchange for the intersection of KY 15 at KY 28. The proposed intersection would take the Tight Diamond Interchange into the side of the mountain to the east of existing KY 15 and extend KY 28 to the baseline alignment. This would also include a set of twin bridges carrying KY 15 traffic over KY 28.

Idea Nos. 13,15

This recommendation realigns KY 28, constructs a Tight Diamond Interchange south of the proposed Tight Diamond Interchange, and connects KY 28 to existing KY 15. New KY 15 will bisect existing KY 15 and Kennedy Road, severing local connections to KY 28 and KY 15. Local roadway connections will be reestablished as necessary, requiring additional roadway improvements to reconnect existing KY 15 and Kennedy Road to realigned KY 28. The Tight Diamond Interchange ramp alignments have been placed to minimize impacts to private property and with consideration of earthwork.

The proposed KY 28 horizontal alignment is set to the south of the mountain, located north of private properties and Kennedy Road, and maintains a 35 mph design speed, with a minimum radius of 500 feet. The vertical profile of the KY 28, new KY 15, and the KY 15 exit/entrance ramps can be optimized to best balance earthwork and material needs required for the realignment of KY 15. The 35 mph design speed exceeds the baseline concept design speed at the Tight Diamond Interchange. The baseline concept maintains a 25 mph design speed with a minimum radius of 200 feet.

Allowing the proposed KY 15 to bisect existing KY 15 and Kennedy Road eliminates the need for the long twin structures. Reestablishing connections will require additional grading and pavement. The reestablished connections include:

- Existing KY 15 at existing KY 28 intersection
- Kennedy Road to new KY 28 (west of Tight Diamond Interchange)
- Existing KY 15 to new KY 28 (east of Tight Diamond Interchange)

Eliminating the twin structures will require a large 14'x10' RBCB for Grapevine Creek, approximately 700 feet long. A smaller 7'x10' RBCB will be required near the existing KY 28/KY 15 intersection, approximately 210 feet long.

Assumptions/Calculations

Earthwork

The earthwork associated with the entrance and exit ramps for Recommendation 1 and the baseline concept is assumed to be equivalent. A conceptual vertical alignment was developed for the new alignment of KY 28. InRoads was used to determine a concept level order of magnitude for the additional excavation required for this Recommendation.

Cut volume from InRoads output = 7,550,000 CY

Structures

The assumed bridge length of the new bridges over KY 28 are assumed to be 350' clear spans. This assumption was made considering the existing topography. The assumed structure length may be conservative.

Bridge square footage was developed using a ratio between our proposed 350 foot span and the baseline concept's 500 foot spans.

New Twin Bridge SF = 44,688 x 350/500 = 31,282 SF

RBCB 14x10 for 700 feet and 10x7 for 210 feet.

210' 10x7 Culvert	Thickness	Width	Length	Volume
Top Slab	1.33	11.67	210.00	3267
Bottom Slab	1.33	12.33	210.00	3453
Wall 1	0.83	7.00	210.00	1225
Wall 2	0.83	7.00	210.00	1225
Headwall	2.00	1.00	11.67	23
Wingwall 1	1.00	7.00	16.00	112
Wingwall 1	1.00	7.00	16.00	112
Wingwall Footing	2.00	7.00	18.00	252
Wingwall Footing	2.00	7.00	18.00	252
Apron Square	1.00	20.00	20.00	400
Apron Flare	1.00	20.00	20.00	400
				10721
700' 14x10 Culvert				
Top Slab	1.33	15.67	710.00	14831
Bottom Slab	1.33	16.33	710.00	15462
Wall 1	0.83	10.00	710.00	5917
Wall 2	0.83	10.00	710.00	5917
Headwall	2.00	1.00	15.67	31
Wingwall 1	1.00	10.00	16.00	160
Wingwall 1	1.00	10.00	16.00	160
Wingwall Footing	2.00	10.00	18.00	360
Wingwall Footing	2.00	10.00	18.00	360
Apron Square	1.00	20.00	20.00	400
Apron Flare	1.00	20.00	20.00	<u>400</u>
				43998

Pavement **Pavement**

The typical section of KY 28 is assumed to be a 2-lane section with12 foot lanes and 4 foot right shoulders. The total width of pavement is 32 feet. Based on the horizontal alignment, the total length of the KY 28 realignment is 2,900 linear feet.

2,900'x32' = 92,800 SF = 10,3111 SY

RBCB quantity calculations are as shown:

<u>Right of Way:</u> it's assumed that a reduction in right-of-way is most likely, including the avoidance of impacts to cemetery and its property. Assumed savings \$1.75 million.

-	-		NDATION NO. 1: CTION TO THE SOUTH						ldea Nos. 13,15					
FX		VE Study Life-Cycle Costs Calculations VE Recommendation 1												
			Bas	eline Cor	ncep	t		VE Re	ecor	nmended	Co	ncept		
Component	Unit	Quantity	Со	st/Unit		Total		Quantity	C	ost/Unit		Total		
Roadway Excavation	CU YD	6,550,000	\$	4.00	\$	26,200,000		7,550,000	\$	4.00	\$	30,200,000		
195+62 Bridge	SQ FT	44,688	\$	200.00	\$	8,937,600		-	\$	200.00	\$	-		
208+63 Bridge	SQ FT	15,036	\$	200.00	\$	3,007,200		-	\$	200.00	\$	-		
210' 10x7 Culvert	CU FT	-	, \$	32.50	, \$	-		10,721	\$	32.50	\$	348,44		
700' 14x10 Culvert	CU FT	-	\$	32.50	\$	-		43,998	\$	32.50	\$	1,429,93		
New Twin Bridges	SQ FT	-	\$	200.00	\$	-		20,854	\$	200.00	\$	4,170,88		
KY 28 Realignment Pavement	SY	-	, \$	50.00	, \$	-		10,311	\$	50.00	\$	515,550		
Diamond Interchange Pavemen	SY	11,889	, \$	50.00	, \$	594,450		-	\$	50.00	\$	-		
					, \$	-			, \$	-	, \$	-		
Subtotal Construction					\$	38,739,250					\$	36,664,80		
Mark-Up (MOT, Mob., PE, CEI)	25%				\$	9,684,813					\$	9,166,20		
Total Construction					\$	48,424,063					\$	45,831,01		
Monetized Time Savings											\$	-		
Right of Way Costs					\$	6,748,000					\$	5,000,00		
TOTAL CAPITAL COST					\$	55,172,063					\$	50,831,01		
COST CAPITAL SAVINGS / (VALUE	ADDED)										\$	4,341,05		
			Lij	^f e Cycle C	ost	Analysis								
Life Cycle Period	75	Years							E	Baseline	Α	lternative		
Discount Rate	3.6%	https://www.v	vhitel	nouse.gov/v	vp-co	ntent/uploads/20	018/12/	<u> M-19-05.pdf</u>	Concept		Concept			
A. Initial Costs									\$	55,172,063	\$	50,831,01		
B. Annual Costs					Total	Capital Cost Sav	ings / (N	/alue Added)			\$	4,341,05		
1. Annual Maintenance:	Bridge i	nspection and	d miı	nor repair	s (\$1	0,000/yr per p	air)		\$	10,000	\$	5,00		
2. Annual Energy:		•				<u> </u>								
3. Other:														
							Total A	nnual Costs:	\$	10,000	\$	5,00		
						Present	Value F	actor (P/A):		73.9834	\$	7		
						Present V	alue of A	Annual Costs:	\$	739,834	\$	369,91		
C. Single Future Expenditures				A	mour	t	Year	PV Factor	Pre	sent Value	Pr	esent Valu		
Bridge Re-decking baseline ali	gnment		\$			2,986,200.00	40	0.2430	\$	725,652				
Bridge Re-decking recommende	d alignm	nent	\$			1,042,720.00	40	0.2430			\$	253,38		
								1.0000	\$	-				
								1.0000			\$	-		
								1.0000	\$	-				
								1.0000			\$	-		
								1.0000	\$	-				
								1.0000			\$	-		
Residual Value							40	0.2430	\$	-	\$	-		
		Preser	nt Val	ue of Futur	e Sin	gle Expenditures	and Re	sidual Value:	\$	725,652	\$	253,38		
D. TOTAL PRESENT VALUE COST (A+B+C)									56,637,549	· ·	51,454,31		
TOTAL LIFE CYCLE SAVINGS / (VAL		۱۰							· · · · ·		\$	5,183,23		

ldea Nos. 13,15

VE RECOMMENDATION NO. 1		IDEA NOS	6.			
Shift KY 28 Intersection to the South		13,15				
PERFORMANCE MEASURES Attributes and Rating Rationale for Recommendation	Performance	Baseline	Recommendation			
Main Line Operations No change	Rating	5	5			
	Weight		23.8			
	Contribution	119	119			
Local Operations Improved geometry on KY 28	Rating	5	6			
Direct access from KY 28 to old KY 15 Improved operation speeds	Weight		19.0			
	Contribution	95	114			
Maintainability Two less bridges to maintain	Rating	5	6			
	Weight		23.8			
	Contribution	119	142.8			
Construction Impacts Impacting Kennedy Road slightly more	Rating	5	4.75			
	Weight	7.1				
	Contribution	35.5	33.7			
Environmental Impacts Cemetery impacts avoided	Rating	5	5			
Additional stream impacts, realignment required	Weight		19.0			
	Contribution	95	95			
Project Schedule No change	Rating	5	5			
	Weight		7.1			
	Contribution	35.5	35.5			
	al Performance	499	540			
	Net Change in F	ertormance	8%			

VE RECOMMENDATION NO. 2:
USE AT-GRADE INTERSECTION AT KY 28

ldea Nos. 20,28,49

Baseline Concept

Utilizes a Tight Diamond Interchange to access the new proposed KY 15 alignment at KY 28.

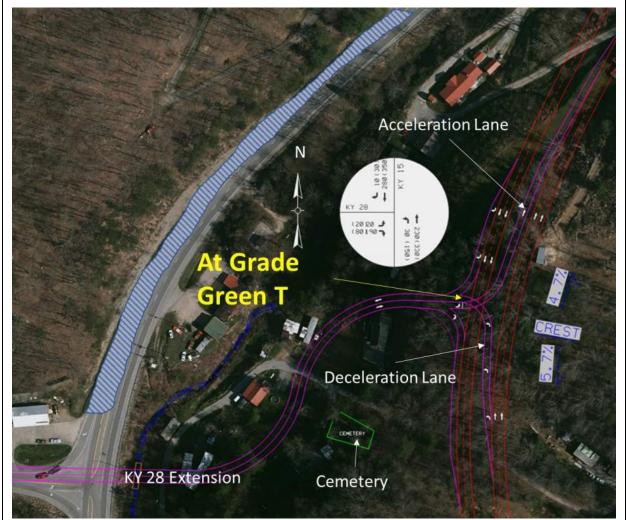
Recommendation Concept

Use an innovative at-grade unsignalized continuous green T at the intersection of KY 15 at KY 28 on the baseline alignment. Incorporate a channelized acceleration lane for traffic turning left onto NB KY 15.

Advantages Disadvantages										
 Reduces cost Reduces structur Reduces ramp Reduces footprin May reduce earth 	es t			 Increases number of conflict points Geometric complexity/superelevation compatibility May require acceleration lane Out of direction travel (minor traffic) Driver expectancy 						
Cost Summary		Co	nstruction		Lifecycle	Total				
Baseline Concept		97	\$7,502,063		\$922,523	\$8,424,586				
Recommendation C	oncept		\$241,667		\$0	\$241,667				
Cost Avoidance/(Ad	lded Value)	97	\$7,260,396		\$922,523	\$8,182,919				
		Fł	HWA Functi	on Bene	fit					
Safety	Operatio	ons	Environ	ment	Construction	Right-of-way				
			~							

Idea Nos. 20,28,49

Discussion/Sketches/Photos/Calculations


Technical Discussion/Sketches

Baseline concept includes a proposed Tight Diamond Interchange for the intersection of KY 15 @ KY 28. The design calls for the Tight Diamond Interchange to be placed into the side of the mountain to the east of existing KY 15 and extend KY 28 to the baseline alignment. This would also include a set of twin bridges carrying KY 15 traffic over KY 28.

Idea Nos. 20,28,49

The recommendation concept involves an innovative at-grade unsignalized continuous green T at the intersection of KY 15 at KY 28 on the baseline alignment. The use of an acceleration lane for traffic turning left onto NB KY 15 would also be incorporated.

This recommendation would eliminate the smaller twin set of bridges at the baseline interchange which would have been used to carry KY 15 traffic over KY 28. The green T intersection would adjust the KY 28 tie-in into KY 15 250 feet to the north. The VE Team recommends this movement because it allows KY 28 to be constructed on a crest of the proposed profile. The thought is by moving KY 28 to this crest, sight distance would be improved since the slope differs on either side. In addition, moving the tie-in to the north would also help avoid the cemetery impacted by the baseline KY 28 tie-in concept. The VE team assessed moving the tie-in 250 feet would not increase additional costs towards excavation and pavement. The grades on the KY 28 extension will meet design standards and should be able to tie into the KY 15 baseline alignment without any substandard grades. In addition, the horizontal curvature on KY 28 extension will help calm traffic speeds for vehicles approaching the stop-controlled, at-grade intersection with KY 15.

For eastbound KY 28 traffic turning northbound onto KY 15, the recommendation calls for a separate channelized acceleration lane 800 feet long plus taper, which would then tie into the

baseline KY 15 alignment. This will keep traffic separated until turning traffic reaches optimal speed to join free flow NB KY 15 traffic.

The VE Team would note, while this recommendation would increase conflict points. The Safety Performance for Intersection Control Evaluation (SPICE) tool suggests this at-grade Minor Road Stop intersection predicts 0.81 total crashes/year and 0.28 Fatal and Injury crashes/year

As part of the development of this VE Recommendation, the VE team investigated using an R-cut for EB KY 28 to NB KY 15, however, upon further analysis the geometry does not work at this location.

Assumptions/Calculations

Excavation:

Baseline Concept – 6,550,000 cubic yards x \$4.00 per cubic yard = \$26,200,000

Recommendation Concept - 5,950,000 cubic yards x \$4.00 per cubic yard = \$23,800,000

The recommendation concept would roughly subtract 600,000 cubic yards of excavation from the project with the removal of the Tight Diamond Interchange for a cost savings of \$2,400,000. The VE Team would note it appears the quantities for excavation and earthwork may have been underestimated. This includes the quantities dealing with the approaches, ramps, and entrances to the Tight Diamond Interchange. We tried to keep this in mind, but also stay in the realm of possible cost savings. So, there is potential that cost savings could be either higher or lower with what the VE Team went with.

Structures:

Baseline Concept – 15,036 square feet x \$200 per square foot = \$3,007,200

Recommendation Concept – 0 square feet x \$200.00 per square foot = \$0.00

Removing the set of twin bridges carrying KY 15 traffic over KY 28 would have a cost savings of \$3,007,200.

The baseline concept includes a culvert under KY 28, the recommended VE concept also includes a similar size culvert, but in a slightly different location.

Additional:

Baseline Concept for Tight Diamond Interchange pavement – 11,889 square yards x \$50.00 per square yard = \$594,450.

Recommendation Concept for at-grade intersection pavement – 3,869 square yards x \$50.00 per square yard = \$193,333.

The VE Team is assuming a similar amount of right-of-way might be needed for the recommended concept. It was our thought even if less right-of-way was going to be needed, it would be negligible.

Lifecycle cost assumptions:

Assume \$10,000/year in inspection and minor repairs and one re-decking of bridges at 40 years (75-year life is assumed)

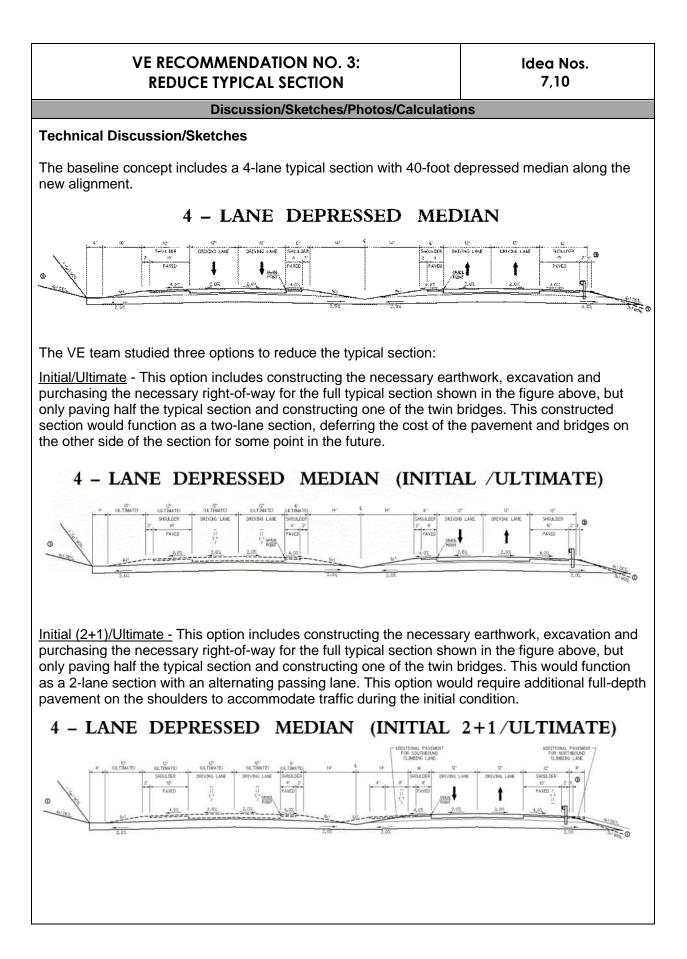
			VE	Study I	ifo	Cycle C	'octo	Calaul	~ +i	one		
FJS		VE Study Life-Cycle Costs Calcul VE Recommendation 2								ons		
			Base	line Conce	pt			VE R	leco	mmendeo	d Co	ncept
Component	Unit	Quantity	Cc	ost/Unit		Total		Quantity	C	ost/Unit		Total
Roadway Excavation	CU YD	600,000		\$4.00	\$	2,400,000		-	\$	4.00	\$	-
208+63 Bridge	SQ FT	15,036		\$200.00	-	3,007,200			\$	200.00	\$	_
Diamond Interchange Pavement	SY	11889	Ś	50.00		594,450		3,867	\$	50.00	\$	193,3
					; \$	-		.,	;	-	; \$	-
ubtotal Construction	-	_				\$6,001,650						\$193,33
/ark-Up (MOT, Mob., PE, CEI)	25%					\$1,500,413						\$48,3
otal Construction						\$7,502,063						\$241,6
Monetized Time Savings												:
Right of Way Costs						\$0						:
TOTAL CAPITAL COST						\$7,502,063						\$241,66
COST CAPITAL SAVINGS / (VALUE ADDED)												\$7,260,3
		L	ife Cy	cle Cost And	alysi	s						
ife Cycle Period	75	Years							Baseline		4	lternative
Discount Rate	3.6%	https://www.wh	itehous	e.gov/wp-cont	ent/u	ploads/2018/12	2/M-19-0	5.pdf	(Concept		Concept
A. Initial Costs									\$	7,502,063	\$	241,6
3. Annual Costs				Т	otal C	Capital Cost Sav	ings / (\	/alue Added)			\$	7,260,395.
I. Annual Maintenance:	\$10,00	0 per bridge p	air per	year					\$	10,000		
2. Annual Energy:												
3. Other:												
							Total A	nnual Costs:	\$	10,000	\$	-
						Present	Value F	actor (P/A):		73.9834		73.9834
						Present V	alue of A	Annual Costs:	\$	739,834	\$	-
C. Single Future Expenditures				Amo	unt		Year	PV Factor	Pre	esent Value	Р	esent Value
le-decking			\$			751,800.00	40	0.2430	\$	182,689		
								1.0000			\$	-
								1.0000	\$			
								1.0000			\$	-
								1.0000	\$	-		
								1.0000			\$	-
								1.0000	\$	-		
								1.0000			\$	-
Residual Value							40	0.2430	\$	-	\$	-
		Pr	esent V	alue of Future	Sing	le Expenditures	and Re	sidual Value:	\$	922,523	\$	-

Γ

ldea Nos. 20,28,49

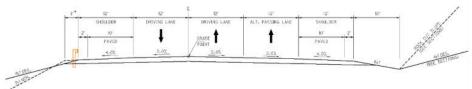
VE RECOMMENDATION NO. 2		IDEA NOS	S.		
Use At-Grade Intersection at KY 28		20,28,49	9		
PERFORMANCE MEASURES Attributes and Rating Rationale for Recommendation	Performance	Baseline	Recommendation		
Main Line Operations Conflict points added (low volume left turn NB)	Rating	5	4.75		
Eliminates grade separation	Weight		23.8		
	Contribution	119	113.1		
Local Operations Intersection operations less functional than interchange	Rating	5	4.5		
Added conflict points	Weight		19.0		
	Contribution	95	85.5		
Maintainability Eliminates structures to maintain	Rating	5	7		
Reduces slope maintenance/cut back on right side Slightly reduces pavement	Weight		23.8		
	Contribution	119	166.6		
Construction Impacts	Rating	5	5		
No change	Weight	7.1			
	Contribution	35.5	35.5		
Environmental Impacts Slightly reduces pavement	Rating	5	5.75		
Reduces impacts to cemetery	Weight		19.0		
	Contribution	95	109.3		
Project Schedule Eliminating bridges reduces construction duration	Rating	5	6		
Simpilfied design may reduce design schedule	Weight		7.1		
	Contribution	35.5	42.6		
Т	otal Performance		553		
	Net Change in F	erformance	11%		

ldea Nos. 7,10


Baseline Concept

The baseline concept includes a 4-lane typical section with 40-foot depressed median along the new alignment.

Recommendation Concept


The recommended concept includes utilizing a 2+1 typical section along the new alignment.

A	dvantages			Disadvantages							
 Reduces footprint Reduces earthw Reduces pavem Reduces structure Meets operation 	ces earthwork/excavation ces pavement ces structures s operational requirements ces construction schedule wes fundability				s sepa s futur er per	vith corridor aration between o re flexibility/expand formance of main acity (for passing	opposing traffic nsion potential nline operations				
Cost Summary		Cons	truction	Right-of-v	vay	Lifecycle	Total				
Baseline Concept		\$68,91	17,875	\$6,748,00	0	\$6,276,363	\$81,942,238				
Recommendation (Concept	\$40,93	30,506	\$4,386,20	0	\$4,160,251	\$49,476,957				
Cost Avoidance/(Ad Value)	dded	\$27,98	37,369	\$2,361,80	0	\$2,116,112	\$32,465,281				
			FHWA Fu	nction Bene	fit						
Safety	Operatio	ons	Envir	onment	(Construction	Right-of-way				
				✓		✓	~				

 $\underline{2+1}$ - This option includes reducing the typical section to a 2+1 typical section. This would function as a 2-lane section with an alternating passing lane. This option achieves the project goal of improving congestion and meets the operational requirements of traffic projections. This option reduces the number of bridges from a twin bridge at each grade separate to a single bridge which would reduce future maintenance cost.

2+1 TYPICAL SECTION

<u>Traffic Analysis</u> - Highway Capacity Software was utilized to analyze peak-hour, future traffic operations for the 4-lane typical and the 2+1 typical. Both typical sections were analyzed for the segment of the new alignment that has 5.6% vertical grade. The 4-lane typical has a Volume-to-Capacity Ratio (v/c) of 0.14. The 4-lane typical has capacity for 2,091 passenger cars per hour per lane (pc/h/ln). The calculated flow rate for the 4-lane typical is 286 pc/h/ln. The 2+1 typical has a Demand Capacity of 0.43. The segment capacity for the 2+1 typical is 1300 vehicles per hour. The calculated Directional Demand Flow Rate is 559 vehicles per hour. It was noted that for the single lane direction (downhill grade), due to time spent following, the Vehicle LOS is C. For the two-lane segment with passing lanes, the Vehicle LOS is A.

Recommendation

The initial cost savings for both initial/ultimate options are around \$12 million compared to the baseline concept. However, the VE team agreed these options are undesirable since the total cost is not actually decreased but deferred to the future, so these options were not further analyzed. Based on sizable cost savings and acceptable operations, the VE team consequently recommends an ultimate 2+1 typical section.

Assumptions/Calculations

The VE team did not have sufficient information to be able to calculate excavation and earthwork quantities. To determine an approximate cost savings, the VE team utilized a percentage (65%) to approximate the quantities which would decrease because of a reduced typical section width.

Structures - Decrease the sq ft of each bridge by 50% to approximately account for one set of bridges compared to twin bridges.

Twins at Sta 195+62 = 44,688 sq ft x 0.50 = 22,344 sq ft for Single Bridge

Twins at Sta 208+63 = 15,036 sq ft x 0.50 = 7,518 sq ft for Single Bridge

Idea Nos. 7,10

				VE Stu	dy Cost	s Calo	culatio	ns			
FJC		1			endation 3 -				n		
			Baseline Co	ncent				VE	Recommende	d Cor	ncent
			baseline Co			VE	Recommende	u concept			
Component	Unit	Quantity	Cost/Unit	1	rotal 🛛		Quantity		Cost/Unit		Total
RoadwayExcavation	CU YD	6550000	\$ 4.00	\$	26,200,000.00		4257500	\$	4.00	\$	17,030,000.00
30+55 - 14x10 RCBC	CU FT	68320	\$ 32.50	\$	2,220,400.00		44408	\$	32.50	\$	1,443,260.0
195+65 - 14x10 RCBC	CU FT	62160	\$ 32.50	\$	2,020,200.00		40404	\$	32.50	\$	1,313,130.0
220+08 - 10x6 RCBC	CU FT	19320	\$ 32.50	\$	627,900.00		12558	\$	32.50	\$	408,135.0
195+62 - Bridge*	SQ FT	44688	\$ 200.00	\$	8,937,600.00		22344	\$	200.00	\$	4,468,800.0
208+63 - Bridge*	SQ FT	15036		Ś	3,007,200.00		7518		200.00	\$	1,503,600.0
Class 3 Asphalt Surface 0.38B PG 64-22	TON	13300		s	1,197,000.00		6650	-	90.00	\$	598,500.0
Class 3 Asphalt Base 1.00D PG 64-22	TON	70700		Ś	5,656,000.00		35350	-	80.00	\$	2,828,000.0
Crushed Stone Base	TON	168500		\$	3,370,000.00		84250	-	20.00	\$	1,685,000.0
Class 2 Asphalt Surface 0.38D PG 64-22	TON	6600		\$	594,000.00		3300	-	90.00	\$	297,000.0
Class 2 Asphalt Base 1.00D PG 64-22	TON	16300		\$	1,304,000.00		8150		80.00	\$ \$	652,000.0
Class 3 Asphalt Surface 0.38B PG 64-22 (for truck lane)	TON	10300	÷ 30.00	Ý	1,304,000.00		8150		90.00	\$ \$	79,380.0
Class 3 Asphalt Surface 0.388 PG 64-22 (for truck lane) Class 3 Asphalt Base 1.00D PG 64-22 (for truck lane)							4550		90.00	\$ \$	79,380.0 364,000.0
							4550 3680		20.00	\$ \$	73,600.0
Crushed Stone Base (for truck lane)							3080	\$	20.00	Ş	/3,000.0
Subtotal Construction				\$	55,134,300					\$	32,744,40
Mark-Up (MOT, Mob., PE, CEI)	25%			\$	13,783,575					\$	8,186,10
Total Construction				\$	68,917,875					\$	40,930,50
Monetized Time Savings										\$	-
Right of Way Costs				\$	6,748,000					\$	4,386,20
TOTAL CAPITAL COST				\$	75,665,875					\$	45,316,70
COST CAPITAL SAVINGS / (VALUE ADDED)										\$	30,349,16
Life Cycle Period	40	Years	Life Cycle Cost	Analysis					Baseline		Alternative
•	3.6%		han har start and har see		1. 10040 140 144 40	05			Concept		Concept
Discount Rate A. Initial Costs	3.6%	https://www.w	hitehouse.gov/wp-co	ntent/upload	ds/2018/12/M-19	-05.pdf		\$	75,665,875	\$	45,316,70
B. Annual Costs				Tetel	Capital Cost Sav		(ار ماراد ۵ مرزا	Ş	/3,003,8/3	ې \$	43,316,70 30,349,168.7
						/ings / (va	alue Added)	<i>.</i>	10.000	Ş	30,349,168.7
1. Annual Maintenance:	Assume \$	10,000 per ye	ar in inspection ar	nd minor re	epairs			Ş	10,000		
2. Annual Energy:											
3. Other:						Total C	and Control	<u>^</u>	10.535		
							nual Costs:	\$	10,000	\$	-
							ctor (P/A):	_	39.7063		39.7063
C Cingle Future Eveneditures				Amount	Present V		nnual Costs:	Ş	397,063	\$	-
C. Single Future Expenditures			\$	Arnount	3,344,000.00	Year	PV Factor		Present Value	_	Present Value
First Cycle Resurfacing - Baseline section			-			10	0.7021	\$	2,347,841	<u>^</u>	
First Cycle Resurfacing - reduced section			\$		2,464,000.00	10	0.7021			\$	1,729,98
Second Cycle Resurfacing - Baseline section			\$		3,344,000.00	20	0.4930	\$	1,648,432		
Second Cycle Resurfacing - reduced section			\$		2,464,000.00	20	0.4930			\$	1,214,63
Third Cycle Resurfacing - Baseline section			\$		3,344,000.00	30	0.3461	\$	1,157,374		
Third Cycle Resurfacing - reduced section			\$		2,464,000.00	30	0.3461			\$	852,80
Redecking Bridges - Baseline Section			\$		2,986,200.00	40	0.2430	\$	725,652		
Redecking Bridges - Reduced Section			\$		1,493,100.00	40	0.2430			\$	362,82
Residual Value						40	0.2430	\$	-	\$	-
			Present Value of	of Future Sin	gle Expenditures	s and Resi	idual Value:	\$	6,276,363	\$	4,160,25
D. TOTAL PRESENT VALUE COST (A+B+C)								Ś	81,942,238	Ś	49,476,95

ldea Nos. 7,10

VE RECOMMENDATION NO. 3		IDEA NO	S.	
Construct Modified Typical Section		7,10		
PERFORMANCE MEASURES Attributes and Rating Rationale for Recommendation	— Performance	Baseline	Recommendation	
Main Line Operations Reduces separation between opposing vehicles	Rating	5	4.5	
Minor section of mainline LOS reduction at peak hour Meets revised traffic demand	Weight		23.8	
	Contribution	119	107.1	
Local Operations No change	Rating	5	5	
	Weight		19.0	
	Contribution	95	95	
Maintainability Reduces pavement	Rating	5	6	
Reduces bridge Reduces space for maintenance activities	Weight		23.8	
	Contribution	119	142.8	
Construction Impacts	Rating	5	5.5	
Reduces rock blasting and vibrations	Weight	7.1		
	Contribution	35.5	39.1	
Environmental Impacts Reduced impervious	Rating	5	6	
Reduced footprint Reduced stream impacts	Weight		19.0	
	Contribution	95	114	
Project Schedule Reduces construction duration, less pavement and bridges	Rating	5	5	
May require environmental reevaluation	Weight		7.1	
	Contribution	35.5	35.5	
Т	otal Performance	499	534	
	Net Change in P	erformance	7%	

VE RECOMMENDATION NO. 4: UPGRADE EXISTING KY 15 ALIGNMENT IN LIEU OF CONSTRUCTING THE BASELINE ALTERNATIVE

ldea No. 44

Baseline Concept

Proposed cross country KY 15 alignment utilizing 4-lane typical section with 40-foot median width.

Recommendation Concept

Provide consistant typical section (2+1) along existing alignment and implement other operational improvements.

Adva	antages				Dis	sadvantag	es	
 Reduces earthwo Reduces cost Reduces bridges May reduce right- Realign curves fo speed Addresses hot sp Fundable project and traffic conges 	ns	 May increase right-of-way impacts along existing 15 Public opposition Inconsistent with corridor (roadway section) - No section to the south has 25,000 ADT and small urban setting Reduces capacity - compared to 4-lane typical Reduces separation between opposing traffic 						
Cost Summary	Construction	Righ wa		U	tilities Lifecycl		le	Total
Baseline Concept	\$68,905,800	\$6,74	48,000	\$2	2,160,000 \$45,559,9		,000 \$45,559,941 \$123,3	
Recommended Concept	\$10,482,944	\$2,00	\$2,000,000 \$1,000,000 \$3,831,869		\$17,341,814			
Cost Avoidance/ (Added Value)	\$58,422,856	\$4,74	48,000	\$1	,160,000	\$41,728,0	072	\$106,058,928
		FHWA	Functio	on Be	enefit			
Safety	Operations	Env	ironmen	nt	Const	ruction		Right-of-way
			✓					\checkmark

VE RECOMMENDATION NO. 4: UPGRADE EXISTING KY 15 ALIGNMENT IN LIEU OF CONSTRUCTING THE BASELINE ALTERNATIVE

ldea No. 44

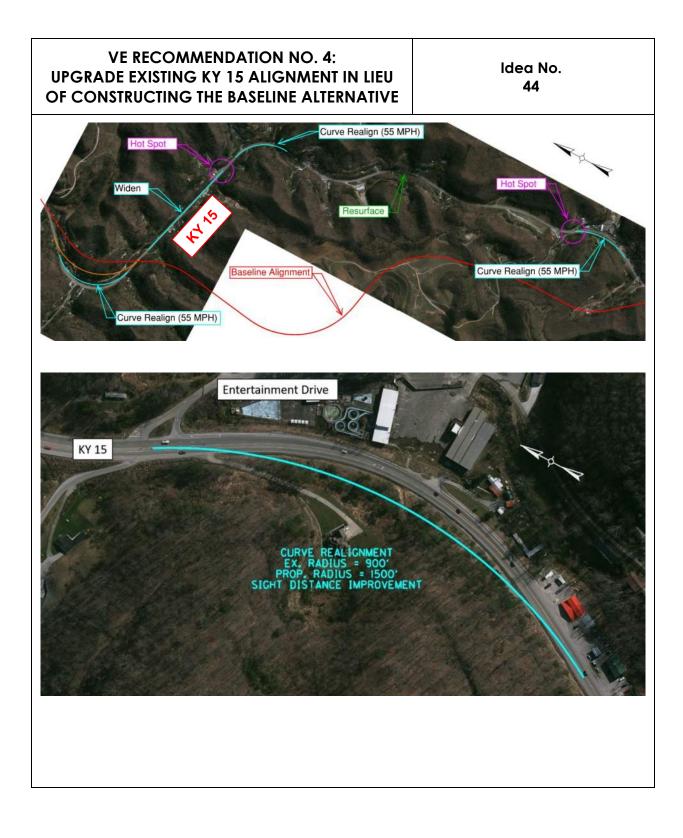
Discussion/Sketches/Photos/Calculations

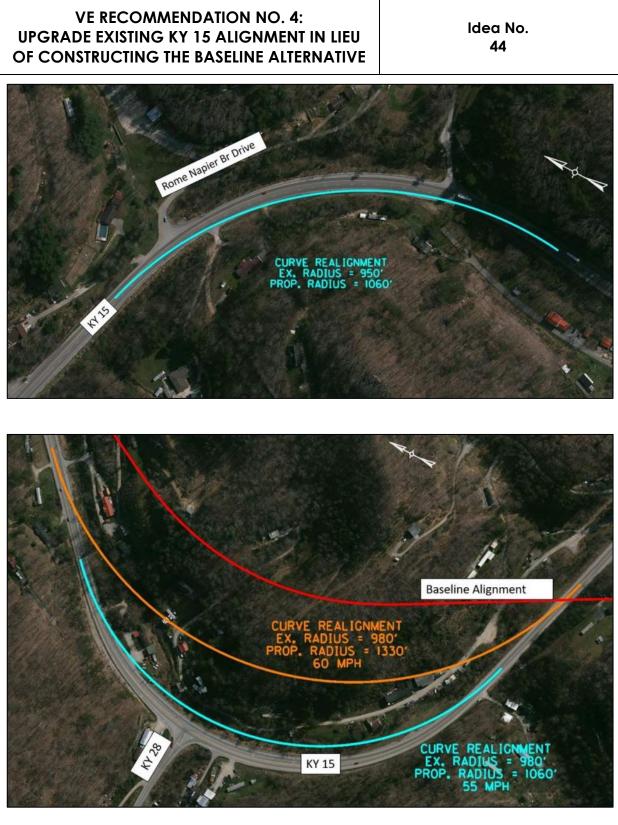
Technical Discussion/Sketches

Existing Information:

The existing typical along KY 15 varies from 2 lanes to 4 lanes, some sections with 2' paved shoulders and some with 10' paved shoulders. There is a two-way-left-turn lane at some locations and also locations of left turn lanes turning into an added lane. The existing route has an AADT of 10,140 with 2041 Future Build Year of 11,210 AADT. This section of KY 15 experienced 115 total crashes, 37 injury crashes, and 4 fatal crashes between 2016 and 2020. It was noted that 37% of the crashes occur during wet / snowy pavement conditions. 27% of the crashes occur during night hours.

Proposed Improvements:


- Implement a consistent typical section (2+1) along the project route. Exhibits and
 information at the workshop show inconsistent typical section in this stretch of road. . The
 route would be resurfaced and restriped. The asphalt surface with a polish resistance
 aggregate will be used to improve the pavement friction. Design Memo 04-13
 recommends a shared four-lane facility (2+1) be considered as the ultimate design for
 roadways having a design year volume of 15,000 ADT or less.
- Realign curves to meet a minimum 55 mph design speed. There are three curves that do
 not meet current standards for 55 mph and are recommended for realignment. Crash
 Modification Factor (CMF) calculations for Rural Principal Arterial Roads result in CMF's
 ranging from 0.78 to 0.86 for Fatal and Injury Crashes (22% reduction in KABC crashes).
- A review of the crash data reveals several "hot spots" at a few of the approaches that warrant special attention for safety measures and access management. One location is at the KY 1067 intersection with the gas station on one quadrant. Another location is at the Entertainment Drive approach.
- With the high percent of crashes occurring during nighttime conditions, lighting is an improvement option that is recommended along the corridor. CMF for Principal Arterial is 0.74 and may result in a reduction of 26% of night time crashes at intersections.


Construction:

Consideration of existing utilities and additional R/W will dictate construction in this area. For purposes of this VE Study we will assume additional width to the existing cut slopes. Construction is generally accomplished by moving traffic to the outside shoulder and maintaining two-way traffic with temporary barrier wall placed along the cut shoulder to separate traffic from the excavation work taking place.

Substandard curves will be brought to current standards and may again require utility relocations and additional R/W. Construction should be straightforward as traffic will be maintained along current alignment with measures such as temporary barrier wall installed to provide separation between those traveling and workers.

For other areas along the route (particularly along the minor approaches), crash data and traffic will be analyzed and mitigation plans developed to further enhance safety. Resurfacing, restriping and additional safety measures (turn lanes, truck lanes) and intersection improvements will be placed as dictated.

7-26 | November 29 - December 3, 2021

Assumptions/Calculations

- For the purpose of cost calculations, average unit prices were compared to those used by the design team for the baseline estimate. In this case prices per ton were converted to price per SY utilizing the same pavement design for full depth widening and curve revisions after areas were estimated. Same unit prices were used to develop a conservative price per SY for milling and resurfacing existing pavement areas at 2".
- Conservative estimates were used for estimating R/W and utility costs for application.
- The team estimated that there will be at least 3 areas that will need lighting at around \$100k per location.
- Costs associated with mitigating high crash areas at KY 1067 and Entertainment Drive are included. Enhanced channelization, advance warning systems, high friction surface, and combining approach roads and entrances utilizing frontage roads are a few of the ideas to be considered.

VE RECOMMENDATION NO. 4: UPGRADE EXISTING KY 15 ALIGNMENT IN LIEU OF CONSTRUCTING THE BASELINE ALTERNATIVE

ldea No. 44

כרב			VE St	udy	/ Life-Cyc			cu	lations		
					VE Recor	nmen	dation 4				
			Baseline Co	oncer	ot		\ \	/E R	ecommendec	l Co	ncept
Component	Unit	Quantity	Cost/Unit		Total		Quantity		Cost/Unit		Total
Earthwork	CU YD	6550000	\$ 4.00	\$	26,200,000		500,000	\$	4.00	\$	2,000,00
Paving	SQ FT	44688		\$	12,121,000			\$	200.00	\$	-
Structures	SQ FT	15036	\$ 200.00	\$	16,803,640		0	\$	200.00	\$	-
New Roadway Construction	SQ YD			\$	-		53855	\$	50.00	\$	2,692,75
Resurface Pavement	SQ YD			\$	-		159573.33		15.00	\$	2,393,60
Lighting	LS			\$				\$		\$	300,00
Access Management / Frontage Roads / Warning System	-			\$				\$	-	\$	1,000,00
Access Management / Hontage Roads / Wanning System	1.5			\$				\$		\$	1,000,00
				Ŷ				Ŷ		Ŷ	
Subtotal Construction				\$	55,124,640					\$	8,386,35
Mark-Up (MOT, Mob., PE, CEI)	25%			\$	13,781,160					\$	2,096,58
Total Construction				\$	68,905,800					\$	10,482,94
Monetized Time Savings				÷	00,500,000					\$	
Right of Way Costs				\$	6,748,000					\$	2,000,00
Utility Costs				ş Ş	2,160,000					\$	1,000,00
TOTAL CAPITAL COST				\$	77,813,800					\$ \$	13,482,94
COST CAPITAL SAVINGS / (VALUE ADDED)				Ş	77,813,800					ş Ş	64,330,85
		Life	Cycle Cost A	Anah	veie					Ŷ	04,330,83
Life Cycle Period	40	Years							Baseline		Alternative
Discount Rate			hitehouse.gov/	wp-cor	tent/uploads/201	8/12/M-1	9-05.pdf		Concept		Concept
A. Initial Costs								\$	77,813,800	\$	13,482,94
B. Annual Costs				Tot	al Capital Cost Sav	/ings / (/alue Added)			\$	64,330,85
1. Annual Maintenance:					-		-				
2. Annual Energy:			Lighti		ctricity			\$	-	\$	3,60
3. Other:					itenance			\$	120,000		-,
			Bridge	IVIAII	litenance	Total A	nnual Costs:	\$	120,000	\$	3,60
					Present		actor (P/A):	Ŷ	39.7063	\$	
					Trebelli			Ś	4,764,754	\$	142,94
					Present V	alue of a	Annual Costs:		1,701,751		Present Value
C. Single Future Expenditures				Amou	Present V				Present Value		
C. Single Future Expenditures First Cycle Asphalt Resurfacing				Amou	nt	Year	PV Factor	, F	Present Value 18.585.016		
First Cycle Asphalt Resurfacing				Amou	nt \$26,470,400	Year 10	PV Factor 0.7021		Present Value 18,585,016		1 680 54
First Cycle Asphalt Resurfacing First Cycle Concrete Repair				Amou	nt \$26,470,400 \$2,393,600	Year 10 10	PV Factor 0.7021 0.7021	\$	18,585,016	\$	1,680,56
First Cycle Asphalt Resurfacing First Cycle Concrete Repair Second Cycle Asphalt Resurfacing				Amou	nt \$26,470,400 \$2,393,600 \$26,470,400	Year 10 10 20	PV Factor 0.7021 0.7021 0.4930			\$	
First Cycle Asphalt Resurfacing First Cycle Concrete Repair Second Cycle Asphalt Resurfacing Second Cycle Concrete Repair				Amou	nt \$26,470,400 \$2,393,600 \$26,470,400 \$2,393,600	Year 10 20 20	PV Factor 0.7021 0.7021 0.4930	\$ \$	18,585,016 13,048,644		
First Cycle Asphalt Resurfacing First Cycle Concrete Repair Second Cycle Asphalt Resurfacing Second Cycle Concrete Repair Third Cycle Asphalt Resurfacing				Amou	nt \$26,470,400 \$2,393,600 \$26,470,400 \$2,393,600 \$26,470,400	Year 10 20 20 30	PV Factor 0.7021 0.7021 0.4930 0.4930 0.3461	\$	18,585,016	\$ \$	1,680,56
First Cycle Asphalt Resurfacing First Cycle Concrete Repair Second Cycle Asphalt Resurfacing Second Cycle Concrete Repair Third Cycle Asphalt Resurfacing Third Cycle Concrete Repair				Amou	nt \$26,470,400 \$2,393,600 \$26,470,400 \$2,393,600	Year 10 20 20	PV Factor 0.7021 0.7021 0.4930 0.4930 0.3461 0.3461	\$ \$ \$	18,585,016 13,048,644	\$	
First Cycle Asphalt Resurfacing First Cycle Concrete Repair Second Cycle Asphalt Resurfacing Second Cycle Concrete Repair Third Cycle Asphalt Resurfacing Third Cycle Concrete Repair Asphalt Reconstruction				Amou	nt \$26,470,400 \$2,393,600 \$26,470,400 \$2,393,600 \$26,470,400	Year 10 20 20 30	PV Factor 0.7021 0.7021 0.4930 0.4930 0.3461 1.0000	\$ \$	18,585,016 13,048,644	\$ \$ \$	1,179,93 828,43
First Cycle Asphalt Resurfacing First Cycle Concrete Repair Second Cycle Asphalt Resurfacing Second Cycle Concrete Repair Third Cycle Asphalt Resurfacing Third Cycle Concrete Repair Asphalt Reconstruction Concrete Reconstruction				Amou	nt \$26,470,400 \$2,393,600 \$26,470,400 \$2,393,600 \$26,470,400	Year 10 20 30 30	PV Factor 0.7021 0.4930 0.4930 0.3461 1.0000 1.0000	\$ \$ \$ \$	18,585,016 13,048,644	\$ \$ \$	1,179,93
First Cycle Asphalt Resurfacing First Cycle Concrete Repair Second Cycle Asphalt Resurfacing Second Cycle Concrete Repair Third Cycle Asphalt Resurfacing Third Cycle Concrete Repair Asphalt Reconstruction					nt \$26,470,400 \$2,393,600 \$26,470,400 \$2,393,600 \$26,470,400 \$2,393,600	Year 10 20 20 30 30 30 40	PV Factor 0.7021 0.4930 0.4930 0.3461 0.3461 1.0000 1.0000 0.2430	\$ \$ \$ \$ \$	18,585,016 13,048,644 9,161,526 - -	\$ \$ \$ \$	1,179,93 828,43 - -
First Cycle Asphalt Resurfacing First Cycle Concrete Repair Second Cycle Asphalt Resurfacing Second Cycle Concrete Repair Third Cycle Asphalt Resurfacing Third Cycle Concrete Repair Asphalt Reconstruction Concrete Reconstruction		Pres			nt \$26,470,400 \$2,393,600 \$26,470,400 \$2,393,600 \$26,470,400	Year 10 20 20 30 30 30 40	PV Factor 0.7021 0.4930 0.4930 0.3461 0.3461 1.0000 1.0000 0.2430	\$ \$ \$ \$	18,585,016 13,048,644	\$ \$ \$	1,179,93 828,43

VE RECOMMENDATION NO. 4: UPGRADE EXISTING KY 15 ALIGNMENT IN LIEU OF CONSTRUCTING THE BASELINE ALTERNATIVE

ldea No. 44

VE RECOMMENDATION NO. 4		IDEA NO.	
Use Alternative 1 with a Minimized Typical Section with other Operational Improvements		44	
PERFORMANCE MEASURES	Performance	Baseline	Recommendation
Attributes and Rating Rationale for Recommendation	1 chomanee	Buschne	
Main Line Operations	Rating	5	3.5
Decreases capacity, decreases separation between opposing vehicles		•	0.0
Verticals not addressed	Weight		23.8
Increases conflicts - access			
Some operational improvements to address conflicts but still in existing alignment	Contribution	119	83.3
Local Operations	Rating	5	4
Increasing exposure of local operations to regional traffic (eliminates separation)	Rating	5	4
Old 15 improved safety concerns and access control	Weight		19.0
	Contribution	95	76
Maintainability	Detine		
Eliminates bridges, significantly reduces pavement - but less space for maintenance	Rating	5	6.5
	Weight		23.8
	Contribution	119	154.7
Construction Impacts	Deting	5	3
Increases utility impacts	Rating	5	3
Increased impacts to MOT and through movements	Weight		7.1
Lane closures will likely be required			
Nighttime work may affect residents more because they're right on alignment	Contribution	35.5	21.3
Environmental Impacts	Rating	5	7.5
Reduces footprint	Raung	J	7.5
Reduces cemetery impacts	Weight		19.0
Reduces ROW impacts			
Stream impacts significantly increased at KY 28 curve (channel change)	Contribution	95	142.5
Project Schedule	Rating	5	6
Environmental reevaluation may be required	naung	5	U
Construction duration significantly reduced	Weight		7.1
Simplified design may reduce design schedule			
May improve funding ability, alternative funding sources	Contribution	35.5	42.6
Tota	I Performance	499	520
		erformance	4%

VE RECOMMENDATION NO. 5: SHIFT ALIGNMENT WEST OF CEMETERY AND PROVIDE ALTERNATIVE INTERSECTION AT KY 28

Idea Nos. 1,12,16

Baseline Concept

The baseline is grade separated where it crosses existing KY 15 which results in twin bridges carrying the new alignment. As the baseline alignment continues north, it includes a Tight Diamond Interchange at KY 28 with a bridge carrying KY 28 under new KY 15.

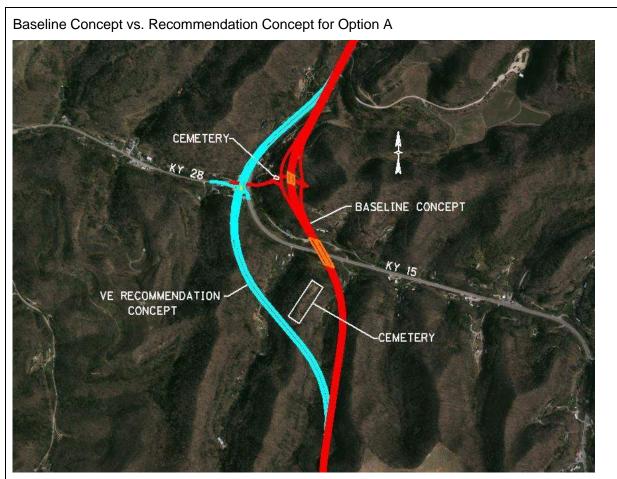
Recommendation Concept

Modify the radius of the horizontal curve to shift the alignment to the west of the existing Miller cemetery which will eliminate twin structures at KY 28 under new KY 15, and provide a new atgrade intersection or high green-T interchange at KY 15 and KY 28.

	Advant					Disadvantage	es		
 Reduces imp north Eliminates tw Eliminates tw 28 Reduces sev Improves sigli 	in structu in structu erity of co	res at existir res at KY 15 onflict points	ng KY 1	 Increation 5 May Increation 5 May Increation 5 5 5 4 5 5 5 6 1 	ases i requir ce, et	culvert extension number of conflict e additional featur c.) to address 6% ntersection at botto	points (Option A) res (high friction super elevation		
Cost Summary	,	Construc	tion	Right of V	Vay	Lifecycle	Total		
Baseline Conce	pt	\$48,424,06	3	\$6,748,000	C	\$1,122,715	\$56,294,778		
Recommendation Concept (Option		\$42,777,235		\$42,777,235		\$6,748,000	C	\$0	\$49,525,235
Cost Avoidance (Option A)		\$5,646,827	,	\$(C	\$1,122,715	\$6,769,542		
Recommendation Concept (Option		\$47,640,54	·8	\$6,748,000	C	\$326,836	\$54,715,384		
Cost Avoidance (Option B)		\$783,515		\$(C	\$795,879	\$1,579,393		
			FHWA	Function Be	enefit				
Safety	Оре	erations	En	vironment		Construction	Right-of-way		
		Discussi	on/Ske	tches/Photo	s/Calo	culations			

Technical Discussion/Sketches

The baseline concept realigns KY 15 to the west of existing KY 15 starting right before a horizontal curve near Copperhead Bend and ties back in near Martha Lane by crossing existing KY 15 with a set of twin bridges. The baseline concept continues north and includes a proposed Tight Diamond Interchange for the intersection of KY 15 at KY 28. This includes a proposed intersection which would take the Tight Diamond Interchange into the side of a mountain to the east of existing KY 15, and includes a set of twin bridges carrying KY 15 traffic over KY 28. There is also a small cemetery which would be impacted at the current baseline proposal of the Tight Diamond Interchange. A portion of the baseline concept is shown below:



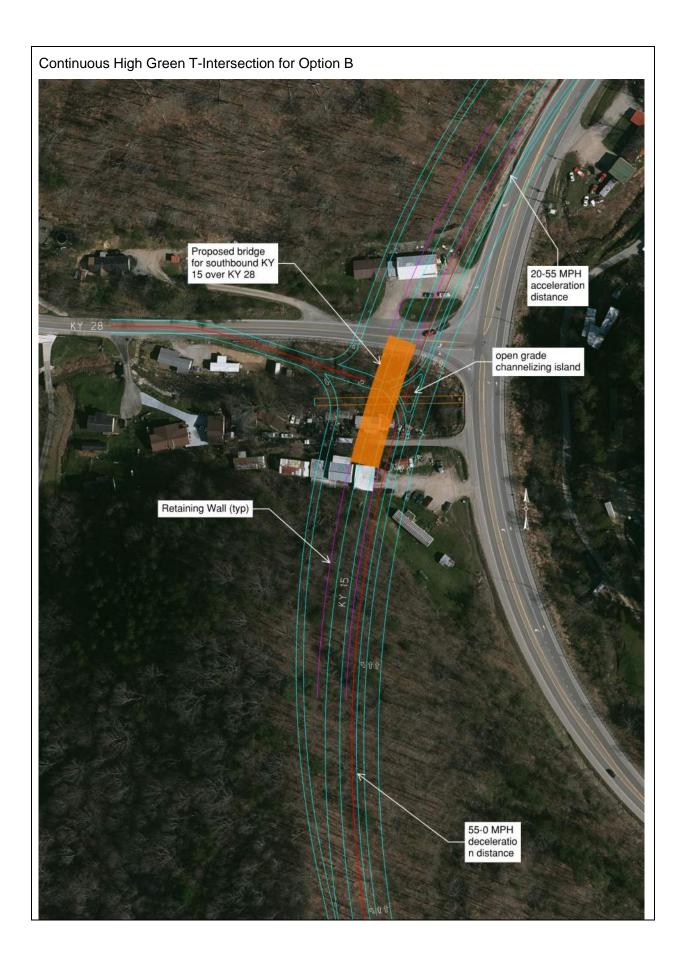
The VE Team studied shifting the alignment west of cemetery and providing an alternative intersection at KY 28. Two options were studied and are presented on the following pages.

Option A

The recommendation concept would use the majority of the baseline concept's new alignment of KY 15, but would modify the radius of the horizontal curve to shift the alignment to the west of an existing cemetery south of the existing KY 15. This would convert KY 28 and KY 15 to an atgrade 4-legged intersection. This would eliminate the need for the set of twin bridges which are currently needed to cross existing KY 15 near Martha Lane. This recommendation would also create an at-grade intersection for KY 15 @ KY 28 by moving the intersection back close to where it is on existing alignment. This would eliminate the need for the set of twin bridges carrying KY 15 traffic over KY 28 by removing the Tight Diamond Interchange altogether. Additionally, with the removal of the Tight Diamond Interchange, this would reduce the excavation needed for the mountain located in the Tight Diamond Interchange footprint. The concept also provides acceleration lanes for all turning movements for the approaches onto the mainline by utilizing available median width in an effort to reduce the severity of conflict points. This would also reduce impacts to the Miller cemetery in this project location.

Option A might also require additional features, such as the use of a high friction surface to address 6% super elevation. The VE Team is assuming the modified radius (cyan curve) would be constructed at the correct super elevation. If so, then there might not be a need for the high friction surface. Depending on the grade at the KY 28 tie-in into the 6% super elevation, high friction surface could be used at the KY 28 intersection or the design team could reduce the 6% super elevation by using a high friction surface and increasing the friction factor. The VE Team did not have enough information available regarding the proposed change to the baseline, we were unable to quantify if high friction surface would be needed, but wanted to state it.

KY 15 @ KY 28 Intersection for Option A


Option B

Option B is to provide a continuous high green T-intersection (CHGT) at KY 28 and KY 15. This will provide free flow through movement along the KY 15, with NB KY 15 at grade and SB KY 15 elevated over KY 28. The benefits of a CHGT are as follows:

- Provides uninterrupted flow for all through movements along the arterial
- Reduces conflict points

Southbound entrance and exit ramps are required to maintain connection to KY 28. Retaining walls will also be required to facilitate grade separating the southbound travel lanes. Wall height and length will vary depending on structure depth and vertical profile.

Additional local connections to KY 15 will be required to maintain a T-intersection at KY 15 and KY 28.

Assumptions/Calculations (Option A)

Excavation (Utilizing InRoads)

Baseline Concept – 6,550,000 cubic yards x \$4.00 per cubic yard = \$26,200,000

Recommendation Concept – 8,350,000 cubic yards x \$4.00 per cubic yard = \$33,400,000

The recommended concept would add an approximate net total of 3,000,000 cubic yards of excavation. However, with the removal of the Tight Diamond Interchange, roughly 600,000 cubic yards of excavation would be subtracted form that net total. That results in a net increase of 2,400,000 cubic yards for this recommendation. The VE Team observed that the quantities for excavation and earthwork included in the baseline concept cost estimate may have been underestimated. This includes the quantities of the approaches, ramps, and entrances to the Tight Diamond Interchange. Considering the potential uncertainty associated with those quantities, the VE's team recommended concept could result in either higher or lower cost savings.

Structures

Baseline Concept for twin bridges carrying new aligned KY 15 traffic over existing KY 15 - 44,688 square feet x \$200 per square foot = \$8,937,600.

Baseline Concept for twin bridges carrying KY 15 traffic over KY 28 – 15,036 square feet x \$200 per square foot = \$3,007,200.

Recommendation Concept – 0 square feet x \$200.00 per square foot = \$0.00

Removing both sets of twin bridges would have a cost savings of \$11,337,600.

Additional

The Recommendation Concept includes a 10x12 culvert extension at KY 28 and KY 15 - 13,747 cubic feet x \$32.50 per cubic foot = \$446,788.33.

Baseline Concept for Tight Diamond Interchange pavement – 11,889 square yards x \$50.00 per square yard = \$594,450

Recommendation Concept for at-grade intersection pavement – 7,500 square yards x \$50.00 per square yard = \$375,000.

The VE Team's assumption is the need for right-of-way stays roughly the same due to the baseline concept and recommendation concept still being on new alignment and redesigning how KY 28 interacts with KY 15.

ר-		V		tions							
			V L		commenda			`			
		I	Baseline Con	cep	t		VE Re	ecor	nmended	Со	ncept
Component	Unit	Quantity	Cost/Unit		Total		Quantity	с	ost/Unit		Total
Roadway Excavation	CU YD	6550000	\$ 4.00	\$	26,200,000		8,350,000	\$	4.00	\$	33,400,000
195+62 Bridge	SQ FT	44688	\$ 200.00	\$	8,937,600			\$	200.00	\$	-
208+63 Bridge	SQ FT	15036	\$ 200.00	\$	3,007,200			\$	200.00	\$	-
12x10 Culvert Extension at KY 28 & KY 15	CU FT			\$	-		13747	\$	32.50	\$	446,78
Diamond Interchange Pavement	SY	11889	\$ 50.00		594,450		7500	Ś	50.00	-	375,000
			,	Ŧ				Ŧ		Ŧ	
Subtotal Construction				\$	38,739,250					\$	34,221,78
Mark-Up (MOT, Mob., PE, CEI)	25%			\$	9,684,813					\$	8,555,44
Total Construction				\$	48,424,063					\$	42,777,23
Monetized Time Savings										\$	-
Right of Way Costs				\$	6,748,000					\$	6,748,000
TOTAL CAPITAL COST				\$	55,172,063					\$	49,525,23
COST CAPITAL SAVINGS / (VALUE ADDED)										\$	5,646,82
· · ·		Life Cy	cle Cost And	lysi	s						а — т -
Life Cycle Period	40	Years							Baseline	A	lternative
Discount Rate	3.6%	https://www.w	/hitehouse.gov/	vp-co	ontent/uploads/	/2018/12	/M-19-05.pdf		Concept		Concept
A. Initial Costs		1						\$	55,172,063	\$	49,525,23
B. Annual Costs			Т	otal (Capital Cost Sav	/ings / (Value Added)			\$	5,646,82
1. Annual Maintenance:	Assum	e \$10,000/ye	ar in inspectio	on ai	nd minor repa	irs		\$	10,000		
2. Annual Energy:			· · · ·								
3. Other:											
						Total A	nnual Costs:	\$	10,000	\$	-
					Present	Value F	actor (P/A):		39.7063	\$	40
					Present V	alue of	Annual Costs:	\$	397,063	\$	-
C. Single Future Expenditures			Aı	nour	nt	Year	PV Factor	Pre	esent Value	Pr	esent Value
Re-decking bridges			\$		2,986,200.00	40	0.2430	\$	725,652		
							1.0000			\$	-
							1.0000	\$	-		
							1.0000			\$	-
							1.0000	\$	-		
							1.0000			\$	-
							1.0000	\$	-		
							1.0000			\$	-
Residual Value						40	0.2430	\$	-	\$	-
		Present	Value of Future	Sing	le Expenditure			\$	1,122,715		-
D. TOTAL PRESENT VALUE COST (A+B+C)									56,294,778		49,525,23
, -/								Ļ	55,254,770	Ŷ	
TOTAL LIFE CYCLE SAVINGS / (VALUE ADDED):										\$	6,769,542

Assumptions/Calculations (Option B)

Acceleration from 20 mph to 55 mph is used for the acceleration length of the channelized receiving lane.

Lane drop taper rate is 50:1.

Maximum wall height is assumed to be 24 feet

Structures

Bridge is 220'x48'=10560 SF

Retaining Walls:

- Assumed length for each wall is 400'
- Assumed height varies from 22.5' to 8'
- 4x [400'x8+400x(22.5-8)/2] = 24,400 SF

Embankment

The embankment is assumed to require 800' in length on each side of the structure with a maximum embankment height of 22.5 feet (16.5' VC with 8' structure minus 2'for pavement depth)

Embankment (south) is (48'x22.5'x800'/2)/27=16,000 CY

Embankment (north) is (48'x22.5'x800'/2)/27=16,000 CY

Total Embankment = 32,000 CY

Pavement

The northbound and southbound ramp connections to KY 28 is assumed as follows:

- Ramp length is 1,200'each ramp
- Ramp widths is 16' lane, 4' left and 8' right shoulders
- 2 ramps x 1,200'x28'/9=3,733 SY

		VE		Life-Cyc				Ilations		
FC			VE	Recommer	ndatio	n 5 Optior	۱B			
		B	aseline Con	rent		VER	200	mmended	Co	ncent
				pr		V L H	200	innenaca	0	heepe
Component	Unit	Quantity	Cost/Unit	Total		Quantity	C	Cost/Unit		Total
Roadway Excavation	CU YD	6550000	\$ 4.00	\$ 26,200,000		8,382,000	\$	4.00	\$	33,528,000
195+62 Bridge	SQ FT	44688	\$ 200.00	\$ 8,937,600			\$	200.00	\$	-
208+63 Bridge	SQ FT	15036	\$ 200.00	\$ 3,007,200			\$	200.00	\$	-
Bridge over KY 28	SQ FT	0	\$ 200.00	\$-		10,560	\$	200.00	\$	2,112,000
Retaining Wall	SQ FT	0	\$ 60.00	\$ -		24,400	Ś	60.00	\$	1,464,000
12x10 Culvert Extension at KY 28 & KY 15	CU FT		\$ 32.50			13,747	-	32.50		446,788
Diamond Interchange Pavement	SY	11889	•			11,233		50.00		561,650
		11000		, 55., 50		11,200	7	55.50	Ŧ	
Subtotal Construction				\$ 38,739,250					\$	38,112,438
Mark-Up (MOT, Mob., PE, CEI)	25%			\$ 9,684,813					\$	9,528,110
Total Construction				\$ 48,424,063						47,640,548
Monetized Time Savings				, ,					\$	-
Right of Way Costs				\$ 6,748,000					\$	6,748,000
TOTAL CAPITAL COST				\$ 55,172,063					\$	54,388,548
COST CAPITAL SAVINGS / (VALUE ADDED)				<i>Ş 33,172,003</i>					\$	783,515
		Life Cu	le Cost Anal	vsis					Ŷ	705,515
life Cuele Devied	40		le cost Anui	ysis			<u> </u>	Baseline	Δ	lternative
Life Cycle Period	40	Years			/20	10/12/04 10 0		Concept		Concept
Discount Rate A. Initial Costs	3.6%	nttps://www.	whitehouse.gov	//wp-content/up	10ads/20	18/12/10-19-0	ć	55,172,063		54,388,548
B. Annual Costs			Total	Conital Cost Sa	ings / l)	(alua Addad)	Ş	55,172,005	ې \$	
				Capital Cost Sav			<i>.</i>	40.000	-	783,515
1. Annual Maintenance:	Assum	e \$10,000/y	ear in inspect	ion and minor	repairs	5	\$	10,000	\$	5,000
2. Annual Energy:										
3. Other:						10.1				
						nnual Costs:	\$	10,000	\$	5,000
						actor (P/A):		39.7063	\$	40
C. Single Future Funeralitymes			A		1	Annual Costs:	\$	397,063	\$	198,531
C. Single Future Expenditures			-	ount	Year	PV Factor		esent Value	Pr	esent Value
Re-decking bridges			\$	2,986,200.00	40	0.2430	\$	725,652		100.5
Redecking new bridge over KY 28			\$	528,000.00	40	0.2430			\$	128,305
						1.0000	\$	-		
						1.0000			\$	-
						1.0000	\$	-		
						1.0000			\$	-
						1.0000	\$	-		
						1.0000			\$	-
					40	0.2430	\$	-	\$	-
Residual Value										
Residual Value		Present Valu	e of Future Sin	gle Expenditure	s and Re	sidual Value:	\$	1,122.715	\$	326.836
Residual Value D. TOTAL PRESENT VALUE COST (A+B+C)		Present Valu	e of Future Sin	gle Expenditure	s and Re	sidual Value:	· ·	1,122,715 56,294,778		326,836 54,715,384

VE RECOMMENDATION NO. 5		IDEA NOS	5.	
Shift Alignment West of Cemetery and Provide At-Grade Intersection at KY 28		1,12,16		
PERFORMANCE MEASURES	Performance	Baseline	Recommendation	
Attributes and Rating Rationale for Recommendation	Feriormance	Dasenne	Recommendation	
Main Line Operations	Rating	5	4.75	
At-grade intersection increases conflicts (Option A)	raarig			
High T increases conflict points (Option B)	Weight		23.8	
	Contribution	119	113.1	
ocal Operations	Rating	5	4.5	
Intersection operations slightly less functional than interchange given new	Nating	•	4.0	
traffic counts Added conflict points, severity of conflicts increased (ramps speeds vs mainline)	Weight		19.0	
but providing acceleration lanes	Contribution	95	85.5	
Maintainability	Rating	5	7	
Eliminates structures to maintain				
Reduces slope maintenance/cut back on right side	Weight		23.8	
Slightly reduces pavement	Contribution	119	166.6	
Construction Impacts				
No change	Rating	5	5	
	Weight		7.1	
	Contribution	35.5	35.5	
Environmental Impacts	Deting	5	5	
Increases impervious (longer road) but eliminates ramps	Rating	Э	Э	
Reduces impacts to cemetery May reduce relocations	Weight		19.0	
Extends RCBC near KY 28	Contribution	95	95	
Project Schedule	Rating	5	6	
Eliminating bridges reduces construction duration	Naung	3	U	
Simplified design may reduce design schedule	Weight		7.1	
Environmental reevaluation may be required				
	Contribution	35.5	42.6	
	I Performance	499	538	
N	et Change in P	erformance	8%	

	VE RECOMMENDATION NO. 6: IFT ACCESS TO KY 28 NORTH OF PROPOSED KY 28 INTERCHANGE										
			Baseline (Conc	ept						
KY 28 utilizes a Tiç	KY 28 utilizes a Tight Diamond Interchange to access the new proposed KY 15 alignment.										
		Red	commendat	tion	Concep	t					
Shift access from k	(Y 28 to KY 1	5 to the	e north and	maiı	ntain fre	eflow betweer	1 KY 28 to KY 15.				
	Advantages			1		Disadvar	tages				
 Reduces earthwo of side of mounta Eliminates structure Interchange Eliminates interchange Reduces number Eliminates stop of 	AdvantagesDisadvantages• Reduces cemetery impacts• Adds smaller twin structures• Reduces earthwork by shifting to north and out of side of mountain• Adds smaller twin structures• Eliminates structures at Tight Diamond Interchange• Eliminates direct EB to SB movements (Option A)• Eliminates interchange ramps• Eliminates direct NB to WB movements (Option A)• Eliminates stop controlled intersections and allows for freeflow traffic movement (Option B)• Driver expectancy										
Cost Summary		Co	onstruction		Rig	ht-of-way	Total				
Baseline Concept		9	\$37,252,056	i	S	\$6,748,000	\$44,000,056				
Recommendation C	oncept	9	\$34,773,722		9	\$6,748,000	\$41,521,722				
Cost Avoidance/(Ac	lded Value)		\$2,478,333	5		\$0	\$2,478,333				
		F	HWA Funct	ion E	Benefit						
Safety	Operatio	ons	Enviror	nmen	t	Construction	Right-of-way				
			•			•					

ldea No. 4

Technical Discussion/Sketches

The baseline concept shown below features a Tight Diamond Interchange carved into the mountain side.

Discussion/Sketches/Photos/Calculations

ldea No. 4

This recommendation is to relocate the KY 28 and KY 15 intersection to north. KY 28 would free flow onto old KY 15 and then tie into the new alignment approximately 450' to the north of the baseline Tight Diamond Interchange. The free flow movements reduce conflict points compared to the Tight Diamond Interchange.

Option A:

This option provides KY 28 access to KY 15 northbound by utilizing old KY 15 and ramps to the baseline alignment. KY 15 baseline alignment would bridge over the one lane KY 28 ramp. Access to KY 15 southbound utilized old KY 15 and ties in at the southern end of the project.

Option B:

A variant of this recommendation is to accommodate EB KY 28 traffic onto KY 15 southbound and KY 15 NB onto KY 28 westbound with tight loops at the interchange. KY 15 northbound traffic to KY 28 westbound (150 vehicles PM Peak) would utilize a loop ramp off of KY 15 NB and free flow onto old KY 15 and continue on KY 28 WB. WB-62 design vehicle was used to develop the turn radius from KY 15 NB to ensure trucks would be able to maneuver. KY 28 would free flow onto old KY 15 and then tie into the new alignment approximately 450' to the north of the baseline Tight

Diamond Interchange. The free flow movements reduce conflict points compared to the Tight Diamond Interchange.

KY 28 eastbound traffic to KY 15 southbound (150 vehicles PM Peak) would utilize a ramp to merge onto KY 15 SB.

KY 28 eastbound traffic to KY 15 northbound (20 vehicles PM Peak) would go under the proposed KY 15 alignment and utilize a ramp to merge onto KY 15 NB.

KY 15 southbound traffic to KY 28 westbound (30 vehicles PM Peak) would utilize a ramp from the proposed KY alignment onto old KY 15 and continue on KY 28 WB.

One key advantage of not creating the Tight Diamond Interchange as shown in the baseline is the reduced footprint at the mountain edge, which reduces excavation, reduces relocations and avoids cemetery impacts.

Assumptions/Calculations

It's assumed that, for maintenance purposes, the area of bridges and pavement quantities are similar and differences are negligible between Option A and Option B.

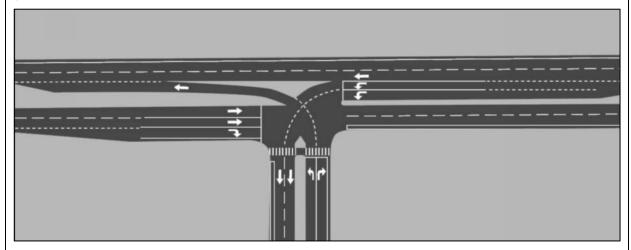
Assume similar ROW and Utility cost with the Baseline.

			VE St	udy Cost	s Ca	Iculatio	ons						
FX		VE Recommendation 6											
		Ва	seline Conce	ept		VE Re	commended	Со	ncept				
Component	Unit	Quantity	Cost/Unit	Total		Quantity	Cost/Unit		Total				
Roadway Excavation	CU YD	6,550,000	\$4.00	\$ 26,200,000		5,950,000	\$4.00	\$	23,800,000				
208+63 Bridge	SQ FT	15,036	\$200.00	\$ 3,007,200	ľ	18,236	\$200.00	\$	3,647,200				
Diamond Interchange Pavement	SY	11889	\$ 50.00	\$ 594,444		3889	\$ 50.00	\$	194,444				
Resurface old KY 15	SY			\$-		11822	\$ 15.00	\$	177,333				
				\$-			\$-	\$	-				
	_												
Subtotal Construction		_	_	\$ 29,801,644				\$	27,818,978				
	25%			\$ 29,801,644 \$ 7,450,411				\$ \$					
Subtotal Construction Mark-Up (MOT, Mob., PE, CEI) Total Construction	25%								6,954,744				
Mark-Up (MOT, Mob., PE, CEI)	25%			\$ 7,450,411				\$	27,818,978 6,954,744 34,773,722				
Mark-Up (MOT, Mob., PE, CEI) Total Construction Monetized Time Savings	25%			\$ 7,450,411				\$ \$	6,954,744				
Mark-Up (MOT, Mob., PE, CEI) Total Construction	25%			\$ 7,450,411 \$ 37,252,056				\$ \$ \$	6,954,744				

VE RECOMMENDATION NO. 6: SHIFT ACCESS TO KY 28 NORTH OF PROPOSE INTERCHANGE	D KY 28	lde	ea No. 4	
VE RECOMMENDATION NO. 6		IDEA NO		
Maintain Free-flow from KY 28 to KY 15		4		
PERFORMANCE MEASURES	Performance	Baseline	Recommendation	
Attributes and Rating Rationale for Recommendation		Dasenne	Recommendation	
Main Line Operations	Rating	5	5	
Reduces number of conflict points	Naung	3	5	
Reduces traffic from mainline to local roads	Weight		23.8	
	Contribution	119	119	
Local Operations Increases traffic on local roads from mainline	Rating	5	4	
Funnels traffic through old 15 Maintains freeflow from KY 28	Weight		19.0	
	Contribution	95	76	
Maintainability Old 15 may require more maintenance but bridge maintenance	Rating	5	5	
is reduced and interchange ramps eliminated	Weight		23.8	
	Contribution	119	119	
Construction Impacts	Rating	5	5.5	
Road closures and detours are no longer needed	Naung		5.5	
	Weight		7.1	
	Contribution	35.5	39.1	
Environmental Impacts Eliminates impacts to cemetery	Rating	5	5.25	
	Weight		19.0	
	Contribution	95	99.8	
Project Schedule Slightly easier to construct	Rating	5	5	
	Weight		7.1	
	Contribution	35.5	35.5	
То	al Performanc	e 499	488	
	Net Change in	Performance	-2%	

VE I USE CONTI	RECOMMEI NUOUS HIG				T		ldea No. 19
			Baseline (Concept			
The baseline conce is proposed at the						ment. An at	-grade T-intersection
		Re	commendat	tion Con	cept		
Use a continuous ł	high T at the s	souther	n limit of the	e new ali	gnment	t.	
	Advantages					Disadvant	ages
 Reduces conflict Improves operati 				Adds	structu	e imperviou: re aintenance	s surfaces
Cost Summary			Capital		Life C	ycle	Total
Baseline Concept		ç	\$77,815,000			\$0	\$77,815,000
Recommendation C	Concept	Ś	\$80,890,000	0 \$		344,811	\$81,734,811
Cost Avoidance/(Ad	lded Value)		(\$3,075,000)	(\$8	344,811)	(\$3,919,811)
	Γ	F	HWA Funct	ion Bene	efit		
Safety	Operatio	ons	Enviror	nment	Co	nstruction	Right-of-way
✓	✓						

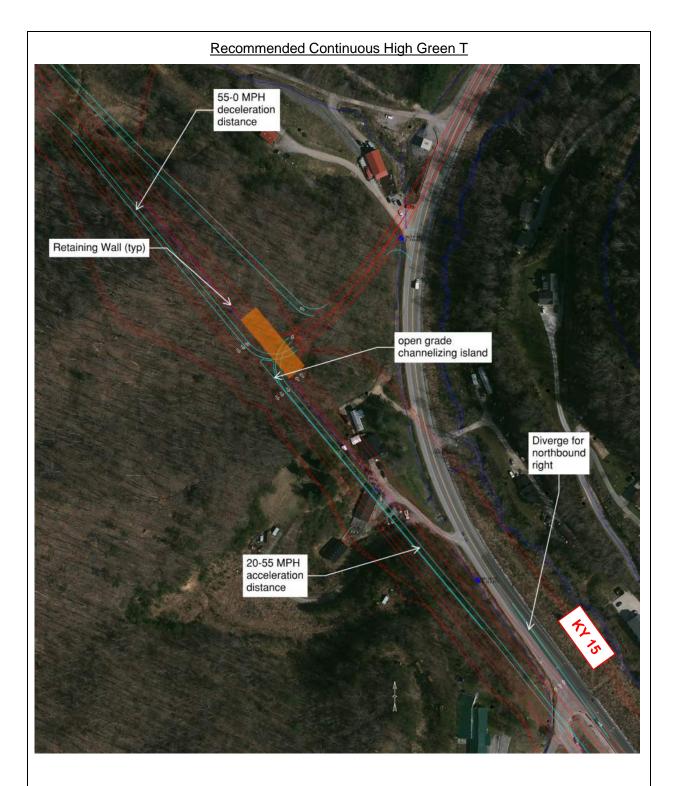
VE RECOMMENDATION NO. 7: USE CONTINUOUS HIGH T AT SOUTHERN SPLIT


Discussion/Sketches/Photos/Calculations

Technical Discussion/Sketches

The baseline intersection concept at the new aligned KY 15 and existing KY 15 does not show dedicated left or right turn lanes, nor does it include deceleration and acceleration lanes. It is assumed the baseline intersection will be full access. To reduce conflict points between turning traffic and KY 15 through traffic, NB KY 15 will be elevated over the intersection with existing KY 15. Northbound entrance and exit ramps are required to facilitate northbound access to and from existing KY 15.

This recommendation is to construct a Continuous High Green T-intersection (CHGT), a gradeseparated variation of the Continuous Green-T (CGT) intersection design, at the southern intersection of the new aligned KY 15 and existing KY 15.


A Continuous Green T-intersection (CGT) channelizes left-turn movement from the minor street approach onto the main arterial, along with a continuous arterial through movement that occurs at the same time. This results in reducing conflict points and improving overall traffic flow at the intersection. Refer to the KYTC Congestion Toolbox at <u>Continuous Green T | KYTC</u> and the general layout of a CGT below.

To further enhance a CGT, the roadway of the opposing through movement on the mainline can be elevated. This will provide free flow through movement along the mainline, with one direction being at grade and the other being elevated over the minor street. This is referred to as a CHGT since one direction of travel is elevated. The benefits of a CHGT are as follows:

- Provides uninterrupted flow for all through movements along the arterial
- Reduces conflict points

The northbound exit ramp utilizes the existing KY 15 alignment. Below is a figure showing the general layout of the CHGT:

The CHGT will require some retaining walls adjacent to the southbound left turn lane and the channelized southbound receiving lane from existing KY 15. Wall height and length will vary depending on structure depth and vertical profile.

VE RECOMMENDATION NO. 7: USE CONTINUOUS HIGH T AT SOUTHERN SPLIT

Assumptions/Calculations

Acceleration from 20 mph to 55 mph is used for the acceleration length of the channelized receiving lane. Lane drop taper rate is 50:1.

Maximum wall height is assumed to be 24'.

It is assumed the southbound left turn lane (not currently shown in the baseline concept) does not add additional cost to the project. It is also assumed that the northbound entrance ramp costs are negligible. The assumption is the baseline concept will include northbound and southbound deceleration and acceleration lanes.

Bridge is 180'x48'=8,640 SF

The embankment is assumed to require 800' in length on each side of the structure with a maximum embankment height of 22.5' (16.5' VC with 8' structure minus 2' for pavement depth)

Embankment in place is quantified but assumed to be incidental and not a pay item

Embankment (south) is (48'x22.5'x800'/2)/27=16,000 CY

Embankment (north) is (48'x22.5'x800'/2)/27=16,000 CY

Total Embankment = 32,000 CY

Retaining Walls

400' length adjacent to the southbound left turn lane and southbound channelized receiving lane

Height varies from 22.5' to 8'

Retaining Wall = 2x [400'x8+400x(22.5-8)/2] = 12,200 SF

VE RE USE CONTINU		MEND/ HIGH					LIT			Idea 19	-).
FX			V	E Stu	dy I	-ife-Cyc VE Recc			ICU	ulations		
			Base	eline Co	ncept			ν	/E Re	commended	d Co	ncept
Component	Unit	Quantity			·	Total		Quantity		Cost/Unit		Total
New Bridge	SQ FT	0	\$	200.00	Ś			8,640	Ś	200.00	\$	1,728,000
Retaining Wall	SQ FT		\$	60.00		-		12,200	· ·	60.00	· ·	732,000
	_	_	_	_	ć			_			ć	2 460 000
Subtotal Construction	2501				\$	-					\$	2,460,000
Mark-Up (MOT, Mob., PE, CEI)	25%				\$	-					\$	615,000
Total Construction	-				\$	-					\$	3,075,000
Monetized Time Savings											\$	-
Right of Way Costs					\$	-					\$	-
TOTAL CAPITAL COST					\$	-					\$	3,075,000
COST CAPITAL SAVINGS / (VALUE	ADDED)										\$	(3,075,000)
				Life Cy	cle Co	st Analysis	5		1			
Life Cycle Period	75	Years								Baseline		Alternative
Discount Rate	3.6%	https://www	.white	ehouse.go	v/wp-cc	ntent/upload	<u>s/2018/1</u>	2/M-19-05.pd		Concept		Concept
A. Initial Costs									\$	-	\$	3,075,000
B. Annual Costs				-	Total Ca	pital Cost Sa	vings / (N	/alue Added)			\$	(3,075,000)
1. Annual Maintenance:	Bridge i	nspection a	nd m	inor repa	irs, in	cluding reta	ining wa	alls			\$	10,000
2. Annual Energy:						-						
3. Other:												
							Total A	nnual Costs:	\$	-	\$	10,000
						Present	t Value F	actor (P/A):		73.9834	\$	74
						Present V	alue of A	Annual Costs:	\$	-	\$	739,834
C. Single Future Expenditures				А	mount		Year	PV Factor	Р	resent Value		Present Value
								1.0000	\$	-		
Bridge re-decking			\$			432,000.00	40	0.2430			\$	104,977
								1.0000	\$	-		
								1.0000			\$	-
								1.0000	\$	-		
								1.0000	·		\$	-
								1.0000	Ś	-		
								1.0000	\$	-	Ś	-
Residual Value							40	1.0000		-	\$ \$	-
Residual Value		Procent	Valu	e of Futur	e Single	Expenditure	40	1.0000 0.2430	\$	-	\$	-
	(A+B+C)	Present	: Valu	e of Futur	e Single	e Expenditure	-	1.0000 0.2430	\$ \$	-	\$ \$	844,811
Residual Value D. TOTAL PRESENT VALUE COST (TOTAL LIFE CYCLE SAVINGS / (VAL			: Valu	e of Futur	e Single	e Expenditure	-	1.0000 0.2430	\$	-	\$	- - 844,811 3,919,811 (3,919,811)

VE RECOMMENDATION NO. 7: USE CONTINUOUS HIGH T AT SOUTHERN	I SPLIT	Id	ea No. 19				
VE RECOMMENDATION NO. 7		IDEA NO).				
Use Continuous High T at Southern Split	19						
ERFORMANCE MEASURES	Deuteuronee	Deseline	Decommendation				
ttributes and Rating Rationale for Recommendation	Performance	Baseline	Recommendation				
lain Line Operations	Rating	5	5.75				
Eliminates NB conflict point	Raung	5	5.75				
SB through movement is horizontally separated	Weight		23.8				
	Contribution	119	136.9				
ocal Operations Improves local turning movements from old 15	Rating	5	6				
Reduces conflicts	Weight		19.0				
	Contribution	95	114				
laintainability Adds a structure and walls to maintain	Rating	5	4				
May add acceleration lane (baseline may require also)	Weight		23.8				
	Contribution	119	95.2				
construction Impacts	Rating	5	5				
Bridge constructed offline, no change		5	7.1				
	Weight						
	Contribution	35.5	35.5				
nvironmental Impacts No change	Rating	5	5				
	Weight		19.0				
	Contribution	95	95				
roject Schedule No change	Rating	5	5				
	Weight		7.1				
	Contribution	35.5	35.5				
	Fotal Performance	499	512				
	Net Change in I	Performance	3%				

7.4 Performance Assessment

As the VE team developed recommendations, the performance of each was compared to the baseline for potential value improvement. For this exercise, the baseline was given a score of 5. Table 12 shows the criteria used to evaluate the performance of the alternative concepts relative to the baseline concept.

Rating	Performance Attribute Scales			
10	Alternative concept is extremely preferred			
9	Alternative concept is very strongly preferred			
8	Alternative concept is strongly preferred			
7	Alternative concept is moderately preferred			
6	Alternative concept is slightly preferred			
5	Concepts are equally preferred			
4	Baseline concept is slightly preferred			
3	Baseline concept is moderately preferred			
2	Baseline concept is strongly preferred			
1	Baseline concept is very strongly preferred			
0	Baseline concept is extremely preferred			

Table 12. Performance Attribute Rating Scale

7.4.1 Performance Rating

The performance matrix (Table 13) permits the comparison of various recommendations against the baseline concept by organizing the data developed for the performance attributes into a matrix format to yield value indices.

The matrix is essential for understanding the performance and value of the baseline and VE concepts. Comparing the performance suggests which recommendations are potentially as good or better than the baseline concept in terms of overall value. Comparison at the value index level suggests which recommendations have the best functionality or provides the project with the best value.

The performance rating and rationale for each alternative generated by the VE team is located on the individual recommendation forms found in Section 7.3.

Table 13. Performance Matrix

Attribute	Attribute Weight	Concept	Performance Rating	Total Performance	
		Baseline	5	119.0	
		1	5	119.0	
	23.8	2	4.75	113.1	
Main Line		3	4.5	107.1	
Operations		4	3.5	83.3	
		5	4.75	113.1	
		6	5	119.0	
		7	5.75	136.9	
		Baseline	5	95.0	
		1	6	114.0	
		2	4.5	85.5	
		3	5	95.0	
Local Operations	19.0	4	4	76.0	
		5	4.5	85.5	
		6	4	76.0	
		7	7 6		
	23.8	Baseline	5	119.0	
		1	6	142.8	
		2	7	166.6	
		3	6	142.8	
Maintainability		4	6.5	154.7	
		5	7	166.6	
		6	5	119.0	
		7	4	95.2	
	7.1	Baseline	5	35.5	
		1	4.75	33.7	
		2	5	35.5	
Construction		3	5.5	39.1	
Impacts		4	3	21.3	
		5	5	35.5	
		6	5.5	39.1	
		7	5	35.5	

Table 13. Performance Matrix

Attribute	Attribute Weight	Concept	Performance Rating	Total Performance	
		Baseline	5	95.0	
	19.0	1	5	95.0	
		2	5.75	109.3	
Environmental		3	6	114.0	
Impacts		4	7.5	142.5	
		5	5	95.0	
		6	5.25	99.8	
		7	5	95.0	
	7.1	Baseline	5	35.5	
		1	5	35.5	
		2	6	42.6	
Droiget Cebedule		3	5	35.5	
Project Schedule		4	6	42.6	
		5	6	42.6	
		6	5	35.5	
		7	5	35.5	

7.4.2 Compare Value

Understanding the relationship of cost, performance, and value of the project baseline and VE concepts is essential in evaluating VE recommendations. Comparing the performance and cost suggests which recommendations are potentially as good as or better than the project baseline concept in terms of overall value.

Recommendation	Performance (P)	% Change Performance	Cost (C) \$ millions	Cost Change \$ millions	% Change Cost	Value Index	% Value Improvement
Baseline	499		\$123.3			4.00	
Shift KY 28 Intersection to the South	540	+8.2%	\$118.5	-\$4.81	-3.9%	4.60	+13.0%
Use At-Grade Intersection at KY 28	553	+10.7%	\$115.1	-\$8.18	-6.6%	4.80	+16.7%
Reduce Typical Section	534	+6.9%	\$90.9	-\$32.46	-26.3%	5.90	+32.2%
Upgrade Existing KY 15 Alignment in lieu of Constructing the Baseline Alternative	520	+4.3%	\$17.3	-\$106.06	-86.0%	30.10	+86.7%
Shift Alignment West of Cemetery and Provide At-Grade Intersection at KY 28	538	+7.9%	\$116.5	-\$6.77	-5.5%	4.60	+13.0%
Shift Access to KY 28 North of Proposed KY 28 Interchange	488	-2.1%	\$120.8	-\$2.48	-2.0%	4.00	0.0%
Use Continuous High T at Southern Split	512	+2.6%	\$127.2	+\$3.92	+3.2%	4.00	0.0%

Table 14. Value Index

Design Considerations 7.6

The VE team generated the following design suggestions for the project design team's consideration. These items represent ideas that are general in nature and are listed below in Table 15. Additional details can be found in the evaluation form in Section 6.2. The write-ups for three design considerations the VE team wanted to describe further can be found on the following pages.

Table 15. Design Considerations				
Idea No.	Description			
3	Maintain 1200' between access points throughout corridor			
6	Utilize horsecollar interchange at KY 15/KY 28			
11	Validate bridge layouts			
17	Improve crash hotspot conditions using low cost safety improvements along existing alignment			
22	Minimize number of access points			
23	Reduce design speed on KY 28 to 35 mph			
26	Split level (bifurcation) typical section to reduce earthwork			
29	Allow 7% grades (design exception) for short spans with plateaus			
30	Reduce pavement section			
31	Avoid shaded areas for KY 15/KY 28 intersection/approaches			
37	Use an intersection conflict warning system at KY 15/KY 28 intersection			
38	Implement DMS at high crash areas			
39	Consolidate access points near 1067 before intersecting with KY 15			
41	Carry passing lane through 1067/KY 15 intersection			
43	Combine Rome Napier Br Rd, Baker Ln, and Grapevine Creek Rd			

DESIGN CONSIDERATION NO. 1: ldea No. **OPERATIONAL IMPROVEMENTS ALONG KY BUS-15** 41 **Baseline Concept** The baseline concept realigns KY 15 to the west, effectively turning existing KY 15 into a business route, or Old KY 15, which will be used for local connectivity and the connection to KY 1067. The realignment will reduce the vehicular traffic along Old KY 15, however, no additional safety or operational improvements are proposed along Old KY 15. Suggested Concept Improve crash hotspot conditions using low-cost safety improvements along existing alignment. **Advantages** Disadvantages • May reduce number of conflicts Increases cost May reduce severity of conflicts May increase maintenance

- Informs users
- Addresses root cause of crashes
- Access complexity/coordination
- Increases impacts during construction
- Public opposition

Discussion

The baseline concept diverts the majority of traffic off of Old KY 15, however, the potential for severe crashes at identified hot spots remain. This design consideration is to confirm whether additional safety measures are warranted along Old KY 15. The two locations additional safety measures should be considered are at the intersections of Old KY 15 and KY 1067 and Old KY 15 and Entertainment Drive.

The remaining traffic volumes along Old KY 15 will likely not warrant roadway improvements that require large funds, such as curve widening or additional passing lanes.

KY 1067

The uncontrolled intersection at KY 1067 has a notably high crash rate with the crash types varying. A lack of access management, existing horizontal and vertical geometry of minor approaches, and poor signage can be attributed to the high crash rate. Safety measures to consider at this location include:

- Enhanced signing, advising drivers of minor approaches and vehicles entering or exiting the roadway
- Access management, constructing curb or combining access points where possible to consolidate access points
- Intersection conflict warning signal

Entertainment Drive

The uncontrolled intersection at Entertainment Drive is another location with a notably high crash rate. The vertical grade of minor approaches and Old KY 15 likely contribute to the high crash rate. Safety measures to consider at this location include:

- Improve intersection lighting
- Improve signage along Old KY 15 at the minor approaches
- Improve intersection sight distance by clearing trees and cutting back slopes where • possible

The intent of this design consideration is to validate whether additional safety measures are warranted along Old KY 15 once traffic volumes have been reduced.

DESIGN CONSIDERATION NO. 2: MINIMIZE NUMBER OF ACCESS POINTS ALC	ldea No. 22				
Baseline Concept					
Access spacing is planned to be placed approximately every 1200'.					
Suggested	Concept				
Minimize number of access points and median ope	Minimize number of access points and median openings.				
Advantages		Disadvantages			
 Reduces vehicular conflicts from turning and braking Maintains smooth, uninterrupted traffic flow 	May require :	some u-turns or extra pavement			
Discussion					
Many of the current safety problems along the existing corridor are caused by turning or braking vehicles at streets or other access points. This project will reroute most traffic from the existing corridor to address mobility and safety. To protect this large public investment, there should be a goal of providing no access points or median openings except at the interchange. Any access point that may be required (e.g. due to the high ROW cost from landlocking a property) should be built with adequate turning lane storage on the mainline. No future access permits should be issued that would add new access points or require traffic control on the mainline.					

DESIGN CONSIDERATION NO. 3: Idea No. USE AN INTERSECTION CONFLICT WARNING SYSTEM ON 22 **KY 28 AT KY 15 INTERSECTION Baseline Concept** Approach roads that tie into KY 15 are controlled by stop condition. Suggested Concept Install an Intersection Conflict Warning System (ICWS) at locations with limited sight disance to warn drivers of approaching traffic. **Advantages Disadvantages** Informs users Increases cost • May reduce conflicts and alleviate crashes • Increases maintenance Discussion For the approaches with limited sight distance which could lead to crashes, an Intersection Conflict Warnig System (ICWS) may be utilzed to warn drivers of approaching traffic. If alignment

Conflict Warnig System (ICWS) may be utilized to warn drivers of approaching traffic. If alignment remains on existing KY 15, recommended locations of implementation would be at the KY 28 Intersection and the KY 1067 Intersection. This is due to limited sight distance and travel speeds on KY 15 in the downgrade direction.

This page intentionally left blank.

Appendix A

Value Methodology Process

Appendix A. Value Methodology Process

Value Methodology is a systematic process using a multidisciplinary team to improve the value of a project through the analysis of its functions. This process incorporates, to the extent possible, the values of design, construction, maintenance, contractor, state, local, and federal approval agencies, other stakeholders, and the public.

The primary objective of a Value Engineering (VE) study is value improvement. Value improvements might relate to scope definition, functional design, constructability, coordination (both internal and external), or the schedule for project development. Other possible value improvements are reduced environmental impacts, reduced public (traffic) inconvenience, or reduced project cost.

Pre-VE Study

Prior to the start of a VE study, the Project Manager, and the VE facilitator carry out the following activities:

Initiate study – Identify study project and define study goals

Organize study – Conduct pre-VE study meeting and select team members

Prepare data – Collect and distribute data and prepare cost models.

All of the information gathered prior to the VE study is given to the team members for their use.

Value Methodology

The VE team employed the six-phase Value Methodology in analyzing the project. This process is recommended by SAVE International® and is composed of the following phases:

Information – The team reviews and defines the current conditions of the project and identifies the goals of the study.

Function Analysis – The team defines the project functions using a two-word active verb/ measurable noun context. The team reviews and analyzes these functions to determine which need improvement, elimination, or creation to meet the project's goals.

Creative – The team employs creative techniques to identify other ways to perform the project's function(s).

Evaluation – The team follows a structured evaluation process to select those ideas that offer the potential for value improvement while delivering the project's function(s) and considering performance requirements and resource limits.

Development – The team develops the selected ideas into alternatives (or proposals) with a sufficient level of documentation to allow decision makers to determine if the alternative should be implemented.

Presentation – The team facilitator develops a report and/or presentation that documents and conveys the adequacy of the alternative(s) developed by the team and the associated value improvement opportunity.

The following is a general discussion and overview of the Performance-Based VE process. Ideas that have been introduced and warrant further consideration, will be documented with their advantages and disadvantages; each idea will then be carefully evaluated against project-specific attributes.

Performance-Based Value Engineering

Performance measures an integral part of the VE process. It provides the cornerstone of the VE process by giving a systematic and structured way of considering the relationship of a project's performance and cost as they relate to value. Project performance must be properly defined and agreed on by the stakeholders at the beginning of the VE study. The performance attributes and requirements that are developed are then used throughout the study to identify, evaluate, and document alternatives.

INTRODUCTION

Value engineering has traditionally been perceived as an effective means for reducing project costs. This paradigm only addresses one part of the value equation, oftentimes at the expense of overlooking the role that VE can play with regard to improving project performance. Project costs are fairly easy to quantify and compare through traditional estimating techniques. Performance is not so easily quantifiable.

The VE facilitator will lead the team and external stakeholders through the methodology, using the power of the process to distill subjective thought into an objective language that everyone can relate to and understand. The dialogue that develops forms the basis for the VE teams understanding of the performance requirements of the project and to what degree the current design concept is meeting those requirements. From this baseline, the VE team can focus on developing alternative concepts that will quantify both performance and cost and contribute to overall project value.

Performance-based VE yields the following benefits:

Builds consensus among project stakeholders (especially those holding conflicting views)

- Develops a better understanding of a project's goals and objectives
- Develops a baseline understanding of how the project is meeting performance goals and objectives
- Identifies areas where project performance can be improved through the VE process
- Develops a better understanding of a VE alternative's effect on project performance
- Develops an understanding of the relationship between performance and cost in determining value
- Uses value as the true measurement for the basis of selecting the right project or design concept
- Provides decision-makers with a means of comparing costs and performance (i.e., costs vs. benefits) in a way that can assist them in making better decisions.

METHODOLOGY

The application of Performance-based VE consists of the following steps:

- 1. Identify key project (scope and delivery) performance attributes and requirements for the project.
- 1. Establish the hierarchy and impact of these attributes on the project.
- 2. Establish the baseline of the current project performance by evaluating and rating the effectiveness of the current design concepts.
- 3. Identify the change in performance of alternative project concepts generated by the study.
- 4. Measure the aggregate effect of alternative concepts relative to the baseline project's performance as a measure of overall value improvement.

The primary goal of value engineering is to improve the value of the project. A simple way to think of value in terms of an equation is as follows:

$$Value = \frac{Performanæ}{Cost}$$

ASSUMPTIONS

Before embarking on the details of this methodology, some assumptions need to be identified. The methodology described in the following steps assumes the project functions are well established. Project functions are defined as what the project delivers to its users and stakeholders; a good reference for the project functions can be found in the environmental document's purpose and need statement. Project functions are generally well defined prior to the start of the VE study. In the event that project functions have been substantially modified, the methodology must begin anew (Step 1).

Step 1 – Determine the Major Performance Attributes

Performance attributes can generally be divided between project scope components (highway operations, environmental impacts, and system preservation) and project delivery components. It is important to make a distinction between performance *attributes* and performance *requirements*. Performance requirements are mandatory and binary in nature. All performance requirements MUST be met by any VE alternative concept being considered. Performance attributes possess a range of acceptable levels of performance. For example, if the project was the design and construction of a new bridge, a performance requirement might be that the bridge meets all current seismic design criteria. In contrast, a performance attribute might be project schedule, which means that a wide range of alternatives could be acceptable that had different durations.

The VE facilitator will initially request representatives from project team and external stakeholders identify performance attributes that they feel are essential to meeting the overall need and purpose of the project. Usually four to seven attributes are selected. It is important that all potential attributes be thoroughly discussed. The information that comes out of this discussion will be valuable to both the VE team and the project owner. It is important that each attribute be discretely defined and be quantifiable in some form. The vast majority of performance attributes that typically appear in transportation VE

studies have been standardized. This standardized list can be used "as is" or adopted with minor adjustments as required.

Typical standardized project performance attributes are shown below. Specific definitions of each attribute can be found below.

Main Line Operations

Local Operations

Maintainability

Construction Impacts

Environmental Impacts

	PERFORMANCE ATTRIBUTE AND DEFINITIONS					
Performance Attribute	Description of Attribute					
Main Line Operations	An assessment of traffic operations and safety on the main line. Operational considerations include level of service relative to the 20-year traffic projections as well as geometric considerations such as design speed, sight distance, and lane and shoulder widths.					
Local Operations An assessment of traffic operations and safety on the local roadway in Operational considerations include level of service relative to the 20-ye projections; geometric considerations such as design speed, sight distain widths; bicycle and pedestrian operations and access, including shared						
Maintainability	An assessment of the long-term maintainability of the transportation facility(s). Maintenance considerations include the overall durability, longevity, and maintainability of pavements, structures, and systems; ease of maintenance; accessibility and safety considerations for maintenance personnel.					
Construction Impacts	An assessment of the temporary impacts to the public during construction related to traffic disruptions, detours and delays; impacts to businesses and residents relative to access, visual, noise, vibration, dust, and construction traffic. Temporary environmental impacts related to water quality, air quality, soil erosion, and local flora and fauna.					
Environmental Impacts	An assessment of the permanent impacts to the environment, including ecological (i.e., flora, fauna, air quality, water quality, visual, noise); socioeconomic impacts (i.e., environmental justice, business, residents); impacts to cultural, recreational and historic resources.					

Step 2 – Determine the Relative Importance of the Attributes

Once the group has agreed on the project's performance attributes, the next step is to determine their relative importance in relation to each other. This is accomplished through the use of an evaluative tool termed in this report as the "Performance Attribute Matrix." This matrix compares the performance attributes in pairs, asking the question: "An improvement in which attribute will provide the greatest benefit to the project relative to purpose and need?"

A letter code (e.g., "A") is entered into the matrix for each pair, identifying which of the two is more important. If a pair of attributes is considered to be of essentially equal importance, both letters (e.g., "A/B") are entered into the appropriate box. This, however, should be discouraged, as it has been found that in practice a tie usually indicates the pairs have not been adequately discussed. When all pairs have been discussed, the number of "votes" for each is tallied and percentages (which will be used as weighted

multipliers later in the process) are calculated. It is not uncommon for one attribute to not receive any "votes." If this occurs, the attribute is given a token "vote," as it made the list in the first place and should be given some degree of importance.

	PERFORMANCE ATTRIBUTE MATRIX [Project Name]						
	Which attribute is more	e important to	the proj	ect?		TOTAL	%
٨	Nain Line Operations	A B A	A		A	5.0	23.8%
	Local Operations	В	В	в	B/F	5.5	26.2%
	Maintain	rility	С	Е	F	2.0	9.5%
	nstru	tion Impacts	D	Е	D/F	1.5	7.1%
	E	nvironmental Ir	npacts	Е	Е	4.0	19.0%
		Project	Schedu	le	F	3.0	14.3%
					Total	21.0	100%
Without e	emphasis on preference					-	
A =	A is of greater importanc	ce					
A/B =	A and B are of equal imp	oortance					

An example of this exercise is shown below.

For the example project above, the project owner, design team, and stakeholders determined that main line operations, followed by environmental, gave the greatest improvement relative to the projects purpose and need, while construction impacts and project schedule gave the least improvement.

Step 3 – Establish the Performance Baseline for the Original Design

The next step in the process is to document the project-specific elements for the performance attributes developed in Step 1. This step establishes a baseline against which the VE alternative concepts can be compared. An example of project-specific elements is shown below.

	Evaluation of Baseline	Project
Standard Performance Attribute	Description of Attribute	Baseline Design Rating Rational
Main Line Operations	An assessment of traffic operations and safety on the project. Operational considerations include level of service relative to the 20-year traffic projections as well as geometric considerations such as design speed, sight distance, lane widths, and shoulder widths.	Design Speed MPH Bridge –' Lanes,' shoulders Roadway' Lanes,' shoulders Bridge Loading
Local Operations	An assessment of traffic operations and safety on the local roadway infrastructure. Operational considerations include level of service relative to the 20-year traffic projections; geometric considerations such as design speed, sight distance, lane widths; bicycle and pedestrian operations and access.	Revisions will need to be made to the existing streets and private approaches due to vertical alignment
Maintainability	An assessment of the long-term maintainability of the transport to facility(s). Maintenance ansister institute include the overal dure hill longevity, and an itain pility of pavements, struction and systems; ease of the transport of a systems; ease of the transport of the systems; ease of the systems;	Baseline design assumes a replacement bridge Bridge design – low slump overlay on a 7" deck Steel welded plate girder 100' - 150' - 250' - 250' - 150' - 100' spans
Construction Impacts	An assessment of the temporary impacts to the public during construction related to traffic disruptions, detours and delays; impacts to businesses and residents relative to access, visual, noise, vibration, dust and construction traffic; environmental impacts.	Maintain traffic across river Noise permit required Short term detour to construct tie-ins to existing highways
Environmental Impacts	An assessment of the permanent impacts to the environment including ecological (i.e., flora, fauna, air quality, water quality, visual, noise); socioeconomic impacts (i.e., environmental justice, business, residents); impacts to cultural, recreational and historic resources.	In-water window Considered a navigable body of water Existing bridge is under consideration for historical significance

Once the baseline definitions for the various attributes have been established, their total performance should be calculated by multiplying the attribute's weight (which was developed in Step 2) by its rating. While one could assign a 0 to 10 rating for each attribute, using the definitions and scales developed in Step 1, a baseline rating of 5 is typically used as a mid-point so that alternatives can be evaluated – better than or worse than the baseline.

Total baseline performance is calculated by multiplying the attribute's weight (which was developed in Step 2) by its rating (5). The baseline design's total performance of 500 points can be calculated by adding all of the scores for the attributes. This numerical expression of the original design's performance forms the baseline against which all alternative concepts will be compared.

Step 4 – Evaluate the Performance of the VE Alternative Concepts

Once the performance of the baseline has been established for the original design concept, it can be used to help the VE team develop performance ratings for individual VE alternative concepts as they are developed during the study. The Performance Measures Form is used to capture this information. This form allows a side-by-side comparison of the original design and VE alternative concepts to be performed.

It is important to consider the alternative concept's impact on the entire project (rather than on discrete components) when developing performance ratings for the alternative concept.

Proposals are evaluated against the baseline for all attributes to compare and contrast the potential for value improvement. As discussed in Step 3, the baseline is given a rating of 5. The following ratings were used to evaluate the performance of the alternative concepts relative to the baseline concept.

Rating	Performance Attribute Scale					
10	Alternative concept is extremely preferred					
9	Alternative concept is very strongly preferred					
8	Alternative concept is strongly preferred					
7	Alternative concept is moderately preferred					
6	Alternative concept is slightly preferred					
5	Baseline					
4	Baseline concept is slightly preferred					
3	Baseline concept is moderately preferred					
2	Baseline concept is strongly preferred					
1	Baseline concept is very strongly preferred					
0	Baseline concept is extremely preferred					

Step 5 – Compare the Performance Ratings of Alternative Concepts to the Baseline Project

As the VE team develops alternatives, the performance of each is rated against the original design concept (baseline). Changes in performance are always based on the overall impact to the total project. Once performance and cost data have been developed by the VE team, the net change in value of the VE alternatives can be compared to the baseline design concept. The resulting "Value Matrix" provides a summary of these changes and allows a way for the Project Team to assess the potential impact of the VE recommendations on total project value.

The VE team groups the VE alternatives into a strategy (or strategies) to provide the decision-makers a clear picture of how the alternatives fit together into possible solutions. At least one strategy is developed to present the VE team's consensus of what should be implemented. Additional strategies are developed as necessary to present other combinations to the decision-makers that should be considered. The strategy(s) of VE alternatives are rated and compared against the baseline concept. The performance ratings developed for the VE strategies are entered into the matrix, and the summary portion of the Value Matrix is completed. The summary provides details on net changes to cost, performance, and value, using the following calculations:

- % Performance Improvement = Δ Performance VE Strategy/Total Performance Original Concept
- Value Index = Total Performance/Total Cost (in Millions)
- % Value Improvement = Δ Value Index VE Strategy/Value Index Original Concept.

Performance Attribute Ratings Attribute Total Attribute Concept Performance Rating Weight Performance Baseline 144.5 5 202.3 Main Line Operations 28.9 202.3 3 144.5 5 Baseline 71.0 5 71.0 Local Operations 14.2 71.0 2 5 113.6 3 8 Baseline 71.0 42.6 3 Maintainability 14.2 2 83 107. 4.5 3 Baseline 16.6 Environmental Impacts 83.0 71.0 Baseline 4 56.8 Construction Impacts 14.2 2 85.2 P Baselir 59.5 59.5 59.5 Project Schedule 11 59.5

The following is an example of a Value Matrix worksheet.

	Recommendation Summary								
Recommendations		Perform % Change Performance		Cost (C) Cost Change \$ \$ millions millions		% Change Cost	Value Index	% Value Improvement	
		Baseline	500		\$46.1			10.85	
	1	Recommendation No. 1 - Title	540	+8.0%	\$46.6	\$0.5	+1.2%	11.58	+6.8%
	2	Recommendation No. 2 - Title	586	+17.2%	\$46.5	\$0.4	+0.9%	12.60	+16.2%
1	3	Recommendation No. 3 - Title	527	+5.4%	\$46.1	\$0.0	+0.0%	11.43	+5.4%
				Total		\$3.9			

Appendix B

VE Recommendation Approval Form

Appendix B. VE Recommendation Approval Form

Project: VE Study Date: <u>KY 15 north of Hazard</u> November 29 - December 3, 2021

			FHWA Functional Benefit						
	Recommendation	Approved Y/N	Safety	Operations	Environment	Construction	Right-of-Way	VE Team Estimated Construction Cost Avoidance or (Cost Added)	Actual Estimated Construction Cost Avoidance or Cost Added
1	Shift KY 28 Intersection to the South			1			1	\$2.59M	
2	Use At-Grade Intersection at KY 28				1			\$7.26M	
3	Reduce Typical Section				1	1	1	\$27.99M	
4	Upgrade Existing KY 15 Alignment in lieu of Constructing the Baseline Alternative				1		1	\$58.42M	
5	Shift Alignment West of Cemetery and Provide At-Grade Intersection at KY 28							\$5.65M	
6	Shift Access to KY 28 North of Proposed KY 28 Interchange				1	1		\$2.48M	
7	Use Continuous High T at Southern Split		1	1				(\$3.08M)	
	TOTALS		1	2	4	2	3	Varies	

Please provide justification if the value engineering study recommendations are <u>not</u> approved or are implemented in a modified form.

KYTC is required to report Value Engineering results annually to FHWA. To facilitate this reporting requirement, the Value Engineering Recommendation Approval Form is included herein. If the Cabinet elects to reject or modify a recommendation, please include a brief explanation of why.

Signature – Project Manager Date

Name (please print)

FHWA Functional Benefit Criteria

Each year, State DOTs are required to report on VE recommendations to FHWA. In addition to cost implications, FHWA requires the DOTs to evaluate each approved recommendation in terms of the project feature or features that recommendation benefits. If a specific recommendation can be shown to provide benefit to more than one feature described below, count the recommendation in *each category that is applicable*.

Safety: Recommendations that mitigate or reduce hazards on the facility.

Operations: Recommendations that improve real-time service and/or local, corridor, or regional levels of service of the facility.

Environment: Recommendations that successfully avoid or mitigate impacts to natural and/or cultural resources.

Construction: Recommendations that improve work zone conditions or expedite the project delivery.

Right-of-Way: Recommendations that lower the impacts or costs of right-of-way.

Appendix C

VE Study Memo, Agenda, and Attendees

Appendix C. VE Study Memo, Agenda and Attendees

Memo

Date:	February 10, 2022
Project:	KYTC 10-269.20
To:	VE Team Members
From:	Jose Theiler, PE, CVS [®]
Subject:	Value Engineering Study

Congratulations!!! You have been chosen to participate in this Value Engineering (VE) study because of your expertise and valuable contributions to the project.

This memo is to introduce some of the expectations for the upcoming VE study. I'm looking forward to working with you on this endeavor. My hope is that this memo will provide information about the project and expectations on working together.

If you have any questions, please contact me, Jose Theiler, at 561-386-3879 (cell), or e-mail: jose.theiler@hdrinc.com.

VE Study Dates and Location

The VE study will be held virtually on Monday, November 29, 2021 through Friday, December 03, 2021 using Microsoft Teams as follows:

Join on your computer or mobile app <u>Click here to join the meeting</u> Or call in (audio only) +1 402-513-9026,,212081877# United States, Omaha (833) 255-2803,,212081877# United States (Toll-free) Phone Conference ID: 212 081 877# <u>Find a local number | Reset PIN</u> Learn More | Meeting options

What to Bring

Be sure to bring your normal tools of the trade (e.g., calculator, laptop computer, scale, etc.). Bring a creative and open mind. VE studies are a lot of work, but if you bring your creativity and sense of humor you will have a good time and a rewarding experience.

Ground Rules

- 1. A VE study follows a prescribed process that has been proven over many years to produce the best results. This process requires the team members be fully engaged and have an open mind to "step" outside of the box throughout the week.
- 2. To maintain our schedule and provide the best results to the project team, I ask that we follow some basic ground rules:

- a. Virtual Meetings Guidelines: The meeting invitation includes Virtual Meeting Ground Rules to help with the difficulties of virtual meetings; please follow these guidelines.
- b. We will use Microsoft Teams as a holding place for conversations, notes, documentation, etc. Follow the link https://teams.microsoft.com/l/team/19%3aqrMR12HJaRkwRJhVt0A-li8EGyLhfpmOVJ8qnnSHU101%40thread.tacv2/conversations?groupId=d63249 10-539f-418e-9642-ea050386d612&tenantId=3667e201-cbdc-48b3-9b42-5d2d3f16e2a9 to make sure you have access and become familiar with the site.
- c. Please be prepared to attend the entire duration of the workshop. You were selected to assist on this team based on your expertise. If you cannot be in attendance for the entire time, then please notify me prior to the study. When team members leave part way through, or come and go frequently, the VE team can lose its momentum and cohesiveness. We understand that conducting business virtually is different and typical interruptions or noise background is expected at times. Please minimize disruptions by muting your phone or asking for a break.
- d. Avoid multitasking during the study. Unless it is information to assist the team, please try to wait until breaks to return phone calls, check on messages, or sort through e-mails.
- e. Dress code. I want everyone to be comfortable. Some of us will attend from our homes; please dress appropriately (business casual).
- f. A laptop is required for the workshop. We will develop recommendations using templates in Word format and will exchange and share files throughout the workshop.
- 3. Our success will be evaluated based on the level of contribution that we bring to the project. Remember that the goal of any VE study is to add value to the project; saving money is just a byproduct. We want to make recommendations based on solid engineering judgment that will result in an improved project.

Value Engineering Job Plan

The VE team will employ the six-phase VE job plan in analyzing the project. This process is recommended by SAVE International® and AASHTO, and is composed of the following phases:

Information Phase – The objective of this phase is to obtain a thorough understanding of the project's design criteria and objectives by reviewing the project's documents and drawings, cost estimates, and schedules. Elements include:

- Overview of the VE process
- Understanding of study objectives
- Project Overview and Briefing by the Design team
 - Provide insight on project history, design concepts, environmental issues, etc.
 - Discuss any design concerns and new concepts involved with the project.
 - All appropriate project disciplines should be discussed.
 - Discuss/identify any risks or issues that the VE team should concentrate on.
 - Provide the VE team with any specific project constraints.
 - Q&A Presenters answers questions from the VE team.

• Risk Elicitation: I will conduct a brief risk elicitation session to identify and quantify the top 10 risks of the project. This information may provide an opportunity for the VE team to develop response strategies in the form of recommendations.

Function Analysis Phase – Identifying each of the key functions of the project is the most important phase of value engineering, as it is the basis for unlocking the creativity of team members. As part of this phase, the team performs the following tasks with the assistance of the VE Facilitator:

- Defines project and risk functions and assigns them to key project components.
- Classifies functions as either "basic" or "secondary."
- Sequence functions to understand their relationships using the Function Analysis System Technique (FAST).
- Establishes performance measures.
- Creates the project's cost model.

Brainstorming/Creative Phase – During this phase the team will employ creative techniques such as team brainstorming to develop a number of alternative concepts that satisfy the project's basic and supporting functions, and mitigate project risks.

Evaluation Phase – The purpose of this phase is to evaluate the alternative concepts developed by the VE team during the brainstorming sessions. To that purpose, the team discusses advantages and disadvantages, and uses a number of tools to determine the qualitative and quantitative merits of each concept.

Mid-study Review With Management Team: At this point, the VE team holds a meeting with the project team, management, and other stakeholders, to validate the direction of the team and that ideas moving forward to the development phase do not step outside the boundaries set forth by project constraints.

Development Phase – Those concepts that ranked highest in the evaluation are further developed into VE recommendations. Recommendation narratives, additional advantages and disadvantages, drawings, calculations, and life cycle cost analysis are prepared for each recommendation.

Presentation Phase – The VE team presents their findings during an oral presentation to the owner and the project team. Following the workshop, a written report is submitted that summarizes the study, its findings, and recommendations.

I'm looking forward to working with you on this VE study and I really appreciate each of you blocking time out of your busy schedules to participate. Please don't hesitate to call or e-mail me if you have any questions.

Sincerely,

Jose Theiler, PE CVS[®] East Region Manager of Project Risk Management and Value Engineering HDR Engineering, Inc 440 S. Church Street, Suite 1000 Charlotte, NC 28202-2075 M 561.386.3879 jose.theiler@hdrinc.com

Day 1Monday, November 29, 2021 Objective for the day: Learn about VE and the Project8:00Connect to Microsoft TeamsAll audiences Project owner, PMs, designers, VE team8:15 Information Phase• Roll callAll audiences facilitated by Jose Theiler, PE, CVS9:00Project Overview: an instructional presentation on the principles of value engineering and their application to the projectAll audiences facilitated by Jose Theiler, PE, CVS9:00Project Overview evence and objectives of the project . Goals and objectives of the project . Constraints . Basis of design . Virtual site visit . Questions and answersAll audiences facilitated by Jose Theiler, PE, CVS10:00 PhaseBreakAll audiences facilitated by Jose Theiler, PE, CVS11:10 PhaseRoll call PhaseAll audiences facilitated by Jose Theiler, PE, CVS11:10 PhaseRoll call Project Decumentation ReviewAll audiences facilitated by Jose Theiler, PE, CVS11:10 PhaseRoll call Project Decumentation ReviewAll audiences facilitated by Jose Theiler, PE, CVS11:00 PhaseSite visit observations • Review plans/schematics, cross sections, typical sections, traffic control plans, construction constraints • Cost schedule, including construction phasing/sequencing, work windowsVE team facilitated by Jose Theiler, PE, CVS10:00 PhaseSite visit observations • Review plans/schematics, cross sections, typical sections, traffic control plans, construction constraints • Crost schedule, including construction phasing/sequencing, work windowsVE team facilitated by Jose Thei	Agenda		
Objective for the day: Learn about VE and the Project8:00Connect to Microsoft TeamsAll audiences Project owner, PMS, designers, VE team8:15Roll callAll audiences facilitated by Jose Theiler, PE, CVS9:00Project Overview: an instructional presentation on the principles of value engineering and their application to the projectAll audiences facilitated by Jose Theiler, PE, CVS9:00Project OverviewAll audiences facilitated by Jose Theiler, PE, CVS9:00Project OverviewAll audiences facilitated by Project team/designer9:00Project OverviewAll audiences facilitated by Jose Theiler, PE, CVS10:00BreakAll audiences facilitated by Jose Theiler, PE, CVS11:10Roll call Project Documentation ReviewAll audiences facilitated by Jose Theiler, PE, CVS11:00BreakVE team facilitated by Jose Theiler, PE, CVS11:00Roll call Project Documentation ReviewVE team facilitated by Jose Theiler, PE, CVSInformation PhaseReview plans/schematics, cross sections, typical sections, traffic control plans, construction constraintsVE team facilitated by Jose Theiler, PE, CVS11:00Cost estimate, including construction constraintsVE team facilitated by Jose Theiler, PE, CVSInformatio	Day 1	Monday, November 29, 2021	
8:00Connect to Microsoft TeamsProject owner, PMs, designers, VE team8:15. Roll callAll audiences facilitated by Jose Theiler, PE, CVSInformation Phase. VE Process Overview: an instructional presentation on the principles of value engineering and their application to the projectAll audiences facilitated by Jose Theiler, PE, CVS9:00Project OverviewAll audiences facilitated by Project OverviewProject Overview9:00Project OverviewAll audiences facilitated by Project team/designer9:00Project OverviewProject Overview9:00Project OverviewAll audiences facilitated by Project team/designer9:00Project OverviewAll audiences facilitated by Project team/designer9:00Project OverviewAll audiences facilitated by Jose Theiler, PE, CVS10:00BreakAll audiences facilitated by Jose Theiler, PE, CVS11:00BreakAll audiences facilitated by Jose Theiler, PE, CVS11:00Roll callAll audiences facilitated by Jose Theiler, PE, CVS11:00Roll callVerteam facilitated by Jose Theiler, PE, CVS11:00Site visit observationsVE team facilitated by Jose Theiler, PE, CVS11:00Site visit observationsVerteam facilitated by Jose Theiler, PE, CVS11:00Site visit observationsVerteam facilitated by Jose Theiler, PE, CVS11:00Site visit observationsCost estimate, including construction constraintsPhaseSite visit observationsSite visit observation sect	Day I	Objective for the day: Learn about VE and the Project	
8:15 Information Phase• Roll callAll audiences facilitated by Jose Theiler, PE, CVS9:00 Information Phase Phase• Process Overview: an instructional presentation on the principles of value engineering and their application to the projectAll audiences facilitated by Jose Theiler, PE, CVS9:00 Information Phase Phase Phase Information Phase• Purpose and need of the project • Constraints • Basis of design • Virtual site visit • Questions and answersAll audiences facilitated by Project team/designer10:00 Information PhaseBreakAll audiences facilitated by Project team/designer10:10 Information PhaseRoll call Roll call Roll callAll audiences facilitated by Jose Theiler, PE, CVS11:10 Information PhaseBreakAll audiences facilitated by Jose Theiler, PE, CVS11:10 Information PhaseBreakAll audiences facilitated by Jose Theiler, PE, CVS11:10 Information PhaseSite visit observationsAll audiences facilitated by Jose Theiler, PE, CVS11:00 Information PhaseSite visit observationsVE team facilitated by Jose Theiler, PE, CVS11:00 PhaseSite visit observations• Site visit observationsVE team facilitated by Jose Theiler, PE, CVS11:00 Phase• Site visit observations• Site visit observations• Site visit observationsPhase Phase• Site visit observations • Review plans/schematics, cross sections, typical sections, traffic control plans, construction constraints• Cost estimate, including construction phasing/sequ			All audiences
Information PhaseNoti callJose Theiler, PE, CVSPhase• Review ground rules for virtual meetings • VE Process Overview: an instructional presentation on the project of value engineering and their application to the projectJose Theiler, PE, CVS9:00Project OverviewAll audiences facilitated byInformation Phase• Purpose and need of the project • Goals and objectives of the project • Constraints • Basis of design • Virtual site visit • Questions and answersProject team/designer10:00BreakAll audiences facilitated by Phase10:10 Information PhaseRoll call Risk Update ElicitationAll audiences facilitated by Jose Theiler, PE, CVS11:10 Information PhaseRoll call Peroject Decumentation ReviewAll audiences facilitated by Jose Theiler, PE, CVS11:00 PhaseRoll call Project Documentation ReviewVE team facilitated by Jose Theiler, PE, CVS11:00 PhaseSite visit observations • Site visit observations • Cost estimate, including construction constraints • Sections, traffic control plans, construction constraints • Project schedule, including construction repriser schedule, including construction phasing/sequencing, work windowsVE team facilitated by Jose Theiler, PE, CVS	8:00	Connect to Microsoft Teams	-
Phase· Review ground rules for virtual meetings · VE Process Overview: an instructional presentation on the principles of value engineering and their application to the projectAll audiences facilitated by9:00Project OverviewAll audiences facilitated byInformation Phase· Purpose and need of the project · Goals and objectives of the project · Constraints · Basis of design · Virtual site visit · Questions and answersProject team/designer10:00BreakAll audiences facilitated by Project team/designer10:10 Information PhaseRoll call Risk Update ElicitationAll audiences facilitated by Jose Theiler, PE, CVS11:10 PhaseBreakAll audiences facilitated by Jose Theiler, PE, CVS11:10 PhaseRoll call Project Documentation ReviewAll audiences facilitated by Jose Theiler, PE, CVS11:00 PhaseStite visit observations · Site visit observations · Review plans/schematics, cross sections, typical sections, traffic control plans, construction constraints · Cost estimate, including construction, right-of-way, utilities, railroad, environmental, etc. · Project schedule, including construction phasing/sequencing, work windowsVE team facilitated by Jose Theiler, PE, CVS	8:15	Roll call	All audiences facilitated by
Information PhasePurpose and need of the project Goals and objectives of the project Constraints Basis of design Virtual site visit Questions and answersProject team/designer10:00 Information PhaseBreakAll audiences facilitated by Jose Theiler, PE, CVS10:10 Information PhaseRoll call ReskAll audiences facilitated by Jose Theiler, PE, CVS11:10 Information PhaseRoll call Define/Review Performance AttributesAll audiences facilitated by Jose Theiler, PE, CVS11:00 PhaseRoll call Project Documentation ReviewVE team facilitated by Jose Theiler, PE, CVS11:00 PhaseSite visit observations • Review plans/schematics, cross sections, typical sections, traffic control plans, construction constraints • Cost estimate, including construction, right-of-way, utilities, railroad, environmental, etc. • Project schedule, including construction phasing/sequencing, work windowsVE team facilitated by Jose Theiler, PE, CVS		 Review ground rules for virtual meetings VE Process Overview: an instructional presentation on the principles of value engineering 	Jose Theiler, PE, CVS
Phase • Goals and objectives of the project • Constraints • Basis of design • Virtual site visit • Questions and answers 10:00 Break 10:10 Roll call Information Roll call 11:00 Break 11:10 Roll call Information Person 11:10 Break 11:10 Roll call Information Person Phase Virtual site visit 11:10 Roll call Information Person Phase Project Netwow Performance Attributes Jose Theiler, PE, CVS 12:00 Lunch 11:00 Roll call Project Documentation Review Jose Theiler, PE, CVS Information • Site visit observations • Review plans/schematics, cross sections, typical sections, traffic control plans, construction constraints • Cost estimate, including construction right-of-way, utilities, railroad, environmental, etc. • Project schedule, including construction phasing/sequencing, work windows	9:00	Project Overview	All audiences facilitated by
Internation PhaseRoll call Risk Update ElicitationAll audiences facilitated by Jose Theiler, PE, CVS11:00BreakAll audiences facilitated by Jose Theiler, PE, CVS11:10 Information PhaseRoll callAll audiences facilitated by Jose Theiler, PE, CVS11:10 Information PhaseRoll callAll audiences facilitated by Jose Theiler, PE, CVS11:00Roll callVE team facilitated by Jose Theiler, PE, CVS12:00LunchVE team facilitated by Jose Theiler, PE, CVS1:00Roll callVE team facilitated by Jose Theiler, PE, CVSInformation PhaseSite visit observations • Review plans/schematics, cross sections, typical sections, traffic control plans, construction constraints • Cost estimate, including construction, right-of-way, utilities, railroad, environmental, etc. • Project schedule, including construction phasing/sequencing, work windows		 Goals and objectives of the project Constraints Basis of design Virtual site visit 	Project team/designer
Information PhaseRisk Update ElicitationJose Theiler, PE, CVS11:00BreakAll audiences facilitated by Jose Theiler, PE, CVS11:10 Information PhaseRoll call Define/Review Performance AttributesAll audiences facilitated by Jose Theiler, PE, CVS12:00LunchVE team facilitated by Jose Theiler, PE, CVS1:00Roll call Project Documentation ReviewVE team facilitated by Jose Theiler, PE, CVSInformation PhaseSite visit observations • Review plans/schematics, cross sections, typical sections, traffic control plans, construction constraints • Cost estimate, including construction, right-of-way, utilities, railroad, environmental, etc. • Project schedule, including construction phasing/sequencing, work windows	10:00	Break	
PhaseRisk Update ElicitationJose Theiler, PE, CVS11:00BreakInformation11:10Roll callAll audiences facilitated by Jose Theiler, PE, CVS12:00LunchVE team facilitated by Jose Theiler, PE, CVS1:00Roll call Project Documentation ReviewVE team facilitated by Jose Theiler, PE, CVSInformation PhaseSite visit observations • Review plans/schematics, cross sections, typical sections, traffic control plans, construction constraints • Cost estimate, including construction, right-of-way, utilities, railroad, environmental, etc. • Project schedule, including construction phasing/sequencing, work windows		Roll call	All audiences facilitated by
I1:10 Information PhaseRoll call Define/Review Performance AttributesAll audiences facilitated by Jose Theiler, PE, CVS12:00LunchVE team facilitated by Jose Theiler, PE, CVS1:00Roll call Project Documentation ReviewVE team facilitated by Jose Theiler, PE, CVSInformation Phase• Site visit observations • Review plans/schematics, cross sections, typical sections, traffic control plans, construction constraints• Cost estimate, including construction, right-of-way, utilities, railroad, environmental, etc. • Project schedule, including construction phasing/sequencing, work windows		Risk Update Elicitation	Jose Theiler, PE, CVS
Information PhaseDefine/Review Performance AttributesJose Theiler, PE, CVS12:00LunchVE team facilitated by Jose Theiler, PE, CVS1:00Roll call Project Documentation ReviewVE team facilitated by Jose Theiler, PE, CVSInformation Phase• Site visit observations • Review plans/schematics, cross sections, typical sections, traffic control plans, construction constraints • Cost estimate, including construction, right-of-way, utilities, railroad, environmental, etc. • Project schedule, including construction phasing/sequencing, work windows	11:00	Break	
1:00Roll callVE team facilitated by Jose Theiler, PE, CVSInformation Phase• Site visit observations • Review plans/schematics, cross sections, typical sections, traffic control plans, construction constraints • Cost estimate, including construction, right-of-way, utilities, railroad, environmental, etc. • Project schedule, including construction phasing/sequencing, work windows	Information		
Information Phase Site visit observations Jose Theiler, PE, CVS Information Phase • Site visit observations • Review plans/schematics, cross sections, typical sections, traffic control plans, construction constraints • Cost estimate, including construction, right-of-way, utilities, railroad, environmental, etc. • Project schedule, including construction phasing/sequencing, work windows • Project schedule, including construction	12:00	Lunch	
 Phase Review plans/schematics, cross sections, typical sections, traffic control plans, construction constraints Cost estimate, including construction, right-of-way, utilities, railroad, environmental, etc. Project schedule, including construction phasing/sequencing, work windows 	1:00		•
05:00 Adjourn		 Review plans/schematics, cross sections, typical sections, traffic control plans, construction constraints Cost estimate, including construction, right-of-way, utilities, railroad, environmental, etc. Project schedule, including construction 	
	05:00	Adjourn	

Day 2	Tuesday, November 30, 2021 Objective for the day: Function Analysis, Brainstorming I	deas, Evaluate Ideas
8:00 Information Phase	Connect to Microsoft TeamsRoll callDay 1 Recap	VE team facilitated by Jose Theiler, PE, CVS
08:15 Function Analysis Phase	 Function Analysis Review project cost model Define key project functions using "verb + noun" expressions Build a FAST diagram 	VE team facilitated by Jose Theiler, PE, CVS
10:00	Break	
10:15 Creative Phase	 Roll call Creative Phase Brainstorm alternative ways to perform key functions Brainstorm ways to improve value of key functions 	VE team facilitated by Jose Theiler, PE, CVS
12:00	Lunch	
01:00 Creative Phase	 Roll call Creative Phase continues Brainstorm alternative ways to perform key functions Brainstorm ways to improve value of key functions 	VE team facilitated by Jose Theiler, PE, CVS
03:00	Break	
03:15 Creative Phase	 Roll call Evaluate Ideas Discuss advantages and disadvantages for each idea Score ideas based on predetermined criteria to develop further into recommendations 	VE team facilitated by Jose Theiler, PE, CVS
05:00	Adjourn	

Day 3	Wednesday, December 01, 2021 Objective for the day: Evaluate Ideas and Begin Devel	oping
8:00 Information Phase	Connect to Microsoft Teams Roll call	VE team facilitated by Jose Theiler, PE, CVS
08:05 Creative Phase	 Evaluate Ideas continues Discuss advantages and disadvantages for each idea Score ideas based on predetermined criteria to develop further into recommendations 	VE team facilitated by Jose Theiler, PE, CVS
10:00	Break	
10:15 Creative Phase	 Roll call Evaluate Ideas continues Discuss advantages and disadvantages for each idea Score ideas based on predetermined criteria to develop further into recommendations 	VE team facilitated by Jose Theiler, PE, CVS
11:30	Lunch	

01:00	Roll call Mid-point review	Facilitator, Value Engineer, PMs, Managers
02:00	 Develop Ideas into Recommendations Individual/team assignments 	
Development Phase	 Development of recommendations: Test design feasibility Design analysis Technical narratives Further discussion on advantages and disadvantages Cost analysis (life cycle cost comparison) 	VE team facilitated by Jose Theiler, PE, CVS
05:00 PM	Adjourn	

Day 4	Thursday, December 02, 2021 Objective for the day: Continue Development of Recommendations and Draft the Close-out Presentation					
8:00 Information Phase	Connect to Microsoft Teams Roll call	VE team facilitated by Jose Theiler, PE, CVS				
8:05 Development Phase	 Check-in every hour Technical write-up Sketches Life cycle cost estimate 	VE team facilitated by Jose Theiler, PE, CVS				
11:30	Lunch					
01:00 Development Phase	 Check-in every hour Technical write-up Sketches Life cycle cost estimate 	VE team facilitated by Jose Theiler, PE, CVS				
03:30 Development Phase	Finalize recommendations Peer review of recommendations	VE team facilitated by Jose Theiler, PE, CVS				
05:00	Adjourn					

Day 5	Friday, December 03, 2021 Objective for the day: Deliver Close-out Presentation	
8:00 Presentation Phase	Connect to Microsoft Teams Roll call	VE team facilitated by Jose Theiler, PE, CVS
8:05 Presentation Phase	Evaluate performance attributes of recommendations	VE team facilitated by Jose Theiler, PE, CVS
10:30	Break	
10:45 Presentation Phase	Finalize Close-out PresentationTeam rehearsal	VE team facilitated by Jose Theiler, PE, CVS
12:00	Lunch	

1:00 Presentation Phase	 Presentation of VE Findings Team presents recommendations to management Questions and answers 	All audiences: Project owner, management, stakeholders, designers, etc.
	Adjourn	

TRANSPORTATION CABINET			Y		Ken	FSS		
N 29	ov 30	D 1	ec 20 2	21 3	NAME	ORGANIZATION – POSITION/DISCIPLINE	EMAIL	PHONE
\checkmark	✓	✓	✓	\checkmark	Adams, Tim	HDR – Construction	tim.adams@hdrinc.com	859.317.3103
\checkmark	✓	\checkmark	✓	\checkmark	Albrecht, Erica	HDR – Structures	erica.albrecht@hdrinc.com	
\checkmark	✓	\checkmark	✓	\checkmark	Bernhard, Rachel	HDR, VMA – VE Team Assistant	rachel.bernhard@hdrinc.com	360.259.0787
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Brown, Andrew	Palmer – Traffic/Safety	abrown@palmernet.com	
\checkmark					Buckner, Aaron	FHWA – D10 Transportation Specialist	aaron.buckner@dot.gov	
\checkmark					Desmond, Amanda	KYTC – D05 Location Engineer	amanda.desmond@ky.gov	
\checkmark	✓	✓	✓	\checkmark	Harrod, Justin	KYTC – VE Coordinator	justin.harrod@ky.gov	502.395.0401
\checkmark	✓	\checkmark	\checkmark	\checkmark	Hume, Will	HDR – Traffic/Innovative Interchanges	will.hume@hdrinc.com	971.645.0993
				\checkmark	Jiang, Min	KYTC – D10		
\checkmark				\checkmark	Layson, Tim	KYTC – Director of Highway Design	tim.layson@ky.gov	
				\checkmark	Moore, John	KYTC – Director of Planning		
\checkmark				\checkmark	Mosley, Joey	HMB – Project Manager	jmosley@hmbpe.com	606.671.0775
\checkmark				\checkmark	Sipes, Matt	HMB – Planning	msipes@hmbpe.com	502.695.9800
\checkmark				\checkmark	Skaggs, Aric	KYTC – D10 Project Manager	aric.skaggs@ky.gov	502.764.0047

TRANSPORTATION CRASSING					VE Study Attendees Kentucky Transportation Cabinet 10-269.20				
Nov Dec 2021)21						
29	30	1	2	3	NAME	ORGANIZATION – POSITION/DISCIPLINE	EMAIL	PHONE	
				\checkmark	Stewart, Katy	KYTC – D10 and D7 Construction	katy.steward@ky.gov		
\checkmark	~	✓	✓	\checkmark	Sweger, Brent	KYTC – Quality Assurance Manager	brent.sweger@ky.gov		
\checkmark	✓	✓	✓	\checkmark	Theiler, Jose	HDR, CVS – VE Facilitator	jose.theiler@hdrinc.com	561.386.3879	
\checkmark	✓	✓	✓	\checkmark	Thompson, Travis	HDR – Project Manager	travis.alan.thompson@hdrinc.com		
\checkmark					Vaughan, Eileen	FHWA – Transportation Engineer			
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Young, Clint	HMB – Roadway	cyoung@hmbpe.com		

Appendix D Project Estimate

Appendix D. Project Estimate

SECTION G - COST ESTIMATE						
+MB	Alt. 4 - Off Existing 4 Lanes with a Flush Median					
Item	Quanity	Unit	2	Amount		
EarthWork						
Roadway Excavation	5,680,000	CU YD	\$	22,720,000		
Roadway Embankment	5,910,000	CU YD	•	, , , , , , , , , , , , , , , , ,		
Paving						
Asphalt Surface	21,300	TON	\$	1,870,000		
Asphalt Base	98,600	TON	\$	7,888,000		
Crushed Stone Base	146,400	TON	\$	2,928,000		
Structures						
Culverts	143,560		\$	4,656,640		
Bridges	59,724		\$	11,944,800		
Cont. (25%)			\$	13,002,000		
Construction Total			\$	65,010,000		
Right of Way		-Sai				
Approximate Net ROW Purchased	195	ACRES	\$	292,500		
Residendtial Relocations	54	Each	\$	5,400,000		
Business Relocations	4	Each	\$	1,000,000		
Right of Way Total			\$	6,692,500		
Utlity Costs			\$	2,160,000		
Project Total			\$	73,863,000		