
Final Value Engineering Study Report VE Study Number 201603

Guiding Teams – Building Success

February 1, 2017

Mr. Shawn Russell Value Engineering Coordinator Kentucky Transportation Cabinet Division of Highway Design 200 Mero Street Frankfort, KY 40622 Shawn.Russell@ky.gov

Re: I-75 Widening, MP 55.3 to MP 60.1 (Item No. 08-0006.10) I-75 Widening, MP 60.1 to MP 64.5 (Item No. 08-0006.20) Rockcastle County Final Value Engineering Study Report (VE Study Number 201603)

Dear Shawn:

Transmitted herewith is the pdf copy of the Final Value Engineering Study Report for the above referenced project. Five printed copies of the report will be mailed to you.

RHA appreciates your assistance and cooperation. Should you have any questions, please contact us at (602) 493-1947.

Sincerely,

RHA, LLC

atrice Millor

Patrice Miller, CVS® Managing Partner Patrice@TeamRHA.com

6677 West Thunderbird Road, Suite K183, Glendale, AZ 85306 (602) 493-1947 (800) 480-1401 (602) 275-2972 Fax www.ProjectTeamIntegration.com

Table of Contents

Introduction

Value Methodology	. 1
Report Contents	

Executive Summary

Background	3
Project Description	
Workshop Objectives	
Project Constraints	
Summary of Results	4
Team Observations	7
Function Analysis	7
VE Study Team	7
Certification	8
VE Punch List	9

VE Proposed Alternatives & Design Suggestions

Introdu	ction	
VE Pro	posed Alternatives	
VE-1		13
VE-2		23
VE-3		
VE-4		
VE-5		
VE-6		
VE-7		59
VE-8		65
VE-9		69
VE-10		73
VE-11		80
VE-12		
VE-13		
VE-14	(not recommended by VE team)	93
VE-15		
VE-16		101

Table of Contents (continued)

/E-17	105
/E-18	109
Design Suggestions	
/E-19 (not recommended by VE team)	114
/E-20 (not recommended by VE team)	119
/E-21	123
/E-22	

Appendices

A - Study Participants	137
B - Pareto Cost Model	139
C - Function Analysis	141
D - Creative Idea List and Evaluation	143
E - Supporting Data	
Team Observations	148
Risk Identification	149
Workshop Agenda	150
In-brief Presentation	151
Out-brief Presentation	165
List of Abbreviations	192

INTRODUCTION

Introduction

The value methodology (Synonyms: value analysis, value engineering and value management) is a function-oriented, systematic, team approach to add customer value to a program, facility, system, or service. Improvements like performance, quality, initial and life cycle cost are paramount in the value methodology. The value engineering workshop was conducted in accordance with the methodology as established by SAVE International, "The Value Society," and was structured using the Job Plan as outlined below:

Value Methodology

- Pre-Study
 - o Identify team members
 - Define workshop location
 - Review project documentation
 - Prepare for the study (workshop)
- Value Study (Workshop) Job Plan
 - o Information Phase
 - Gather, organize and analyze data,
 - Define costs and cost models,
 - Define the problem/purpose of the study,
 - Define study scope, define project goals and workshop goals
 - Complete a risk analysis
 - Function Analysis Phase
 - Define and evaluate functions
 - Define needs versus wants
 - o Creative Phase
 - What else will perform the functions?
 - Is this function required?
 - o Evaluation Phase
 - Rank and rate the ideas to select
 - Refine the best ideas for further development
 - o Development Phase
 - Develop the best ideas into VE Alternatives with support and justification
 - Presentation/Implementation
 - VE team presents results
 - Prepare and issue the report
 - Report implementation ideas
- Post Study
 - o Implement approved alternatives
 - Monitor status

Report Contents

The report provides the outcomes associated with this VE workshop and includes the following sections:

Introduction – This section outlines the VE process and explains the content of the report.

Executive Summary – This section is an overview that includes project background, summary of results, a list of the VE study team members, and the VE punch list.

VE Recommendations and Design Suggestions – Each completed alternative and design suggestion has a separate workbook and is divided by function and project section, where applicable. Each workbook contains the following information:

- Baseline Assumption
- Proposed Alternative
- Benefits and Risks/Challenges of the Proposed Alternative
- Discussion and Justification
- Implementation Requirements
- Detailed Cost Estimate
- Life Cycle Cost Analysis, as needed
- Drawings and/or Sketches for the Baseline and the Proposed Alternative, as needed

Appendices

- A Study Participants
- B Pareto Cost Models and Cost Estimate Corrections
- C Function Analysis
- D Creative List and Evaluation
- E Supporting Data
 - Team Observations
 - Risk Identification
 - Workshop Agenda
 - In-brief Presentation
 - Out-brief Presentation
 - List of Standard KYTC VE Report Abbreviations

EXECUTIVE SUMMARY

Executive Summary

Background

A Value Engineering (VE) study was conducted for the I-75 Widening, MP 55.3 to MP 60.1 (Item No. 08-0006.10) and I-75 Widening, MP 60.1 to MP 64.5 (Item No. 08-0006.20) project during October 25-28, 2016 for the Kentucky Transportation Cabinet (KYTC).

Project Description

The purpose of this project is to increase capacity and safety along the I-75 corridor. The need for the project has developed as the traffic on I-75 has increased since its original construction. The project is needed to provide typical section and lane continuity with the proposed reconstruction of adjacent sections of I-75 through Kentucky. The need for an additional lane on the entrance ramps to northbound I-75 and the proposed truck climbing lane on mainline I-75 is the result of slow moving traffic on the up-grade ramp not being able to reach the appropriate entrance speed onto I-75 causing congestion on the ramp and mainline.

The project is due to let according to the following schedule (and work completed for each section within two construction seasons):

- Section No. 08-0006.10 Spring 2017
- Section No. 08-0006.20 Spring 2018
- Section No. 08-0006.30 Fall 2016 (contiguous section, not a part of this VE study)

Workshop Objectives

The workshop objectives were identified at the start of the workshop to ensure the best value is attained while meeting the project goals and performance attributes. The project decision makers identified the following objectives for the workshop:

- Review pavement structure for both sections
- Identify opportunities to reduce impacts, e.g., review typical section near Lake Linville
- Evaluate truck lane and ramp traffic data/design
- Identify opportunities to reduce right-of-way takes (Section No. 08-0006.10)

Project Constraints

The project decision makers identified the project constraints for the VE team at the start of the VE study as:

- Both the vertical and horizontal alignments are set
- Right-of-way for Section No. 08-0006.20 is already purchased

Summary of Results

The VE team brainstormed a total of 56 ideas. Of the 56 ideas, 18 ideas were identified for further development into VE proposed alternatives, including cost impacts, as appropriate. Of the 18 VE proposed alternatives, one (VE-14) was not recommended by the VE team. There were four Design Suggestions which were also developed without cost impacts and 18 Design Comments for KYTC and the designers to consider. Of the Design Suggestions, two (VE-19 and VE-20) were not recommended by the VE team.

The description and further discussion of these are included in the VE Proposed Alternatives & Design Suggestions section of this report. The following table shows the proposed alternatives developed and the cost impacts. The costs shown in parenthesis represent an additional cost to the project. Those shown as positive numbers represent a savings.

VE Alternative No.	Idea Title (*Not Recommended by VE Team)	Initial Cost Savings / (Add)	O&M	Total Life Cycle Cost
SL	Support Load			
1	Re-proportion pavement layer for inside median shoulder	\$896,455		\$896,455
2	Add stabilized base layer in the widening section	(\$227,687)		(\$227,687)
3	Add geogrid to reduce pavement section in the widening section	\$1,223,350		\$1,223,350
4	Reduce shoulder width adjacent to truck lane	\$1,052,621		\$1,052,621
5	Add approach slabs at bridges to minimize settlement	(\$315,000)		(\$315,000)
6	Add transverse trench drain bleeders in the existing pavement to relieve water pressure	(\$399,322)	\$316,000	(\$83,322)
7	Eliminate I-75 outside pavement edge drains	\$596,860		\$596,860
МТ	Maintain Traffic			
8	Add bid item for radar speed signs to reduce speed during construction	(\$7,400)		(\$7,400)
9	Extend lane closure in advance of the project limits	(\$2,000)		(\$2,000)

VALUE ENGINEERING PROPOSALS

VE Alternative No.	Idea Title (*Not Recommended by VE Team)	Initial Cost Savings / (Add)	O&M	Total Life Cycle Cost
10	Add a requirement for the contractor to use a protect-the-queue vehicle	(\$20,000)		(\$20,000)
11	Add rumble strips prior to construction zone	(\$12,000)		(\$12,000)
SG	Separate Grade			
12	Rebuild existing wall at northbound exit ramp 59 interchange (Section No. 08- 0006.10)	(\$411,809)		(\$411,809)
Т	Traffic			
13	Reduce the number of lanes on Ramp B from two to one	\$214,000		\$214,000
14×	End ramp taper before the dam at I-75 northbound, Interchange 62	\$485,776		\$485,776
15	Extend island closer to through lane at exit 62 off-ramp C-1 using a painted island	\$8,370		\$8,370
16	Extend raised concrete island at exit 62 off-ramp C-1 closer to the US 25 through lane	(\$2,375)		(\$2,375)
17	Add painted hatching between the C-1 ramp concrete island and the US 25 driving lane on the shoulder	(\$486)		(\$486)
М	Miscellaneous			
18	Identify on-site waste areas	\$161,738		\$161,738

DESIGN SUGGESTIONS (Workbook Prepared, No Costing)

VE Alternative No.	Idea Title (* Not Recommended by VE Team)					
SL	Support Load					
19×	Re-proportion pavement layer for driving lane					
20×	Reduce inside shoulder width from 14' to 12'					
21	Validate overlay design					
MT	Maintain Traffic					
22	Add lane rental to the contract requirements					

DESIGN & ESTIMATE COMMENTS (No Workbook Prepared)

VE Alternative No.	Idea Title
SL	Support Load
23	Update bridge drawings to reflect revised phasing
МТ	Maintain Traffic
24	Review road closure time periods to minimize impacts to construction and the traveling public
25	Review blasting time periods to minimize impacts to construction and the traveling public
26	Add bid item for message boards to inform drivers during construction
27	Identify emergency access locations/routes during construction. As part of its traffic management plan for the reduction of traffic delays and for providing emergency vehicle access during construction, KYTC may desire to develop plans and provisions for the access to incident sites for emergency vehicle personnel and other necessary personnel for all stages of construction. This approach may help to reduce traffic delay and decrease the emergency response time. Practices adopted could include contractor supplied service patrols, using a professional advertising agency to keep the public informed of construction activities, using emergency medical services, establishing continuous police presence, establishing a staging area, using portable changeable message signs, establishing a "hotline," and establishing a detour and alternate route signing.
Т	Traffic
28	Verify the taper at Station 3294 meets standards
29	Confirm taper lengths and rates meet current AASHTO standards
30	Lengthen taper for truck lane drop from 300' to 840' (70:1) to meet AASHTO standards
31	Update traffic counts at the ramp terminals
32	Use painted flush islands throughout the project
GS	Geotechnical/Structures
33	On plans, KY2793 should read "Lake Linville Road" in lieu of "Rose Hill Road"
34	Finalize geotechnical report as soon as possible
MM	Minimize Maintenance
35	Add marker at edge drain outlets to mark for scheduled maintenance
36	Add No. 57 aggregate as backfill for edge drain trench (detail "D" on Section No. 08-0006.20)
М	Miscellaneous
37	Re-evaluate Categorical Exclusion environmental document as early as possible to avoid or minimize schedule delay, right-of-way issues and costs
38	Meet with Division of Water

VE Alternative No.	Idea Title
29	Update cost estimates (e.g., two different excavation unit costs for Section Nos. 08-006.10 and 08-006.20)
40	Make the superelevations consistent for the inside median shoulder (all three sections)
41	Add signage ("add lane") at right turn off of exit 62 off-ramp C

Team Observations

Upon completion of the project presentation, the team discussed the various elements of the project including the project information they had reviewed prior to the workshop and the information provided during the presentation. These observations can be found in Appendix E.

Function Analysis

Function definition and analysis is the heart of Value Engineering. It is the primary activity that separates VE from all other "improvement" processes. The objective of this phase is to ensure the entire team agrees upon the purposes for the project elements. Furthermore, this phase assists with development of the most beneficial areas for continuing the study. The data supporting function analysis can be found in Appendix C.

The VE team identified the functions using active verbs and measurable nouns. This process allowed the team to truly understand all of the functions associated with the project. The basic function was defined as *Increase Capacity*.

VE Study Team

(from left to right)

- William Lucas, PE KYTC
- Rodney Little, PE QK4
- Gary Sharpe, PE Palmer Engineering
- Bob Jones, PE, PLS KYTC
- Keith Damron, PE AEI
- Dennis Mitchell, PE AEI
- Jeremy Lukat, PE QK4
- (not pictured)
- Shawn Russell, PE, AVS KYTC
- Pat Miller, Certified Value Specialist (CVS) Team Leader – RHA, LLC

Certification

This is to verify that the Value Engineering Study was conducted in accordance with standard value engineering principles and practices.

Patrice Miller

Patrice Miller, CVS® RHA, LLC

VALUE ENGINEERING PUNCH LIST I-75 Widening, MP 55.3 to MP 60.1, Item No. 08-0006.10 I-75 Widening, MP 60.1 to MP 64.5, Item No. 08-0006.20

ITEM NO.		08-0006.10 and 08-0006.20	PRO	DJECT COUNTY:	Rockcastle	DA	TE OF STUDY:	October 25-28, 2	016	
VE Alternative Number	VE Team Top Pick	Description	Activity (Y,N,UC-Date)	Implemented Life Cycle Cost Savings	Original Cost	Alternative Cost	Initial Cost Saving	Life Cycle Cost Savings (Total Present Worth)	FHWA Categories	Remarks
Support Lo	ad (SL)									
1		Re-proportion pavement layer for inside median shoulder			\$9,925,054	\$9,028,599	\$896,455			
2		Add stabilized base layer in the widening section			\$20,322,528	\$20,550,215	(\$227,687)			
3		Add geogrid to reduce pavement section in the widening section			\$20,322,528	\$19,099,178	\$1,223,350			
4		Reduce shoulder width adjacent to truck lane			\$1,052,621	\$0	\$1,052,621			
5		Add approach slabs at bridges to minimize settlement			\$0	\$315,000	(\$315,000)			
6		Add transverse trench drain bleeders in the existing pavement to relieve water pressure			\$0	\$399,322	(\$399,322)	\$316,000		
7		Eliminate I-75 outside pavement edge drains			\$890,088	\$293,228	\$596,860			
Maintain Tr	affic (MT									
8		Add bid item for radar speed signs to reduce speed during construction			\$0	\$7,400	(\$7,400)			
9		Extend lane closure in advance of the project limits			\$0	\$2,000	(\$2,000)			
10		Add a requirement for the contractor to use a protect-the-queue vehicle			\$0	\$20,000	(\$20,000)			
11		Add rumble strips prior to construction zone			\$0	\$12,000	(\$12,000)			
Separate G	rade (SG)								
12		Rebuild existing wall at northbound exit ramp 59 interchange (Section No. 08-0006.10)			\$300,000	\$711,809	(\$411,809)			
Traffic (T)	1									
13		Reduce the number of lanes on Ramp B from two to one			\$416,167	\$202,167	\$214,000			
15		Extend island closer to through lane at exit 62 off- ramp C-1 using a painted island			\$9,450	\$1,080	\$8,370			
16		Extend raised concrete island at exit 62 off-ramp C-1 closer to the US 25 through lane			\$11,102	\$13,477	(\$2,375)			
17		Add painted hatching between the C-1 ramp concrete island and the US 25 driving lane on the shoulder			\$0	\$486	(\$486)			9

VE Alternative Number	VE Team Top Pick	Description	Activity (Y,N,UC-Date)	Implemented Life Cycle Cost Savings	Original Cost	Alternative Cost	Initial Cost Saving	Life Cycle Cost Savings (Total Present Worth)	FHWA Categories	Remarks
Miscellane	ous (M)									
18		Identify on-site waste areas			\$5,680,789	\$5,519,051	\$161,738			
Design Sug	ggestions									
21		Validate overlay design								
22		Add lane rental to the contract requirements								
Design Cor	mments									
23		Bridge drawings need to reflect revised phasing								
24		Review road closure time periods to minimize impacts to construction and the traveling public								
25		Review blasting time periods to minimize impacts to construction and the traveling public								
26		Add bid item for message boards to inform drivers during construction								
27		Identify emergency access locations/routes during construction. As part of its traffic management plan for the reduction of traffic delays and for providing emergency vehicle access during construction, KYTC may desire to develop plans and provisions for the access to incident sites for emergency vehicle personnel and other necessary personnel for all stages of construction. This approach may help to reduce traffic delay and decrease the emergency response time. Practices adopted could include contractor supplied service patrols, using a professional advertising agency to keep the public informed of construction activities, using emergency medical services, establishing continuous police presence, establishing a staging area, using portable changeable message signs, establishing a "hotline," and establishing a detour and alternate route signing.								
28		Verify the taper at Station 3294 meets standards								
29		Confirm taper lengths and rates meet current AASHTO standards								
30		Lengthen taper for truck lane drop from 300' to 840' (70:1) to meet AASHTO standards								
31		Update traffic counts at the ramp terminals								
32		Use painted flush islands throughout the project to separate traffic								
33		On plans, KY2793 should read "Lake Linville Road" in lieu of "Rose Hill Road"								10

VE Alternative Number	VE Team Top Pick	Description	Activity (Y,N,UC-Date)	Implemented Life Cycle Cost Savings	Original Cost	Alternative Cost	Initial Cost Saving	Life Cycle Cost Savings (Total Present Worth)	FHWA Categories	Remarks
34		Finalize geotechnical report as soon as possible								
35		Add marker at edge drain outlets to mark for scheduled maintenance								
36		Add No. 57 aggregate as backfill for edge drain trench (detail "D" on Section No. 08-0006.20)								
37		Re-evaluate Categorical Exclusion environmental document as early as possible to avoid or minimize schedule delay, right-of-way issues and costs								
38		Meet with Division of Water								
39		Update cost estimates (e.g., two different excavation unit costs for Section Nos. 08-006.10 and 08-006.20)								
40		Make the superelevations consistent for the inside median shoulder (all three sections)								
41		Add signage ("add lane") at right turn off of exit 62 off-ramp C								

VE PROPOSED ALTERNATIVES & DESIGN SUGGESTIONS

VE Proposed Alternatives & Design Suggestions

Introduction

The VE study evaluated the 56 ideas that were brainstormed during the Creative Phase. The 18 completed Alternatives are located in this section of the report. The alternatives developed included, as needed, the following information:

- Baseline Assumption
- Proposed Alternative
- Benefits and Risks/Challenges of the Proposed Alternative
- Discussion and Justification
- Implementation Requirements
- Detailed Cost Estimate
- Life Cycle Cost Analysis
- Pavement Calculations
- Drawings and/or Sketches for the Baseline and the Proposed Alternative

Additionally, four Design Suggestions were developed to provide some additional design direction to the design team. These are also included in this section of the report. The identified Design Comments can be found on the creative idea list in Appendix D.

Re-proportion pavement layer for inside median shoulder

TITLE:

FUNCTION:

Support Load

BASELINE ASSUMPTION:

Widening to the inside will take place in the depressed median and involve full depth construction with Structural Numbers (SN) associated with the proposed design as follows: Section 8-6.10 -- SN = 7.58; Section 8-6.20 -- SN = 7.47.

PROPOSED ALTERNATIVE:

The proposed design was evaluated for sections 8-6.10 and 8-6.20. As noted in the discussion under Value Engineering Alternative 19 (Design Suggestion), *Re-proportion pavement layer for driving lane*, the results of these analyses indicated that the structural numbers for the proposed design effectively satisfied Structural Number requirements for the inside driving lane and there was no opportunity for re-proportioning the pavement layers for the driving lanes for possible cost savings. However, the analysis did indicate a potential savings for re-proportioning the pavement layers for the inside median shoulder. The KYTC Pavement Design Guide (2-2007) indicates that the shoulder may be designed based on 20% of the mainline ESALs (assuming that the shoulders are not anticipated for use as a future driving lane). Thus, the inside median shoulders could be designed for a minimum SN = 6.44 (Section 8-6.10) and SN = 6.51 (Section 8-6.20). See Sketch of Proposed Alternative for an alternate layer pavement schedule for the inside median shoulder.

BENEFITS		RISK	S/CHALLENGES		
• Improves the drainage under the paver	nent	•	If the future use of t the pavement would		0
• Allows for a better value pavement pro maintaining the structural requirements		nile •			
•		•			
•		•			
•		•			
•		•			
•		•			
•		•			
COST SUMMARY	Ini	itial Costs	O&M Costs	Total	Life Cycle Cost
BASELINE ASSUMPTION:	\$	9,925,054	\$ -	\$	9,925,054
PROPOSED ALTERNATIVE:	\$	9,028,599	\$-	\$	9,028,599
TOTAL (Baseline less Proposed)	\$	896,455	\$ -	\$	896,455
Costs represent the two section estimates					SAVINGS

TITLE: Re-proportion pavement layer for inside median shoulder

DISCUSSION/JUSTIFICATION:

An analysis of the proposed mainline pavement designs was completed and is summarized in **Table VE-01A** and Table VE-01B. From these analyses, it was noted that Structural Numbers (SN) associated with the proposed designs have the following Structural Numbers: Section 8-6.10 -- SN = 7.58; Section 8-6.20 -- SN = 7.47. These SNs are slightly less than the minimum required SNs for the respective ESAL levels -- Section 8-6.10 (53,000,000) - 7.94 and Section 8-6.20 (58,000,000) -- 8.04. While these Structural Numbers are slightly less than required, this is not considered a design flaw in that a much greater proportion of truck traffic will be in the two outside lanes. Thus, no additional payement structure was required and this further confirmed that there was not a potential opportunity for savings by re-proportioning the pavement layers for the inside driving lane. However, the pavement layers for the inside shoulder can be re-proportioned as described in the Sketch of Proposed Alternative. Twenty percent of the mainline ESALs for shoulder design is as follows: Section 8-6.10 (10,600,000 ESALs) and Section 8-6.20 (11,600,000 ESALs). Required Structural Numbers for these ESAL Levels are: Section 8-6.10 (10,600,000) -- SN = 6.44 and Section 8-6.20 (11,600,000) -- SN = 6.51. This will allow the elimination of the proposed bottom asphalt base course and replacement of that material with additional Drainage Blanket TY II - Asphalt. The specifics for determination of the proposed re-proportioning of pavement layers are shown on **Table VE-01A** and **Table VE-01B**, and indicate the following Structural Numbers: Section 8-6.01 (SN = 6.73) and Section 8-6.02 (SN = 6.62).

IMPLEMENTATION CONSIDERATIONS:

None apparent.

TITLE:	Re-proportion pavement layer for inside median shoulder										
DESIGN ELEMENT	Markup		BASEL	INE ASSUMPTI	ON	PROPOSED ALTERNATIVE					
Description	%	Unit	Qty	Unit Cost \$	TOTAL \$	Qty	Unit Cost \$	TOTAL \$			
SECTION 8-6.10											
DGA BASE		TON	53,845	20.00	1,076,900	53,845	20.00	1,076,90			
DRAINAGE BLANKET-TY II-ASPH		TON	21,460	55.00	1,180,300	40,774	55.00	2,242,570			
CL4 ASPHALT BASE 1.50D PG 64-22		TON	19,314	65.00	1,255,410						
CL4 ASPHALT BASE 1.00D PG 64-22		TON	13,949	65.00	906,685	13,949	65.00	906,685			
CL4 ASPHALT BASE 1.00D PG 76-22		TON	12,876	65.00	836,940	12,876	65.00	836,940			
CL4 ASPHALT SURFACE 0.38A PG 76-22		TON	5,365	85.00	456,025	5,365	85.00	456,025			
					5,712,260			5,519,120			
					(BASE)	LINE LES	SS PROPOSED)	193,140			
*Note: Costs are rounde	ed to near	est thou	sand doll	lars.							

SAVINGS

*Note: Costs are rounded to nearest thousand dollars.

TITLE: Re-proportion pavement layer for inside median shoulder

BACKUP PAVEMENT CALCULATIONS (Section 8-6.10) REPROPORTIONED MEDIAN SHOULDER Latest Pavement Design Full Depth Construction in Existing Median BASELINE: Width (FT) AREA (SY) Lenth (LF) 25083 28 78036 ITEM RATE UNIT CODE ITEM DEPTH (IN) LBS/SY/In UNITS QUANTITY PRICE DGA BASE 12.00 115 TON 53,845 \$ 20.00 1 18 DRAINAGE BLANKET-TY II-ASPH 5.00 110 TON 21,460 \$ 55.00 208 CL4 ASPHALT BASE 1.50D PG 64-22 4.50 110 TON 19,314 \$ 65.00 217 CL4 ASPHALT BASE 1.00D PG 64-22 3.25 110 TON 13,949 \$ 65.00 219 CL4 ASPHALT BASE 1.00D PG 76-22 3.00 110 TON 12,876 \$ 65.00 342 CL4 ASPHALT SURFACE 0.38A PG 76-22 1.25 110 TON 5,365 \$ 85.00 29.00 PROPOSED: REPROPORTIONED MEDIAN SHOULDER Lenth (LF) Width (FT) AREA (SY) 25083 28 78036 ITEM RATE UNIT CODE ITEM DEPTH (IN) LBS/SY/In UNITS QUANTITY PRICE 115 DGA BASE 12.00 TON 53,845 \$ 20.00 1 DRAINAGE BLANKET-TY II-ASPH TON 18 9.50 110 40,774 \$ 55.00 208 0.00 TON CL4 ASPHALT BASE 1.50D PG 64-22 110 \$ 65.00 -\$ 217 CL4 ASPHALT BASE 1.00D PG 64-22 3.25 110 TON 13,949 65.00 219 CL4 ASPHALT BASE 1.00D PG 76-22 3.00 110 TON 12,876 \$ 65.00 342 CL4 ASPHALT SURFACE 0.38A PG 76-22 1.25 110 TON 5,365 \$ 85.00 29.00

VALUE ENGINEERING ALTERNATIVE 1

Kentucky Transportation Cabinet

I-75 Widening, MP 55.3 to MP 60.1 (Item No. 08-0006.10)

I-75 Widening, MP 60.1 to MP 64.5 (Item No. 08-0006.20)

Rockcastle County

TITLE:

Re-proportion pavement layer for inside median shoulder

Full Dauth Car		iana ina Fraintina - 84-	ما ما ا						
CBR 3	nstruct	ion in Existing Me	dian						
53,000,000 ES	ALs								
Existing Layers	s Insi	de Driving Lane a	nd Inside Shoul	der			Re-Propo	rtioned Shou	ılder
7			Thislass	Layer	Structural Number		Thislanses	Layer	Structural
			Inickness	Coefficient	(SN)		Inickness	Coefficient	Number (SN)
DGA Base			12	0.14	1.68		12	0.14	1.68
Drainage Blanl	ket TY I	I - Asph	5	0.21	1.05		9.5	0.21	1.995
CL 4 Asphalt B	ase 1.5	0D PG 64-22	4.5	0.4	1.8		0	0.4	(
CL 4 Asphalt B	ase 1.0	0D PG 64-22	3.25	0.4	1.3		3.25	0.4	1.3
CL 4 Asphalt B	ase 1.0	0D PG 76-22	3	0.4	1.2		3	0.4	1.2
CL 4 Asphalt Su	urface (0.38A PG 76-22	1.25	0.44	0.55		1.25	0.44	0.55
			29		7.58	1	29		6.73
			25		7.56		29		0.73
				Theoretical	Shoulder F	Required SI	N values		
				26,500,000 ESALS (50%		21,200,0 00 ESALs (40%		10,600,000 ESALs (20%	
Required SN		53,000,000 ESALs	;	Mainline)		Mainline)		(20)0 Mainline)	
		CBR 3		CBR 3		CBR 3		CBR 3	
339	% AC	8.61		7.84		7.62		6.98	
50%	% AC	8.36		7.58		7.36		6.74	
75%	% AC	7.94 Mini	mum	7.25	Minimum	7.04	Minimum	6.44	Minimum
		8.30		7.56		7.34		6.72	

TITLE:	Re-proportion pavement layer for inside median shoulder											
DESIGN ELEMENT	Markup		BASEL	INE ASSUMPT	ION	PRO	PROPOSED ALTERNATIVE					
Description	%	Unit	Qty	Unit Cost \$	TOTAL \$	Qty	Unit Cost \$	TOTAL \$				
SECTION 8-6.20												
DGA BASE		TON	49,313	18.00	887,634		18.00	887,634				
DRAINAGE BLANKET- TY II-ASPH		TON	15,723	25.24	396,849	33,412	25.24	843,319				
CL4 ASPHALT BASE 1.50D PG 64-22		TON	17,689	65.00	1,149,785							
CL4 ASPHALT BASE 1.00D PG 64-22		TON	13,758	55.54	764,119	13,758	55.54	764,119				
CL4 ASPHALT BASE 1.00D PG 76-22		TON	11,793	65.00	766,545	11,793	65.00	766,545				
CL4 ASPHALT SURFACE 0.38A PG 76- 22		TON	4,914	50.44	247,862	4,914	50.44	247,862				
					4,212,794			3,509,479				
					(BASELI	NE LES	S PROPOSED)	703,315				

SAVINGS

*Note: Costs are rounded to nearest thousand dollars.

TITLE: Re-proportion pavement layer for inside median shoulder

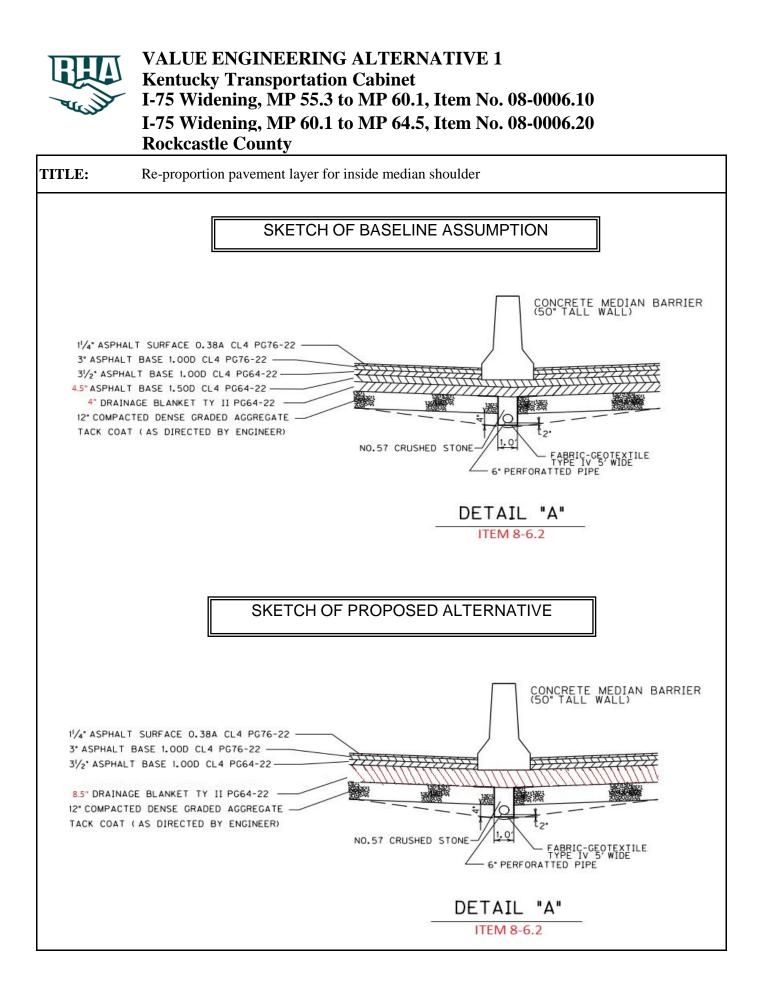
BACKUP PAVEMENT CALCULATIONS (Section 8-6.20)

		REPROPORTIONED MEDIAN SHOULDER					
atest Pave	ment Design	Full Depth Construction in Existing Media	an				
BASELINE:							
AJLINE.	Lenth (LF)	Width (FT)	AREA (SY)				
	22972	28	71468				
	22372		71100				
	ITEM			RATE			UNIT
	CODE	ITEM	DEPTH (IN)	LBS/SY/In	UNITS	QUANTITY	PRICE
	1	DGA BASE	12.00	115	TON	49,313	\$ 18.00
	18	DRAINAGE BLANKET-TY II-ASPH	4.00	110	TON		\$ 25.24
	208	CL4 ASPHALT BASE 1.50D PG 64-22	4.50	110	TON		\$ 65.00
	217	CL4 ASPHALT BASE 1.00D PG 64-22	3.50	110	TON		\$ 55.54
	219	CL4 ASPHALT BASE 1.00D PG 76-22	3.00	110	TON	11,793	\$ 65.00
	342	CL4 ASPHALT SURFACE 0.38A PG 76-22	1.25	110	TON	4,914	\$ 50.44
			20.25				
			28.25				
ROPOSED	REPROPORT	IONED MEDIAN SHOULDER					
	Lenth (LF)	Width (FT)	AREA (SY)				
	22972	28	71468				
	ITEM			RATE			UNIT
	CODE	ITEM	DEPTH (IN)	LBS/SY/In	UNITS	QUANTITY	PRICE
	1	DGA BASE	12.00	115	TON		\$ 18.00
	18	DRAINAGE BLANKET-TY II-ASPH	8.50	110	TON	33,412	\$ 25.24
	208	CL4 ASPHALT BASE 1.50D PG 64-22	0.00	110	TON	-	\$ 65.00
	217	CL4 ASPHALT BASE 1.00D PG 64-22	3.50	110	TON		\$ 55.54
	219	CL4 ASPHALT BASE 1.00D PG 76-22	3.00	110	TON		\$ 65.00
	342	CL4 ASPHALT SURFACE 0.38A PG 76-22	1.25	110	TON	4,914	\$ 50.44
			28.25				
			20.23				

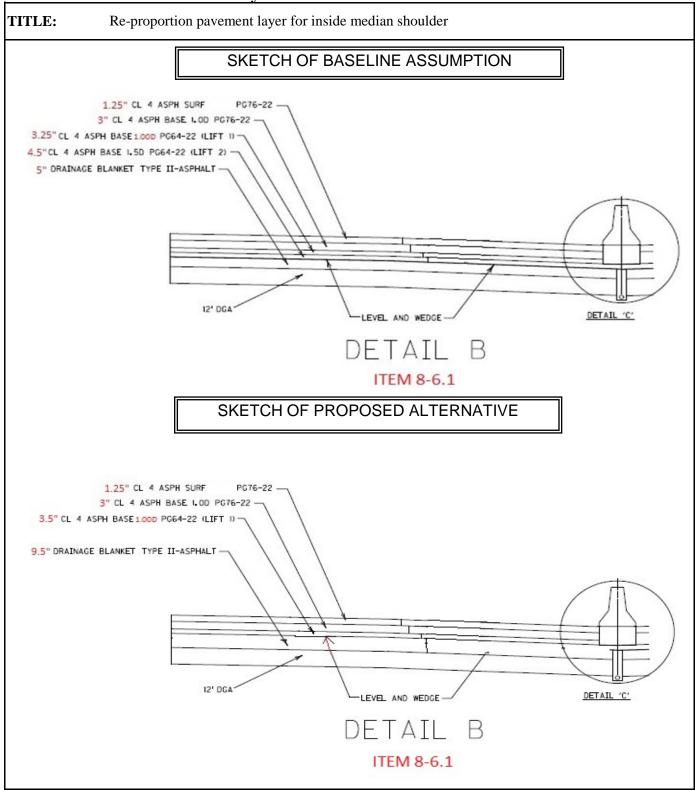
VALUE ENGINEERING ALTERNATIVE 1

Kentucky Transportation Cabinet

I-75 Widening, MP 55.3 to MP 60.1 (Item No. 08-0006.10)


I-75 Widening, MP 60.1 to MP 64.5 (Item No. 08-0006.20)

Rockcastle County


TITLE:

Re-proportion pavement layer for inside median shoulder

Full Donth	Construc	tion in Existing M	lodian							
CBR 3	construc		leulan							
58,000,000	ESALs									
Existing Lay	/ers Ins	ide Driving Lane	and Ins	ide Should	ler			Re-Propo	rtioned Shou	ılder
					Layer	Structural Number			Layer	Structural
				Thickness	Coefficient	(SN)		Thickness	Coefficient	Number (SN)
DGA Base				12	0.14	1.68		12	0.14	1.68
Drainage Blanket TY II - Asph				4	0.21	0.84		8.5	0.21	1.785
CL 4 Asphal	t Base 1.	50D PG 64-22		4.5	0.4	1.8		0	0.4	C
CL 4 Asphal	t Base 1.	00D PG 64-22		3.5	0.4	1.4		3.5	0.4	1.4
CL 4 Asphal	t Base 1.	00D PG 76-22		3	0.4	1.2		3	0.4	1.2
CL 4 Asphal	t Surface	0.38A PG 76-22		1.25	0.44	0.55		1.25	0.44	0.55
				28.25		7.47]	28.25		6.62
					Theoretical	Shoulder I	Required S	N values		
Required S	N	58,000,000 ESA	Ls		29000000 E	SALs	23,200,00	0 ESALs	11,600,000	ESALs
		CBR 3			CBR 3		CBR 3		CBR 3	
:	33% AC	8.72			7.94		7.71		7.06	
Į	50% AC	8.47			7.68		7.45		6.81	
-	75% AC	8.04 Mir	nimum		7.33	Minimum	7.12	Minimum	6.51	Minimum
		8.41			7.65		7.43		6.79	

TITLE:

Add stabilized base layer in the widening section

FUNCTION:

Support Load

BASELINE ASSUMPTION:

The current design of the inside lane and shoulder has no stabilization to the subgrade.

PROPOSED ALTERNATIVE:

Because of the existing median depth, the pavement design was evaluated for the potential for using stabilized base in the pavement design. The proposed design was evaluated for each section -- 8-6.10 and 8-6.20. As noted in the discussion under Value Engineering Alternative 19 (Design Suggestion), Re-proportion pavement layer for driving *lane*, the results of these analyses indicated that the Structural Numbers for the proposed design effectively satisfied structural number requirements for the inside driving lane and there was no opportunity for reproportioning the pavement layers for possible cost savings. The KYTC Pavement Design Guide (2-2007) indicates that stabilized base layers should be considered when the design CBR is less than a CBR 6. See Sketch of Proposed Alternative for an alternate layer pavement schedule for the widening to the inside for the inside driving lane and inside median shoulder using stabilized base.

BENEFITS		RISKS	S/CHALLENGES					
 Allows for use of better value pavement while maintaining the structural required Provides stable paving platform for plat subgrade layers Meets the intent of the current Pavement Guide 	cement of	 Requires mobilization and coordination of a specialty stabilization contractor Potential dust issues during application and mixing of lime if lime is not placed as a slurry Additional time required for curing 						
•		•						
•		•						
COST SUMMARY	Initial C	osts	O&M Costs	Tota	al Life Cycle Cost			
BASELINE ASSUMPTION:	\$ 20,32	22,528	\$-	\$	20,322,528			
PROPOSED ALTERNATIVE:	\$ 20,5	50,215	\$-	\$	20,550,215			
TOTAL (Baseline less Proposed)	\$ (22	27,687)	\$-	\$	(227,687)			
Costs represent the two section estimates					COST			

TITLE: Add stabilized base layer in the widening section

DISCUSSION/JUSTIFICATION:

An analysis of the proposed mainline pavement designs was completed and is summarized in **Table VE-02A** and **Table VE-02B**. From these analyses, it was seen that Structural Numbers (SN) associated with the proposed designs have the following Structural Numbers: Section 8-6.10 -- SN = 7.58; Section 8-6.20 -- SN = 7.47. These SNs are slightly less than the minimum required SNs for the respective ESAL levels -- Section 8-6.10 (53,000,000) -- 7.94 and Section 8-6.20 (58,000,000) -- 8.04. While these Structural Numbers are slightly less than required, this is not considered a design flaw in that a much greater proportion of truck traffic will be in the two outside lanes. Thus, no additional pavement structure was required and this further confirmed that there was not a potential opportunity for savings by re-proportioning the pavement layers for the inside driving lane. However, the Pavement Design Guide (2-2007) indicates it is typical practice to stabilize subgrade when the design CBR is less than 6. The design CBR used for pavement design is CBR 3 for both sections -- Sections 8-6.10 and 8-6.20. Thus, use of a stabilized base layer in the widening section (inside lane and median shoulder) was analyzed. See Sketch of Proposed Alternative for details of an alternate pavement layering scenario using a stabilized layer and re-proportioned asphalt pavement layers.

With re-proportioning of the pavement layer to eliminate the bottom pavement base layers in each section, the following Structural Numbers were determined: Section 8-6.10 (SN = 7.61) and Section 8-6.20 (SN = 7.50). These still effectively satisfy the required design criteria.

IMPLEMENTATION CONSIDERATIONS:

None apparent.

TITLE:	Add stal	oilized b	oase layer	in the widening	g section						
DESIGN ELEMENT	Markup		BASEL	LINE ASSUMPTIO	ON	PR	PROPOSED ALTERNATIVE				
Description	%	Unit	Qty	Unit Cost \$	TOTAL \$	Qty	Unit Cost \$	TOTAL \$			
SECTION 8-6.10											
DGA BASE		TON	110,254	20.00	2,205,080	110,254	20.00	2,205,080			
DRAINAGE BLANKET-TY II-ASPH		TON	43,942	55.00	2,416,810	83,489	55.00	4,591,895			
CL4 ASPHALT BASE 1.50D PG 64-22		TON	39,548	65.00	2,570,620						
CL4 ASPHALT BASE 1.00D PG 64-22		TON	28,562	65.00	1,856,530	28,562	65.00	1,856,530			
CL4 ASPHALT BASE 1.00D PG 76-22		TON	26,365	65.00	1,713,725	26,365	65.00	1,713,725			
CL4 ASPHALT SURFACE 0.38A PG 76-22		TON	10,986	85.00	933,810	10,986	85.00	933,810			
LIME STABILIZED ROADBED (all items)		SY		6.74		159,787	6.74	1,076,964			
					11,696,575			12,378,004			
_			•I			E LESS	PROPOSED)	(681,429)			
*Note: Costs are rounde	ed to near	est thou	isand doll	ars.				COST			

TITLE: Add stabilized base layer in the widening section

BACKUP PAVEMENT CALCULATIONS (Section 8-6.10)

		MEDIAN DRIVING LANE & SHOULDER R	EPROPORTIO	N W/ CHEMICA	L STABILIZATIO	N	
Latest Paver	nent Design	Full Depth Construction in Existing Medi	an				
BASELINE:							
-	Lenth (LF)	Width (FT)	AREA (SY)				
	25083	57.333	159787				
	ITEM			RATE			UNIT
	CODE	ITEM	DEPTH (IN)	LBS/SY/In	UNITS	QUANTITY	PRICE
	1	DGA BASE	12.00	115	TON	110,254	\$ 20.0
	18	DRAINAGE BLANKET-TY II-ASPH	5.00	110	TON	43,942	\$ 55.0
	208	CL4 ASPHALT BASE 1.50D PG 64-22	4.50	110	TON	39,548	\$ 65.0
	217	CL4 ASPHALT BASE 1.00D PG 64-22	3.25	110	TON	28,562	\$ 65.0
	219	CL4 ASPHALT BASE 1.00D PG 76-22	3.00	110	TON	26,365	\$ 65.0
	342	CL4 ASPHALT SURFACE 0.38A PG 76-22	1.25	110	TON	10,986	\$ 85.0
			29.00				
PROPOSED:	REPROPORT	IONED W/ CHEMICAL STABILAZATION M	EDIAN DRIVI	NG LANES & SH	IOULDER		
	Lenth (LF)	Width (FT)	AREA (SY)				
	25083	57.333	159787				
	ITEM			RATE			UNIT
	CODE	ITEM	DEPTH (IN)	LBS/SY/In	UNITS	QUANTITY	PRICE
	1	DGA BASE	12.00	115	TON	110,254	\$ 20.0
	18	DRAINAGE BLANKET-TY II-ASPH	9.50	110	TON	83,489	\$ 55.0
	208	CL4 ASPHALT BASE 1.50D PG 64-22	0.00	110	TON	-	\$ 65.0
	217	CL4 ASPHALT BASE 1.00D PG 64-22	3.25	110	TON	28,562	\$ 65.0
	219	CL4 ASPHALT BASE 1.00D PG 76-22	3.00	110	TON	26,365	\$ 65.0
	342	CL4 ASPHALT SURFACE 0.38A PG 76-22	1.25	110	TON	10,986	\$ 85.0
		LIME STABILIZED ROADBED (all items)	8.00		SY	159,787	\$ 6.7
			37.00				

VALUE ENGINEERING ALTERNATIVE 2

Kentucky Transportation Cabinet

I-75 Widening, MP 55.3 to MP 60.1 (Item No. 08-0006.10)

I-75 Widening, MP 60.1 to MP 64.5 (Item No. 08-0006.20)

Rockcastle County

TITLE:

Use stabilized base layer in the widening section

						TAE	BLE VI	E-02A (Section	8-6.10))				
Full Depth	n Construc	tion in Existin	g Median												
CBR 3			-												
53,000,00	0 ESALs														
Existing La	avers Ins	side Driving La	ane and In	side Should	der			Re-Proportion with Chemical Stabilization			No Re-Prop	ortion with	Chemical S	tabilization	
U	Layer Thickness Coefficient			Structural Number			Layer	Structural Number			Layer Coefficie	Structural Number			
				Thickness	Coefficient	(SN)			Coefficient			Thickness	nt	(SN)	
-								8	-			8			
DGA Base	-			12				12				12			
-	Orainage Blanket TY II - Asph 5 0.21			-			9.5				5				
•		50D PG 64-22		4.5	-			0	•	-		4.5			
		00D PG 64-22		3.25				3.25				3.25		-	
		00D PG 76-22		3				3	-			3			
CL 4 Aspha	alt Surface	0.38A PG 76-	22	1.25	0.44	0.55		1.25	0.44	0.55		1.25	0.44	0.55	
				29		7.58		37		7.61		37		8.46	
					Theoretical	Shoulder l	Required S	N values							
Required	SN	53,000,000	ESALs		26,500,000 ESALS (50% Mainline)		21,200,0 00 ESALs (40% Mainline)		10,600,000 ESALs (20% Mainline)						
•		CBR 3			CBR 3		CBR 3		CBR 3						
	33% AC	8.61			7.84		7.62		6.98						
	50% AC	8.36			7.58		7.36		6.74						
	75% AC		Minimum			Minimum		Minimum		Minimum					
		8.30			7.56		7.34		6.72						

TITLE:	Add stabilized base layer in the widening section										
DESIGN ELEMENT	Markup		BASEI	INE ASSUMPTI	ON	PROPOSED ALTERNATIVE					
Description	%	Unit	Qty	Unit Cost \$	TOTAL \$	Qty	Unit Cost \$	TOTAL \$			
SECTION 8-6.20			~ *								
DGA BASE		TON	100,974	18.00	1,817,532	100,974	18.00	1,817,532			
DRAINAGE BLANKET-TY II-ASPH		TON	32,195	25.24	812,602	68,414	25.24	1,726,769			
CL4 ASPHALT BASE 1.50D PG 64-22		TON	36,219	65.00	2,354,235						
CL4 ASPHALT BASE 1.00D PG 64-22		TON	28,171	55.54	1,564,617	28,171	55.54	1,564,617			
CL4 ASPHALT BASE 1.00D PG 76-22		TON	24,146	65.00	1,569,490	24,146	65.00	1,569,490			
CL4 ASPHALT SURFACE 0.38A PG 76-22		TON	10,061	50.44	507,477	10,061	50.44	507,477			
LIME STABILIZED ROADBED (all items)		SY		6.74		146,339	6.74	986,325			
					8,625,953			8 173 310			
	<u> </u>		<u>ı </u>			E LESS 1	PROPOSED)	8,172,210 453,743			
*Note: Costs are rounde	ed to near	rest thou	sand dol	lars.	•			SAVINGS			

SAVINGS

TITLE: Add stabilized base layer in the widening section

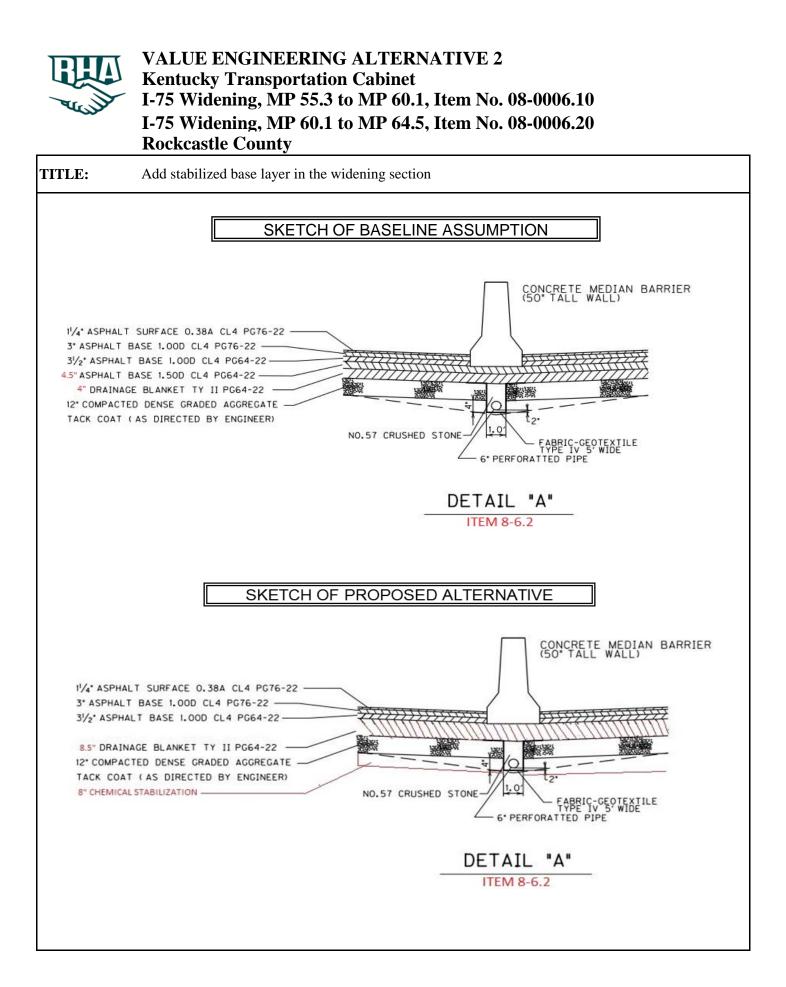
BACKUP PAVEMENT CALCULATIONS (Section 8-6.20)

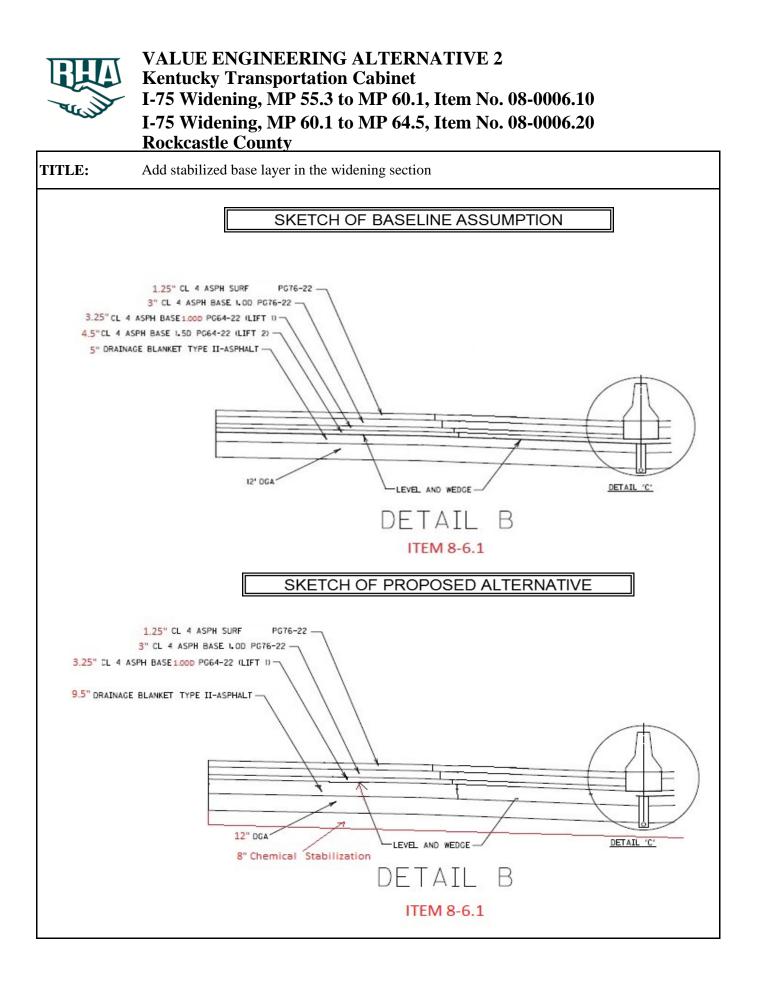
		REPROPORTION MEDIAN DRIVING LANI	E & SHOULDE	R W/ CHEMICA	L STABILIZATIO	Ν	
- + + D		Full Dauth Canadanatian in Eviation Madi					
Latest Pavement Design		Full Depth Construction in Existing Media	an				
BASELINE:							
	Lenth (LF)	Width (FT)	AREA (SY)				
	22972	57.333	146339				
	ITEM			RATE			UNIT
	CODE	ITEM	DEPTH (IN)	LBS/SY/In	UNITS	QUANTITY	PRIC
	1	DGA BASE	12.00	115	TON	100,974	\$ 18.
	18	DRAINAGE BLANKET-TY II-ASPH	4.00	110	TON	32,195	
	208	CL4 ASPHALT BASE 1.50D PG 64-22	4.50	110	TON	36,219	
	217	CL4 ASPHALT BASE 1.00D PG 64-22	3.50	110	TON	28,171	\$ 55.
	219	CL4 ASPHALT BASE 1.00D PG 76-22	3.00	110	TON	24,146	\$65.
	342	CL4 ASPHALT SURFACE 0.38A PG 76-22	1.25	110	TON	10,061	\$ 50.
			28.25				
ROPOSED	: MEDIAN DR	VING LANES & SHOULDER W/ CHEMICAI	. STABILIZATI	ION (NO REPRO	OPORTION)		
	Lenth (LF)	Width (FT)	AREA (SY)				
	22972	57.333	146339				
	ITEM			RATE			UNI
	CODE	ITEM	DEPTH (IN)	LBS/SY/In	UNITS	QUANTITY	PRIC
	1	DGA BASE	12.00	115	TON	100,974	\$ 18.
	18	DRAINAGE BLANKET-TY II-ASPH	8.50	110	TON	68,414	\$ 25.
	208	CL4 ASPHALT BASE 1.50D PG 64-22	0.00	110	TON	-	\$ 65.
	217	CL4 ASPHALT BASE 1.00D PG 64-22	3.50	110	TON	28,171	\$ 55.
	219	CL4 ASPHALT BASE 1.00D PG 76-22	3.00	110	TON	24,146	\$ 65.
	342	CL4 ASPHALT SURFACE 0.38A PG 76-22	1.25	110	TON	10,061	\$ 50.
	572	LIME STABILIZED ROADBED (all items)	8.00	110	SY	146,339	\$ 50. \$ 6.

VALUE ENGINEERING ALTERNATIVE 2

Kentucky Transportation Cabinet

I-75 Widening, MP 55.3 to MP 60.1 (Item No. 08-0006.10)


I-75 Widening, MP 60.1 to MP 64.5 (Item No. 08-0006.20)


Rockcastle County

TITLE:

Use stabilized base layer in the widening section

	TABLE VE-02B (Section 8-6.20)														
ull Depth BR 3	Construc	tion in Existin	g Median												
58,000,00	0 ESALs														
visting La	avers Ins	side Driving La	ane and Inc	side Should	ler			Re-Proportion with Chemical Stabilization			nilization	No Re-Prop	ortion with	Chemical S	tabilization
				Structural Number (SN)	tural Structural					Thickness	Layer Coefficie	Structural Number (SN)			
						. ,		8				8		0.88	
OGA Base				12	0.14	1.68		12	0.14	1.68		12	0.14	1.68	
Drainage E	ainage Blanket TY II - Asph 4 0.22			0.21	0.84		8.5	0.21	1.785		4	0.21	0.84		
CL 4 Aspha	L 4 Asphalt Base 1.50D PG 64-22 4.5 0.4			0.4	1.8		0	0.4	0		4.5	0.4	1.8		
CL 4 Aspha	alt Base 1.	00D PG 64-22		3.5	0.4	1.4		3.5	0.4	1.4		3.5	0.4	1.4	
CL 4 Aspha	alt Base 1.	00D PG 76-22		3	0.4	1.2		3	0.4	1.2		3	0.4	1.2	
CL 4 Aspha	alt Surface	0.38A PG 76-	22	1.25	0.44	0.55		1.25	0.44	0.55		1.25	0.44	0.55	
				28.25		7.47		36.25		7.50		36.25	,	8.35	
					Theoretical	Shoulder F	equired SN	N values							
Required S	SN	58,000,000 l	ESALs		29000000 E.	SALs	23,200,000) ESALs	11,600,000	ESALs					
		CBR 3			CBR 3		CBR 3		CBR 3						
	33% AC	8.72			7.94		7.71		7.06						
	50% AC	8.47			7.68		7.45		6.81						
	75% AC	8.04	Minimum		7.33	Minimum	7.12	Minimum	6.51	Minimum					
		8.41			7.65		7.43		6.79						

TITLE:

Add geogrid to reduce pavement section in the widening section

FUNCTION:

Support Load

BASELINE ASSUMPTION:

Widening to the inside will take place in the depressed median and involve full depth construction with Structural Numbers (SN) associated with the proposed design as follows: Section 8-6.10 -- SN = 7.58; Section 8-6.20 -- SN = 7.587.47.

PROPOSED ALTERNATIVE:

The proposed design was evaluated for each section, 8-6.10 and 8-6.20. As noted in the discussion under VE-19, *Re-proportion pavement layer for driving lane*, the results of these analyses indicated that the Structural Numbers for the proposed design effectively satisfied structural number requirements for the inside driving lane and there was no opportunity for re-proportioning the pavement layers for possible cost savings. The KYTC Pavement Design Guide (2-2007) indicates that stabilized base layers should be considered when the design CBR is less than a CBR 6. The **Sketch of Proposed Alternative** shows an alternate layer pavement schedule for the widening for the inside driving lane and inside median shoulder using geogrid to stabilize the aggregate base and to then reproportion the pavement layers for the inside lane and median shoulder. Under this scenario, geogrid will be placed at the mid-layer of the DGA layer. Because of the thickness of the DGA, the Type IV Fabric may not be required. The **Sketch of Proposed Alternative** illustrates re-proportioning of the pavement layers for the inside driving lane and shoulder pavement.

BENEFITS		RISK	S/CI	HALLENGES					
• Allows for use of a better value pavem	ent pro	oduct •	• Slightly additional construction time required for placement of DGA base						
• Meets the intent of the Current Paveme guide	ent Des	sign •							
•		•							
•		•							
•		•							
COST SUMMARY	In	itial Costs		O&M Costs	To	otal Life Cycle Cost			
BASELINE ASSUMPTION:	\$	20,322,528	\$	-	\$	20,322,528			
PROPOSED ALTERNATIVE:	\$	19,099,178	\$	-	\$	19,099,178			
TOTAL (Baseline less Proposed)	\$	1,223,350	\$	-	\$	1,223,350			
Costs represent the two section estimates						SAVINGS			

Costs represent the two section estimates

TITLE: Add geogrid to reduce pavement section in the widening section

DISCUSSION/JUSTIFICATION:

An analysis of the proposed mainline pavement designs was completed and is summarized in Table VE-03A and Table VE-03B. From these analyses, it was seen that Structural Numbers (SN) associated with the proposed designs have the following Structural Numbers: Section 8-6.10 -- SN = 7.58; Section 8-6.20 -- SN = 7.47. These SNs are slightly less than the minimum required SNs for the respective ESAL levels -- Section 8-6.10 (53,000,000) -- 7.94 and Section 8-6.20 (58,000,000) -- 8.04. While these Structural Numbers are slightly less than required, this is not considered a design flaw in that a much greater proportion of truck traffic will be in the two outside lanes. Thus, no additional payement structure was required and this further confirmed that there was not a potential opportuity for savings by re-proportioning the pavement layers for the inside driving lane. However, the Pavement Design Guide (2-2007) indicates typical practice to stabilize subgrade when the design CBR is less than 6. The design CBR used for pavement design is CBR 3 for both sections -- Sections 8-6.10 and 8-6.20. Thus, use of a geogrid placed in the 12" DGA layer in the widening section (inside lane and median shoulder) was analyzed. See Sketch of Proposed Alternative for the details of an alternate pavement layering scenario using a geogrid stabilized DGA layer and reproportioned asphalt pavement layers. The SNs associated with the initially proposed design are Section 8-6.10 (SN = 7.58) and Section 8-6.20 (SN = 7.47). With the use of the geogrid for stabilization but without re-proportioning the pavement layers, the SNs are as follows: Section 8-6.10 (SN = 8.18) and Section 8-6.20 (SN = 8.07). With reproportioning the pavement layers for the inside (median) shoulder and driving lane, the resultant SNs for the reproportioned asphalt layers are: Section 8-6.10 (SN = 7.33) and Section 8-6.20 (SN = 7.22). Thus, the re-proportioned layer still effectively satisfies pavement design criteria.

IMPLEMENTATION CONSIDERATIONS:

None apparent.

TITLE:	Add geo	grid to	reduce pa	avement section	in the wideni	ng sectio	n								
DESIGN ELEMENT	Markup		BASEI	INE ASSUMPTI	ON	PR	OPOSED ALTER	RNATIVE							
Description	%	Unit	Qty	Unit Cost \$	TOTAL \$	Qty	Unit Cost \$	TOTAL \$							
SECTION 8-6.10															
DGA BASE		TON	110,254	20.00	2,205,080	110,254	20.00	2,205,08							
DRAINAGE BLANKET- TY II-ASPH		TON	43,942	55.00	2,416,810	83,489	55.00	4,591,895							
CL4 ASPHALT BASE 1.50D PG 64-22		TON	39,548	65.00	2,570,620										
CL4 ASPHALT BASE 1.00D PG 64-22		TON	28,562	65.00	1,856,530	28,562	65.00	1,856,530							
CL4 ASPHALT BASE 1.00D PG 76-22		TON	26,365	65.00	1,713,725	26,365	65.00	1,713,725							
CL4 ASPHALT SURFACE 0.38A PG 76-22		TON	10,986	85.00	933,810	10,986	85.00	933,810							
GEOGRID REINFORCEMENT FOR SUBGRADE		SY		2.00		159787	2.00	319,574							
					11,696,575			11,620,614							
					(BASELINI	E LESS I	PROPOSED)	75,961							

*Note: Costs are rounded to nearest thousand dollars.

SAVINGS

Rockcastle County

TITLE: Use geogrid to reduce pavement section in the widening section

		MEDIAN DRIVING LANE & SHOULDER R	EPROPORTION	NED W/ GEOGR	RID		
Latest Paver	nent Design	Full Depth Construction in Existing Medi	an				
BASELINE:							
	Lenth (LF)	Width (FT)	AREA (SY)				
	25,083	57.333	159,787				
				RATE			UNIT
	ITEM CODE	ITEM	DEPTH (IN)	LBS/SY/In	UNITS	QUANTITY	PRICE
	1	DGA BASE	12.00	115	TON		\$ 20.00
	18	DRAINAGE BLANKET-TY II-ASPH	5.00	110	TON		\$ 55.00
	208	CL4 ASPHALT BASE 1.50D PG 64-22	4.50	110	TON		\$ 65.00
	217	CL4 ASPHALT BASE 1.00D PG 64-22	3.25	110	TON		\$ 65.00
	219	CL4 ASPHALT BASE 1.00D PG 76-22	3.00	110	TON		\$ 65.00
	342	CL4 ASPHALT SURFACE 0.38A PG 76-22	1.25	110	TON		\$ 85.00
			29.00				
PROPOSED:	REPROPORTI	ONED MEDIAN DRIVING LANE & SHOULD	ER W/ GEOGR	ND			
	Lenth (LF)	Width (FT)	AREA (SY)				
	25,083	57.333	159,787				
				RATE			UNIT
	ITEM CODE	ITEM DGA BASE	DEPTH (IN)	LBS/SY/In	UNITS	QUANTITY	PRICE
	1		12.00 9.50	115 110	TON TON	110,254	\$ 20.00 \$ 55.00
	208	DRAINAGE BLANKET-TY II-ASPH		110	TON	- 83,489	\$ 55.00 \$ 65.00
	208	CL4 ASPHALT BASE 1.50D PG 64-22 CL4 ASPHALT BASE 1.00D PG 64-22	0.00	110	TON		\$ 65.00
	217	CL4 ASPHALT BASE 1.00D PG 64-22 CL4 ASPHALT BASE 1.00D PG 76-22		110	TON		\$ 65.00
	342	CL4 ASPHALT BASE 1.00D PG 76-22 CL4 ASPHALT SURFACE 0.38A PG 76-22	3.00 1.25	110	TON		\$ 65.00
	542	GEOGRID REINFORCEMENT FOR SUBGR		110	SY	159,787	
		GEOGRAD REINI ORCEMENT FOR SUBOR			51	133,707	φ 2.00
			29.00				

VALUE ENGINEERING ALTERNATIVE 3

Kentucky Transportation Cabinet I-75 Widening, MP 55.3 to MP 60.1 (Item No. 08-0006.10)

I-75 Widening, MP 60.1 to MP 64.5 (Item No. 08-0006.20)

Rockcastle County

TITLE:

Use geogrid to reduce pavement section in the widening section

Full Denth	Construc	tion in Existin	o Median										
CBR 3	i constitue		5 Miculan										
53,000,00	O FSAI s												
33,000,00													
Existing La	avers Ins	side Driving La	ne and In	side Should	ler			Re-Propor	tion With Ge	eogrid	No Re-Pro	portion With	Geogrid
					Layer Coefficient	Structural Number (SN)			Layer Coefficient	Structural Number		Layer Coefficient	Structural Number (SN)
DGA Base				12	0.14	1.68		12	0.14	2.28	12	0.14	2.28
	Blanket TY	II - Asph		5	-			9.5		-	5		-
_		50D PG 64-22		4.5	-			0			4.5		
CL 4 Aspha	4 Asphalt Base 1.00D PG 64-22 3.25 0.4			1.3		3.25	0.4	1.3	3.25	0.4	1.3		
CL 4 Aspha	CL 4 Asphalt Base 1.00D PG 76-22 3 0.4			1.2		3	0.4	1.2	3	0.4	1.2		
CL 4 Aspha	alt Surface	0.38A PG 76-2	22	1.25	0.44	0.55		1.25	0.44	0.55	1.25	0.44	0.55
				29		7.58		29		7.33	29		8.18
					Theoretical	Shoulder F	Required SI	N values					
26,500,000 ESALS (50% Required SN 53,000,000 ESALs				21,200,0 00 ESALs (40% Mainline)		10,600,000 ESALs (20% Mainline)							
		CBR 3			CBR 3		CBR 3		CBR 3				
	33% AC	8.61			7.84		7.62		6.98				
	50% AC	8.36			7.58		7.36		6.74				
	75% AC		Minimum		-	Minimum		Minimum	••••	Minimum			
		8.30			7.56		7.34		6.72				

TITLE:	Add geo	ogrid to	reduce pa	vement section	in the wideni	ng sectio	on								
DESIGN ELEMENT	Markup		BASEL	INE ASSUMPTI	ON	PR	OPOSED ALTER	RNATIVE							
Description	%	Unit	Qty	Unit Cost \$	TOTAL \$	Qty	Unit Cost \$	TOTAL \$							
SECTION 8-6.20															
DGA BASE		TON	100,974	18.00	1,817,532	100,974	18.00	1,817,532							
DRAINAGE BLANKET- TY II-ASPH		TON	32,195	25.24	812,602	68,414	25.24	1,726,769							
CL4 ASPHALT BASE 1.50D PG 64-22		TON	36,219	65.00	2,354,235										
CL4 ASPHALT BASE 1.00D PG 64-22		TON	28,171	55.54	1,564,617	28,171	55.54	1,564,617							
CL4 ASPHALT BASE 1.00D PG 76-22		TON	24,146	65.00	1,569,490	24,146	65.00	1,569,490							
CL4 ASPHALT SURFACE 0.38A PG 76-22		TON	10,061	50.44	507,477	10,061	50.44	507,477							
GEOGRID REINFORCEMENT FOR SUBGRADE		SY				146,339	2.00	292,678							
					8,625,953			7,478,564							
					(BASELINI	E LESS I	PROPOSED)	1,147,389							
*Note: Costs are round	ed to near	rest thou	usand dol	lars.				SAVINGS							

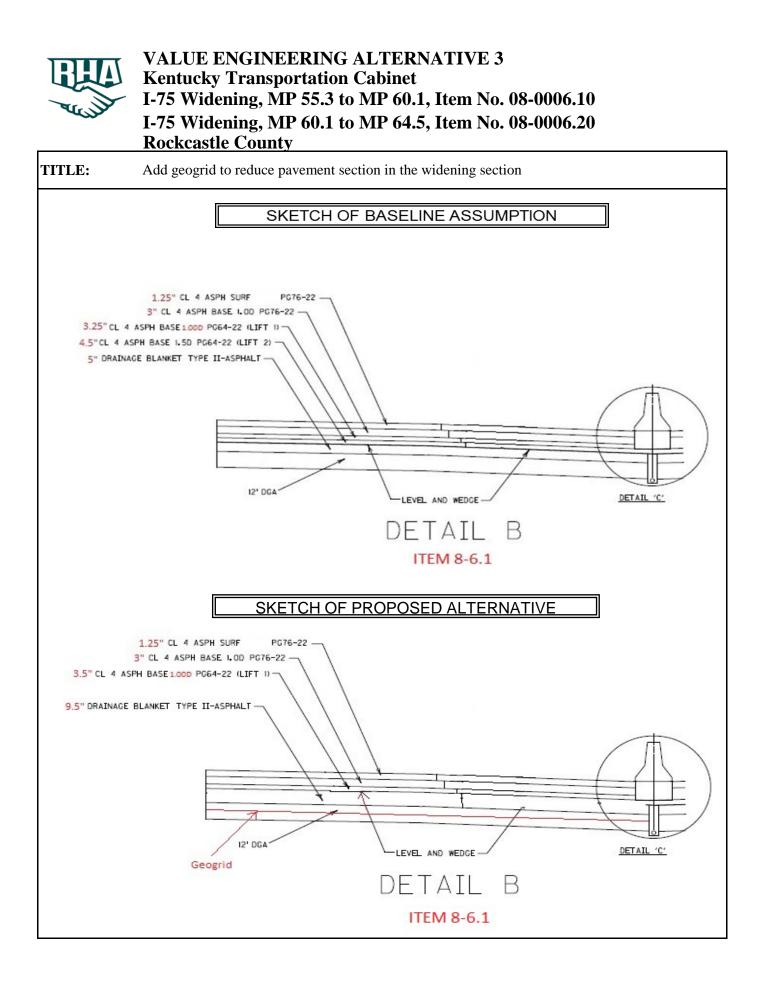
TITLE: Use geogrid to reduce pavement section in the widening section

BACKUP PAVEMENT CALCULATIONS (Section 8-6.20)

Lenth (LF) Width (FT) AREA (SY)				MEDIAN DRIVING LANE & SHOULDER REPROPORTION							
22,972 57.333 146,339 RATE ITEM CODE ITEM DEPTH (IN) LBS/SY/In UNITS 1 DGA BASE 12.00 110 TON 18 DRAINAGE BLANKET-TY II-ASPH 12.00 110 TON 208 CL4 ASPHALT BASE 1.50D PG 64-22 4.50 110 TON 217 CL4 ASPHALT BASE 1.00D PG 64-22 3.50 110 TON 219 CL4 ASPHALT BASE 1.00D PG 76-22 3.00 110 TON 342 CL4 ASPHALT SURFACE 0.38A PG 76-22 1.25 110 TON 342 CL4 ASPHALT SURFACE 0.38A PG 76-22 1.25 110 TON 780POSED: REPROPORTUP Z8.25 110 TON 780 A A A 146,339 146,339 780 Z2,972 57.333 146,339 110 TON 780 DGA BASE ITEM DEPTH (IN) LBS/SY/In UNITS 780 DGA BASE ITEM DEPTH (IN) LBS/SY/In UNITS 780 DGA BASE ITEM DEPTH (IN)				in	Full Depth Construction in Existing Media	nent Design					
Lenth (LF) Width (FT) AREA (SY)											
22,972 57.333 146,339 RATE ITEM CODE ITEM DEPTH (IN) LBS/SY/In UNITS 1 DGA BASE ITEM DEPTH (IN) LBS/SY/In UNITS 18 DRAINAGE BLANKET-TY II-ASPH 4.00 110 TON 208 CL4 ASPHALT BASE 1.50D PG 64-22 4.50 110 TON 217 CL4 ASPHALT BASE 1.00D PG 64-22 3.50 110 TON 219 CL4 ASPHALT BASE 1.00D PG 76-22 3.00 110 TON 342 CL4 ASPHALT SURFACE 0.38A PG 76-22 1.25 110 TON 342 CL4 ASPHALT SURFACE 0.38A PG 76-22 1.25 110 TON 9 A A A A A 9 CL4 ASPHALT BASE I.00D PG 76-22 3.00 110 TON 9 CL4 ASPHALT SURFACE 0.38A PG 76-22 1.25 110 TON 9 CL4 ASPHALT BASE 1.00D PG 44-22 28.25 110 TON 9 CL4 ASPHALT BASE 1.00T E E E E 9 CL4 ASPHALT BASE 1.00T AREA (SY)				AREA (SY)	Width (FT)	Lenth (LF)					
ITEM CODEITEMDEPTH (IN)LBS/SY/INUNITS1DGA BASE12.00115TON18DRAINAGE BLANKET-TY II-ASPH4.00110TON208CL4 ASPHALT BASE 1.50D PG 64-224.50110TON217CL4 ASPHALT BASE 1.00D PG 64-223.50110TON219CL4 ASPHALT BASE 1.00D PG 76-223.00110TON342CL4 ASPHALT BASE 1.00D PG 76-223.00110TON342CL4 ASPHALT SURFACE 0.38A PG 76-221.25110TON342CL4 ASPHALT SURFACE 0.38A PG 76-223.00110TON342CL4 ASPHALT SURFACE 0.38A PG 76-221.25110TON342CL4 ASPHALT SURFACE 0.38A PG 76-223.00110TON342CL4 ASPHALT SURFACE 0.38A PG 76-221.25110TON342CL4 ASPHALT SURFACE 0.38A PG 76-223.00110TON343A											
1 DGA BASE 12.00 115 TON 18 DRAINAGE BLANKET-TY II-ASPH 4.00 110 TON 208 CL4 ASPHALT BASE 1.50D PG 64-22 4.50 110 TON 217 CL4 ASPHALT BASE 1.00D PG 64-22 3.50 110 TON 219 CL4 ASPHALT BASE 1.00D PG 76-22 3.00 110 TON 342 CL4 ASPHALT BASE 1.00D PG 76-22 3.00 110 TON 342 CL4 ASPHALT SURFACE 0.38A PG 76-22 1.25 110 TON 28.25 PROPOSED: REPROPORTIONED MEDIAN DRIVING LANE & SHOULDER W/ GEOGRID Lenth (LF) Width (FT) AREA (SY) 22,972 57.333 146,339 1 DGA BASE 12.00 115 TON 18 DRAINAGE BLANKET-TY II-ASPH 8.50 110 TON 208 CL4 ASPHALT BASE 1.50D PG 64-22 3.50 110 TON 217 CL4 ASPHALT BASE 1.00D PG 67-22 3.00	UNIT		RATE								
18 DRAINAGE BLANKET-TY II-ASPH 4.00 110 TON 208 CL4 ASPHALT BASE 1.50D PG 64-22 4.50 110 TON 217 CL4 ASPHALT BASE 1.00D PG 64-22 3.50 110 TON 219 CL4 ASPHALT BASE 1.00D PG 76-22 3.00 110 TON 342 CL4 ASPHALT SURFACE 0.38A PG 76-22 1.25 110 TON 342 CL4 ASPHALT SURFACE 0.38A PG 76-22 1.25 110 TON 342 CL4 ASPHALT SURFACE 0.38A PG 76-22 1.25 110 TON 342 CL4 ASPHALT SURFACE 0.38A PG 76-22 1.25 110 TON 342 CL4 ASPHALT SURFACE 0.38A PG 76-22 1.25 110 TON 342 CL4 ASPHALT SURFACE 0.38A PG 76-22 1.26 10 TON 345 CL4 ASPHALT BASE 1.00D PG 76-22 28.25 110 TON 345 VIA VIA VIA VIA VIA VIA VIA 346 VIA VIA VIA VIA VIA VIA VIA VIA VIA 347 VIA VIA	QUANTITY PRICE			DEPTH (IN)		ITEM CODE					
208 CL4 ASPHALT BASE 1.50D PG 64-22 4.50 110 TON 217 CL4 ASPHALT BASE 1.00D PG 64-22 3.50 110 TON 219 CL4 ASPHALT BASE 1.00D PG 76-22 3.00 110 TON 342 CL4 ASPHALT SURFACE 0.38A PG 76-22 1.25 110 TON 342 CL4 ASPHALT SURFACE 0.38A PG 76-22 1.25 110 TON A A A A A A A A ASPHALT SURFACE 0.38A PG 76-22 1.25 110 TON A A A A A A A A A A A A A A PROPOSED: REPROPORTIONED MEDIAN DRIVING LANE & SHOULDER W/ GEOGRID A A A PROPOSED: Vidth (FT) AREA (SY) A A A A 22,972 57.333 146,339 A A A A A ITEM CODE ITEM DGA BASE 12.00 115 TON 1 DGA BASE 12.00 110 TON	100,974 \$ 18.0	TON		12.00	DGA BASE	1					
217 CL4 ASPHALT BASE 1.00D PG 64-22 3.50 110 TON 219 CL4 ASPHALT BASE 1.00D PG 76-22 3.00 110 TON 342 CL4 ASPHALT SURFACE 0.38A PG 76-22 1.25 110 TON 342 CL4 ASPHALT SURFACE 0.38A PG 76-22 1.25 110 TON 342 CL4 ASPHALT SURFACE 0.38A PG 76-22 1.25 110 TON 342 L4 ASPHALT SURFACE 0.38A PG 76-22 1.25 110 TON 342 L4 ASPHALT SURFACE 0.38A PG 76-22 1.25 110 TON 343 L4 ASPHALT SURFACE 0.38A PG 76-22 28.25	32,195 \$ 25.2	-				-					
219CL4 ASPHALT BASE 1.00D PG 76-223.00110TON342CL4 ASPHALT SURFACE 0.38A PG 76-221.25110TON342CL4 ASPHALT SURFACE 0.38A PG 76-221.25110TON342IInternational State St	36,219 \$ 65.0	-									
342CL4 ASPHALT SURFACE 0.38A PG 76-221.25110TONAAAAAAAAAAAAAAAAPROPOSED:REPROPORTUBED MEDIAN DRIVING LANE & SHOULDER W/ GEOGRUAAAPROPOSED:REPROPORTUBED MEDIAN DRIVING LANE & SHOULDER W/ GEOGRUAAAPROPOSED:Vidth (FT)AREA (SY)AALenth (LF)Vidth (FT)AREA (SY)AAZ2,97257.333146,339AATEM CODEITEMDEPTH (IN)ISS/SY/InUNITSAAA <td>28,171 \$ 55.5</td> <td></td> <td></td> <td></td> <td></td> <td></td>	28,171 \$ 55.5										
PROPOSED: REPROPORTIONED MEDIAN DRIVING LANE & SHOULDER W/ GEOGRID Lenth (LF) Width (FT) 22,972 57.333 1 DGA BASE ITEM CODE ITEM DEPTH (IN) LBS/SY/In UNITS 1 DGA BASE 1 TON <	24,146 \$ 65.0										
PROPOSED: REPROPORTUTE MEDIAN DRIVING LANE & SHOULDER W/ GEOGRID Indext (SP) Lenth (LF) Vidth (FT) AREA (SY) Indext (SP) 22,972 57.333 146,339 Indext (SP) ITEM CODE ITEM DGA BASE Indext (SP) Indext (SP) 1 DGA BASE Indext (SP) Indext (SP) Indext (SP) 11 DGA BASE Indext (SP) Indext (SP) Indext (SP) 11 DGA BASE Indext (SP) Indext (SP) Indext (SP) 11 DGA BASE Indext (SP) Indext (SP) Indext (SP) 11 DGA BASE Indext (SP) Indext (SP) Indext (SP) 12 DGA BASE Indext (SP) Indext (SP) Indext (SP) 11 DGA BASE Indext (SP) Indext (SP) Indext (SP) 146,339 Indext (SP) Indext (SP) Indext (SP) Indext (SP) 110 DRAINAGE BLANKET-TY II-ASPH 110 TON 1208 CL4 ASPHALT BASE 1.50D PG 64-22 0.00 110 TON 1217 CL4 ASPHALT BASE 1.00D PG 76-22 3.00 110	10,061 \$ 50.4	TON	110	1.25	CL4 ASPHALT SURFACE 0.38A PG 76-22	342					
ROPOSED: REPROPORTIONED MEDIAN DRIVING LANE & SHOULDER W/ GEOGRID Indext (SP) Lenth (LF) Width (FT) AREA (SY) Indext (SP) 22,972 57.333 146,339 Indext (SP) ITEM CODE ITEM DEPTH (IN) LBS/SY/In UNITS 1 DGA BASE 12.00 115 TON 18 DRAINAGE BLANKET-TY II-ASPH 8.50 110 TON 208 CL4 ASPHALT BASE 1.50D PG 64-22 0.00 110 TON 219 CL4 ASPHALT BASE 1.00D PG 76-22 3.00 110 TON											
ROPOSED: REPROPORTIONED MEDIAN DRIVING LANE & SHOULDER W/ GEOGRID Indext (SP) Lenth (LF) Width (FT) AREA (SY) Indext (SP) 22,972 57.333 146,339 Indext (SP) ITEM CODE ITEM DEPTH (IN) LBS/SY/In UNITS 1 DGA BASE 12.00 115 TON 18 DRAINAGE BLANKET-TY II-ASPH 8.50 110 TON 208 CL4 ASPHALT BASE 1.50D PG 64-22 0.00 110 TON 219 CL4 ASPHALT BASE 1.00D PG 76-22 3.00 110 TON				28.25							
Lenth (LF)Width (FT)AREA (SY)Image: Constraint of the sector of the sec				20.25							
Lenth (LF)Width (FT)AREA (SY)Image: Constraint of the sector of the sec											
Lenth (LF)Width (FT)AREA (SY)Image: Constraint of the const											
22,972 57.333 146,339 Image: Constraint of the state of the s			ID	R W/ GEOGR	DNED MEDIAN DRIVING LANE & SHOULD	REPROPORTI					
22,972 57.333 146,339 Image: Constraint of the state of the s				ARFA (SY)	Width (FT)	Lenth (LF)					
ITEM CODEITEMDEPTH (IN)LBS/SY/InUNITS10GA BASE12.00115TON180RAINAGE BLANKET-TY II-ASPH8.50110TON208CL4 ASPHALT BASE 1.50D PG 64-220.00110TON217CL4 ASPHALT BASE 1.00D PG 64-223.50110TON219CL4 ASPHALT BASE 1.00D PG 76-223.00110TON											
ITEM CODEITEMDEPTH (IN)LBS/SY/InUNITS10GA BASE12.00115TON180RAINAGE BLANKET-TY II-ASPH8.50110TON208CL4 ASPHALT BASE 1.50D PG 64-220.00110TON217CL4 ASPHALT BASE 1.00D PG 64-223.50110TON219CL4 ASPHALT BASE 1.00D PG 76-223.00110TON											
1 DGA BASE 12.00 115 TON 18 DRAINAGE BLANKET-TY II-ASPH 8.50 110 TON 208 CL4 ASPHALT BASE 1.50D PG 64-22 0.00 110 TON 217 CL4 ASPHALT BASE 1.00D PG 64-22 3.50 110 TON 219 CL4 ASPHALT BASE 1.00D PG 76-22 3.00 110 TON	UNIT										
18 DRAINAGE BLANKET-TY II-ASPH 8.50 110 TON 208 CL4 ASPHALT BASE 1.50D PG 64-22 0.00 110 TON 217 CL4 ASPHALT BASE 1.00D PG 64-22 3.50 110 TON 219 CL4 ASPHALT BASE 1.00D PG 76-22 3.00 110 TON	QUANTITY PRICE										
208 CL4 ASPHALT BASE 1.50D PG 64-22 0.00 110 TON 217 CL4 ASPHALT BASE 1.00D PG 64-22 3.50 110 TON 219 CL4 ASPHALT BASE 1.00D PG 76-22 3.00 110 TON	100,974 \$ 18.0					_					
217 CL4 ASPHALT BASE 1.00D PG 64-22 3.50 110 TON 219 CL4 ASPHALT BASE 1.00D PG 76-22 3.00 110 TON	68,414 \$ 25.2										
219 CL4 ASPHALT BASE 1.00D PG 76-22 3.00 110 TON	- \$ 65.0										
	28,171 \$ 55.5	-									
	24,146 \$ 65.0	-				-					
342 CL4 ASPHALT SURFACE 0.38A PG 76-22 1.25 110 TON	10,061 \$ 50.4		110			342					
GEOGRID REINFORCEMENT FOR SUBGRADE SY	146,339 \$ 2.0	SY		ADE	GEOGRID REINFORCEMENT FOR SUBGR						
28.25				28.25							

VALUE ENGINEERING ALTERNATIVE 3

Kentucky Transportation Cabinet I-75 Widening, MP 55.3 to MP 60.1 (Item No. 08-0006.10) I-75 Widening, MP 60.1 to MP 64.5 (Item No. 08-0006.20)


Rockcastle County

TITLE:

Use geogrid to reduce pavement section in the widening section

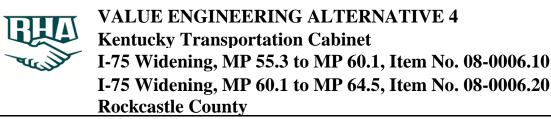
Full Depth Co	onstructio	on in Existin	g Median										
CBR 3													
58,000,000 E	SALs												
Existing Laye	ers Insid	le Driving La	ne and In	side Should	der			Re-Propor	tion With Ge	-	No Re-Pro	portion With	Geogrid
				Thickness	Layer Coefficient	Structural Number (SN)		Thickness		Structural Number (SN)	Thickness	Layer Coefficient	Structural Number (SN)
DGA Base				12	0.14	1.68		12	0.14	2.28	12	0.14	2.28
Drainage Blai	nage Blanket TY II - Asph 4 0.21			0.84		8.5	0.21	1.785	4	0.21	0.84		
CL 4 Asphalt	L 4 Asphalt Base 1.50D PG 64-22 4.5		0.4	1.8		0	0.4	0	4.5	0.4	1.8		
CL 4 Asphalt	CL 4 Asphalt Base 1.00D PG 64-22 3.5			0.4	1.4		3.5	0.4	1.4	3.5	0.4	1.4	
CL 4 Asphalt	Base 1.00	D PG 76-22		3	0.4	1.2		3	0.4	1.2	3	0.4	1.2
CL 4 Asphalt	Surface 0	.38A PG 76-2	22	1.25	0.44	0.55		1.25	0.44	0.55	1.25	0.44	0.55
				28.25		7.47	[28.25		7.22	28.25		8.07
					Theoretical	Shoulder I	Required SI	N values					
Required SN	-	58,000,000 E	SALs		29000000 E	SALs	23,200,00	0 ESALs	11,600,000	ESALs			
	(CBR 3			CBR 3		CBR 3		CBR 3				
33	3% AC	8.72			7.94		7.71		7.06				
	0% AC	8.47			7.68		7.45		6.81				
75	5% AC		Minimum			Minimum		Minimum		Minimum			
		8.41			7.65		7.43		6.79				

TITLE:

Reduce shoulder width adjacent to truck lane

FUNCTION:

Support Load


BASELINE ASSUMPTION:

The current typical width for the northbound truck lane section includes an inside paved shoulder of 14 feet and an outside paved shoulder of ten feet.

PROPOSED ALTERNATIVE:

Reduce the inside shoulder to four feet and the outside shoulder to eight feet.

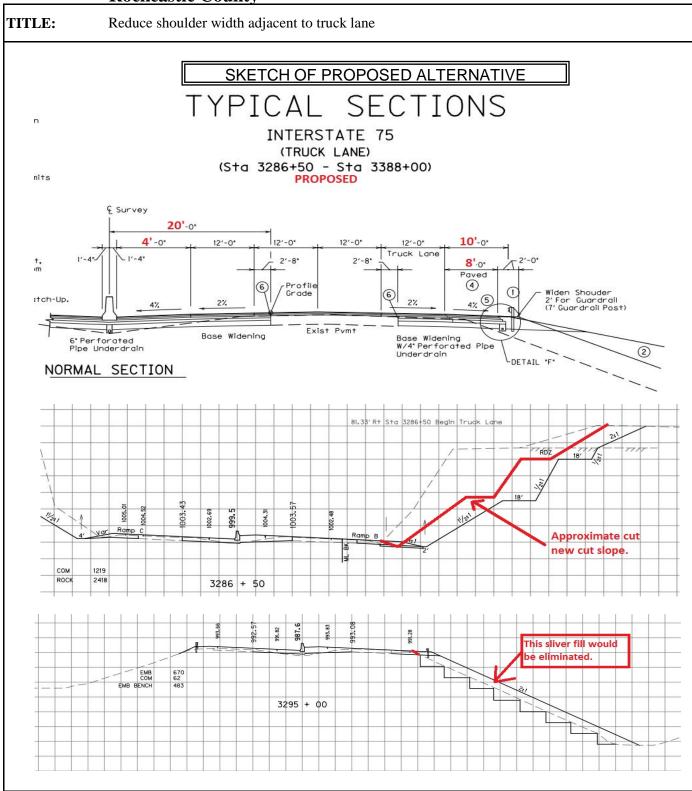
BENEFITS		RISK	S/CHA	LLENGES		
Reduces excavation		•		sistency in shounder of project	lders wher	compared to
• Reduces or eliminates sliver fills or	the road	slope •		ases available p situations needi		rom proposed in e traffic
• Could eliminate significant impact	to the Dan	n •				
• By reducing the width of shoulder, climbing lane can be constructed wi width for the shoulder		uced				
•		•				
•		•				
•		•				
•		•				
COST SUMMARY	In	itial Costs	0	&M Costs	Total I	Life Cycle Cost
BASELINE ASSUMPTION:	\$	1,052,621	\$		\$	1,052,62
PROPOSED ALTERNATIVE:	\$	_	\$	-	\$	-
FOTAL (Baseline less Proposed)	\$	1,052,621	\$	-	\$	1,052,62
					S	SAVINGS

TITLE: Reduce shoulder width adjacent to truck lane

DISCUSSION/JUSTIFICATION:

The current typical width for the truck lane section includes an inside paved shoulder of 14 feet and an outside paved shoulder of ten feet. The proposed alternative requires a design exception to use a mountainous terrain criteria instead of a rolling terrain criteria for the truck lane section, which allows a reduction in the roadway template for the truck lane section, especially along the Lake Linville, to a four-foot inside paved shoulder and an eight-foot outside paved shoulder. This template would be consistent with the July 2005 AASHTO Design Standards for an Interstate System in a mountainous terrain. The changing of this template would allow eliminating the majority of excavation on the right along the truck lane as well as most sliver fills would be eliminated or at least minimized. (**Note**: The excavation unit cost of the proposed 8-6.2 is \$3.17 which is much lower than the estimated unit cost of excavation for 8-6.1 which has \$5.27 per CUYD. This difference for the approximate reduced excavation quantity shown in the cost detail would add an additional savings of \$52,500, increasing the total of the SL-08 reduced cost to be approximately \$1.1 million.)

IMPLEMENTATION CONSIDERATIONS:


Special Consideration: This reduced template would possibly eliminate the sliver fill across the dam and therefore eliminate any impact to the dam. If necessary, the inside left shoulder for the southbound direction could also be reduced to assure that the road template fits the top of the dam without impacting side slopes. If Creative Idea T-03, *Add truck climing lane after the dam at northbound I-75*, developed with Value Engineering Alternative 14, *End ramp taper before the dam at I-75 northbound, Interchange 62* is desired in order to eliminate the impact to the dam, this alternative would allow keeping the truck lane at its current proposed beginning while achieving the goal of Creative Idea T-03, which is to minimize the road template in an effort to eliminate the impact to the dam slopes.

The proposed alternative requires a design exception to use the criteria for a mountainous terrain instead of a rolling terrain. Coordination with Division of Water and the USACE may be required to address specific concerns for widening I-75 across the dam for Lake Linville.

TITLE:	Reduce	Reduce shoulder width adjacent to truck lane											
DESIGN ELEMENT	Markup		BASEL	INE ASSUMPTI	ON	PR	ROPOSED ALTE	RNATIVE					
Description	%	Unit	Qty	Unit Cost \$	TOTAL \$	Qty	Unit Cost \$	TOTAL \$					
ROADWAY EXCAVATION (02200)		CUYD	25,000	3.17	79,125								
CL3 ASPH SURF 0.38A PG76-22 (00336)		TON	930	99.08	92,144								
CL3 ASPH BASE 1.00D PG76-22 (00216)		TON	2,233	85.38	190,642								
CL3 ASPH BASE 1.00D PG64-22 (00214		TON	6,327	62.56	395,804								
DRAINAGE BLANKET- TYPE II-ASPH (00018)		TON	5,024	25.24	126,821								
DGA BASE (00001)		TON	9,338	18.00	168,084								
					1,052,621								
					(BASEI	LINE LE	SS PROPOSED)	1,052,62					
Note: Costs are round	ded to nea	rest thou	isand dol	lars.				SAVINGS					

TITLE:

Add approach slabs at bridges to minimize settlement

FUNCTION:

Support Load

BASELINE ASSUMPTION:

The preliminary bridge design for I-75 over US 25 (Exit 62) utilizes approach slabs at the bridge ends. Currently, approach slabs are not shown for the bridges at Exit 59 and Lake Linville Road (MM 62.6).

PROPOSED ALTERNATIVE:

Approach slabs are proposed at the I-75 bridges at Exit 59 and Lake Linville Road (MM 62.6) to minimize the potential for settlement at the bridge ends. These approach slabs are proposed for the full width of each abutment and 25 feet long.

BENEFITS		RISKS	S/CHALLENGES		
• Lowers long term mainteneance cos differential settlement at the bridge		•	None apparent		
• Improves driver experience by smooth from road to bridge	othing trans	sition •			
• Safety as a result of less maintenand	ce	•			
•		•			
•		•			
•		•			
•		•			
•		•			
COST SUMMARY	Ini	tial Costs	O&M Costs	Tota	al Life Cycle Cost
BASELINE ASSUMPTION:	\$	-	\$-	\$	-
PROPOSED ALTERNATIVE:	\$	315,000	\$ -	\$	315,000
TOTAL (Baseline less Proposed)	\$	(315,000)	\$-	\$	(315,000)
	•				COST

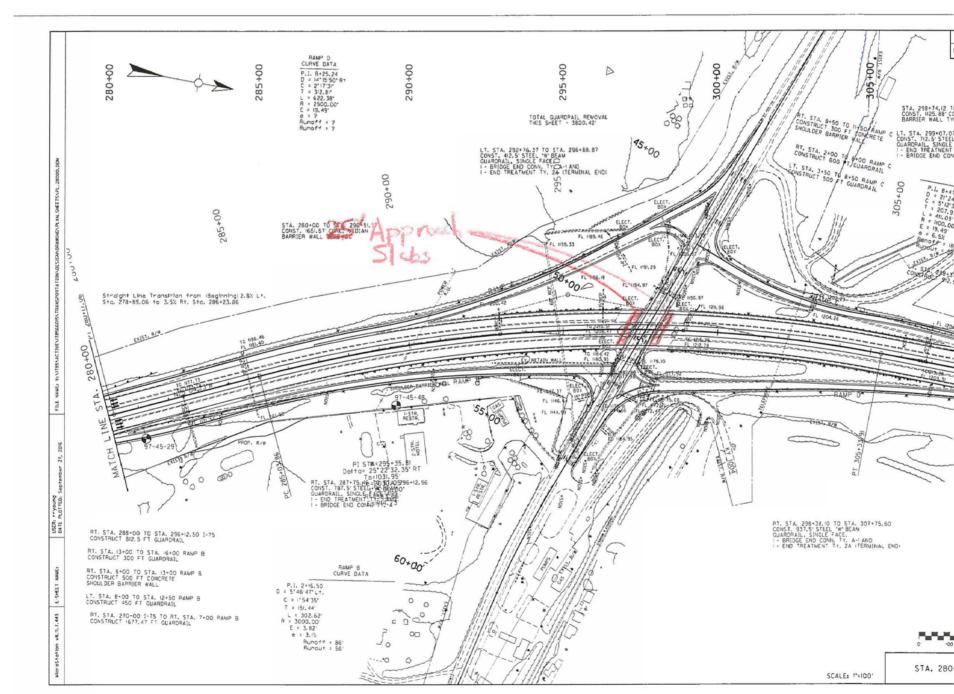
TITLE: Add approach slabs at bridges to minimize settlement

DISCUSSION/JUSTIFICATION:

Maintenance on interstate facilities can be difficult, expensive and dangerous to both the traveling public and maintenance workers. The use of approach slabs will help to minimize the frequency of maintenance required at the bridge ends. While the implementation of this alternative adds cost to the project, the transition from the road to the bridge would be smoother resulting in improved performance and driver experience, and reduced maintenance. In addition, recent research indicates that approach slabs can be effective in many instances for minimizing differential settlement between the bridge approach and abutment.

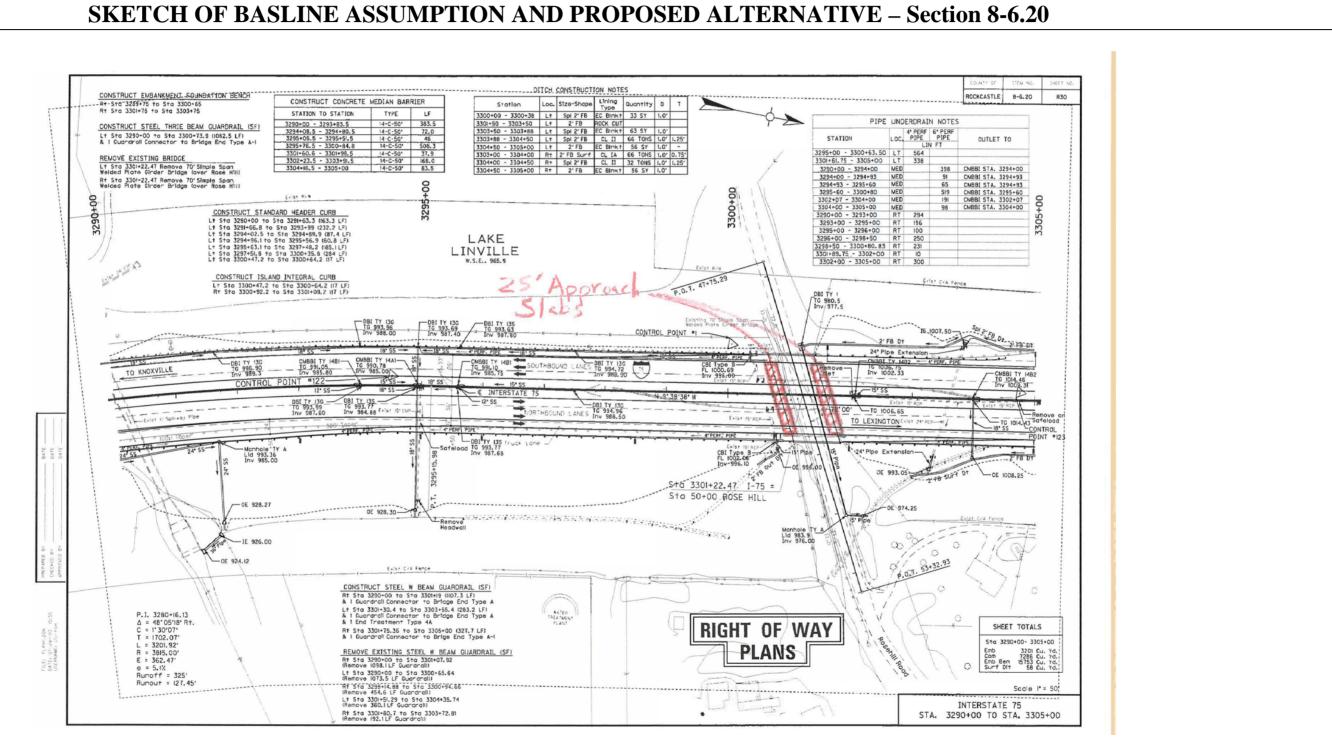
IMPLEMENTATION CONSIDERATIONS:

None apparent.


TITLE:	Add approach slabs at bridges to minimize settlement												
DESIGN ELEMENT	Markup		BASE	LINE ASSUMPT	ION	PR	OPOSED ALTER	RNATIVE					
Description	%	Unit	Qty	Unit Cost \$	TOTAL \$	Qty	Unit Cost \$	TOTAL \$					
APPROACH SLAB	,.	SY			- 1	1,400	225.00	315,000					
						_,							
								315,000					
					(BASE	LINE LES	SS PROPOSED)	(315,000)					
*Note: Costs are roun	ded to ne	arest tho	ousand do	ollars.									

COST

TITLE: Add approach slabs at bridges to minimize settlement



TITLE: Add approach slabs at bridges to minimize settlement

51

TITLE:

: Add transverse trench drain bleeders in the existing pavement to relieve water pressure

FUNCTION:

Support Load

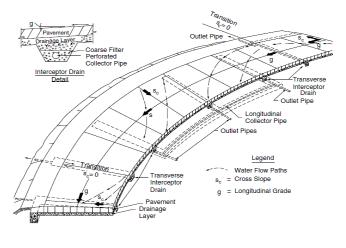
BASELINE ASSUMPTION:

On the design plans, there are no transverse pavement drains included.

PROPOSED ALTERNATIVE:

Install transverse trench drains in the existing asphalt pavement at approximately 500 foot intervals prior to construction of the proposed pavement overlay. Trench will be 8 inches wide and minimum of 10 to 12 inches deep with a 4-inch perforated pipe.

BENEFITS		RISKS	RISKS/CHALLENGES				
• Reduces future maintenance of pave	ement	•	Additional operation during construction				
• Improves safety (minimize wet spot surface)	nent •	Inci	rease in project con	structio	on time		
• Relieves water pressure under the p	•	Ma	y affect rideability				
•		•					
•		•					
•		•					
•		•					
•		•					
COST SUMMARY	In	itial Costs		O&M Costs	Tota	l Life Cycle Cost	
BASELINE ASSUMPTION:	\$	_	\$	632,000	\$	632,000	
PROPOSED ALTERNATIVE:	\$	399,322	\$	316,000	\$	715,322	
TOTAL (Baseline less Proposed)	\$	(399,322)	\$	316,000	\$	(83,322	
	-					COST	



TITLE: Add transverse trench drain bleeders in the existing pavement to relieve water pressure

DISCUSSION/JUSTIFICATION:

Several areas along the I-75 corridor in Rockcastle and Laurel counties have existing pavement issues related to water trapped within the pavement layers building up pressure and migrating to the surface. This sometimes results in stripping of asphalt from pavement at these locations causing general deterioration of pavement and potholes. The "bubbling up" of water to the surface can also be a safety problem for motorists, especially during winter time when these wet areas freeze. The use of transverse trench drains on some other projects along this corridor in the past few years have been successful in minimizing this problem.

The transverse drain is similar in construction to a lateral drain, but these drains generally run perpendicular to the centerline of the roadway or slightly skewed. The most common use of a transverse drain is to remove the water that may seep into the roadbed at joints as shown in figure below. Draining water at joints is a necessary activity; however, these types of drains should be used with great caution in areas prone to frost heave. Frost action may damage the roadway except above the drains, causing a wave to appear on the pavement surface. Horizontal drains are used in cut or fill slopes, and often empty directly into the side ditches. The pipes may enter directly into these side-ditches, or it may be necessary to use a treatment to prevent erosion, such as a paving the drainage ditches or placing riprap or splashblocks at the drain outlets (*source: Handbook of Highway Engineering*).

IMPLEMENTATION CONSIDERATIONS: None apparent.

TITLE:	Add trai	o relieve water	pressure					
DESIGN ELEMENT	Markup	_					OPOSED ALTER	
Description	%	Unit	Qty	Unit Cost \$	TOTAL \$	Qty	Unit Cost \$	TOTAL \$
TRENCHING-PAVEMENT DRAIN (8-6.1)		LF				5,202	38.50	200,277
CL3 ASPH BASE 1.00D PG64-22 (8-6.1)		TON				212	60.00	12,720
TRENCHING-PAVEMENT DRAIN (8-6.2)		LF				4,539	38.50	174,752
CL3 ASPH BASE 1.00D PG64-22 (8-6.2)		TON				185	62.56	11,574
								399,322
					(BASE	LINE LES	SS PROPOSED)	(399,322)

*Note: Costs are rounded to nearest thousand dollars.

COST

TITLE:

Add transverse trench drain bleeders in the existing pavement to relieve water pressure

BACKUP PAVEMENT CALCULATIONS (Section 8-6.10)

	Note: Drains	s to be @45°	' Skew down	grade				
ASPHALT	BASE REFILL C	QUANTITY PI	ER LINEAR FO	OOT OF TREN	<u>CH:</u>			
	Volume of 8	" x 10" Tren	ch per Linear	Foot of Trer	ich =	0.556	CF / LF	(A)
	Asphalt Base	e weight per	CF =			0.073	TON / CF	(B)
	Asphalt Base	e Quantity pe	er LF of Tren	ch =	(A) x (B) =	0.0407	TON / LF	(D)
			IT	EM NO. 8-6	.10			
<u>TRENCH L</u>	<u>ENGTH:</u>							
				# of Drains	Trench			
	Begin	End	Segment	@ 500'	Length per	Total Trench		
Location	Station	Station	Length (LF)	Intervals	Drain (LF)	Length (LF)		
LT	104+03	356+00	25197	51	51	2601		
RT	104+03	356+00	25197	51	51	2601		
					TOTAL =	5202		
ASPHALT	BASE FOR REF	ILL QUANTI	<u>TY:</u>					
	Quantity = A	sphalt quant	tiy rate (Tons	s/LF) x Trench	Length			
		0.0407		5202		212	TONS	

TITLE:

Add transverse trench drain bleeders in the existing pavement to relieve water pressure

BACKUP PAVEMENT CALCULATIONS (Section 8-6.20)

	T TRENCH DR Note: Drains		Skow down	grado				
	Note. Drains	10 06 @43		siaue				
λςρηνιτι	BASE REFILL Q				СН			
				Foot of Tren		0.556	CF/LF	(A)
	Asphalt Base		•			0.073	TON / CF	(B)
		neight per				0.075		(5)
	Asphalt Base	Quantity p	er LF of Tren	ch =	(A) x (B) =	0.0407	TON / LF	(D)
			IT	EM NO. 8-6	.20			1
TRENCH L	ENGTH:							
				# of Drains	Trench			
	Begin	End	Segment	@ 500'	Length per	Total Trench		
Location	Station	Station	Length (LF)	Intervals	Drain (LF)	Length (LF)		
LT	3165+72	3399+02	23330	47	51	2397		
RT	3165+72	3286+50	12078	25	51	1275		
							Truck	
	3286+50	3388+00	10150	21	34	714	lane area	
RT				1				
RT RT	3388+00	3399+02	1102	3	51	153		
RT RT	3388+00	3399+02	1102	3		l		
	3388+00	3399+02	1102	3	51 TOTAL =	4539		
RT				3		l		
RT	3388+00 BASE FOR REF			3		l		
RT	BASE FOR REF	ILL QUANTI	TY:	3 s/LF) x Trench	TOTAL =	l		

VALUE ENGINEERING ALTERNATIVE 6 Kentucky Transportation Cabinet I-75 Widening, MP 55.3 to MP 60.1, Item No. 08-0006.10

I-75 Widening, MP 60.1 to MP 64.5, Item No. 08-0006.20 **Rockcastle County**

TITLE:

Add transverse trench drain bleeders in the existing pavement to relieve water pressure

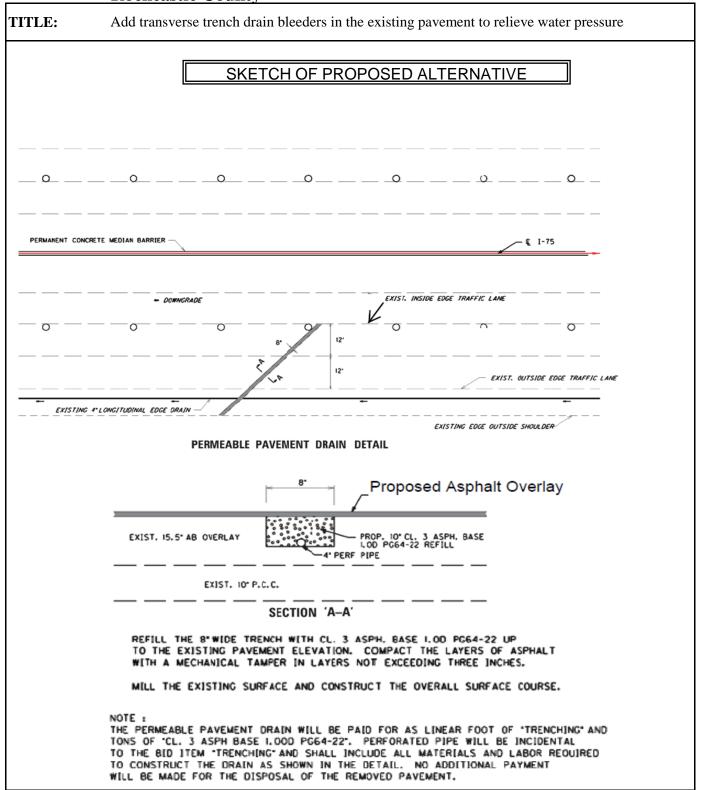
Assumptions

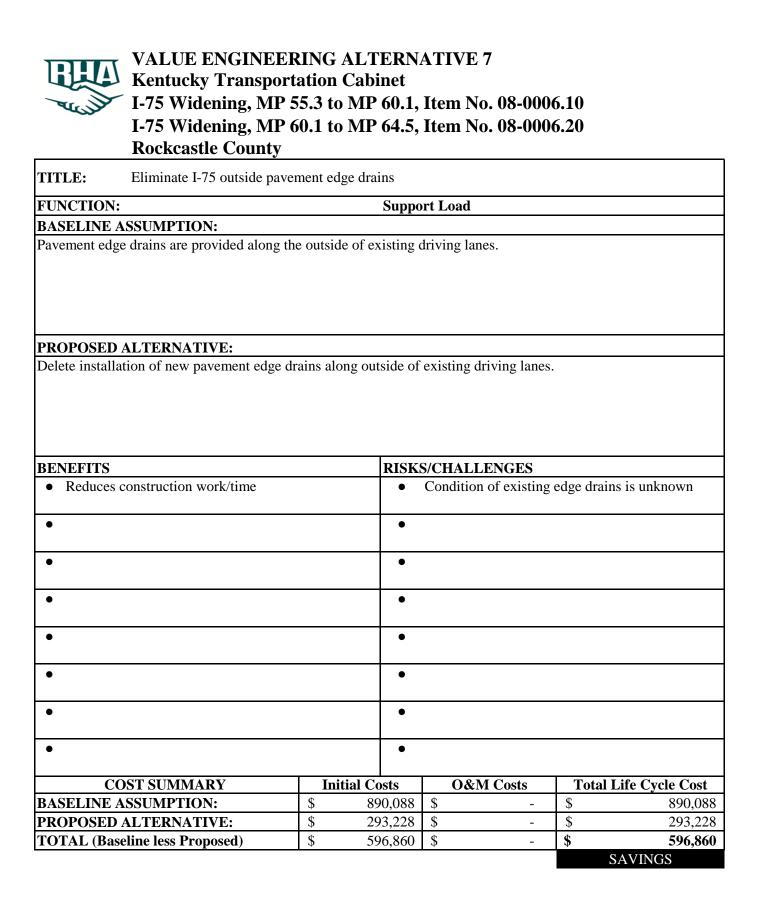
Interest/Discount Rate (%): 3.5% Economic Life (yrs): 10

LIFE CYCLE COST ANALYSIS

Salva	ge & Replacement Costs		Baseline As	sumption	Proposed Alternative		
Item	Description	Yr	Est Cost	Pres Worth	Est Cost	Pres Worth	
1							
2							
3							
4							
5							

Total Salvage & Replacement Costs


	al Costs (pres worth calculated over 10 yrs)	Baseline As	sumption	Proposed Alternative		
Item	Description	Est Cost	Pres Worth	Est Cost	Pres Worth	
1	Pavement Repair	76,000	632,062	38,000	316,031	
2						
3						
4						
5						
Total	Annual Costs	76,000	632,062	38,000	316,031	


SUMMARY	Baseline Present Worth	Proposed Present Worth
Total Present Worth		
(salvage+annual pres worth)	632,000	316,000
DESULTS (Proposed loss baseline)		

RESULTS (Proposed less baseline)

Notes: 1) Total Present Worth is rounded to the nearest thousand dollars, 2) Initial costs are covered in the Detail sheet.

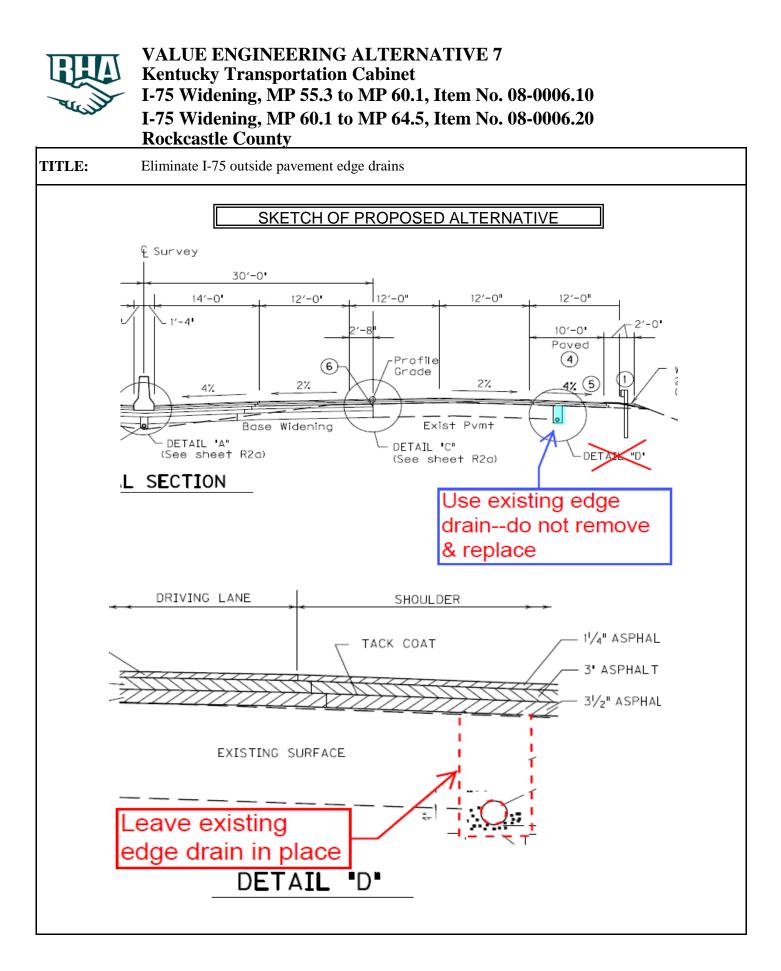
TITLE: Eliminate I-75 outside pavement edge drains

DISCUSSION/JUSTIFICATION:

Baseline plans require installation of new pavement edge drains on the outside of the existing driving lanes, in both directions, prior to pavement overlay. These are at the same location as the existing pavement edge drains which were installed during pavement rehabilitation projects from 2012 to 2014: Contract ID 121028, NB MP 55.7 - MP 58.9 (2012); Contract ID 121046, SB MP 55.7 - MP 58.9 (2013): and Contract ID 141035, MP 58.9 - MP 65.2 (2014). Since these existing edge drains are relatively new, there is no need to remove and reinstall new drains.

IMPLEMENTATION CONSIDERATIONS:

Implementation of this proposed alternative requires video inspection of the existing edge drain system to determine if any sections are not functioning properly and need repair or replacement.


TITLE:	Eliminat	e I-75 o	utside pav	vement edge drai						
DESIGN ELEMENT	Markup	arkup BASELINE ASSUMPTION					PROPOSED ALTERNATIVE			
Description	%	Unit	Qty	Unit Cost \$	TOTAL \$	Qty	Unit Cost \$	TOTAL \$		
PERFORATED PIPE-4 INCH (8-6.1)	70	LF	55,480	6.18	342,866	20,006	6.18	123,63		
INSPECT & CERTIFY EDGE DRAIN SYSTEM (8- 6.1)		LS	1	20,000.00	20,000	2	20,000.00	40,000		
PERFORATED PIPE-4 INCH (8-6.2)		LF	55,800	9.09	507,222	9,856	9.09	89,591		
INSPECT & CERTIFY EDGE DRAIN SYSTEM (8- 6.2)		LS	1	20,000.00	20,000	2	20,000.00	40,000		
					890,088			293,228		
					(BAS	SELINE LES	SS PROPOSED)	596,860		
*Note: Costs are rounde	d to neare	est thous	sand dolla	rs.				SAVINGS		

TITLE:	Elimina	te I-75 outside pa	vement edge drain	ns					
		BACKL	IP CALCULAT	IONS - 8-6.10					
FLIMI		MENT EDGE DR	AINS ON OUTSI	DF OF FXISTING D	RIVING LANES				
	ELIMINATE PAVEMENT EDGE DRAINS ON OUTSIDE OF EXISTING DRIVING LANES ITEM NO. 8-6.10								
PAVEN	MENT EDGI	E DRAIN REDUC							
Locati	ion	Begin Station	End Station	Segment Length (LF)					
LT		104+03	356+00	25197					
RT		104+03	356+00	25197					
	Dec	duct Bridge leng		-228					
			TOTAL Eliminated =	50166					
		from Estimate	Original =	55480					
			Remaining =	5314					

TITLE:	Eliminate	I-75 outside pav	ement edge drai	ns						
		BACKUP CALCULATIONS - 8-6.20								
										
		ITEM NO	D. 8-6.20							
	PAVEMENT EDG	E DRAIN REDUC	TION LENGTH:							
	Location	Begin Station	End Station	Segment Length (LF)						
	LT	3165+72	3399+02	23330						
	RT	3165+72	3286+50	12078						
	RT (Truck Lane) will need new									
	edge drain	3286+50	3388+00	0						
	RT	3388+00	3399+02	1102						
	Dec	duct Bridge lengt		-716						
			TOTAL Eliminated=	35794						
		from Estimate	Original =	55800	LF					
			Remaining =	20006	LF					

VALUE ENGINEERING ALTERNATIVE 8 Kentucky Transportation Cabinet 1-75 Widening, MP 55.3 to MP 60.1, Item No. 08-0006.10 1-75 Widening, MP 60.1 to MP 64.5, Item No. 08-0006.20 Rockcastle County TITLE: Add bid item for radar speed signs to reduce speed during construction FUNCTION: Maintain Traffic BASELINE ASSUMPTION: The construction zone will have warning signs for the upcoming construction zone and for the speed limit in the construction zone.

PROPOSED ALTERNATIVE:

Place a radar speed sign before the construction zone on the I-75 northbound and I-75 southbound to reduce driver speeds.

BENEFITS		RISK	RISKS/CHALLENGES					
• Reduces driver speeds		•	None apparent					
Protects workers		•						
Reduces crashes		•						
•		•						
•		•						
•		•						
•		•						
•		•						
•		•						
COST SUMMARY	Init	ial Costs	O&M Costs	Total Life	Cycle Cost			
BASELINE ASSUMPTION:	\$	-	\$ -	\$	-			
PROPOSED ALTERNATIVE:	\$	7,400	\$ -	\$	7,400			
TOTAL (Baseline less Proposed)	\$	(7,400)	\$ -	\$	(7,400)			
· · · · · · · · · · · · · · · · · · ·	•	~ * /	•	CC	DST			

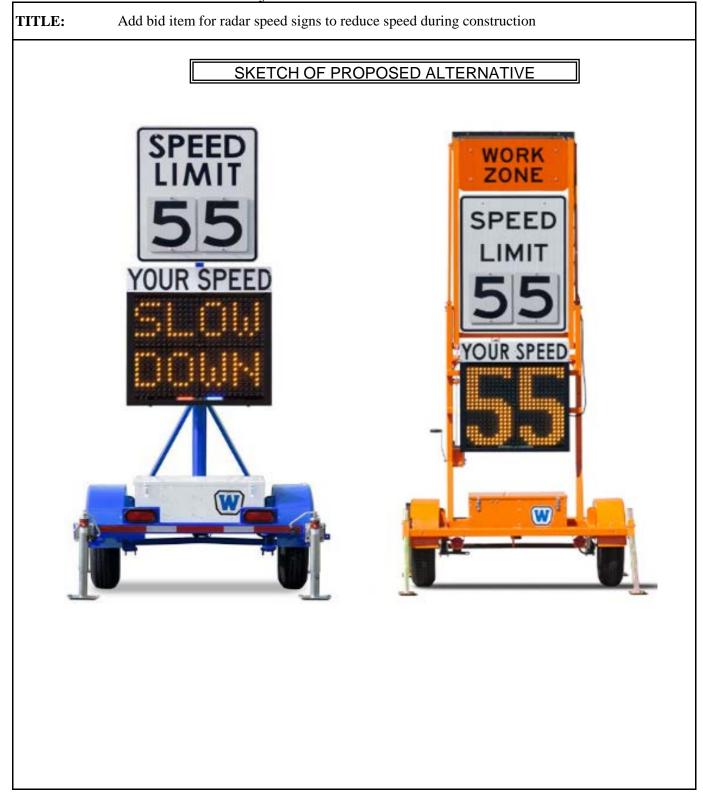
65

TITLE:

Add bid item for radar speed signs to reduce speed during construction

DISCUSSION/JUSTIFICATION:

I-75 is a major North-South highway in the Eastern United States, and this portion of the corridor is located in a hilly rural location, where the posted speed limit is 70 mph. Therefore, there will be a consistent flow of vehicles that will be driving at or above the speed limit. In addition, during construction there will be several lane changes, including reducing I-75 to one lane at night, and other construction related issues. Using radar speed signs to warn motorists when they are speeding may reduce the running speeds in the work zone. Therefore, the radar speed signs are needed to protect workers from incoming vehicles.


IMPLEMENTATION CONSIDERATIONS:

The radar speed signs should be placed in advance of the construction zone or merging zone just after the beginning of the reduced speed zone. This allows drivers to slow down to the construction zone speed limit, but still should not be too far in advance that drivers ignore it or speed back up again.

TITLE:	Add bid item for radar speed signs to reduce speed during construction								
DESIGN ELEMENT	Markup		BASE	LINE ASSUMPT	PRO	POSED ALTER	NATIVE		
Description	%	Unit	Qty	Unit Cost \$	TOTAL \$	Qty	Unit Cost \$	TOTAL \$	
RADAR SPEED SIGN		EA				2	3,700.00	7,400	
								7,400	
					(BASE	LINE LES	S PROPOSED)	(7,400)	
*Note: Costs are round	ded to near	est thou	isand dol	lars.				COST	

	VALUE ENGINEE Kentucky Transpor I-75 Widening, MP	tation Cabi	net		006-10	
	I-75 Widening, MP Rockcastle County		,			
TITLE:	Extend lane closure in adva	ance of the proj	ect			
FUNCTION:		Ν	Iaintai	n Traffic		
	SSUMPTION:					
	nce of Traffic Plans call for s setting temporary barrier wal		Usures j			
	ALTERNATIVE: osure beyond MUTCD minir	mums to group	drivers	in advance of the w	orksite.	
BENEFITS			RISKS	S/CHALLENGES		
	affects traffic flow by more		•	Work items extend	beyond construction	on limits
distributin reducing	ng the "bottleneck," thus pot back-ups	entially			•	
• Reduces of	crash potential near work zon	ne	•	Increases contracto	r daily maintenance	e
Reduces of	crash potential near work zon driver frustration of two lanes same time		•	Increases contracto	r daily maintenance	e
• Reduces of one at the	driver frustration of two lanes		•	Increases contracto	r daily maintenance	e
• Reduces of one at the	driver frustration of two lanes		• • • •	Increases contracto	r daily maintenance	e
• Reduces of one at the	driver frustration of two lanes		•	Increases contracto	r daily maintenance	e
• Reduces of one at the	driver frustration of two lanes		• • • •	Increases contracto	r daily maintenance	e
 Reduces of one at the 	driver frustration of two lanes		• • • • • • • • •	O&M Costs	r daily maintenance	
Reduces of one at the one at the one at the one at the one of	Iriver frustration of two lanes same time DST SUMMARY SSUMPTION:	s merging into	• • • • • •	O&M Costs \$ -	Total Life C	ycle Cost
Reduces of one at the one at	driver frustration of two lanes same time DST SUMMARY	s merging into s merging into Initial Co \$ \$	• • • • • • • • •	O&M Costs	Total Life C	

TITLE: Extend lane closure in advance of the project

DISCUSSION/JUSTIFICATION:

Often, there are long queues resulting from lane closures on the Interstate. For Section 8-6.02, this particular location (the southbound lanes on the north end of the project) presents a situation where traffic will be transitioned from three lanes to one lane during the placement of the temporary barrier wall. For Section 8-6.01, both ends of the project will be at times transitioned from three lanes to one lane during the placement of the lanes to one lane during the placement of the south at times one lane is required to allow for a lane closure.

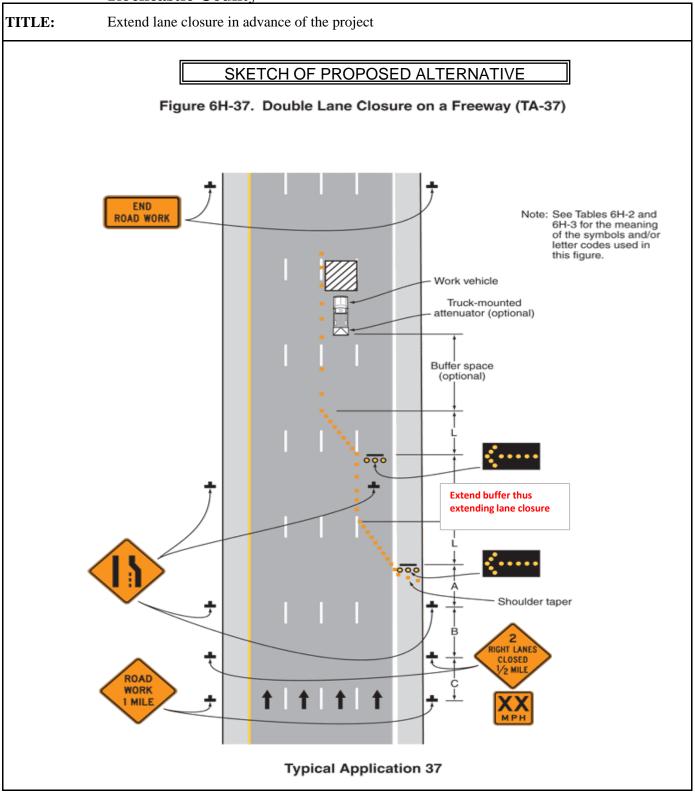
If one of the lanes on the project is closed well in advance of the project limits when three lanes exist on the adjoining projects, traffic would have time to be "calmed" before having to merge into one lane immediately prior to the project. This circumstance is unique to the project ends where it ties into an existing three lanes.

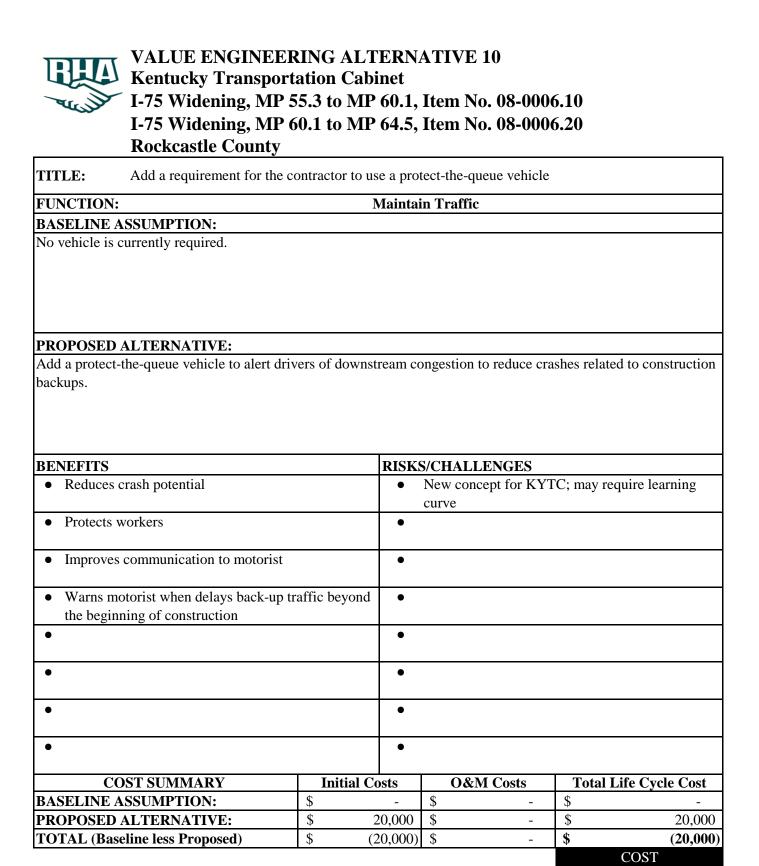
Although there would be a slight cost increase by having to add additional traffic control devices (i.e., traffic delineators such as barrels), the benefits of potentially shorter back-ups and fewer crashes could far outweigh the additional cost to the project.

IMPLEMENTATION CONSIDERATIONS:

To implement this alternative, there would be a need to have the third lane closed well in advance of the one-lane section.

The barrels could be left in place on the outside edges of existing lanes throughout the project construction period, allowing normal transition from a three-lane section to a two-lane section.


To accomplish the longer transition area, the project would need to account for additional TCD (barrels) and the assumption would be approximately an additional one-half mile of construction limits.



TITLE:	Extend lane closure in advance of the project									
DESIGN ELEMENT	Markup		BASE	LINE ASSUMPT	ION	PRO	OPOSED ALTER	NATIVE		
Description	%	Unit	Qty	Unit Cost \$	TOTAL \$	Qty	Unit Cost \$	TOTAL \$		
ADDITIONAL BARRELS		EA				40	50.00	2,000		
								2,000		
					(BASE	LINE LES	S PROPOSED)	(2,000)		
*Note: Costs are round	ed to near	rest thou	isand do	lars.				COST		

71

TITLE: Add a requirement for the contractor to use a protect-the-queue vehicle

DISCUSSION/JUSTIFICATION:

Extensive traffic backups are expected for this stretch of I-75. When the contractor will have to close a lane in order to set-up temporary concrete barriers, back-ups may extend for miles. These long back-ups have the potential to result in severe crashes, due to the possibility of being encountered before drivers see the advance warning signs.

If a truck equipped with an attenuator and changeable message sign unit is located beyond the traffic queue, drivers have an additional warning of the hazard ahead.

IMPLEMENTATION CONSIDERATIONS:

None apparent.

TITLE:	Add a re	equireme	ent for th	e contractor to	use a protect-t	he-queue	vehicle	
DESIGN ELEMENT	Markup		BASEI	LINE ASSUMPT	ION	PRO	OPOSED ALTER	NATIVE
Description	%	Unit	Qty	Unit Cost \$	TOTAL \$	Qty	Unit Cost \$	TOTAL \$
PROTECT-THE-QUEUE VEHICLE		EA				1	20,000.00	20,000
								20,000
					(BASE	LINE LES	S PROPOSED)	(20,000)
*Note: Costs are round	led to near	rest thou	sand dol	lars.				COST

TITLE:

Add a requirement for the contractor to use a protect-the-queue vehicle

TITLE:

Add a requirement for the contractor to use a protect-the-queue vehicle

PROPOSED ALTERNATIVE - SPECIFICATION (2 pages attached)

<u>S T A T E</u>

<u>O F</u>

<u>TENNESSEE</u>

January 1, 2015

SPECIAL PROVISION

REGARDING

TRAFFIC OUEUE PROTECTION

Description: When construction activities are performed on control-access or limited access facilities, the Contractor shall pursue efforts for the protection of traffic queues caused by project operations and clearly demonstrate adequate good faith efforts as described herein. The queue protection truck is expected to alert motorists (inside or outside of project limits) of all stopped traffic caused by construction activities or incidents within the project limits.

Equipment: The contractor shall provide a minimum of one (1) queue protection truck for each traveling direction where traffic flow is reduced. One (1) additional queue protection truck shall be onsite in reserve. The system deployed must fulfill the following minimum requirements:

- 1. A truck mounted attenuator that meets or exceeds NCHRP TL-3 requirements.
- 2. Four (4) round yellow strobe lights (with auto-dimmers) positioned rear facing
 - Two (2) mounted under rear bumper
 - Two (2) mounted at cab level
- 3. One (1) standard cab mounted light bar.
- 4. A truck mounted message board with a minimum of 3 Lines and 8 Characters per line.
- 5. Four Hour National Traffic Incident Management (TIM) Responder Training for Queue Truck Operators.

<u>Maintenance of Traffic</u>: The following procedures will be followed until free flow traffic conditions are present:

- The queue protection truck shall be positioned no further than $\frac{1}{2}$ mile upstream from the back of the slow moving traffic.
- The queue protection truck shall be positioned on the shoulder and clear of the traveled way so as not to impede traffic.
- The queue protection truck shall relocate as needed to maintain the minimum ¹/₂ mile distance from the back of the slow moving traffic.
- The 2nd queue protection truck shall be held in reserve, on site, and

support the primary truck if conditions prevent repositioning by reverse. This truck shall not be paid for idle time.

- Trucks shall be kept in project limits during planned lane closures and other project activities expected to cause a queue.
- Queue length estimates and traffic conditions shall be reported to the TDOT District Operations Supervisor or designee at the following periods:
 - 1. At 30 minute intervals
 - 2. At significant changes
 - 3. When free flow traffic is achieved

The queue protection truck shall be mobilized as directed by the District Operations Supervisor or designee and shall be de-mobilized when free flow conditions are reached.

Basis of Payment: The queue protection truck, all related equipment, and labor shall be paid for as Item No. 712-08.10, per hour. All costs are to be included in the price bid. Idle time shall not be paid.

VALUE ENGINEERING ALTERNATIVE 11 Kentucky Transportation Cabinet I-75 Widening, MP 55.3 to MP 60.1, Item No. 08-0006.10 I-75 Widening, MP 60.1 to MP 64.5, Item No. 08-0006.20 Rockcastle County TITLE: Add rumble strips prior to construction zone FUNCTION: Maintain Traffic

BASELINE ASSUMPTION:

The construction zone will have warning signs for the upcoming construction zone and for the speed limit in the construction zone.

PROPOSED ALTERNATIVE:

Place rumble strips before the beginning of the construction zone to reduce driver speeds. There will be several sets of rumble strips for the northbound and several for the southbound traffic.

BENEFITS		RISKS	S/CHALLENGE	S	
• Protects workers due to a reduction prior to the beginning of the constru		st •	Could increase m	notorcycle crasi	nes
• Reduces crashes due to a reduction prior to the beginning of the constru		t •	Not typically use	d on Interstates	3
• Alerts drivers of possible downstrea	am congestio	on •			
•		•			
•		•			
•		•			
•		•			
•		•			
COST SUMMARY	Init	ial Costs	O&M Costs	s Total	Life Cycle Cost
BASELINE ASSUMPTION:	\$	-	\$	- \$	-
PROPOSED ALTERNATIVE:	\$	12,000	\$	- \$	12,000
TOTAL (Baseline less Proposed)	\$	(12,000)	\$	- \$	(12,000)

TITLE:

Add rumble strips prior to construction zone

DISCUSSION/JUSTIFICATION:

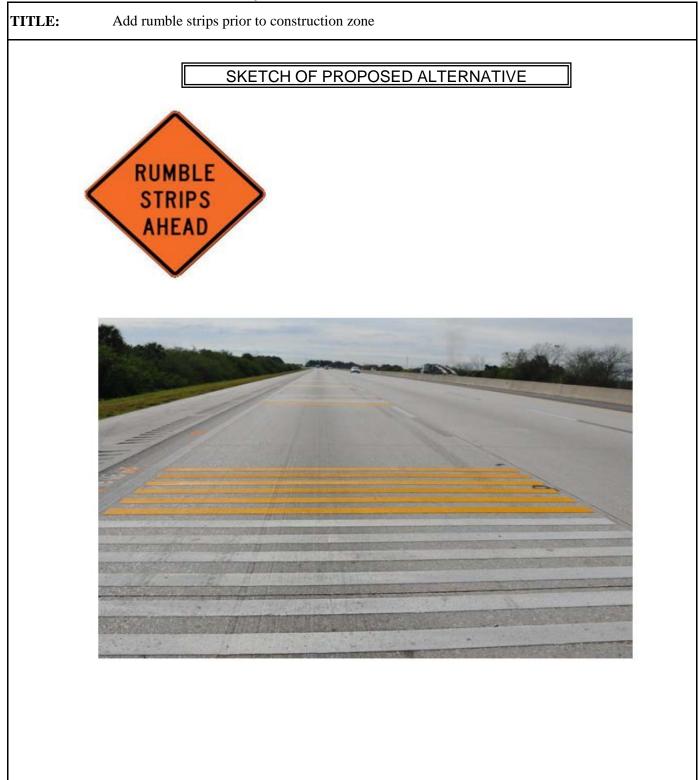
I-75 is a major North-South highway in the Eastern United States, with this project being located in a hilly rural location, where the posted speed limit is 70 mph. Therefore, there will be a consistent flow of vehicles that will be driving at or above the speed limit. In addition, during construction there will be several lanes changes, including reducing I-75 to one lane at night, and other construction related issues. Using rumble strips to reduce vehicles speeds through the work zone may give drivers a good audio cue that they are about to enter a work zone and need to slow down.

IMPLEMENTATION CONSIDERATIONS:

The roadway should be cleaned before the rumble strips are installed.

The rumble strips should be placed well in advance to allow the drivers to slow down, but should not be too far in advance that drivers ignore them or speed back-up again.

The designer should reference the MUTCD, Guidance for the Use of Temporary Rumble Strips in Work Zones, and other guidance or document for the spacing and amount of rumble strips to reduce the drivers speed form 70 mph to the construction zone speed limit. This recommendation has included the cost for the installation of 10 rumbles strips for northbound and southbound I-75. In addition, the following guidance for motorcycles should be followed:


- Well lit signs warning motorcyclists that rumbles strips are coming up.
- The rumble strips should be visible during day time and night time

• The distance between the rumble strips should be wide enough so that one motorcycle tire is on a rumble strip at a time.

TITLE:	Add run	ble strij	ps prior t	o construction	zone			
DESIGN ELEMENT	Markup		BASE	LINE ASSUMPT		PRO	POSED ALTER	NATIVE
Description	%	Unit	Qty	Unit Cost \$	TOTAL \$	Qty	Unit Cost \$	TOTAL \$
RUMBLE STRIPS		EA				20	600.00	12,000
	+							
								12,000
	1 1/	1	1 1 1	1	(BASE	LINE LES	S PROPOSED)	(12,000)
*Note: Costs are round	ied to near	est thou	sand dol	lars.				COST

TITLE: Rebuild existing wall at northbound exit ramp 59 interchange (Section No. 08-0006.10)

FUNCTION:

Separate Grade

BASELINE ASSUMPTION:

Current design does not indicate whether the existing wall is to remain as is, modified, or replaced.

PROPOSED ALTERNATIVE:

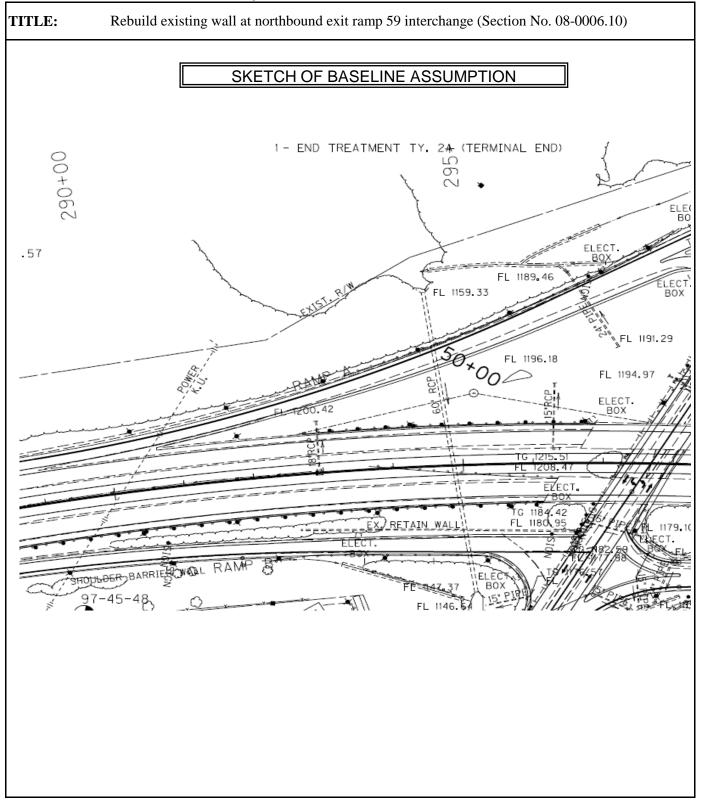
Replace 425 feet of existing retaining wall with same length of reinforced concrete retaining wall. Gabion or gravity walls could be considered for aesthetic or economic reasons depending on site conditions determined during further evaluation.

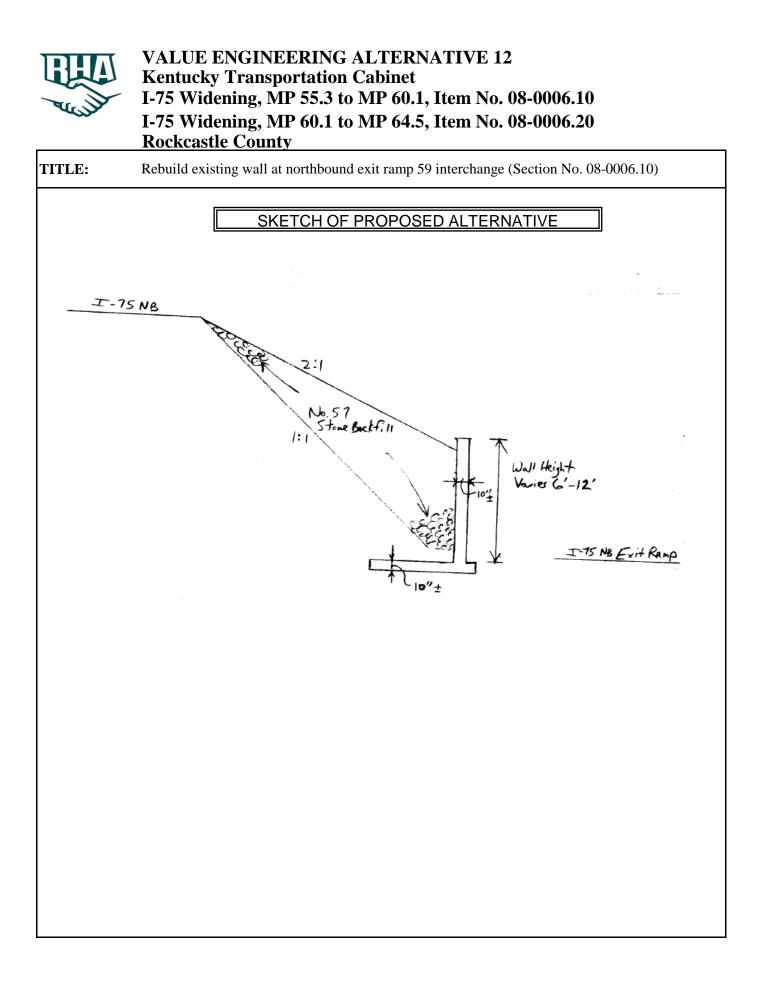
BENEFITS		RISKS	RISKS/CHALLENGES					
• Lowers future maintenance			Portion of existing ra temporarily closed	amp may	need to be			
 Improves sight distance if wall is m meet intersection sight distance crit 		to •						
•		•						
•		•						
•		•						
•		•						
•		•						
COST SUMMARY	Ini	tial Costs	O&M Costs	Tota	Life Cycle Cost			
BASELINE ASSUMPTION:	\$	300,000	\$-	\$	300,000			
PROPOSED ALTERNATIVE:	\$	711,809	\$ -	\$	711,809			
TOTAL (Baseline less Proposed)	\$	(411,809)	\$ -	\$	(411,809)			
	-				COST			

TITLE: Rebuild existing wall at northbound exit ramp 59 interchange (Section No. 08-0006.10)

DISCUSSION/JUSTIFICATION:

The age, type and condition of the current wall was not known at the time of the VE study. Other structures are being replaced on the project. Replacement of this wall will allow maintenance costs to be deferred further into the future. The termination point of the wall may be able to be terminated further to the south to meet intersection sight distance criteria.


IMPLEMENTATION CONSIDERATIONS:


None apparent.

TITLE:	Rebuild existing wall at northbound exit ramp 59 interchange (Section No. 08									
DESIGN ELEMENT	Markup		BASEL	INE ASSUMPTI	ON	PR	OPOSED ALTER	RNATIVE		
Description	%	Unit	Qty	Unit Cost \$	TOTAL \$	Qty	Unit Cost \$	TOTAL \$		
REINFORCED CONCRETE RETAINING WALL		SF				10,450	56.55	590,94		
EXCAVATION		CY				2,100	4.35	9,13		
TRENCH EXCAVATION		СҮ				189	29.61	5,59		
NO. 57 STONE BACKFILL		TON				2,850	33.73	96,13		
TRAFFIC CONTROL		LS				1	10,000.00	10,00		
RETAINING WALLS		LS	1	300,000.00	300,000					
					300,000			711,80		
					(BASE	LINE LES	SS PROPOSED)	(411,809		
*Note: Costs are round	ed to near	est thou	sand dol	lars.				COST		

TITLE: Reduce the number of lanes on Ramp B from two to one

FUNCTION:

Traffic

BASELINE ASSUMPTION:

Current design would construct a two lane northbound on-ramp that narrows to one lane over the dam, transitioning to a truck climbing lane through the up-grade.

PROPOSED ALTERNATIVE:

The proposed design would eliminate one of the lanes on the ramp, but the single lane would still be carried over the dam and up the hill.

BENEFITS		RISK	S/CH	ALLENGES		
 Allows ramp to be tapered into I-75 reducing construction on the dam 	before the d		Traff reflect I-75 tramp	ic forecast is dat ct current and fu	ture cone nes are re t change	easonable, but 1998 d much
•		•				
•		•				
•		•				
COST SUMMARY	Initia	l Costs		O&M Costs	Tota	al Life Cycle Cost
BASELINE ASSUMPTION:	\$	416,167	\$		\$	416,16
PROPOSED ALTERNATIVE:	\$	202,167	\$	-	\$	202,16
TOTAL (Baseline less Proposed)	\$	214,000	\$	-	\$	214,00
						SAVINGS

TITLE: Reduce the number of lanes on Ramp B from two to one

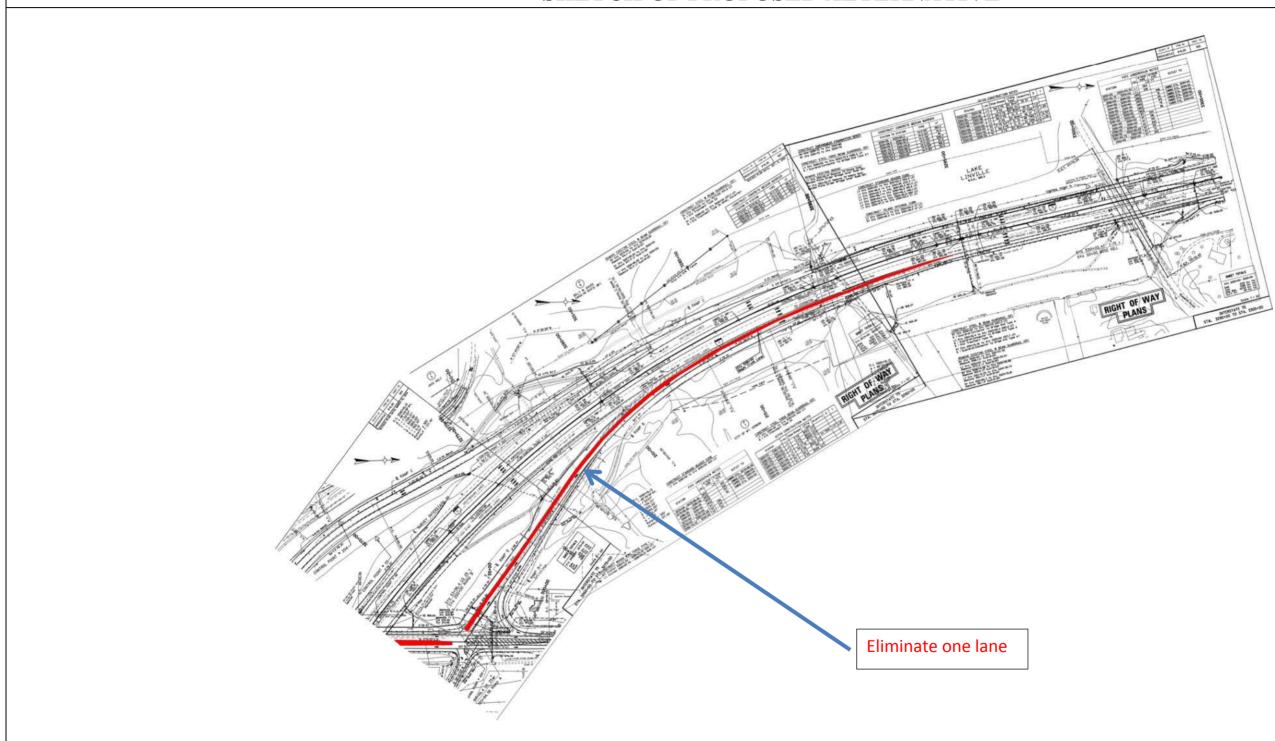
DISCUSSION/JUSTIFICATION:

The 1998 traffic forecast shows 2022 ramp volumes of 780 in the AM peak and 1,160 in the PM peak. More recent counts conducted in 2013 show a peak volume of 340 vehicles per hour. One lane should be able to carry this amount of traffic for the foreseeable future, as little growth has occurred on the ramps since the original 1998 traffic forecast. The 1998 ADT on the ramp was reported as 4,500. The 2013 counted ADT was 4,200.

This design would still carry the single ramp lane over the Lake Linville dam and transition to a truck climbing lane north of the dam.

IMPLEMENTATION CONSIDERATIONS:

The 2013 counts were made as Lake Cumberland was being raised back to its normal level. Traffic to the lake has increased significantly since this time. Friday to Sunday counts on Interstate 75 show the highest hourly volumes of the week. Summer, weekend volumes on this ramp may be considerably higher than what was counted in 2013. Construction to widen Interstate 75 over the dam would still occur. It may be necessary to take a new traffic count and develop a new forecast prior to changing the existing design.


TITLE:	Reduce the number of lanes on Ramp B from two to one									
DESIGN ELEMENT	Markup	arkup BASELINE ASSUMPTION					PROPOSED ALTERNATIVE			
Description	%	Unit	Qty	Unit Cost \$	TOTAL \$	Qty	Unit Cost \$	TOTAL \$		
Asphalt Surface 038A	/0	TON	438	99.08	43,398	212	99.08	21,000		
Asphalt Base 1.00 CL4 PG 76-22		TON	1,052	65.00	68,380	509	65.00	33,08		
Asphalt Base 1.00 CL4 PG 64-22		TON	2,980	55.54	165,499	1,443	56.00	80,803		
Drainage Blanket Type II PG 64-22		TON	2,366	25.24	59,725	1,146	25.24	28,929		
Dense Grade Aggregate		TON	4,398	18.00	79,164	2,130	18.00	38,340		
					416,167			202,167		
					(BASE	LINE LE	SS PROPOSED)	214,000		
*Note: Costs are rounde	d to neare	est thous	and dolla	rs.				SAVINGS		

SAVINGS

TITLE: Reduce the number of lanes on Ramp B from two to one

SKETCH OF PROPOSED ALTERNATIVE

TITLE:

E: End ramp taper before the dam at I-75 northbound, Interchange 62

FUNCTION:

Traffic

BASELINE ASSUMPTION:

Current design would construct a two lane northbound on-ramp that narrows to one lane that is carried over the dam, transitioning to a truck climbing lane through the up-grade.

PROPOSED ALTERNATIVE:

The proposed design would eliminate one of the lanes on the ramp (*VE-13, Reduce the number of lanes on Ramp B from two to one*), taper the other lane into Interstate 75 before Lake Linville dam (*VE-14, End ramp taper before the dam at I-75 northbound, Interchange 62*), and then develop a separate truck climbing lane after Lake Linville Dam (*Creative Idea T-03, Add truck climing lane after the dam at northbound I-75*).

NOT RECOMMENDED BY VE TEAM

BENEFITS		RISK	RISKS/CHALLENGES					
• Minimizes disturbances to Lake Lin	ville dam	•		recast is dat rrent and fu		ay not accurately itions		
•		•		asted volun imes haven'		asonable, but 1998 much		
•		•	Weekend	traffic may	be too hig	gh for one lane		
•	•		ore Lake Lir		per northbound on- ; would require			
•		•	Truck clir	nbing lane	will start o	on the grade		
•		•	•	me of RVs nterstate on		s pulling boats		
•		•						
•		•						
COST SUMMARY	Initia	al Costs	O&N	/I Costs	Total	Life Cycle Cost		
BASELINE ASSUMPTION:	\$	1,735,810	\$	-	\$	1,735,810		
PROPOSED ALTERNATIVE:	\$	1,250,034	\$	-	\$	1,250,034		
TOTAL (Baseline less Proposed)	\$	485,776	\$		\$	485,776		
						SAVINGS		

TITLE: End ramp taper before the dam at I-75 northbound, Interchange 62

DISCUSSION/JUSTIFICATION:

This proposal would remove one lane from the dam reducing construction on the dam and changes to the downhill slope.

As with T-01 (*Use single lane on-ramp at I-75 northbound, Interchange 62 Ramp B*), the dated traffic forecast shows 2022 ramp volumes of 780 in the AM peak and 1,160 in the PM peak. More recent counts conducted in 2013 show a peak volume of 340 vehicles per hour. One lane should be able to carry this amount of traffic for the foreseeable future, as little growth has occurred on the ramps since the original 1998 traffic forecast. The 1998 ADT on the ramp was reported as 4,500. The 2013 counted ADT was 4,200.

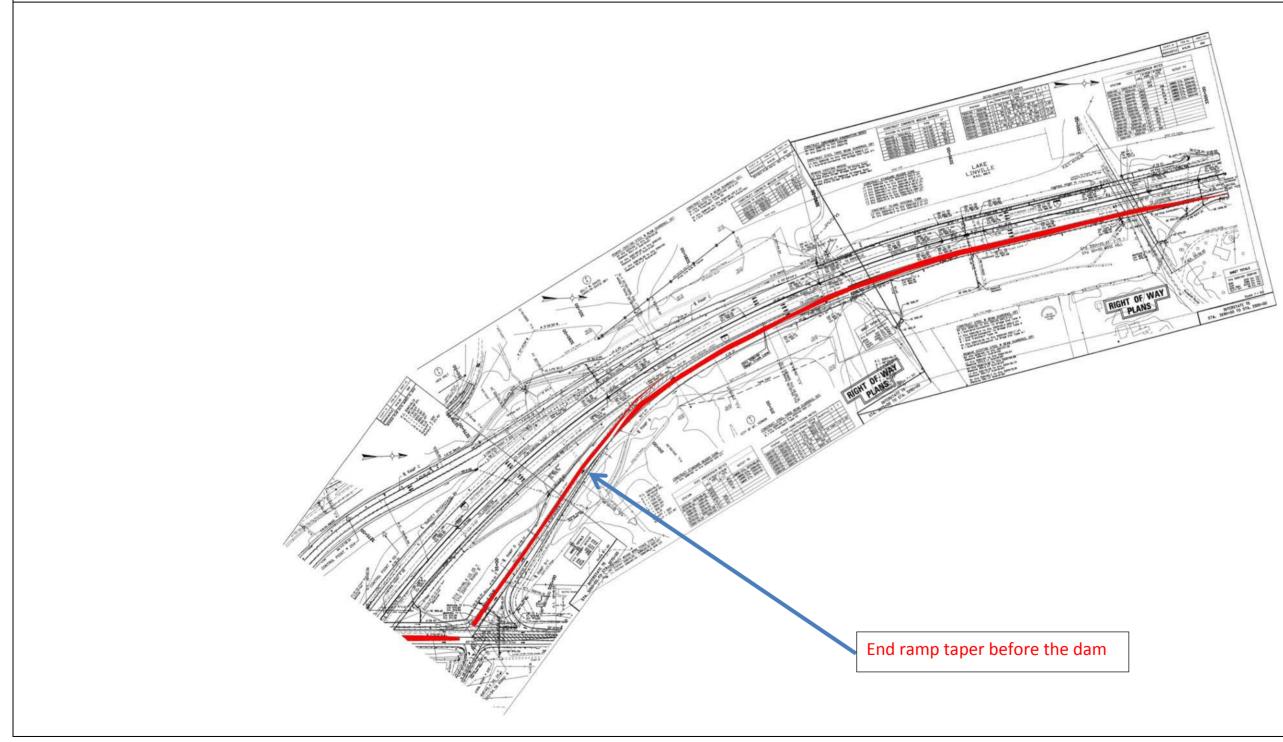
This design would still carry the single ramp lane over the Lake Linville dam and transition to a truck climbing lane north of the dam.

A risk is that the second lane essentially begins the truck climbing lane for a high number of recreational vehicles turning from US 25 onto the ramp. These include RVs and vehicles pulling boats that begin from a standstill, protecting them until they reach interstate speeds.

IMPLEMENTATION CONSIDERATIONS:

There is very limited room to merge the acceleration lane onto Interstate 75 before reaching the Lake Linville dam. The ramp grade and alignment may need to be shifted slightly in order to start the merge as soon as possible. The truck climbing lane would also need to start as soon as possible after passing the Lake Linville Road bridge. Northbound vehicles are on grade after passing this structure. There would be no way to merge the acceleration lane into the interstate before Lake Linville dam without a design exception. With the large number of recreational vehicles and vehicles pulling boats, this shortened merge length would not be desirable. **Upon consideration, the VE team felt, based on this condition, the need to rescind this recommendation.**

TITLE:	End ran	p taper	before th	e dam at I-75 no	orthbound, Inte	erchange	e 62		
DESIGN ELEMENT	Markup		BASEI	LINE ASSUMPTI	ON	PR	OPOSED ALTEH	RNATIVE	
Description	%	Unit	Qty	Unit Cost \$	TOTAL \$	Qty	Unit Cost \$	TOTAL \$	
ASPHALT SURFACE 038A		TON	621	99	61,580	212	99	21,026	
ASPHALT BASE 1.00 CL4 PG 76-22		TON	1,492	65	96,954	509	65	33,104	
ASPHALT BASE 1.00 CL4 PG 64-22		TON	4,226	56	234,709	1,443	56	80,140	
DRAINAGE BLANKET TYPE II PG 64-22		TON	3,356	25	84,718	1,146	25	28,927	
DENSE GRADE AGGREGATE		TON	6,238	18	112,277	2,130	18	38,336	
BRIDGE		EA	1	1,145,572	1,145,572	1	1,048,500.00	1,048,500	
					1,735,810			1,250,034	
					(BASE	LINE LES	SS PROPOSED)	485,776	
*Note: Costs are rounde	ed to near	est thou	sand doll	ars.				SAVINGS	


SAVINGS

TITLE:

End ramp taper before the dam at I-75 northbound, Interchange 62

SKETCH OF PROPOSED ALTERNATIVE

TITLE: Extend island closer to through lane at exit 62 off-ramp C-1 using a painted island

FUNCTION:

Traffic

BASELINE ASSUMPTION:

The intersection of the I-75 southbound exit ramp C-1 to US 25 has a proposed concrete island header curb on the ramp separating right and left turn movements.

PROPOSED ALTERNATIVE:

Paint the proposed channelization island and extend it onto the shoulder area of US25 rather than using a raised concrete island.

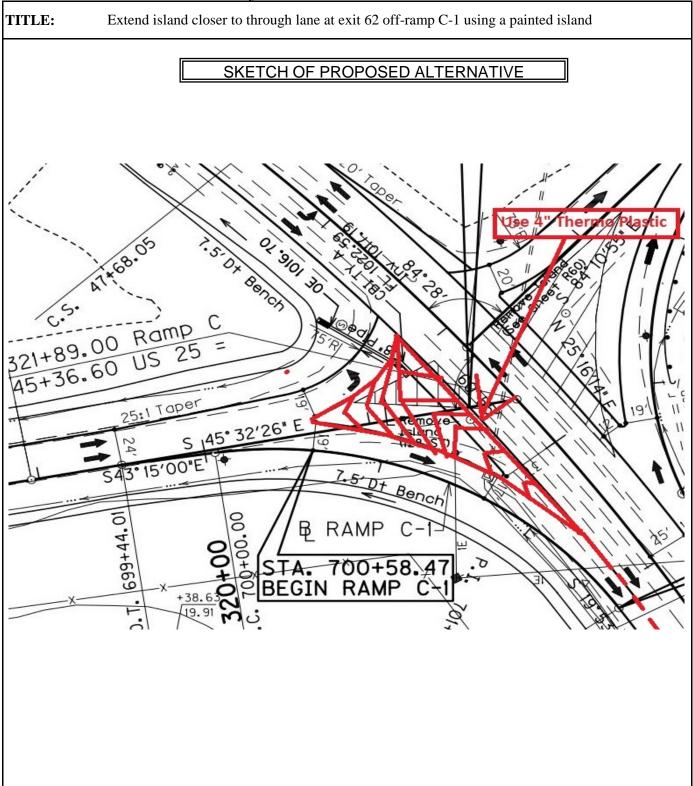
BENEFITS		RISK	S/CHAI	LLENGES		
• Allows for communicating that thro US 25 does not yet have the right to	•			island will no ion as the raise	•	the same degree of
• Reduces chances of sideswipe collis and rear end collisions on the ramp	sions on US 2	5•				
• Reduces congestion on the exit ram	р	•				
•		•				
•		•				
•		•				
•		•				
•		•				
COST SUMMARY	Initia	l Costs	08	&M Costs	Tota	Life Cycle Cost
BASELINE ASSUMPTION:	\$	9,450	\$	-	\$	9,450
PROPOSED ALTERNATIVE:	\$	1,080	\$		\$	1,080
TOTAL (Baseline less Proposed)	\$	8,370	\$	-	\$	8,370
						SAVINGS

TITLE: Extend island closer to through lane at exit 62 off-ramp C-1 using a painted island

DISCUSSION/JUSTIFICATION:

The intersection of the I-75 southbound exit ramp C-1 to US 25 has a proposed concrete island header curb on the ramp ending at the edge of a proposed ten-foot paved shoulder. A second westbound through lane is coming off the C-1 ramp westbound onto US 25 that should be a continuous, non-stop, free flow movement. However, it is the tendency of motorists to want to stop on the ramp to assure they have the right-of-way to continue. This can result in an increase in rear end collisions. Additionally, because of the ten-foot shoulder on US 25, some aggressive drivers have a tendency to want to begin the added lane early as they come through the intersection in order to pass a slower moving car, therefore increasing the chances of sideswipe collisions. Removing the proposed island curb and using thermoplastic road marking paint will allow for hatching off this shoulder area to the white edge line, creating the non-obtrusive barrier to traffic and better relaying to ramp C-1 motorist that it is not a stop condition.

NOTE: This VE proposal, or a combination thereof, could be combined with VE-16 and/or VE-17.


IMPLEMENTATION CONSIDERATIONS:

None apparent.

TITLE:	Extend i	sland cl	oser to th	rough lane at e	xit 62 off-ramj	p C-1 usi	ing a painted is	sland
DESIGN ELEMENT	Markup			INE ASSUMPTI			OPOSED ALTE	
Description	%	Unit	Qty	Unit Cost \$	TOTAL \$	Qty	Unit Cost \$	TOTAL \$
ISLAND HEADER CURB TYPE 2 (01967)		LF	280	33.75	9,450			
PAVE STRIPING- THERMO-4 IN W (6540)		LF				500	2.16	1,080
					9,450			1,080
*Note: Costs are round	led to near	est thou	sand dol	lars.	(BASEI	LINE LES	S PROPOSED)	8,370
								SAVINGS

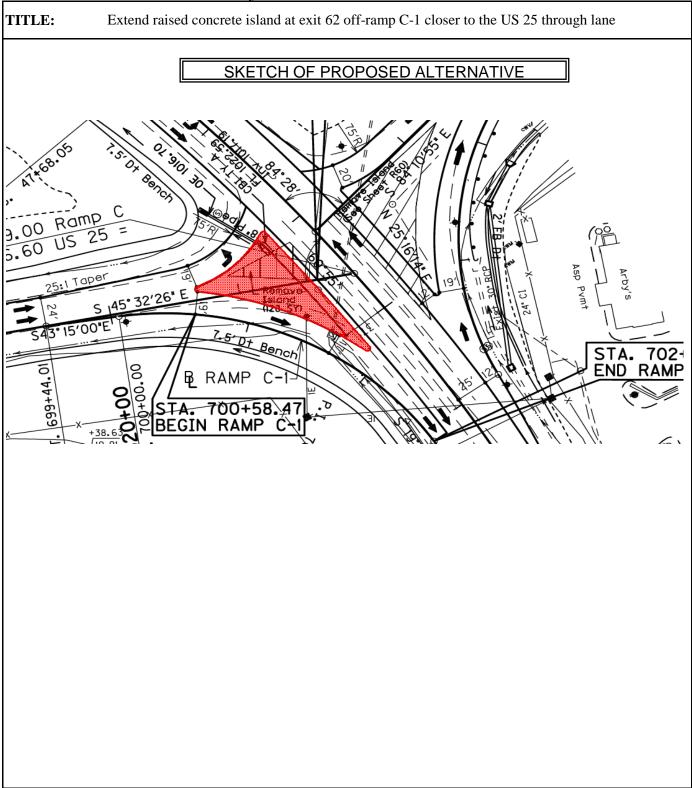
BUA	VALUE ENGINEER Kentucky Transport	ation Cabi	net				
AN THE REAL	I-75 Widening, MP 5 I-75 Widening, MP 6 Rockcastle County		,				
TITLE:	Extend raised concrete island at exit 62 off-ramp C-1 closer to the US 25 through lane						
FUNCTION	:		Tr	affic			
Raised concre	ASSUMPTION: ete island at terminus of I-75 so roximately 12 feet parallel to the		-		eft turn and right turn traffi		
	ALTERNATIVE: island approximately eight fee	et closer to edg	ge of th	e US 25 southbound t	hrough driving lane.		
 BENEFITS Increases delineation/separation to increase motorist comfort for added continuous lane 			C C				
 Reduces congestion on exit ramp 			•		ulder width along US 25		
• Reduces	for added continuous lane	ease motorist	•	southbound	Ilder width along US 25		
Reduces stopping	for added continuous lane congestion on exit ramp crashes related to motorists slo on ramp C-1		•	southbound Additional design for			
Reduces stopping	for added continuous lane congestion on exit ramp crashes related to motorists slo			southbound Additional design for			
Reduces stopping	for added continuous lane congestion on exit ramp crashes related to motorists slo on ramp C-1		•	southbound Additional design for			
 Reduces stopping Reduces 	for added continuous lane congestion on exit ramp crashes related to motorists slo on ramp C-1		•	southbound Additional design for			
 Reduces stopping Reduces 	for added continuous lane congestion on exit ramp crashes related to motorists slo on ramp C-1 potential for side swipes	owing or	• • • • • • • • • • • • • • • • • • • •	southbound Additional design for box inlet	revising location of curb		
 Reduces stopping Reduces <td>for added continuous lane congestion on exit ramp crashes related to motorists slo on ramp C-1 potential for side swipes</td><td>owing or Initial Co</td><td>• • • •</td><td>southbound Additional design for box inlet</td><td>Total Life Cycle Cost</td>	for added continuous lane congestion on exit ramp crashes related to motorists slo on ramp C-1 potential for side swipes	owing or Initial Co	• • • •	southbound Additional design for box inlet	Total Life Cycle Cost		
Reduces stopping Reduces	for added continuous lane congestion on exit ramp crashes related to motorists slo on ramp C-1 potential for side swipes	owing or Initial Co \$ 1	• • • • • • • • • • • • • • • • • • • •	southbound Additional design for box inlet	revising location of curb		

TITLE: Extend raised concrete island at exit 62 off-ramp C-1 closer to the US 25 through lane

DISCUSSION/JUSTIFICATION:

The current right turn from the I-75 exit ramp onto the existing US 25 southbound lane is a non-stop continuous movement. The baseline plan reconstructs this intersection with a larger radius. However, it is the tendency of motorists to want to stop, or slow down significantly on the ramp, as currently happens many times, to assure they have the right of way to continue. This can possibly cause accidents (i.e., rear ends on the ramp). The proposed alternative would extend the raised island into the US 25 southbound shoulder area creating more physical separation through the right, free flow movement into the added US 25 lane. This should provide more comfort to motorists by eliminating the appearance of a merge situation.

NOTE: This VE proposal, or a combination thereof, could be combined with VE-15 and/or VE-17.


IMPLEMENTATION CONSIDERATIONS:

None apparent.

TITLE:	Extend raised concrete island at exit 62 off-ramp C-1 closer to the US 25 throu									
DESIGN ELEMENT	Markup		BASEL	INE ASSUMPTI	ON	PRO	POSED ALTER	NATIVE		
Description	%	Unit	Qty	Unit Cost \$	TOTAL \$	Qty	Unit Cost \$	TOTAL \$		
ISLAND HEADER CURB TYPE 2		LF	288	33.75	9,720	345	33.75	11,644		
DGA BASE		TON	18	18.00	324	25	18.00	450		
ASPHALT SEAL AGGREGATE		TON	7	82.09	575	9	82.09	739		
EMULSIFIED ASPHALT RS-2		TON	0.9	537.20	483	1.2	537.20	645		
					11,102			13,477		
					(BASEI	LINE LESS	PROPOSED)	(2,375)		
*Note: Costs are round	ed to near	est thou	sand doll	ars.				COST		

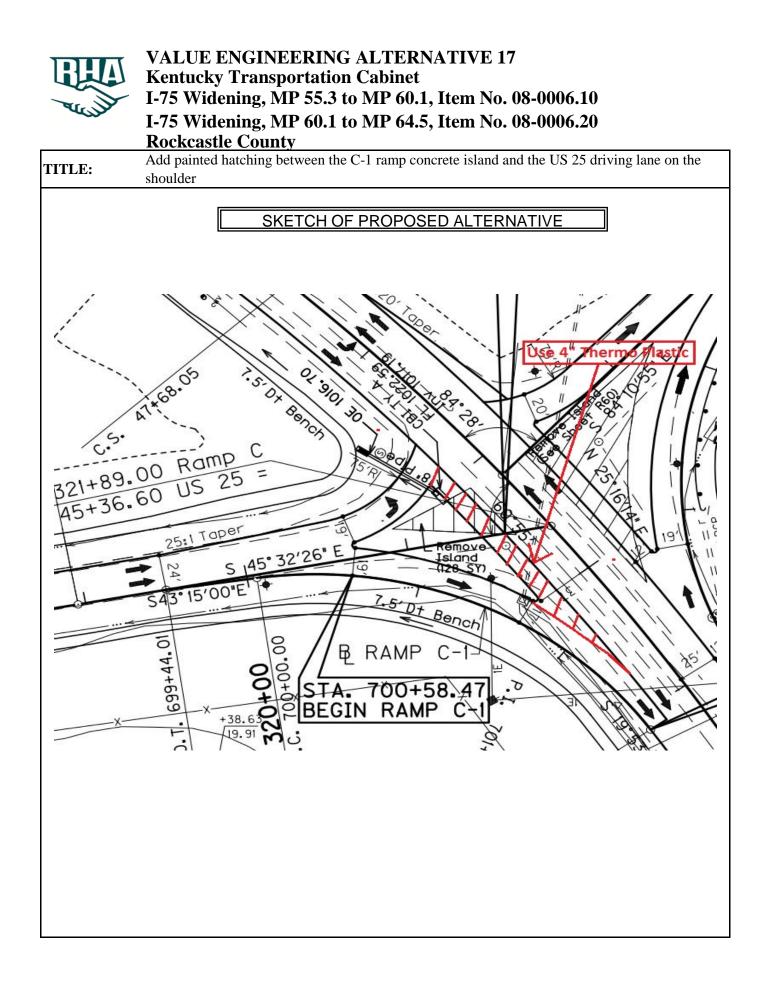
VALUE ENGINEER Kentucky Transport			AT	IVE 17		
I-75 Widening, MP 5		,				
I-75 Widening, MP (50.1 to MP	64.5,	Ite	m No. 08-000	6.20	
Rockcastle County						
TITLE: Add painted hatching betwee	een the C-1 rat	np conc	rete	island and the US	S 25 driving lane on	the
shoulder FUNCTION:		Т.,	affi			
		Ir		e		
BASELINE ASSUMPTION: The intersection of the I-75 southbound exit	t ramp C-1 to]	US 25 c	urre	ntly has a propose	ed concrete island he	eader
curb on the ramp.		05250	unc	intry has a propose	d concrete Island Ik	Jauer
curo on the rump.						
PROPOSED ALTERNATIVE:						
Add flush painted hatching on the shoulder	between the is	sland an	d th	e US 25 westbour	nd driving lane.	
BENEFITS		RISKS	S/CI	HALLENGES		
• Allows for communicating that through	h traffic on	•	No	ne apparent		
US 25 remains in through lane						
• Allows for a more continuous moveme	ent of ramp C-	•				
1's right turn on to the US 25	110.05					
• Reduces chance of sideswipe collision	s on US 25	•				
 and rear-end collisions on the ramp Maintains the functionality of the US 2 	5 shouldar					
• Maintains the functionality of the US 2	25 Shouldel	•				
• Reduces congestion on exit ramps		•				
Sector P						
•		•				
•		•				
•						
•		•				
COST SUMMARY	Initial C	osts		O&M Costs	Total Life Cycl	e Cost
BASELINE ASSUMPTION:	\$	-	\$	-	\$	-
PROPOSED ALTERNATIVE:	\$	486	\$	-	\$	486
TOTAL (Baseline less Proposed)	\$	(486)	\$		\$	(486)
					COST	

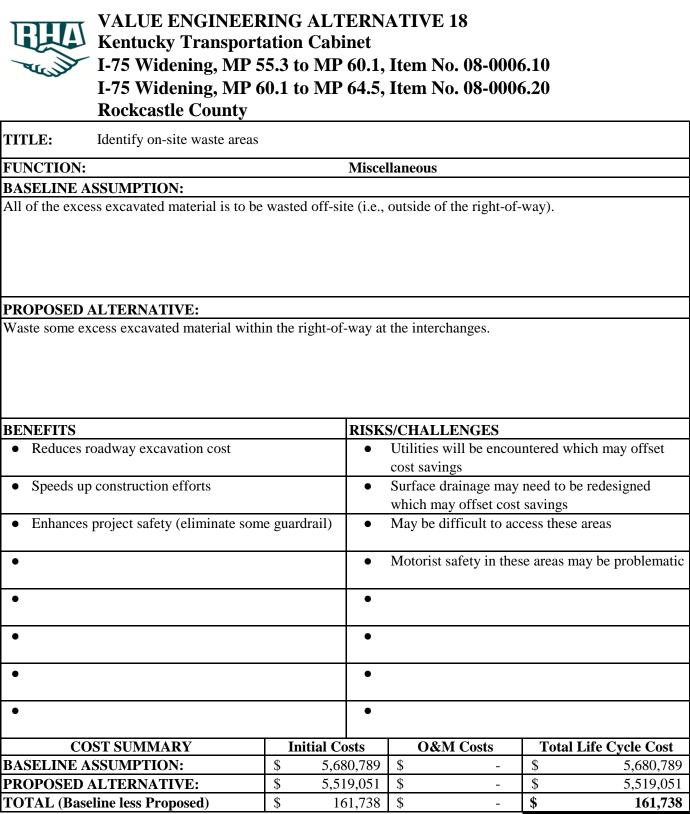
TITLE:

Add painted hatching between the C-1 ramp concrete island and the US 25 driving lane on the shoulder

DISCUSSION/JUSTIFICATION:

The intersection of the I-75 southbound exit ramp C-1 to US 25 currently has a proposed concrete island header curb on the ramp ending at the edge of a proposed ten-foot paved shoulder. A second through westbound lane is proposed coming off the C-1 ramp westbound on US 25 that should be a continuous, non-stop, free flow movement. However, it is the tendency of motorists to want to stop on the ramp to assure they have the right of way before continuing. This can result in an increase in rear-end collisions and backups. Additionally, because of the ten-foot shoulder on US 25, some aggressive drivers have a tendency to want to begin the added lane early as they come through the intersection to pass a slower moving vehicle, therefore increasing the chance of sideswipe collisions. Using white striping to hatch the area between the edge of the proposed concrete header island curb and the edge of the westbound US 25 through lane to create the non-obtrusive barrier to traffic and better relaying to ramp C-1 motorist that the right turn movement does not need to yield to US 25 traffic.


NOTE: This VE proposal, or a combination thereof, could be combined with VE-15 and/or VE-16.


IMPLEMENTATION CONSIDERATIONS:

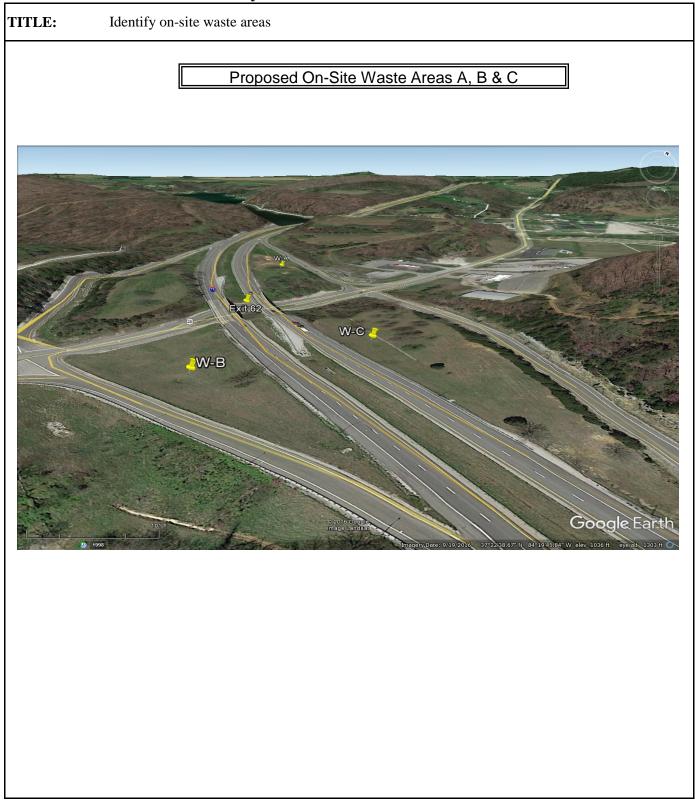
None apparent.

TITLE:	Add pai the shou	nted hat ilder	ching bet	tween the C-1	ramp concrete	island and	d the US 25 dri	ving lane on
DESIGN ELEMENT	Markup		-	LINE ASSUMPT			OPOSED ALTER	
Description	%	Unit	Qty	Unit Cost \$	TOTAL \$	Qty	Unit Cost \$	TOTAL \$
PAVE STRIPING- THERMO-4 IN W (6540)		LF				225	2.16	486
								497
	1			<u> </u>	(BASF	LINE LES	S PROPOSED)	486 (486)
*Note: Costs are round	led to near	rest thou	sand dol	lars.			/	COST

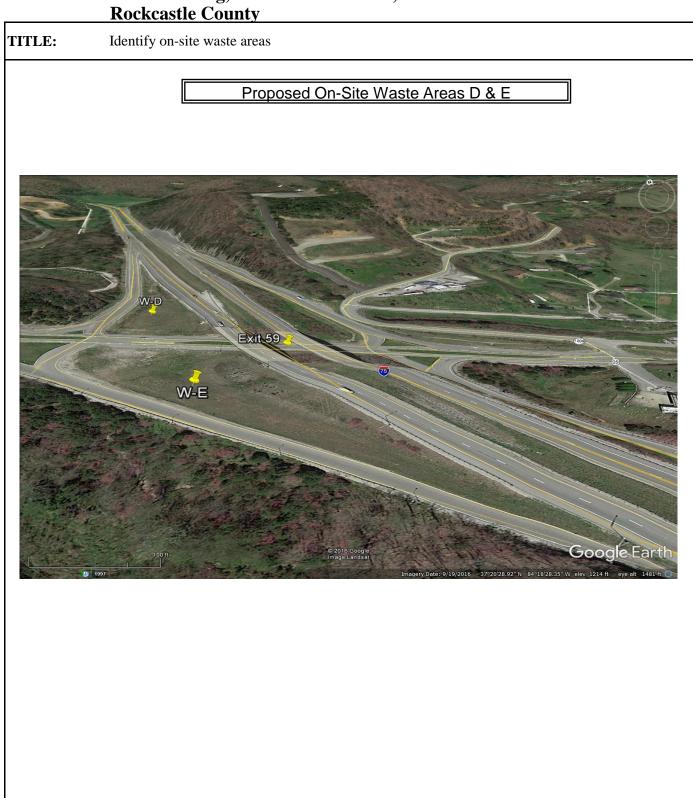
TITLE: Identify on-site waste areas

DISCUSSION/JUSTIFICATION:

Roadway excavation is one of the largest bid items in these projects. Excavation accounts for \$6.1 million which is eight percent of the total cost of both projects combined. To potentially reduce excavation costs, speed up construction efforts and enhance project safety, excavation waste areas should be designated for the project area.


IMPLEMENTATION CONSIDERATIONS

Roadway excavation waste areas are unknown and, therefore, the estimated bid unit price and overall cost for these projects are not as well known (i.e., estimated) as could be with known designated waste areas. Moreover, location(s) will be outside of the right-of-way and further away from the project area which will lead to more costly construction efforts to properly waste material. Other negatives are possible permits and environmental impacts that may be associated with unknown waste sites which are to be determined.



TITLE:	Identify	Identify on-site waste areas										
DESIGN ELEMENT	Markup		BASEL	INE ASSUMPTI			OPOSED ALTEI					
Description	%	Unit	Qty	Unit Cost \$	TOTAL \$	Qty	Unit Cost \$	TOTAL \$				
ROADWAY EXCAVATION (8-6.10)		СҮ	600,000	5.27	3,162,000	600,000	5.12	3,072,000				
ROADWAY EXCAVATION (8-6.20)		СҮ	797,085	3.16	2,518,789	797,085	3.07	2,447,051				
					5,680,789			5,519,051				
					(BASE	LINE LES	SS PROPOSED)	161,738				
*Note: Costs are round	ded to near	est tho	usand dol	lars.				SAVINGS				

TITLE:

Re-proportion pavement layer for driving lane

FUNCTION:

Support Load

BASELINE ASSUMPTION:

Adding a lane and shoulder to the inside involves widening within the existing depressed median. Because of the existing median depth, the pavement design for the inside driving lane was evaluated for the potential for reproportioning for potential cost savings.

PROPOSED ALTERNATIVE:

The proposed design was evaluated for each section -- 8-6.10 and 8-6.20. The results of these analyses indicated that the Structural Numbers for the proposed design effectively satisfied Structural Number requirements and there is no opportunity for re-proportioning the pavement layers for the inside lane.

NOT RECOMMENDED BY VE TEAM

BENEFITS	RISKS/CHALLENGES
• No plan changes are necessary	• None apparent
• Pavement design efficiency has been maximized	•
•	•
•	•
•	•
•	•
•	•
•	•

DESIGN SUGGESTION

TITLE: Re-proportion pavement layer for driving lane

DISCUSSION/JUSTIFICATION:

An analysis of the proposed designs was completed and is summarized in **Table VE-19A** and **Table VE-19B**. From these analyses, it can be seen that Structural Numbers (SN) that are associated with the proposed designs have the following Structural Numbers: Section 8-6.10 -- SN = 7.58; Section 8-6.20 -- SN = 7.47. These SNs are slightly less than the minimum required SNs for the respective ESAL levels -- Section 8-6.10 (53,000,000) -- 7.94 and Section 8-6.20 (58,000,000) -- 8.04. While these Structural Numbers are slightly less than required, this is not considered a design flaw in that a much greater proportion of truck traffic will be in the two outside lanes. Thus, no additional pavement structure is required. At the same time, this further confirms that there is not a potential opportunity for savings by re-proportioning the pavement layers. This pavement section in near what could be termed a "perpetual pavement section."

IMPLEMENTATION CONSIDERATIONS:

None apparent.

VALUE ENGINEERING ALTERNATIVE 19

Kentucky Transportation Cabinet

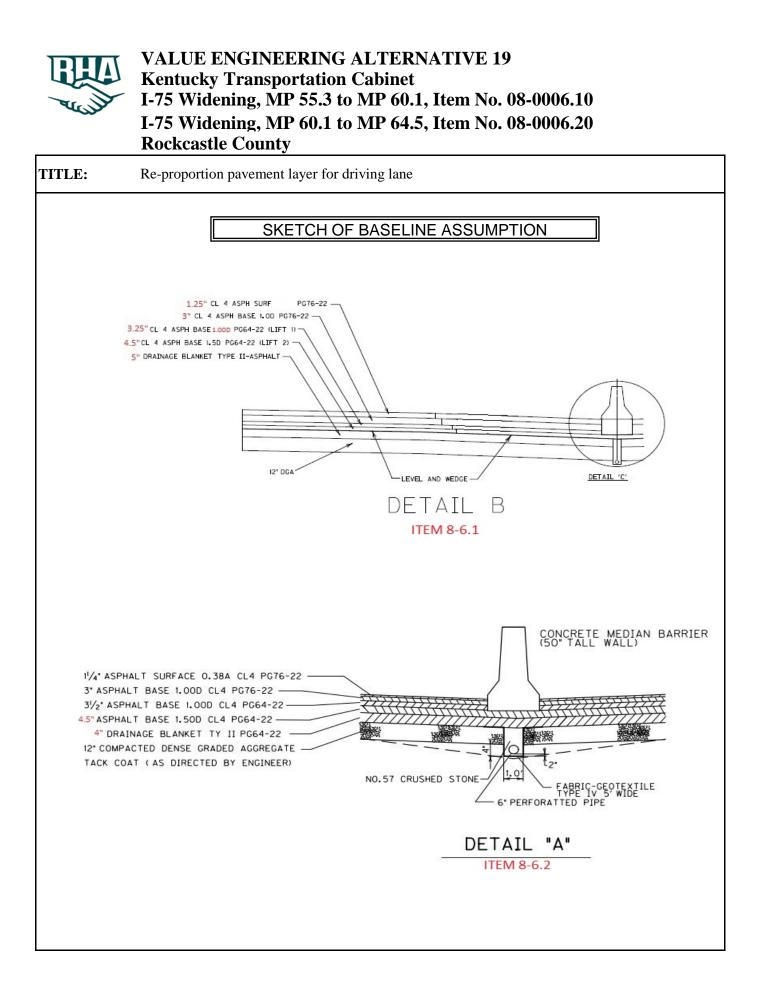
I-75 Widening, MP 55.3 to MP 60.1 (Item No. 08-0006.10)

I-75 Widening, MP 60.1 to MP 64.5 (Item No. 08-0006.20)

Rockcastle County

TITLE: Re-proportion pavement layer for driving lane

				TABLE	E VE-19A	A (Section	8-6.10)				
Full Depth CBR 3 53,000,00		tion in Existin	g Median								
Existing L	avers Ins	ide Driving La	ane and Ins	side Should	ler						
					Layer	Structural Number (SN)					
DGA Base	•			12	0.14	1.68					
Drainage Blanket TY II - Asph			5	0.21	1.05						
CL 4 Asphalt Base 1.50D PG 64-22			4.5	0.4	1.8						
CL 4 Asphalt Base 1.00D PG 64-22			3.25	0.4	1.3						
CL 4 Asph	alt Base 1.0	00D PG 76-22		3	0.4	1.2					
CL 4 Asph	alt Surface	0.38A PG 76-	22	1.25	0.44	0.55					
				29		7.58					
					Theoretical	Shoulder Requ	uired SN value	S			
Required SN 53		53,000,000	100.000 ESALs		26,500,000 ESALS (50% Mainline)		21,200,000 ESALs (40% Mainline)		10,600,000 ESALs (20% Mainline)		
		CBR 3			CBR 3		CBR 3		CBR 3		
	33% AC	8.61			7.84		7.62		6.98		
	50% AC	8.36			7.58		7.36		6.74		
	75% AC		Minimum			Minimum		Minimum		Minimum	
		8.30			7.56		7.34		6.72		


VALUE ENGINEERING ALTERNATIVE 19

Kentucky Transportation Cabinet I-75 Widening, MP 55.3 to MP 60.1 (Item No. 08-0006.10) I-75 Widening, MP 60.1 to MP 64.5 (Item No. 08-0006.20)

Rockcastle County

TITLE: Re-proportion pavement layer for driving lane

				TABLI	E VE-19B	6 (Section 8	-6.20)			
Full Depth CBR 3 58,000,00		tion in Existin	g Median							
Evicting		ido Driving La	no and In	sido Should	lor					
Existing La	ayers Ins	side Driving La	ane and ins	side Should	ler					
				Thickness	Layer Coefficient	Structural Number (SN)				
DGA Base				12	0.14	1.68				
Drainage Blanket TY II - Asph		4	0.21	0.84						
CL 4 Asph	alt Base 1.	50D PG 64-22		4.5	0.4	1.8				
CL 4 Aspha	alt Base 1.	00D PG 64-22		3.5	0.4	1.4				
CL 4 Aspha	alt Base 1.	00D PG 76-22		3	0.4	1.2				
CL 4 Asph	alt Surface	0.38A PG 76-	22	1.25	0.44	0.55				
				28.25		7.47				
					Theoretical	Shoulder Requ	uired SN value	S		
Required	SN	58,000,000	ESALs		29000000 E	SALs	23,200,000 ES	ALS	11,600,000 ES	SALs
		CBR 3			CBR 3		CBR 3		CBR 3	
	33% AC	8.72			7.94		7.71		7.06	
	50% AC	8.47			7.68		7.45		6.81	
	75% AC	8.04	Minimum		7.33	Minimum	7.12	Minimum	6.51	Minimum
		8.41			7.65		7.43		6.79	

TITLE:

Reduce inside shoulder width from 14' to 12'

FUNCTION:

Support Load

BASELINE ASSUMPTION:

Adding a lane and shoulder to the inside involves widening within the existing depressed median. The proposed design uses a 14-foot inside shoulder width.

PROPOSED ALTERNATIVE:

Current design criteria for rural interstates indicates that the minimum shoulder width is 12 feet paved when the truck traffic exceeds 250 DDHV. Thus the proposed alternative is to reduce the proposed shoulder from 14 feet to 12 feet.

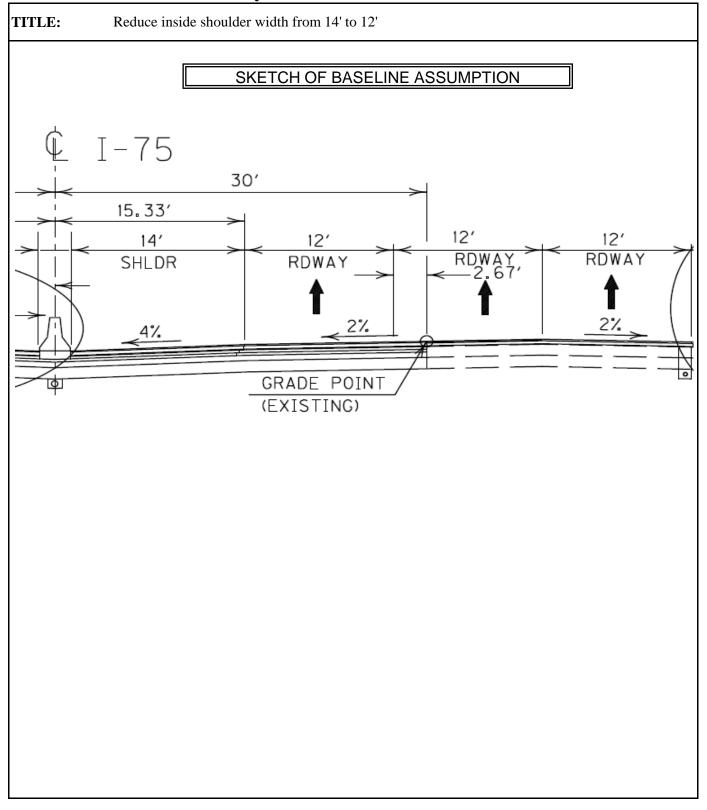
NOT RECOMMENDED BY VE TEAM

BENEFITS	RISKS/CHALLENGES
• Narrow typical section minimizes impacts to the dam (Lake Linville area)	• Requires shifting crown point an additional two feet
•	•
•	•
•	•
•	•
•	•
•	•
•	•

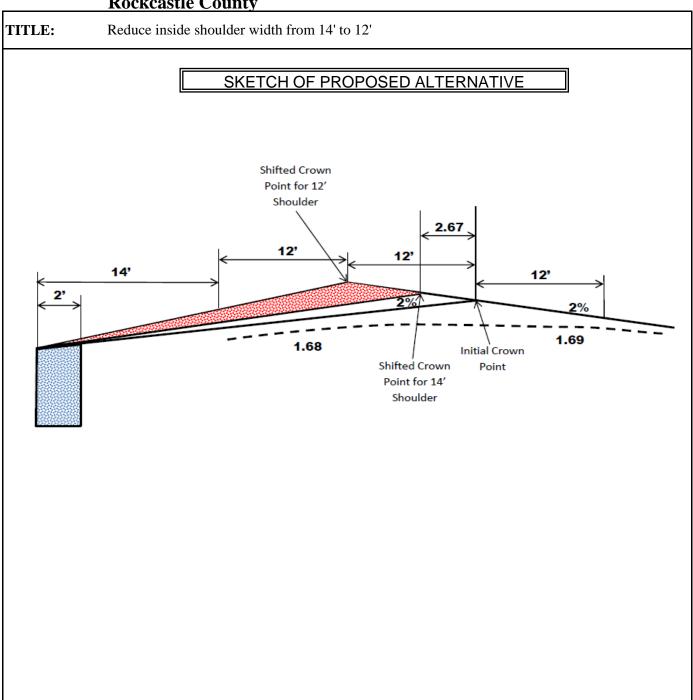
DESIGN SUGGESTION

TITLE: Reduce inside shoulder width from 14' to 12'

DISCUSSION/JUSTIFICATION:


With a 14-foot inside shoulder width, the crown point for the inside edge of the center lane is shifted 2.67 feet toward the median. Older interstates such as this section of interstate were constructed with a 3/8 inch per foot pavement cross-slope. Current interstate standards require a desirable cross-slope of 2%. Reducing the inside shoulder width from 14 feet to 12 feet will also require shifting the crown point an additional two feet. The **Sketch of the Proposed Alternative** illustrates this condition. It can be seen from the sketch that the savings for reducing the inside shoulder width by two feet must be offset by the associated wedge associated shown the sketch.

Thus, reducing the inside shoulder width from 14 feet to 12 feet is not recommended except for situations such as crossing the dam for Lake Linville wherein a more narrow typical section could allow for minimizing impacts to the dam. Upon consideration, the VE team felt, based on this condition, the need to rescind this recommendation.


IMPLEMENTATION CONSIDERATIONS:

None apparent.

TITLE: Validate overlay design

FUNCTION:

Support Load

BASELINE ASSUMPTION:

The current proposed design involves variable depth leveling and wedging for the existing driving lanes and then overlay with 1.25 inches of asphalt surface. Section 8-6.10 includes a 1.0 inch asphalt scratch course, whereas Section 8-6.20 includes a variable depth leveling and wedging layer. Both sections include a 1.25 inch asphalt surface overlay. The baseline assumption for the overlay design was predicated upon pavement management data which traced the evolution of the pavement structure from the initial construction (1968) through rehabilitation actions in 1978, 1990, 2000, 2011, and 2013. Initial construction in 1968 involved a pavement structure totaling 19.5 inches (1"surface, 6.5" asphalt base, and 12" aggregate base). The total thickness with subsequent millings and overlays is 29.25 inches (+/- one inch).

PROPOSED ALTERNATIVE:

An analysis was completed to validate the need for the current proposed leveling and wedging / one-inch scratch course and 1.25 inches asphalt overlay. Analyses indicate that the following Structural Numbers are required for a CBR=3 and the associated ESALs for each section -- Section 8-6.10 (53,000,000 ESALs) and Section 8-6.20 (58,000,000 ESALs). Required Structural Numbers (SNs) are Section 8-6.10 (SN = 7.94) and Section 8-6.20 (SN = 8.04). The analyses indicates that the associated SN for the total existing pavement structure plus the proposed overlay design is SN = 7.88. In looking at the cores, it was noted that the total pavement thickness varies from about 26 inches to about 32 inches and seems to have a median value of about 29 inches. Thus, the proposed overlay design seemed reasonable.

BENEFITS	RISKS/CHALLENGES
• Provide KYTC with peer review of design	• None apparent
•	•
•	•
•	•
•	•
•	•
•	•
•	•
	DESIGN SUGGESTION

TITLE: Validate overlay design

DISCUSSION/JUSTIFICATION:

The approach taken for this analyses involved computing an in-situ pavement Structural Number for each layer of the existing pavement structure and the proposed 1.25 inch overlay. A layer coefficient for the existing aggregate base was assumed as: a = 0.14. A layer coefficient of a = 0.35 was used for all existing asphalt. A layer coefficient of a = 0.40 was used for the proposed leveling and wedging / scratch course. A layer coefficient of a = 0.44 was used for the 1.25 inch asphalt surface overlay. These values are assumptions but are thought to be reasonable based on inspection of the cores. See **Table VE-21A** and **Table VE-21B** for details of the analysis.

IMPLEMENTATION CONSIDERATIONS:

None apparent.

VALUE ENGINEERING ALTERNATIVE 21

Kentucky Transportation Cabinet I-75 Widening, MP 55.3 to MP 60.1 (Item No. 08-0006.10)

I-75 Widening, MP 60.1 to MP 64.5 (Item No. 08-0006.20)

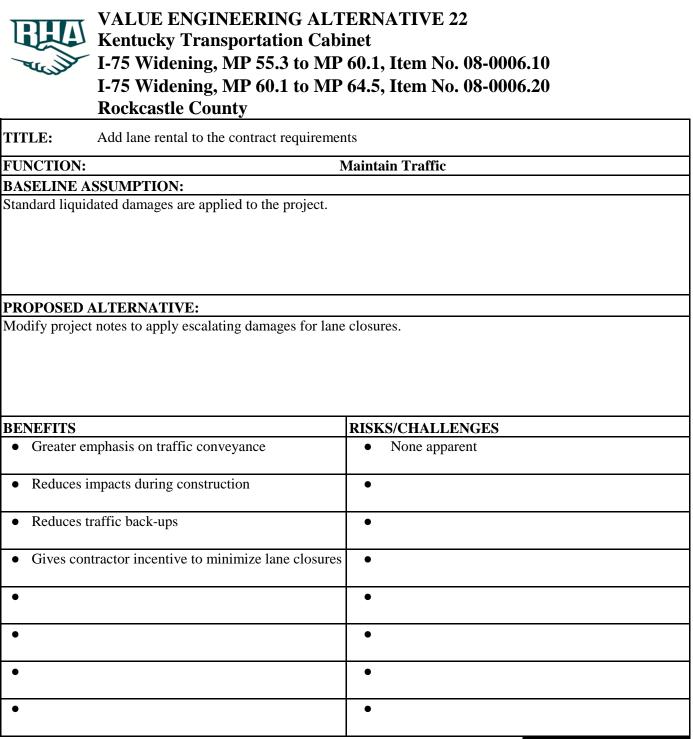
Rockcastle County

TITLE:

Validate overlay design

Full Depth Constru	ction in Existing Median									
CBR 3	-									
53,000,000 ESALs										
Existing Layers Ir	nside Driving Lane and In	side Shoul	der						Theoretical Shoulde	r Required SN v
		Thickness	Layer Coefficient	Structural Number (SN)	Required	SN	53,000,000) ESALs	26,500,000 ESALS (50% Mainline)	21,200,0 00 ESALs (40% Mainline)
							CBR 3		CBR 3	CBR 3
DGA Base		12				33% AC	8.61		7.84	7.62
Drainage Blanket T		5				50% AC	8.36		7.58	7.36
CL 4 Asphalt Base 1		4.5				75% AC		Minimum	7.25 Minimu	
CL 4 Asphalt Base 1		3.25					8.30		7.56	7.34
CL 4 Asphalt Base 1		3								
CL 4 Asphalt Surfac	e 0.38A PG 76-22	1.25	0.44	0.55						
		29		7.58						
Verify Overlay Dec										
Verify Overlay Des	ign									
Section 8-6.10	SB 58.954 to 65.220	SB 55.744	to 58.954	NB 58.954 to 65.22	20	Layer Coef	ficients	SN Section 8-6.	.10 & Section 8-6.20	
1968 Surface	1	1		1		0.35		0.35		
Base	6.5	6.5		6.5		0.35		2.275		
DGA	12	12		12		0.14		1.68		
1978 Mill	-1	-1		-1		0.35		-0.35		
Surface	1	1		1		0.35		0.35		
1990 Mill	-0.5	-0.5		-0.5		0.35		-0.175		
Base	3	3		3		0.35	5	1.05		
Surface	1.25	1.25		1.25		0.35	5	0.4375		
2000 Mill	-1	-1		-1		0.35	6	-0.35		
Surface	1.5	1.5		1.5		0.35	5	0.525		
2013 Mill	-1.5	-1.5		-1.5		0.35	5	-0.525		
Surface	3.5	3.5		3.5		0.35	5	1.225		
Base	1.25	1.25		1.25		0.35	5	0.4375		
OLBase	1	1		1		0.4		0.4		
	1.25	1.25		1.25		0.44		0.55		
OLSurf	IILO	-								

ues			
	10,600,0		
	00 ESALs		
	(20%		
	Mainline)		
	CBR 3		
	6.98		
	6.74		
nimum		Minimum	
	6.72		
	r		


VALUE ENGINEERING ALTERNATIVE 21

Kentucky Transportation Cabinet I-75 Widening, MP 55.3 to MP 60.1 (Item No. 08-0006.10) I-75 Widening, MP 60.1 to MP 64.5 (Item No. 08-0006.20) **Rockcastle County**

TITLE:

Validate overlay design

			TABL]	E VE-21B (Se	ction 8-	6.20)			
Full Depth Construc	tion in Existing Median								
CBR 3	Ū								
58,000,000 ESALs									
Existing Layers Ins	side Driving Lane and Ir	nside Shoulder					Theoretical Shoulder R	equired SN values	
		Layer Thickness Coefficient	Structural Number (SN)	Required SN	58,00	00,000 ESALs	29000000 ESALs	23,200,000 ESALs	11,600,000 ESALs
					CBR		CBR 3	CBR 3	CBR 3
DGA Base		12 0.1	4 1.68	33% A0		8.72	7.94	7.71	7.06
Drainage Blanket TY	II - Asph	4 0.2		50% AC		8.47	7.68	7.45	6.81
CL 4 Asphalt Base 1.		4.5 0.	4 1.8	75% AC		8.04 Minimum	7.33 Minimum	7.12 Minimum	6.51 Minimum
CL 4 Asphalt Base 1.		3.5 0.	4 1.4			8.41	7.65	7.43	6.79
CL 4 Asphalt Base 1.		3 0.	4 1.2						
CL 4 Asphalt Surface	0.38A PG 76-22	1.25 0.4	4 0.55						
		28.25	7.47						
Verify Overlay Desig	şn								
Section 8-6.10	SB 58.954 to 65.220	SB 55.744 to 58.954	NB 58.954 to 65.220	Layer (oefficient	s SN Section 8-6.	10 & Section 8-6.20		
1968 Surface	1	1	1).35	0.35			
Base	6.5	6.5	6.5).35	2.275			
DGA	12	12	12).14	1.68			
1978 Mill	-1	-1	-1).35	-0.35			
Surface	1	1	1).35	0.35			
1990 Mill	-0.5	-0.5	-0.5).35	-0.175			
Base	3	3	3).35	1.05			
Surface	1.25	1.25	1.25).35	0.4375			
2000 Mill	-1	-1	-1).35	-0.35			
Surface	1.5	1.5	1.5).35	0.525			
2013 Mill	-1.5	-1.5	-1.5).35	-0.525			
Surface	3.5	3.5	3.5).35	1.225			
Base	1.25	1.25	1.25).35	0.4375			
OLBase	1	1	1		0.4	0.4			
OLSurf	1.25	1.25	1.25).44	0.55			
Total	29.25	29.25	29.25			7.88			

DESIGN SUGGESTION

TITLE: Add lane rental to the contract requirements

DISCUSSION/JUSTIFICATION:

By using escalating lane rental rates for partial and full lane closures, emphasis is given to the conveyance of traffic over contractor convenience or profitability. The concept has been used in the urban areas of the state and is reasonable, due to high traffic volumes, to apply to this project. A previous study shows the highest user cost for southbound traffic to be on Friday between 5:00 PM and 11:00 PM, and northbound traffic to be on Sunday between 4:00 PM and 12:00 AM. Lane rental rates are based heavily on user costs rather than liquidated damage rates set by project cost.

There are occasions when it would be more beneficial to the Cabinet to allow work that begins during an allowed time period to continue if longer total delays may result from multiple starts/stops.

Additional information for consideration is provided on the following pages and includes narrative related to:

- Design Phase
 Bid Process
 Approval for Use
 How Lane Rental Works
 Special Provisions/GSP (General Special Provisions)
 Background Information
 Construction Cost with Lane Rental
 Safety Issues
 Number of Lane Rentals
 Lane Rental Charges and Liquidated Damages
 Change Orders (added and deleted work)
 Pricing Lane Rental by Time of Day
 Time Credits
 Overrun of Lane Rental Days
- Lane Rental Considerations

IMPLEMENTATION CONSIDERATIONS:

None apparent.

TITLE: Add lane rental to the contract requirements

ADDITIONAL INFORMATION - LANE RENTAL (following this page)

http://www.wsdot.wa.gov/Projects/delivery/alternative/LaneRental.htm)

Introduction

Lane Rental is used to minimize the impacts of a project on the traveling public. It is a method of transferring the roadway user costs to the contractor. The contractor must rent a lane in order to close it. This creates a monetary incentive for the contractor to be innovative and minimize the duration of lane closures.

The contractor makes decisions that consider the roadway user costs, both during the bid and as the contract progresses. The contractor's bid consists of a combination of the cost to perform the work (A component) with the cost of the impact to the public (B component) to provide the lowest cost to the public. By providing a more aggressive scheduling package, a contractor may be able to gain a competitive advantage by decreasing the overall impact to the traveling public and thereby reducing the amount for bid consideration.

Design Phase

During the design phase, the public impacts of the project are evaluated. The appropriate lane rental units and charges are determined. Lane rental time credit units will vary in size (minutes, hours, days) depending on the road user impacts, and will be as defined in the special provisions. For example, any section of one lane for any part of a working day is equal to one unit.

Bid Process

During the bidding process, the contractor determines the number of lane closures that will be required to complete the work. This number is included in the bid proposal.

After bids are opened, the contractor's lane rental bid is combined with the price proposal. The project is awarded to the contractor with the lowest adjusted bid. The number of "free" lane rental units in the contract is modified to reflect the awarded contractor's bid.

A lane rental closure is applied anytime a lane is closed, for any reason, to progress contract work. The project office tracks lane rentals.

Should the contractor go over the allotted amount, all additional lane rentals will be charged to "Lane Rental - Additional."

If a contract progresses into liquidated damages, the project office continues to track lane rentals but does not charge them.

http://www.wsdot.wa.gov/Projects/delivery/alternative/LaneRental.htm)

Approval for Use

The State Construction Engineer has conditionally approved lane rental on a pilot basis. The use of lane rental requires the approval of the <u>State Specifications Engineer</u> for the following reasons:

- To assist in establishing an appropriate unit and value for the closure.
- To concur that the application is appropriate. Commitments regarding application and notification have been made to industry, and we want to give this tool a fair chance to be successful.
- Headquarters Construction needs to be aware of where lane rental is being used in order to monitor the effectiveness of the specification and provide lessons learned throughout the state.

How Lane Rental Works

The contract is awarded based on the lowest responsible bid, using the following formula:

The bid amount for evaluation = $A+(B \times LRC)$

- A Bidder's total estimate for all contract bid items (expressed in dollars).
- B Total number of days subject to lane closure, as defined previously, required to complete all contract work.
- LRC Lane rental cost. These costs can be variable and applied to one or more lanes during a construction project.

This formula is used as a measurement for awarding purposes only, and is not used to determine payment to the contractor. The low bidder may not be the successful bidder. A bidder who proposes to minimize user impacts realizes the value of that benefit as part of their bid. They also run the greatest risk for damages (overrun of lane rental time credits).

Once the contract is awarded, the number of lane rental closures is contractually set. The item "Lane Rental - Additional" is included in the contract to address any overruns in this item. An incentive provision is also included to reward the contractor if the work is completed earlier than the (B) portion bid.

Special Provisions/GSP

When using the Flexible Start Date provision several options may be considered, depending on the desired outcome.

Section 1-02.6, Preparation of Proposal

http://www.wsdot.wa.gov/Projects/delivery/alternative/LaneRental.htm)

Supplement with the following:

A lane rental fee is included as part of this contract. The bidder shall establish the number of lanes necessary to complete the work by utilizing lane closures in accordance with the Plans and these Specifications and include this number in the bid proposal.

Definition of (***\$\$1\$\$***)

A Lane Rental Credit shall be assessed for

The number of lane rental credits allowed shall not exceed (***\$\$2\$\$***) of lane closures and shall not be less than ***\$\$2\$\$*** of lane closure.

The product of the number of lane rental credits established by the bidder multiplied by the Lane Rental Cost shall be added to the bid total determined from all other bid items. The sum of these two amounts will be the amount used for comparison of bids to determine the lowest bid for award purposes. If a bidder fails to establish the number of lane rental credits, or if the bidder enters a number of lane rental credits not within the range specified above, the maximum credits shown above will be used for calculations to determine the lowest bid for award purposes. The product of lane rental credits times daily road user benefit costs will not be considered in determining payment to the contractor except as described in this special provision.

Note to designer: Requires an additional proposal page supplied through Pre-Contract Administration (similar to A+B bidding specification). Also requires the daily roadway user benefit to be entered on that additional proposal page.

Section 1-02.7, Amount of Bid Deposit:

Supplement with the following:

It will not be necessary for the bid deposit to include an amount to cover the product of lane rental credits of traffic control times daily road user benefit cost

Section 1-03.1, Consideration of Bids:

Supplement with the following:

Each bid submitted shall consist of two parts:

A = The dollar amount for all work to be performed under the contract

B = The total number of lane rental credits required to complete the work.

The lowest responsible bid will then be determined by the Contracting Agency as the lowest combination of (A) and (B) according to the following formula:

A + (B x Lane Rental Cost)

It is mutually agreed by the parties to the contract that ***\$\$3\$\$*** per lane rental credit of traffic impact is the stipulated adjustment for road user benefit costs. The preceding formula will only be used to determine the lowest responsible bidder and will not be used to determine final payment to the Contractor when the project is completed other than as

http://www.wsdot.wa.gov/Projects/delivery/alternative/LaneRental.htm)

described in this special provision.

Section 1-03.4, Contract Bond:

Supplement with the following:

It will not be necessary for the contract bond to include an amount to cover the product of lane rental credits of traffic impact times hourly road user benefit cost.

Measurement

In the event that the contractor exceeds the number of lane rental credits established in the bid the Engineer shall take a credit under the unit item Additional Lane Rental Credits." Upon physical completion, the contractor will be paid for an under-run in lane rental credits under the item "Additional Lane Rental Credits.

Payment

Credits and Payments will be made per unit as described elsewhere in this special provision.

Background Information

What considerations need to be made to determine if the project lends itself to lane rental?

The risk in using this type of tool is associated with changes and delays beyond the contractor's control. Changes in lane rental costs will have to be considered with regard to change orders. One way to reduce the chance of problems is to sort out the details of potential third party conflicts prior to construction, to the extent it is possible. These conflicts may involve utilities, railroad agreements, environmental/archaeological issues, hazardous materials, biohazards, public support issues, and other potential problems.

Consideration should also be given to whether a contractor, at the time of bid, can accurately predict the duration of all activities for the project. Larger, more complex projects may not be appropriate for lane rental.

Construction Cost with Lane Rental

Lane rental can increase construction cost. On a standard project, a contractor may see an opportunity to reduce the total impacts. A shorter duration solution may increase the primary item cost but reduce lane rental and overall traffic control costs. The contractor will try to determine the most advantageous bid while balancing the potential overrun in lane rental costs.

Designers should anticipate that there will be a cost for the reduction in days. Whether through

http://www.wsdot.wa.gov/Projects/delivery/alternative/LaneRental.htm)

acceleration, aggressive management of subcontractors, or specialty equipment, it is likely that the construction price will increase. In no case will the project cost increase greater than the incentive (road user benefit) being offered.

WSDOT construction engineering and inspection costs should be reduced due to the anticipated increase in multiple activities occurring concurrently coupled with the reduced amount of traffic control being used.

Safety Issues

Safety shall not be compromised. The contractor is required to comply with the approved Work Zone Traffic Control Plans along with other related contract requirements.

Number of Lane Rentals

A special provision allows for a maximum number of lane rentals to be specified. Doing so can provide an upper limit of the public impact allowed on the project. However, the purpose of a lane rental charge is ultimately to produce the best value product. If a contractor can provide a far cheaper bid with more public impacts, this may be the best solution. The challenge is to set the lane rental charge at an appropriate level.

Lane Rental Charges and Liquidated Damages

Section 1-08.9 states that liquidated damages are for delays that inconvenience the traveling public, obstruct traffic, interfere with and delay commerce, and increase risks to highway users. For that loss of lane use, WSDOT charges liquidated damages. We do not charge the contractor for lane closures during this time frame, it would be a duplication of the liquidated damages.

Change orders (added and deleted work)

Change orders need to adjust lane rental days as they would any other contract item that is impacted by the change. Projects that have a likelihood of a large number of changes may not be good candidates for lane rental.

Pricing Lane Rental by Time of Day

The lane rental may be broken out by time of day. We can also break out the number of lanes closed at a location.

Time Credits

The lane rental specification identified time in terms of units. These units, once defined, are established in the contractor's initial bid. The lowest combination of the construction cost combined with the time units required would establish the winning bid.

http://www.wsdot.wa.gov/Projects/delivery/alternative/LaneRental.htm)

Once the contract is awarded, time credits will be tracked much like working days. Should a contractor go over the bid amount, the credits will continue to be charged. The unit item "Lane Rental Units - Additional" should be included in the contract and entries made based upon an established value. These units are deducted as a standard item.

http://www.wsdot.wa.gov/Projects/delivery/alternative/LaneRental.htm)

Overrun of Lane Rental Days

Traffic control items are generally reimbursed as unit items. The intention of lane rental is not to punish, but rather to reward a contractor for sound management and appropriate risk taking.

Lane Rental Considerations

Consider these factors when selecting lane rental for a project:

- Traffic restrictions or lane closures with no (or limited) alternate routes result in a high user cost.
- The project is relatively free of third party conflicts that are outside the control of the contract (right of way, utility, environmental, etc.).
- There is a high degree of confidence that design uncertainties have been addressed in the plans.
- A reasonable contractor can accurately schedule (and bid) the amount of necessary lane closures to complete the work as described.
- "Closures" can be well defined.
- Opportunities exist to reduce closure times.
- User fees are substantial enough to offset the cost of the effort to reduce the closure time.

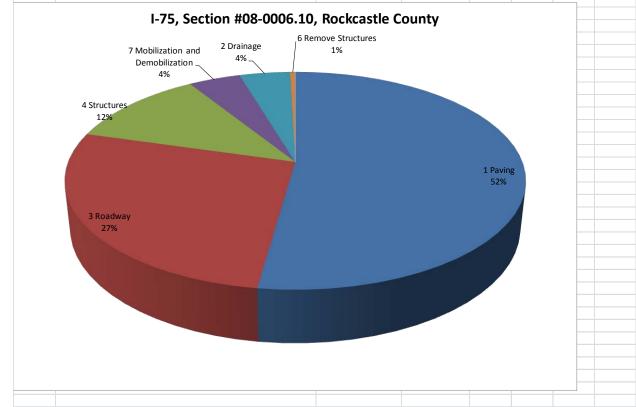
APPENDICES

APPENDIX A Study Participants

					-75 Widening, MP 5 -75 Widening, MP 6 Kentucky	EERING STUDY ATTEN 5.3 to MP 60.1 (Item No. 6 0.1 to MP 64.5 (Item No. 6 7 Transportation Cabinet ctober 25-28, 2016	08-0006.10) 08-0006.20)			
	October Name Organization Position Office Phone Cell Phone Email									
25	26	27	28							
			~	Andre Johannes	КҮТС	Project Manager		Andre.Johannes@ky.gov		
			✓	Brent Sweger	КҮТС	Quality Assurance Branch TEBM		Brent.Sweger@ky.gov		
~			~	Brandon Lowe	WMB	Designer - Section 08- 0006.20	Off: (859) 299-5226 Cell: (859) 338-5056	Brandon@wmbinc.com		
~			~	Glenn Hardin	Stantec	Designer - Section 08- 0006.10	Off: (859) 233-2100 Cell: (859) 227-4461	glenn.hardin@stantec.com		
			~	Greg Sharp	Stantec	Designer - Section 08- 0006.10		greg.sharp@stantec.com		
~				Heather Lawler	Stantec	Designer - Section 08- 0006.10		heather.lawler@stantec.com		
~	~	~	~	Shawn Russell	КҮТС	Value Engineering	Off: (502) 782-4926	Shawn.Russell@ky.gov		
~	~	~	~	William Lucas	КҮТС	VE Team: Construction, O&M		William.Lucas@ky.gov		
~	~	~	~	Bob Jones	КҮТС	VE Team: Construction, O&M		Bob.Jones@ky.gov		
~	~	~	✓	Rodney Little	Qk4	VE Team: Construction		rlittle@qk4.com		
~	~	~	~	Jeremy Lukat	Qk4	VE Team: Traffic		jlukat@qk4.com		

					-75 Widening, MP 55.3 -75 Widening, MP 60.1 Kentucky Tr	to MP 64.5 (Item No. ansportation Cabinet	08-0006.10) 08-0006.20)			
	October 25-28, 2016 October Name Organization Position Office Phone									
25	26	27	28				Cell Phone			
~	~	~	✓	Gary Sharpe	Palmer Engineering	VE Team: Pavement	Off: (859) 744-1218 Cell: (859) 221-6912	gsharpe@palmernet.com		
~	~	~	~	Ashley McLain	Palmer Engineering	VE Team: Pavement Analysis (part-time)		amclain@palmernet.com		
~	~	~	~	Dennis Mitchell	American Engineers, Inc.	VE Team: Geotechnical / Structures	Off: (270) 651-7220 Cell: (270) 590-5390	dmitchell@aei.cc		
~	~	~	~	Keith Damron	American Engineers, Inc.	VE Team: Roadway	Off: (502) 245-3813 Cell: (502) 409-2544	kdamron@aei.cc		
~	~	~	~	Patrice Miller	RHA, LLC	VE Team Leader	Off: (602) 493-1947 Cell: (480) 773-8533	Patrice@TeamRHA.com		
✓				Ryan Tenges	FHWA		Off: (502) 223-6750	<u>Ryan.Tenges@dot.gov</u>		
			~	Andy Barber	КҮТС	Deputy State Highway Engineer	Off: (502) 551-4828	Andy.Barber@ky.gov		
			~	Joe Tucker	КҮТС	Engineer	Off: (502) 782-4915	Joseph.Tucker@ky.gov		
			~	Tamra Wilson	КҮТС	CDE D8	Off: (606) 677-4017	Tamra.Wilson@ky.gov		
			~	William Chany	КҮТС	PD&P D8	Off: (606) 677-4017	William.Chaney@ky.gov		

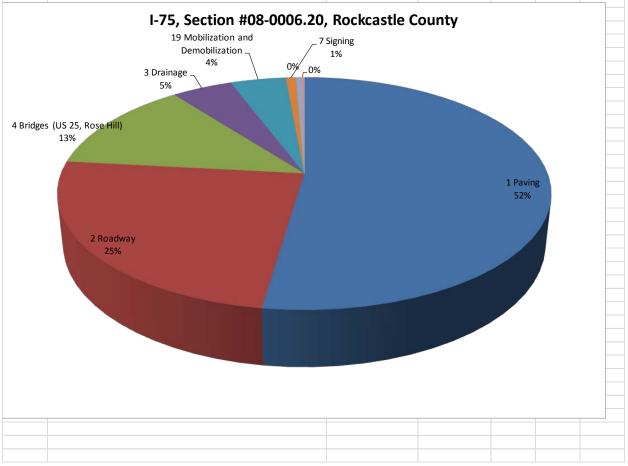
APPENDIX B Pareto Cost Models



Value Engineering Study Kentucky Transportation Cabinet I-75 Widening, MP 55.3 to MP 60.1 (Item No. 08-0006.10) I-75 Widening, MP 60.1 to MP 64.5 (Item No. 08-0006.20) Rockcastle County

Appendix B – Cost Model

The team reviewed and discussed the project's cost model (below and on the following page).


	ky Transportation Cabinet idening, MP 55.3 to MP 60.1				
	n No. 08-0006.10)				
-	-				
коскса	stle County				
Cost M	lodel (from Estimate dated 03/23/16)				
			% of Total		
Group #	Name	Cost	Project		
1	Paving	\$ 19,299,504	52.21%	52.21%	
3	Roadway	\$ 10,063,440	27.22%	79.43%	
4	Structures	\$ 4,300,000	11.63%	91.07%	
7	Mobilization and Demobilization	\$ 1,591,791	4.31%	95.37%	
2	Drainage	\$ 1,560,199	4.22%	99.59%	
6	Remove Structures	\$ 150,000	0.41%	100.00%	
	TOTAL	\$ 36,964,934			
	I-75, Section #08-0006.10, 7 Mobilization and ² Drainage Demobilization _ ^{4%}	Structures	ounty		
	4% 4 Structures 12%				

Value Engineering Study Kentucky Transportation Cabinet I-75 Widening, MP 55.3 to MP 60.1 (Item No. 08-0006.10) I-75 Widening, MP 60.1 to MP 64.5 (Item No. 08-0006.20) Rockcastle County

Kentucky Transportation Cabinet					
I-75 Widening, MP 60.1 to MP 64.5					
(Section No. 08-0006.20)					
Rockcastle County					
Cost Model (from Estimate dated 03/16/16)					
			% of Total		
Group # Name		Cost	Project		
1 Paving	\$	20,239,817	52.31%	52.31%	
2 Roadway	\$	9,439,741	24.40%	76.71%	
4 Bridges (US 25, Rose Hill)	\$	4,976,896	12.86%		
3 Drainage	\$	1,817,095	4.70%		
19 Mobilization and Demobilization	\$	1,666,132	4.31%		
7 Signing	\$	301,600	0.78%		
9 Lighting	\$	150,000	0.39%		
8 Signalization	\$	100,000	0.26%		
TOTA	۱L \$	38,691,281			

NOTE: Unit prices for excavation are different for Section Nos. 08-0006.10 and 08-0006.20 (e.g., \$1.8M identified in cost estimate appears to be too low for Section No. 08-0006.10).

APPENDIX C Function Analysis

Value Engineering Study Kentucky Transportation Cabinet I-75 Widening, MP 55.3 to MP 60.1 (Item No. 08-0006.10) I-75 Widening, MP 60.1 to MP 64.5 (Item No. 08-0006.20) Rockcastle County

Appendix C – Function Analysis

Function definition and analysis is the heart of Value Engineering. It is the primary activity that separates VE from all other "improvement" programs. The objective of this phase is to ensure the entire team agrees upon the purposes for the project elements. Furthermore, this phase assists with development of the most beneficial areas for continuing study.

The VE team identified the functions of the project based using active verbs and measurable nouns. This process allowed the team to truly understand all of the functions associated with the project. Those functions identified as high risk or high cost were identified as such and were potentially easy targets for the VE team to brainstorm in the Creative Phase.

FUNCTION	CLASSIFICATION	FUNCTION IDENTIFIED AS HIGH RISK (R) OR HIGH COST (\$)
Increase Capacity (Level of Service)	Basic	\$
Improve Connectivity	Higher Order	
Connect Communities	Higher Order	
Improve Safety	Secondary	
Improve Mobility	Secondary	
Convey Traffic	Secondary	
Reduce Congestion	Secondary	
Support Load	Secondary	\$
Direct Water	Secondary	
Drain Roadway	Secondary	\$
Meet Schedule	Secondary	
Separate Traffic	Secondary	\$
Maintain Traffic	Secondary	\$, R
Inform Motorist	Secondary	

Value Engineering Study Kentucky Transportation Cabinet I-75 Widening, MP 55.3 to MP 60.1 (Item No. 08-0006.10) I-75 Widening, MP 60.1 to MP 64.5 (Item No. 08-0006.20) Rockcastle County

FUNCTION	CLASSIFICATION	FUNCTION IDENTIFIED AS HIGH RISK (R) OR HIGH COST (\$)
Improve Visibility	Secondary	
Illuminate Space	Secondary	
Stabilize Slope	Secondary	
Separate Grade	Secondary	
Minimize Right-of-way	Secondary	
Control Traffic	Secondary	
Accommodate Expansion (future)	Secondary	
Span Space	Secondary	\$
Minimize Impacts (i.e., water quality/quantity, dam)	Secondary	R
Maintain Access	Secondary	
Minimize Maintenance	Secondary	\$

The definitions of the classifications are:

Higher Order Function defines the problem (study) goal and is outside the scope of the study.

Basic Function defines a performance feature that *must* be obtained to satisfy only user's needs not desires. It answers the question, "What must it do?".

Secondary Functions define required performance features other than those that must be accomplished. These are the user's desires and answers the question, "What else do we want or does it do?".

A Function Analysis Systems Technique (FAST) diagram was not completed.

APPENDIX D Creative Idea List & Evaluation

Value Engineering Study Kentucky Transportation Cabinet I-75 Widening, MP 55.3 to MP 60.1 (Item No. 08-0006.10) I-75 Widening, MP 60.1 to MP 64.5 (Item No. 08-0006.20) Rockcastle County

Appendix D – Creative List and Evaluation Process

Creative Idea List

The list of ideas and comments that resulted from the study is included in this appendix. Some of the ideas were selected for further development as represented in the previous section.

Performance Attributes

The decision maker/stakeholders identified and defined the following performance attributes as a means to aid the team in evaluating the ideas:

- Schedule meet proposed letting date
- Maintenance of Traffic (MOT) two lanes to remain open in each direction
- Level of Service (LOS) improve capacity lanes per lane per hour
- User Comfort/Satisfaction perception, user cost
- Maintainability maintenance; snow removal; drainage

Evaluation Process

To aid in the evaluation of the ideas, the team scored the ideas using a group nominal technique using functions and the performance attributes as their guide. All ideas that received a rating of "4" (Good Value Opportunity) or "5" (Great Value Opportunity) were further developed.

The creative idea list represents all of the ideas and includes scoring for the ideas that were rated using the value index.

Value Engineering Study Kentucky Transportation Cabinet I-75 Widening, MP 55.3 to MP 60.1 (Item No. 08-0006.10) I-75 Widening, MP 60.1 to MP 64.5 (Item No. 08-0006.20) Rockcastle County

Value	e Relationship	Value Index = <u>Function</u> = <u>F</u> Cost C				
Ratin	ng					
5.	Great Opportunity	F C	F+ C-	F++ C	F++ C-	F++ F++ C C+
4.	Good Opportunity	F- C	F C-	F+ C	F+ C-	F+ F++(*) C+ C++
3.	Moderate Value	F C	F- C-	F++(' C++	*)	
2.	Poor Value	F C	F C	F C+	F C++	
1.	Unacceptable Impacts/Fatal Flaw					

*Is the Function improved to the point that it overcomes the high cost?

VALUE CUE KEY – MAGNITUDE OF CHANGE

- F = No impact to function
- F- = Small negative impact to function
- F-- = Large negative impact to function
- F+ = Small increase in function
- F++ = Large increase in function
- C = No impact to cost
- C- = Small decrease in cost
- C-- = Large decrease in cost
- C+ = Small increase in cost
- C++ = Large increase in cost

Value Engineering Study Kentucky Transportation Cabinet I-75 Widening, MP 55.3 to MP 60.1 (Item No. 08-0006.10) I-75 Widening, MP 60.1 to MP 64.5 (Item No. 08-0006.20) Rockcastle County, KY

Creative Idea List

VE Alternative No.	VE No.	Idea Title (* Not Recommended by VE Team)	Score
SL		Support Load	
SL-01 📑 🖉 🗁	19	Re-proportion pavement layer for driving lane	DS*
SL-02	1	Re-proportion pavement layer for inside median shoulder	4
SL-03		Use aggregate-treated drainage blanket in lieu of asphalt-treated drainage blanket	2
SL-04	2	Add stabilized base layer in the widening section	4
SL-05	3	Add geogrid to reduce pavement section in the widening section	4
SL-06		Use concrete in lieu of asphalt for pavement	2
SL-07×	20	Reduce inside shoulder width from 14' to 12'	DS*
SL-08	4	Reduce shoulder width adjacent to truck lane	4
SL-09		Reduce shoulder width on bridges	2
SL-10	5	Add approach slabs at bridges to minimize settlement	4
SL-11	6	Add transverse trench drain bleeders in the existing pavement to relieve water pressure	4
SL-12	23	Update bridge drawings to reflect revised phasing	DC
SL-13	21	Validate overlay design	DS*
SL-14	7	Eliminate I-75 outside pavement edge drains	4
MT		Maintain Traffic	
MT-01	24	Review road closure time periods to minimize impacts to construction and the traveling public	DC
MT-02	25	Review blasting time periods to minimize impacts to construction and the traveling public	DC
MT-03	8	Add bid item for radar speed signs to reduce speed during construction	4
MT-04	9	Extend lane closure in advance of the project limits	4
MT-05		Drop existing lane prior to construction project	w/MT-04
MT-06	10	Add a requirement for the contractor to use a protect-the-queue vehicle	4
MT-07		Revise phasing in plan set to be consistent with Section No. 08-0006.30	ABC
MT-08	22	Add lane rental to the contract requirements	DS*
MT-09	26	Add bid item for message boards to inform drivers during construction	DC
MT-10	11	Add rumble strips prior to construction zone	4

Value Engineering Study Kentucky Transportation Cabinet I-75 Widening, MP 55.3 to MP 60.1 (Item No. 08-0006.10) I-75 Widening, MP 60.1 to MP 64.5 (Item No. 08-0006.20) Rockcastle County, KY

Creative Idea List

VE Alternative No.	VE No.	Idea Title (* Not Recommended by VE Team)	Score		
MT-11	27	Identify emergency access locations/routes during construction. As part of its traffic management plan for the reduction of traffic delays and for providing emergency vehicle access during construction, KYTC may desire to develop plans and provisions for the access to incident sites for emergency vehicle personnel and other necessary personnel for all stages of construction. This approach may help to reduce traffic delay and decrease the emergency response time. Practices adopted could include contractor supplied service patrols, using a professional advertising agency to keep the public informed of construction activities, using emergency medical services, establishing continuous police presence, establishing a staging area, using portable changeable message signs, establishing a "hotline," and establishing a detour and alternate route signing.			
SG	SG Separate Grade				
SG-01	Revise horizontal alignment of southbound ramp "C" at 62 interchange (Section No		3		
SG-02	12	Rebuild existing wall at northbound exit ramp 59 interchange (Section No. 08- 0006.10)	4		
Т		Traffic			
T-01	13	Reduce the number of lanes on Ramp B from two to one	4		
T-02×	14	End ramp taper before the dam at I-75 northbound, Interchange 62	4		
T-03		Add truck climbing lane after the dam at northbound I-75	w/T-02		
T-04	28	Verify the taper at Station 3294 meets standards	DC		
T-05	29	Confirm taper lengths and rates meet current AASHTO standards	DC		
T-06	30	Lengthen taper for truck lane drop from 300' to 840' (70:1) to meet AASHTO standards	DC		
T-07	31	Update traffic counts at the ramp terminals	DC		
T-08		Increase radius of right turn off of exit 62 off-ramp C-1	3		
T-09	41	Add signage ("add lane") at right turn off of exit 62 off-ramp C	DC		
T-10		Add quick curb with delineator at exit 62 off-ramp C-1	3		
T-11	15	Extend island closer to through lane at exit 62 off-ramp C-1 using a painted island	4		
T-12	32	Use painted flush islands throughout the project	DC		
T-13	16	Extend raised concrete island at exit 62 off-ramp C-1 closer to the US 25 through lane	4		
T-14	17	Add painted hatching between the C-1 ramp concrete island and the US 25 driving lane on the shoulder	4		
GS		Geotechnical/Structures			
GS-01		Reuse existing bridges in lieu of bridge replacement	2		
GS-02		Reuse bridge substructure in lieu of total bridge replacement	3		
GS-03		Widen KY2793 to 140' to address emergency spillway issue	3		
GS-04		Use box culvert ("wagon box") and eliminate bridge at KY2793	2		
GS-05	33	On plans, KY2793 should read "Lake Linville Road" in lieu of "Rose Hill Road"	DC		

Value Engineering Study Kentucky Transportation Cabinet I-75 Widening, MP 55.3 to MP 60.1 (Item No. 08-0006.10) I-75 Widening, MP 60.1 to MP 64.5 (Item No. 08-0006.20) Rockcastle County, KY

Creative Idea List

VE Alternative No.	VE No.	Idea Title (* Not Recommended by VE Team)	Score
GS-06	34	Finalize geotechnical report as soon as possible	DC
GS-07		Lower KY2793 to address emergency spillway issue	2
MM		Minimize Maintenance	
MM-01	35	Add marker at edge drain outlets to mark for scheduled maintenance	DC
MM-02	36	Add No. 57 aggregate as backfill for edge drain trench (detail "D" on Section No. 08-0006.20)	DC
Μ		Miscellaneous	
M-01	37	Re-evaluate Categorical Exclusion environmental document as early as possible to avoid or minimize schedule delay, right-of-way issues and costs	DC
M-02	38	Meet with Division of Water	DC
M-03	39	Update cost estimates (e.g., two different excavation unit costs for Section Nos. 08-006.10 and 08-006.20)	EC
M-04	18	Identify on-site waste areas	4
M-05		Reduce typical section through Lake Linville area to AASHTO minimum	3
M-06	40	Make the superelevations consistent for the inside median shoulder (all three sections)	DC

APPENDIX E Supporting Data

Value Engineering Study Kentucky Transportation Cabinet I I-75 Widening, MP 55.3 to MP 60.1 (Item No. 08-0006.10) I-75 Widening, MP 60.1 to MP 64.5 (Item No. 08-0006.20) Rockcastle County

Appendix E – Supporting Data

Team Observations

The VE team identified observations, concerns and opportunities to be addressed during the creative generation of potential ideas and alternatives. The following is a list of the VE team's observations:

- Unit prices for excavation are different for Section Nos. 08-0006.10 and 08-0006.20 (e.g., \$1.8M identified in cost estimate appears to be too low for Section No. 08-0006.10)
- May be opportunity to review phasing for Section No. 08-0006.20 for continuity; match phasing scheme for all sections (08-0006.10, 08-0006.20 and 08-0006.30)
- · Concern that the VE team doesn't have pavement design
- Concern for pavement design continuity (e.g., thickness and type, mixes)
- Concern for drainage, both at the surface and in the median
- Water bubbling up may require trench drains
- Opportunity for constrained outside shoulder
- Structural issues may exist inside the spillway
- Downstream seepage unable to compact clay soils
- Contract language may be needed to manage specialized construction
- Division of Water requirements are critical to maintain the schedule
- All stakeholders tied to Lake Linville are critical to project success and meeting schedule
- Consistency with Section No. 08-0006.30 is a concern
- Categorical Exclusion (CE) is dated; will need to be re-evaluated to current standards (i.e., erosion, ecology, karst (sink holes), etc.
- Traffic numbers are dated; do not go beyond 2022
- Traffic issue dual left northbound at 62 interchange
- Inconsistencies in pavement types between sections (Section Nos. 08-0006.10 and 08-0006.20)
- May be advantageous to use one contractor/one project
- No "approved" geotechnical report
- Maintenance of traffic may need additional clarification
- Clarification if shoulder is same as driving lane (future)
- Opportunity for "mix" to be alternate material structural foundation
- Truck climbing lane 12'/10' shoulder may be opportunity to reduce to 6'/4' (area around dam)
- 300' transition for truck lane appears to be short (speed x width)
- Design Executive Summary (DES) to address pedestrian/bicyclist
- Peak delay period is 4 PM to 7 PM (Sunday 6 PM to 9 PM), not 3 PM to 5 PM
- Pavement thickness 25-28" based on core data; 50M ESALs would require 26"

Value Engineering Study Kentucky Transportation Cabinet I I-75 Widening, MP 55.3 to MP 60.1 (Item No. 08-0006.10) I-75 Widening, MP 60.1 to MP 64.5 (Item No. 08-0006.20) Rockcastle County

Risk Identification

The VE team identified potentials risks of the project. The purpose of understanding the project risks is to identify potential mitigation strategies during creative generation of potential ideas and alternatives.

- Environmental Categorical Exclusion (CE) is dated; re-evaluation could influence schedule, cost, etc.
- Dam (60 years old) owned by Division of Water; requirements, mitigation, remediation (embankments)
- Northbound exit ramp retaining wall, tight, construction
- Geotechnical no "approved" report

Value Engineering Study Agenda I-75, MP 55.3 to MP 60.1 (Item #08-0006.10) I-75, MP 60.1 to MP 64.5 (Item #08-0006.20) Kentucky Transportation Cabinet Rockcastle County

VE Study Workshop Agenda (4-Day): October 25-28, 2016

Tuesday, October 25, 2016: Kick-Off Meeting – KYTC Office, 200 Mero Street, Frankfort, KY 1st Floor, TCOB Room C118

(Attendance by Stakeholders, Decision Makers, Designers and VE Team)

- 9:00 9:15 Introductions (All) & Brief Overview of the VE Process (Team Leader-Patrice Miller)
- 9:15 10:45 Project Overview & Presentation (Project Manager/Design Team)
- 10:45 11:00 Break
- 11:00 12:00 Project Goals & Constraints, Workshop Objectives, Identify Key Performance Attributes Identify Risks
 - Conclusion of Kick-Off Meeting Adjourn all but the VE Team
- 12:00 1:00 Lunch
- 1:00 1:15 Review Cost Estimates
- 1:15 1:45 VE Team Observations
- 1:45 2:15 Function Analysis
- 2:15 5:00 Speculation Team Brainstorming

Wednesday, October 26: 1st Floor, TCOB Room C118, Frankfort, KY

- 8:00 8:15 Recap of First Day/Additional Information Review
- 8:15 10:00 Speculation Team Brainstorming
- 8:15 10:00 Evaluation of Ideas
- $10{:}00-10{:}15 \quad Break$
- 10:15 11:45 Evaluation of Ideas
- 11:45 12:00 Review/Distribution of Handouts and VE Alternative Forms
- 12:00 1:00 Lunch
- 1:00 5:00 Alternatives Development

Thursday, October 27: 1st Floor, TCOB Room C118, Frankfort, KY

- 8:00 12:00 Alternatives Development
- 12:00 1:00 Lunch
- 1:00 5:00 Alternatives Development

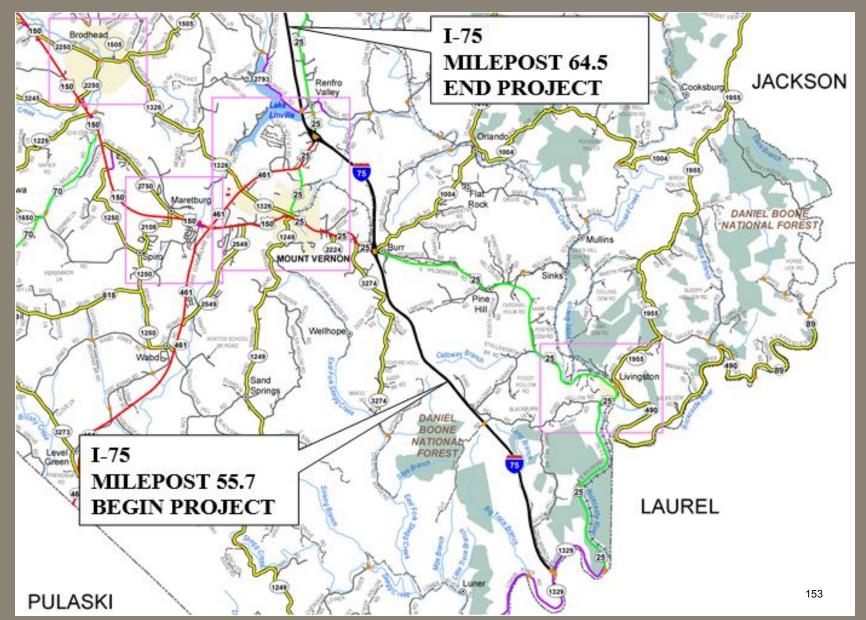
Friday, October 28: 1st Floor, TCOB Room C118, Frankfort, KY

- 8:00 11:30 Alternatives Development
- 11:30-12:30 Working Lunch
- 12:30 1:30 Finalize Alternatives Development
- 1:30 3:00 Group Review of VE Alternatives / Prepare Presentation
- 3:00 4:30 Presentation of VE Alternatives Meeting

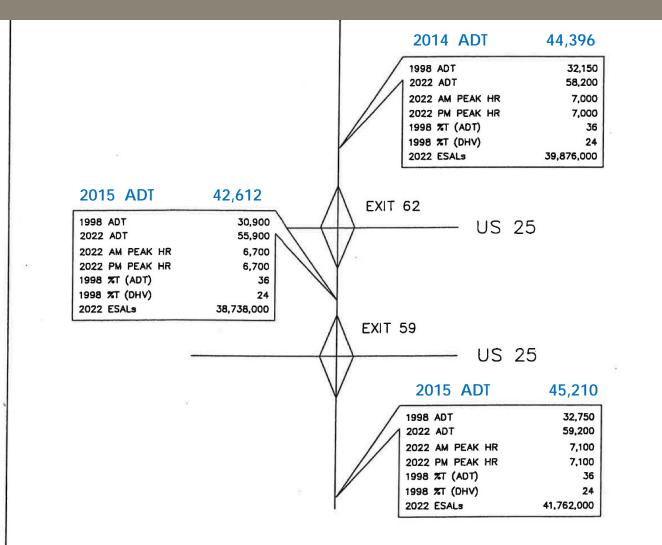
(Presentation of VE Study Results to Management and Stakeholders)

4:30 – 5:00 Team Wrap-up

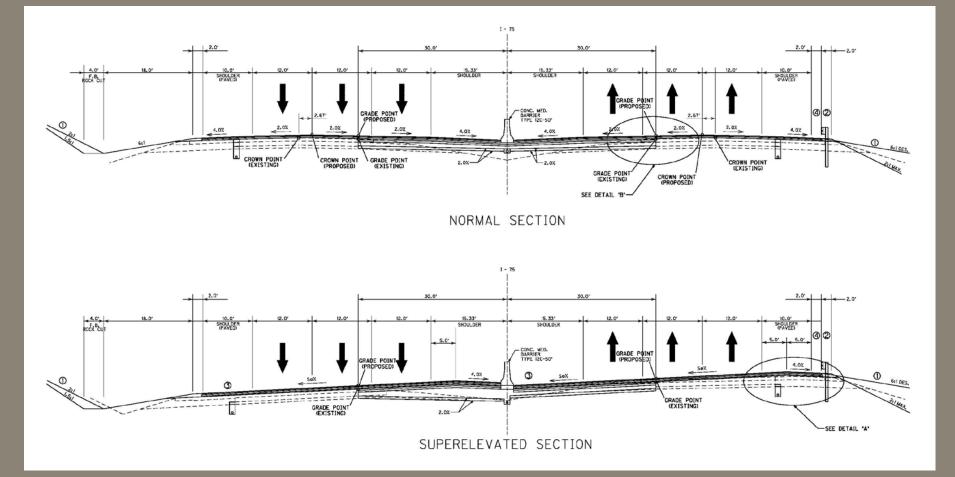
I-75 Rockcastle County MP 55.7 to MP 64.5


October 25, 2016

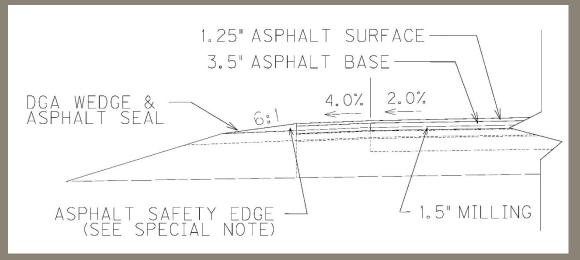
Introduction 2 Project Data\Project History 3 Roadway **4** Structures 5 Summary


1 Project Location

1 Project History


- NTP April 1998
- March 2001 PL&G
- Hibernation 2002
- Pavement Rehab 2013
- June 2016 Extension to Letter Agreement No. 4

Traffic

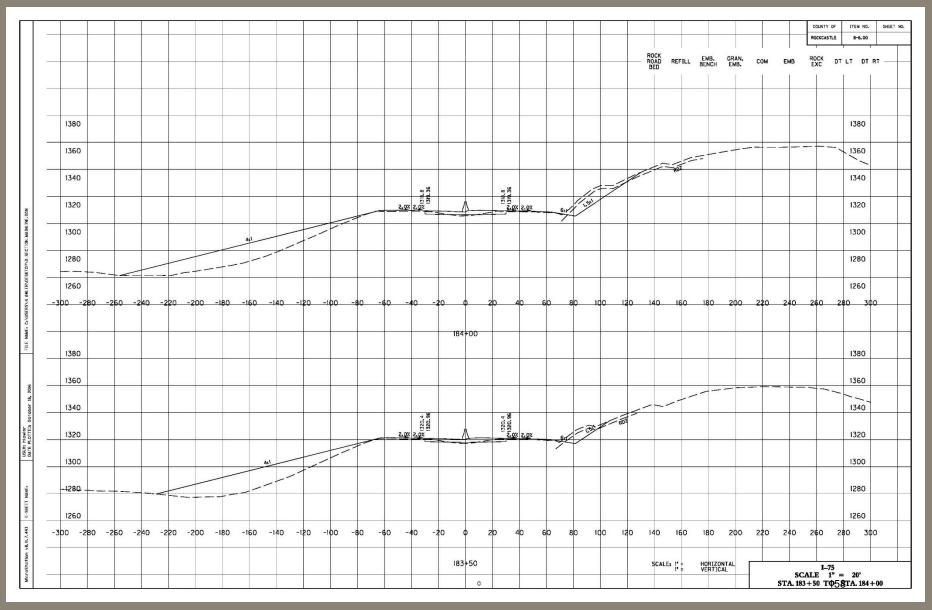


I-75 Mainline Typical

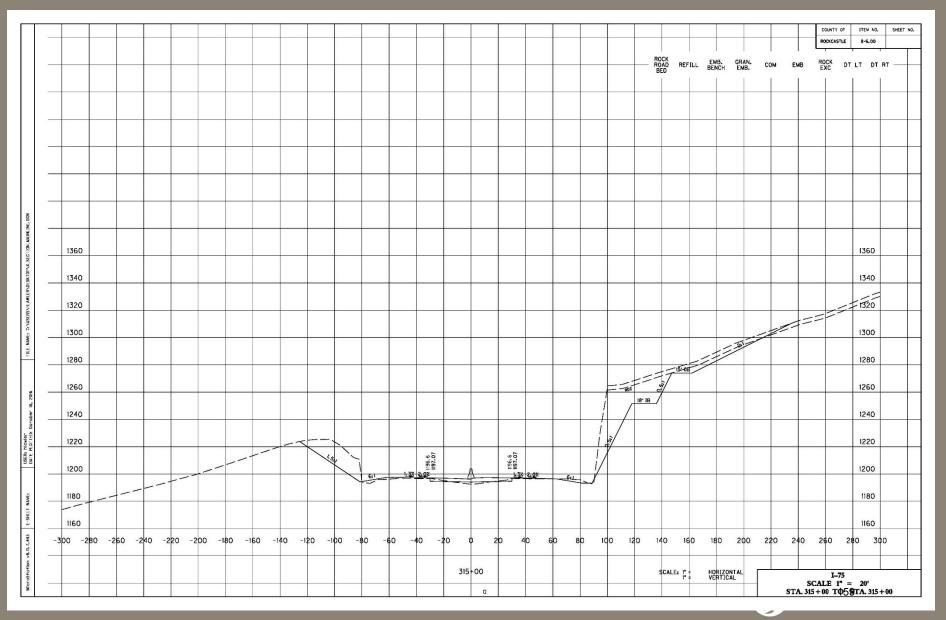
I-75 Pavement

2013 Pavement Rehab

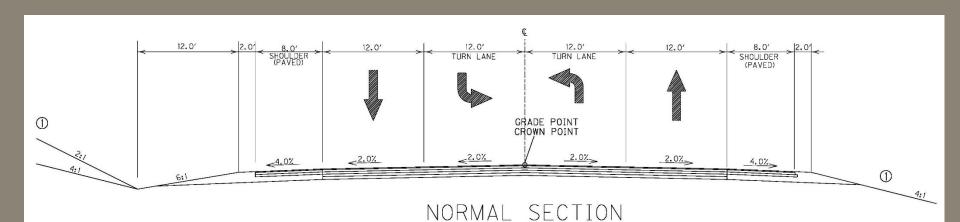
Original overlay was 5.5"

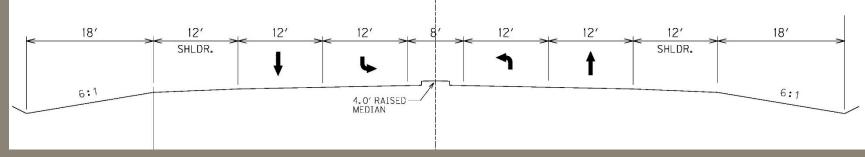

Difference of 2.25"

New overlay will be


- 1.00" Binder Course
- 1.25" Surface Course

All ramps received a mill and fill Waiting on pavement design for median portion

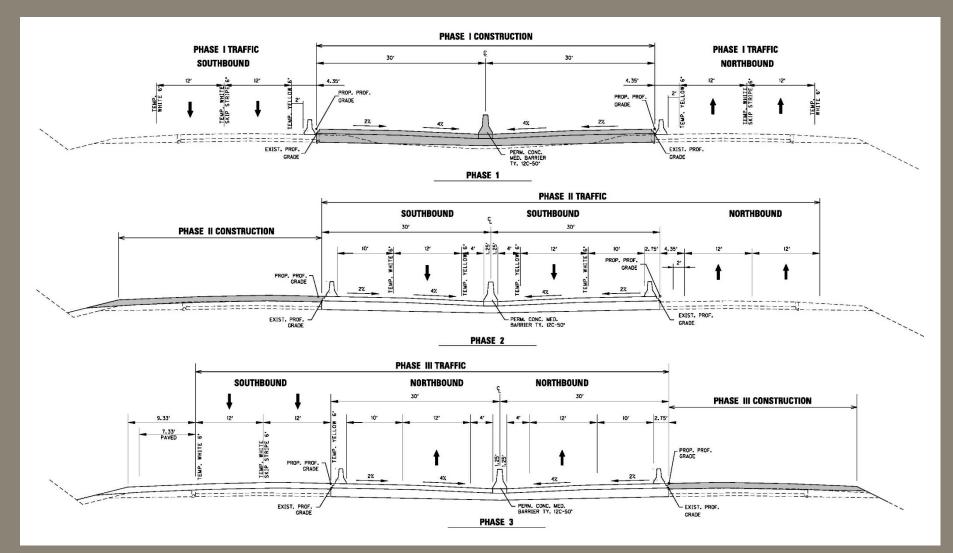

Embankment Section


Rock Cut

68 ft (edge to edge)

80 ft (edge to edge)

US 25 RAMPS


FL 1204.53
FI 1209.31
AP D

All ramps have updated recovery tapers to match current standards

US 25 RAMP RETAINING WALL

I-75 Maintenance of Traffic



Questions?

Kentucky Transportation Cabinet I-75 Widening, MP 55.3 to MP 60.1 (Item #08-0006.10) and MP 60.1 to MP 64.5 (Item #08-0006.20) Rockcastle County

Value Engineering Presentation

VE Study Team Members

- William Lucas, PE KYTC
- Bob Jones, PE, PLS KYTC •
- Shawn Russell, PE, AVS KYTC
- Rodney Little, PE QK4
- Jeremy Lukat, PE QK4

- Keith Damron, PE AEI
- Dennis Mitchell, PE AEI
- Gary Sharpe, PE Palmer Engineering
- Certified Value Specialist (CVS) Team Leader – Pat Miller, RHA

VE Job Plan

Workshop Objectives

- Review pavement structure for both sections
- Reduce impacts review typical section near Lake Linville
- Evaluate truck lane and ramp traffic data/design
- Identify opportunities to reduce right-of-way (Section No. 08-0006.10)

Creative Ideas

56 Ideas

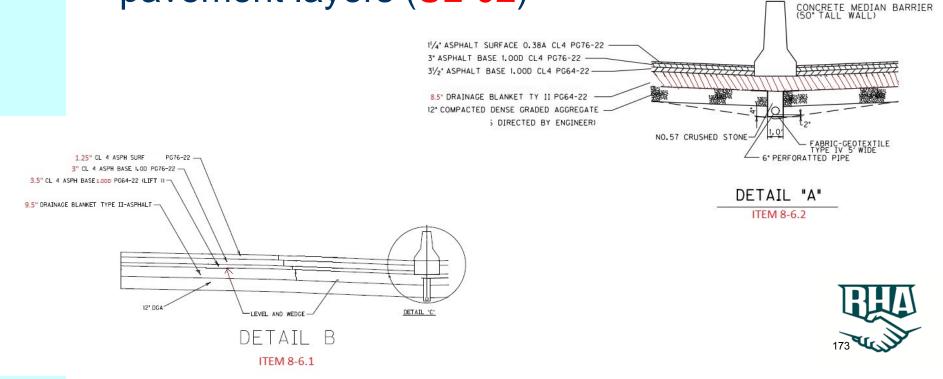
- 18 VE Alternatives developed
- 4 Design Suggestions developed
- 19 Design/Estimate Comments identified

Summary

- Validate Design
- Value Opportunities
 - Proper balance between
 - Function/performance
 - Quality
 - Safety
 - Cost

ALTERNATIVES

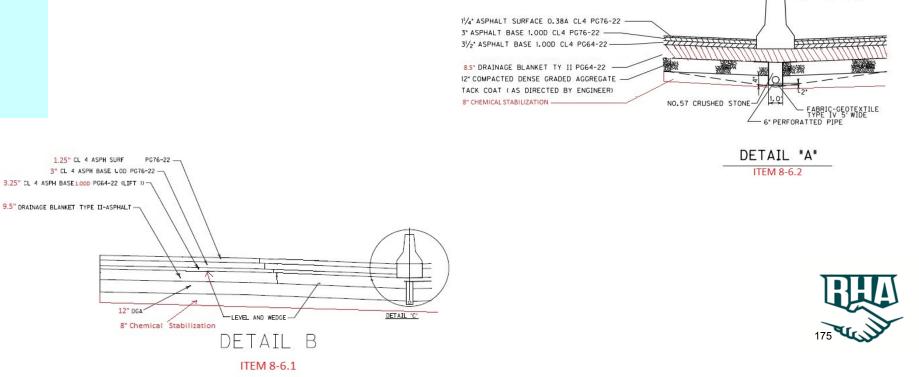

Pavement - Validation


- Initial design 1998
- Pavement design philosophy and criteria have evolved
- Validation needs to happen before opportunities can be explored
- Details discussed with Pavement Branch and will be included in VE report
- Inconsistency in unit costs among sections (e.g., drainage blanket)

Pavement – Value Opportunities

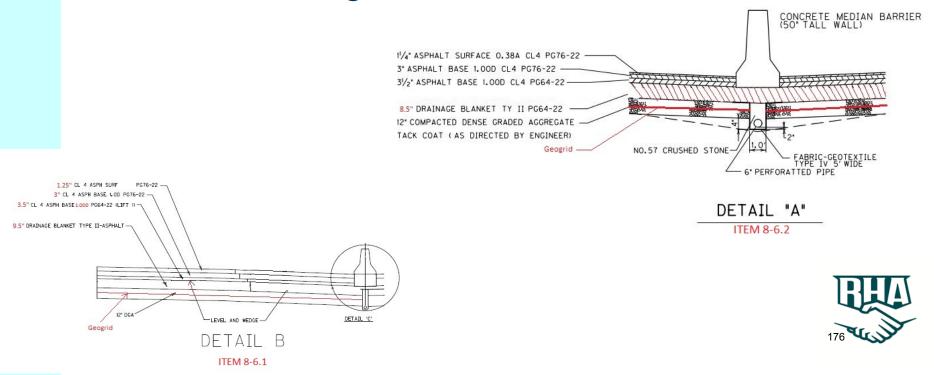
Pavement – Value Opportunities

- Use stabilized base layer in the widening section (SL-04)
- Varying unit cost for drainage blanket skews potential cost savings
- Based on average unit cost, re-proportioning the pavement layers offset the costs for stabilized base

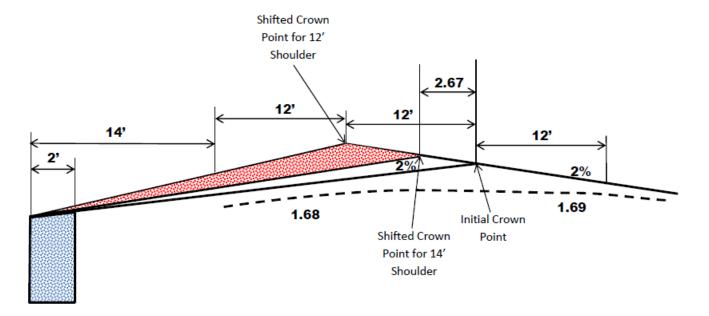


CONCRETE MEDIAN BARRIER (50" TALL WALL)

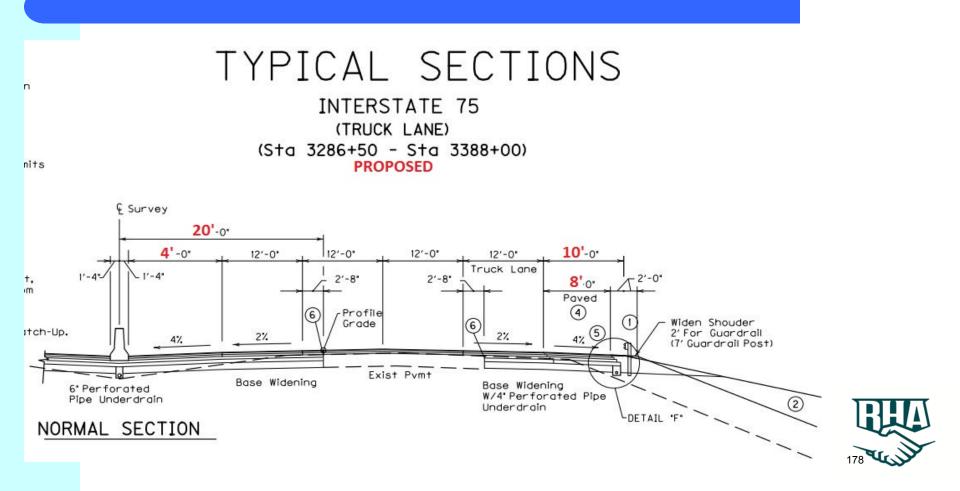
Pavement – Value Opportunities

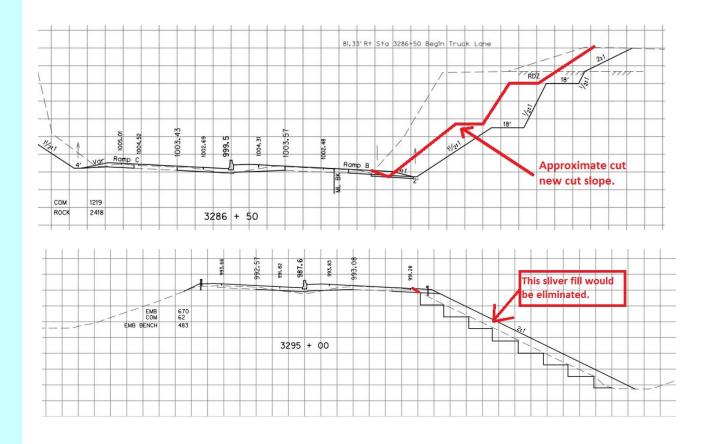

Use stabilized base layer in the widening section (SL-04)

Pavement – Value Opportunities

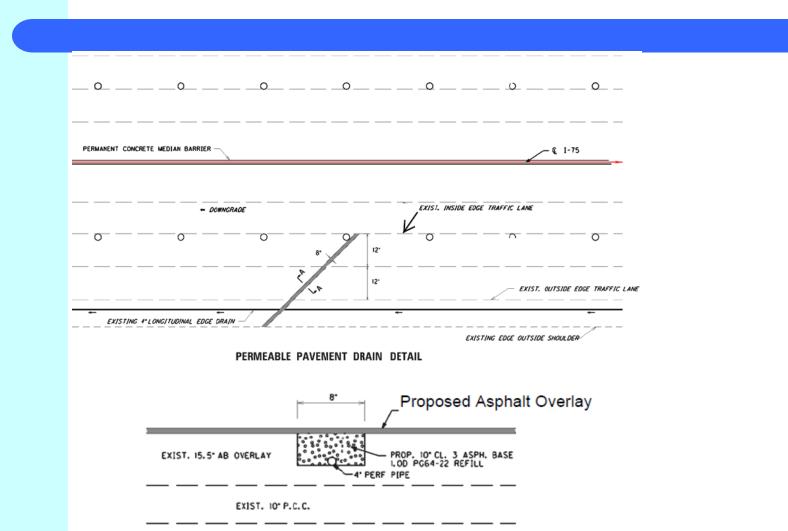

Use geogrid to thin pavement section in the widening section (SL-05)

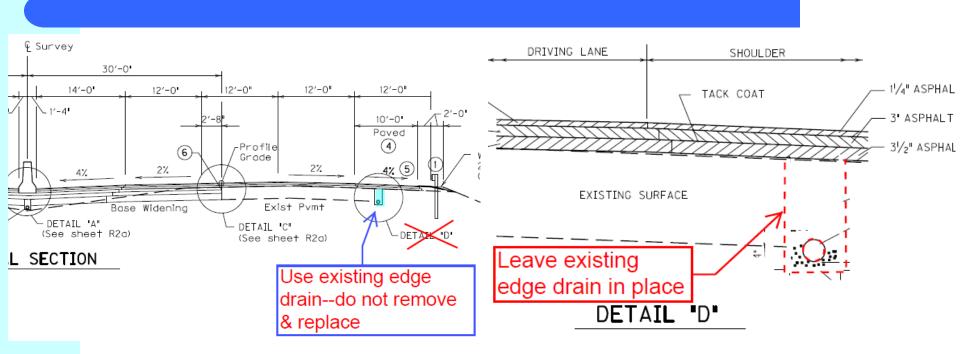
Reduce Inside Shoulder (SL-07)


 Reduce inside shoulder width from 14' to 12' - Not recommended



Reduce Truck Lane Shoulders (SL-08)


Reduce Truck Lane Shoulders (SL-08)

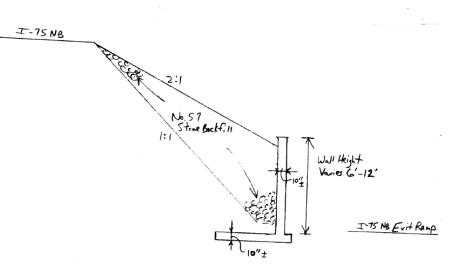

Use Pavement Trench Drains (SL-11)

Utilize Existing Pavement Edge Drains (SL-14)

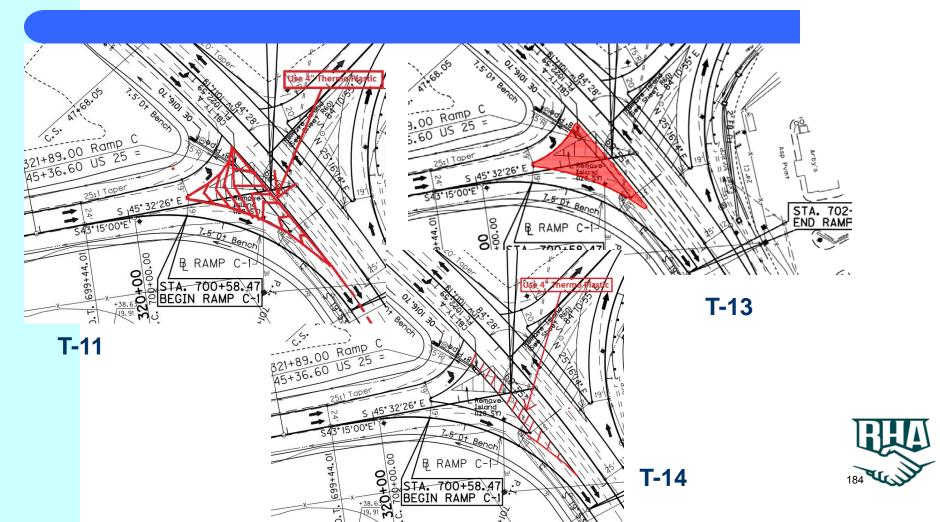


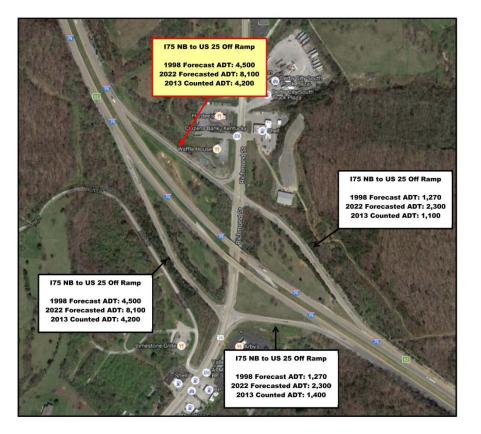
NB Exit Ramp @ 59 Interchange (SG-02)

- Type and condition of current wall is not known
- Plans do not indicate if existing wall is to remain or be replaced



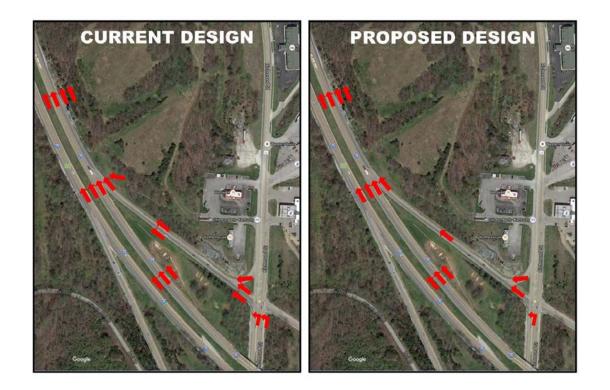
NB Exit Ramp @ 59 Interchange (SG-02)


- Replace 425' of existing retaining wall and possibly terminating the wall further to the south
- Improves sight distance
- Lowers future maintenance



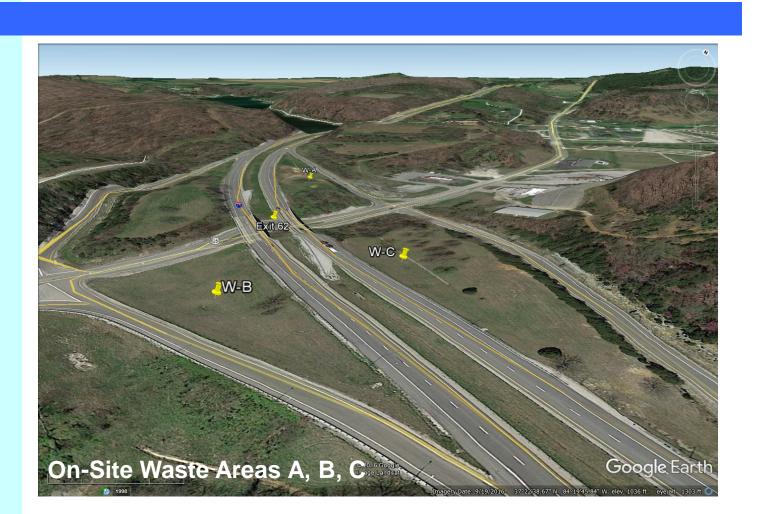
Interchange 62 C-1 Ramp Island Modifications

Interchange 62 NB On-ramp (T-01)



	nday	Monday 630	Tuesday 807	Wednesday	Thursday 740	Friday	Saturday
	92	522	497	511	573	665	832
5	28	419	436	456	540	525	618
	83	407	462	477	515	570	644
4	80	620	691	745	768	690	753
5	14	956	895	990	1,063	1,096	1,005
6	55	1,411	1,399	1,415	1,487	1,553	1,290
1.1	122	1,765	1,835	1,939	2,101	2,003	1,790
1.3	749	2,064	1,979	2,197	2,493	2,449	2,502
2.3	712	2,349	2,138	2,372	2,649	3,066	3,281
3,5	850	2,728	2,471	2,655	3,114	2,879	4,129
4,0	667	3,266	2,769	2,967	3,625	4,156	4,663
5.0	036	3,407	2,867	3,187	3,698	4.353	4,691
5.3	281	3,435	2,915	3,106	3,782	4,433	4,528
5,3	251	3,420	2,643	3,301	3,652	4,365	4,709
4,5	803	3,299	2,902	3,224	3,864	3,839	4,396
4,3	320	3,344	2,882	3,182	3,886	4,428	3,900
4,0	038	3,049	2,767	3,025	3,368	4,238	3,497
3,4	451	2,265	2,292	2,543	2,742	3,491	2,955
2.5	887	1,849	1,770	1,897	2,286	2,983	2,635
2,1	161	1,552	1,580	1,753	2,024	2,644	2,241
1,0	687	1,384	1,448	1,489	1,790	2,454	1,989
1.4	420	1,025	1,124	1,217	1,310	1,751	1,462
8	94	682	826	817	1,020	1,307	1,113

Interchange 62 NB On-ramp (T-01)


Interchange 62 NB On-ramp (T-02)

Identify Waste Areas

Identify Waste Areas

Next Steps

- Draft Report
- Implementation Meeting
- Final Report

Questions

Value Engineering Study Kentucky Transportation Cabinet I I-75 Widening, MP 55.3 to MP 60.1 (Item No. 08-0006.10) I-75 Widening, MP 60.1 to MP 64.5 (Item No. 08-0006.20) Rockcastle County

Standard KYTC VE Report Abbreviations

List of Common Abbreviations

ADDArea Development DistrictADDArea Development DistrictADTAverage Daily TrafficCRFCrtical Rate FactorCSBCrushed Stone BaseCYCubic YardDESDesign Executive SummaryDGADense Graded AggregateDHVDesign Hour VolumeEAEachFHWVAFederal Highway AdministrationFTFoot or FeetIJSInterchange Justification StudyKTCKentucky Transportation CenterKYTCKentucky Transportation CabinetLFLinear FeetLOSLevel of ServiceLSLump SumMIMileMOUMemorandum of UnderstandingMPMilepointMPOMetropolitan Planning OrganziationMSEMechanically Stabilized EarthNHSNational Highway SystemPDProject DevelopmentPDPProject Delivery and PreservationPL&GPreliminary Line and GradeRCBCReinforced Concrete Box CulvertROWRight-of-WaySYPSix Year PlanTRBTransportation Research BoardV/CVolume to Capacity RatioVEValue EngineeringVPHVehicles per Hour	AADT AASHTO	Average Annual Daily Traffic American Association of State Highway and Transportation Officials
ADTAverage Daily TrafficCRFCrtical Rate FactorCSBCrushed Stone BaseCYCubic YardDESDesign Executive SummaryDGADense Graded AggregateDHVDesign Hour VolumeEAEachFHWAFederal Highway AdministrationFTFoot or FeetIJSInterchange Justification StudyKTCKentucky Transportation CenterKYTCKentucky Transportation CabinetLFLinear FeetLOSLevel of ServiceLSLump SumMIMileMOUMemorandum of UnderstandingMPMilepointMPOMetropolitan Planning OrganziationMSEMechanically Stabilized EarthNHSNational Highway SystemPDProject Delivery and PreservationPL&GPreliminary Line and GradeRCBCReinforced Concrete Box CulvertROWRight-of-WaySYPSix Year PlanTRBTransportation Research BoardV/CVolume to Capacity RatioVEValue Engineering		
CRFCrtical Rate FactorCSBCrushed Stone BaseCYCubic YardDESDesign Executive SummaryDGADense Graded AggregateDHVDesign Hour VolumeEAEachFHWAFederal Highway AdministrationFTFoot or FeetIJSInterchange Justification StudyKTCKentucky Transportation CenterKYTCKentucky Transportation CabinetLFLinear FeetLOSLevel of ServiceLSLump SumMIMileMOUMemorandum of UnderstandingMPMilepointMPOMetropolitan Planning OrganziationMSEMechanically Stabilized EarthNHSNational Highway SystemPDProject Delivery and PreservationPL&GPreliminary Line and GradeRCBCReinforced Concrete Box CulvertROWRight-of-WaySYPSix Year PlanTRBTransportation Research BoardV/CVolume to Capacity RatioVEValue Engineering		First Repair and in American Structure Control Control (1994)
CSBCrushed Stone BaseCYCubic YardDESDesign Executive SummaryDGADense Graded AggregateDHVDesign Hour VolumeEAEachFHWAFederal Highway AdministrationFTFoot or FeetIJSInterchange Justification StudyKTCKentucky Transportation CenterKYTCKentucky Transportation CabinetLFLinear FeetLOSLevel of ServiceLSLump SumMIMileMOUMemorandum of UnderstandingMPMilepointMPOMetropolitan Planning OrganziationMSEMechanically Stabilized EarthNHSNational Highway SystemPDProject DevelopmentPDPProject Delivery and PreservationPL&GPreliminary Line and GradeRCBCReinforced Concrete Box CulvertROWRight-of-WaySYPSix Year PlanTRBTransportation Research BoardV/CVolume to Capacity RatioVEValue Engineering		o ,
CYCubic YardDESDesign Executive SummaryDGADense Graded AggregateDHVDesign Hour VolumeEAEachFHWAFederal Highway AdministrationFTFoot or FeetIJSInterchange Justification StudyKTCKentucky Transportation CenterKYTCKentucky Transportation CabinetLFLinear FeetLOSLevel of ServiceLSLump SumMIMileMOUMemorandum of UnderstandingMPMilepointMPOMetropolitan Planning OrganziationMSEMechanically Stabilized EarthNHSNational Highway SystemPDProject DevelopmentPDPProject Delivery and PreservationPL&GPreliminary Line and GradeRCBCReinforced Concrete Box CulvertROWRight-of-WaySYPSix Year PlanTRBTransportation Research BoardV/CVolume to Capacity RatioVEValue Engineering		
DESDesign Executive SummaryDGADense Graded AggregateDHVDesign Hour VolumeEAEachFHWAFederal Highway AdministrationFTFoot or FeetIJSInterchange Justification StudyKTCKentucky Transportation CenterKYTCKentucky Transportation CabinetLFLinear FeetLOSLevel of ServiceLSLump SumMIMileMOUMemorandum of UnderstandingMPMilepointMPOMetropolitan Planning OrganziationMSEMechanically Stabilized EarthNHSNational Highway SystemPDProject DevelopmentPDPProject DevelopmentPDPProject DevelopmentPDRProject DevelopmentPDRSix Year PlanTRBTransportation Research BoardV/CVolume to Capacity RatioVEValue Engineering		
DGADense Graded AggregateDHVDesign Hour VolumeEAEachFHWAFederal Highway AdministrationFTFoot or FeetIJSInterchange Justification StudyKTCKentucky Transportation CenterKYTCKentucky Transportation CabinetLFLinear FeetLOSLevel of ServiceLSLump SumMIMileMOUMemorandum of UnderstandingMPMilepointMSEMechanically Stabilized EarthNHSNational Highway SystemPDProject DevelopmentPDPProject Delivery and PreservationPL&GPreliminary Line and GradeRCBCReinforced Concrete Box CulvertROWRight-of-WaySYPSix Year PlanTRBTransportation Research BoardV/CVolume to Capacity RatioVEValue Engineering		
DHVDesign Hour VolumeEAEachFHWAFederal Highway AdministrationFTFoot or FeetIJSInterchange Justification StudyKTCKentucky Transportation CenterKYTCKentucky Transportation CabinetLFLinear FeetLOSLevel of ServiceLSLump SumMIMileMOUMemorandum of UnderstandingMPMilepointMPOMetropolitan Planning OrganziationMSEMechanically Stabilized EarthNHSNational Highway SystemPDProject DevelopmentPDPProject Delivery and PreservationPL&GPreliminary Line and GradeRCBCReinforced Concrete Box CulvertROWRight-of-WaySYPSix Year PlanTRBTransportation Research BoardV/CVolume to Capacity RatioVEValue Engineering		
EAEachFHWAFederal Highway AdministrationFTFoot or FeetIJSInterchange Justification StudyKTCKentucky Transportation CenterKYTCKentucky Transportation CabinetLFLinear FeetLOSLevel of ServiceLSLump SumMIMileMOUMemorandum of UnderstandingMPMilepointMPOMetropolitan Planning OrganziationMSEMechanically Stabilized EarthNHSNational Highway SystemPDProject DevelopmentPDPProject Delivery and PreservationPL&GPreliminary Line and GradeRCBCReinforced Concrete Box CulvertROWRight-of-WaySYPSix Year PlanTRBTransportation Research BoardV/CVolume to Capacity RatioVEValue Engineering		
FHWAFederal Highway AdministrationFTFoot or FeetIJSInterchange Justification StudyKTCKentucky Transportation CenterKYTCKentucky Transportation CabinetLFLinear FeetLOSLevel of ServiceLSLump SumMIMileMOUMemorandum of UnderstandingMPMilepointMPOMetropolitan Planning OrganziationMSEMechanically Stabilized EarthNHSNational Highway SystemPDProject DevelopmentPDPProject Delivery and PreservationPL&GPreliminary Line and GradeRCBCReinforced Concrete Box CulvertROWRight-of-WaySYPSix Year PlanTRBTransportation Research BoardV/CVolume to Capacity RatioVEValue Engineering		
FTFoot or FeetIJSInterchange Justification StudyKTCKentucky Transportation CenterKYTCKentucky Transportation CabinetLFLinear FeetLOSLevel of ServiceLSLump SumMIMileMOUMemorandum of UnderstandingMPMilepointMPOMetropolitan Planning OrganziationMSEMechanically Stabilized EarthNHSNational Highway SystemPDProject DevelopmentPDPProject Delivery and PreservationPL&GPreliminary Line and GradeRCBCReinforced Concrete Box CulvertROWRight-of-WaySYPSix Year PlanTRBTransportation Research BoardV/CVolume to Capacity RatioVEValue Engineering		
IJSInterchange Justification StudyKTCKentucky Transportation CenterKYTCKentucky Transportation CabinetLFLinear FeetLOSLevel of ServiceLSLump SumMIMileMOUMemorandum of UnderstandingMPMilepointMPOMetropolitan Planning OrganziationMSEMechanically Stabilized EarthNHSNational Highway SystemPDProject DevelopmentPDPProject Delivery and PreservationPL&GPreliminary Line and GradeRCBCReinforced Concrete Box CulvertROWRight-of-WaySYPSix Year PlanTRBTransportation Research BoardV/CVolume to Capacity RatioVEValue Engineering		
KTCKentucky Transportation CenterKYTCKentucky Transportation CabinetLFLinear FeetLOSLevel of ServiceLSLump SumMIMileMOUMemorandum of UnderstandingMPMilepointMPOMetropolitan Planning OrganziationMSEMechanically Stabilized EarthNHSNational Highway SystemPDProject DevelopmentPDPProject Delivery and PreservationPL&GPreliminary Line and GradeRCBCReinforced Concrete Box CulvertROWRight-of-WaySYPSix Year PlanTRBTransportation Research BoardV/CVolume to Capacity RatioVEValue Engineering		
KYTCKentucky Transportation CabinetLFLinear FeetLOSLevel of ServiceLSLump SumMIMileMOUMemorandum of UnderstandingMPMilepointMPOMetropolitan Planning OrganziationMSEMechanically Stabilized EarthNHSNational Highway SystemPDProject DevelopmentPDPProject Delivery and PreservationPL&GPreliminary Line and GradeRCBCReinforced Concrete Box CulvertROWRight-of-WaySYPSix Year PlanTRBTransportation Research BoardV/CVolume to Capacity RatioVEValue Engineering		
LFLinear FeetLOSLevel of ServiceLSLump SumMIMileMOUMemorandum of UnderstandingMPMilepointMPOMetropolitan Planning OrganziationMSEMechanically Stabilized EarthNHSNational Highway SystemPDProject DevelopmentPDPProject Delivery and PreservationPL&GPreliminary Line and GradeRCBCReinforced Concrete Box CulvertROWRight-of-WaySYPSix Year PlanTRBTransportation Research BoardV/CVolume to Capacity RatioVEValue Engineering	KYTC	
LSLump SumMIMileMOUMemorandum of UnderstandingMPMilepointMPOMetropolitan Planning OrganziationMSEMechanically Stabilized EarthNHSNational Highway SystemPDProject DevelopmentPDPProject Delivery and PreservationPL&GPreliminary Line and GradeRCBCReinforced Concrete Box CulvertROWRight-of-WaySYPSix Year PlanTRBTransportation Research BoardV/CVolume to Capacity RatioVEValue Engineering	LF	
MIMileMOUMemorandum of UnderstandingMPMilepointMPOMetropolitan Planning OrganziationMSEMechanically Stabilized EarthNHSNational Highway SystemPDProject DevelopmentPDPProject Delivery and PreservationPL&GPreliminary Line and GradeRCBCReinforced Concrete Box CulvertROWRight-of-WaySYPSix Year PlanTRBTransportation Research BoardV/CVolume to Capacity RatioVEValue Engineering	LOS	Level of Service
MOUMemorandum of UnderstandingMPMilepointMPOMetropolitan Planning OrganziationMSEMechanically Stabilized EarthNHSNational Highway SystemPDProject DevelopmentPDPProject Delivery and PreservationPL&GPreliminary Line and GradeRCBCReinforced Concrete Box CulvertROWRight-of-WaySYPSix Year PlanTRBTransportation Research BoardV/CVolume to Capacity RatioVEValue Engineering	LS	Lump Sum
MPMilepointMPOMetropolitan Planning OrganziationMSEMechanically Stabilized EarthNHSNational Highway SystemPDProject DevelopmentPDPProject Delivery and PreservationPL&GPreliminary Line and GradeRCBCReinforced Concrete Box CulvertROWRight-of-WaySYPSix Year PlanTRBTransportation Research BoardV/CVolume to Capacity RatioVEValue Engineering	MI	Mile
MPOMetropolitan Planning OrganziationMSEMechanically Stabilized EarthNHSNational Highway SystemPDProject DevelopmentPDPProject Delivery and PreservationPL&GPreliminary Line and GradeRCBCReinforced Concrete Box CulvertROWRight-of-WaySYPSix Year PlanTRBTransportation Research BoardV/CVolume to Capacity RatioVEValue Engineering	MOU	Memorandum of Understanding
MSEMechanically Stabilized EarthNHSNational Highway SystemPDProject DevelopmentPDPProject Delivery and PreservationPL&GPreliminary Line and GradeRCBCReinforced Concrete Box CulvertROWRight-of-WaySYPSix Year PlanTRBTransportation Research BoardV/CVolume to Capacity RatioVEValue Engineering	MP	Milepoint
NHSNational Highway SystemPDProject DevelopmentPDPProject Delivery and PreservationPL&GPreliminary Line and GradeRCBCReinforced Concrete Box CulvertROWRight-of-WaySYPSix Year PlanTRBTransportation Research BoardV/CVolume to Capacity RatioVEValue Engineering	MPO	Metropolitan Planning Organziation
PDProject DevelopmentPDPProject Delivery and PreservationPL&GPreliminary Line and GradeRCBCReinforced Concrete Box CulvertROWRight-of-WaySYPSix Year PlanTRBTransportation Research BoardV/CVolume to Capacity RatioVEValue Engineering	MSE	Mechanically Stabilized Earth
PDPProject Delivery and PreservationPL&GPreliminary Line and GradeRCBCReinforced Concrete Box CulvertROWRight-of-WaySYPSix Year PlanTRBTransportation Research BoardV/CVolume to Capacity RatioVEValue Engineering	NHS	National Highway System
PL&GPreliminary Line and GradeRCBCReinforced Concrete Box CulvertROWRight-of-WaySYPSix Year PlanTRBTransportation Research BoardV/CVolume to Capacity RatioVEValue Engineering	PD	Project Development
RCBCReinforced Concrete Box CulvertROWRight-of-WaySYPSix Year PlanTRBTransportation Research BoardV/CVolume to Capacity RatioVEValue Engineering	PDP	Project Delivery and Preservation
ROWRight-of-WaySYPSix Year PlanTRBTransportation Research BoardV/CVolume to Capacity RatioVEValue Engineering	PL&G	Preliminary Line and Grade
SYPSix Year PlanTRBTransportation Research BoardV/CVolume to Capacity RatioVEValue Engineering	RCBC	Reinforced Concrete Box Culvert
TRBTransportation Research BoardV/CVolume to Capacity RatioVEValue Engineering	ROW	Right-of-Way
V/C Volume to Capacity Ratio VE Value Engineering	SYP	Six Year Plan
VE Value Engineering	TRB	Transportation Research Board
5 5		
VPH Vehicles per Hour		
	VPH	Vehicles per Hour