VALUE ENGINEERING SUMMARY
 OF THE
 I-75 WIDENING
 ITEM NO. 6-16.00
 BOONE, KENTON \& GRANT COUNTIES KENTUCKY

SEPTEMBER 8-12, 1997

Prepared by:
William F. Ventry, P.E., C.V.S.

In Association With:
Kentucky Transportation Cabinet

TABLE OF CONTENTS

ITEM NO. DESCRIPTION PAGE NO.
I. EXECUTIVE SUMMARY 1
II. LOCATION OF PROJECT 5
III. TEAM MEMBERS, PROJECT DESCRIPTION, \& PERSONS CONTACTED 7
IV. INVESTIGATION PHASE 11
V. SPECULATION PHASE 15
VI. EVALUATION PHASE 19
A. ALTERNATIVES 20
B. ADVANTAGES AND DISADVANTAGES 23
C. EVALUATION MATRICES 33
VII. DEVELOPMENT PHASE 35
A. DRAINAGE BLANKET 36
(1) AS PROPOSED 37
(2) V.E. ALTERNATIVE 39
B. KY 14/16 STRUCTURE 42
(1) AS PROPOSED 43
(2) V.E. ALTERNATIVES 45
C. KY 14/16 INTERCHANGE RAMP REVISION AND CULVERT EXTENSION 56
(1) AS PROPOSED 59
(2) V.E. ALTERNATIVE 63
D. MAINLINE PAVEMENT OVERLAY AND
PAVEMENT THICKNESS81
(1) AS PROPOSED 82
(2) V.E. ALTERNATIVE 85
E. TYPICAL SECTION 172
(1) AS PROPOSED 173
(2) V.E. ALTERNATIVES 176
F. KY 491 STRUCTURE 189
(1) AS PROPOSED 190
(2) V.E. ALTERNATIVES 193
VIII. SUMMARY OF RECOMMENDATIONS 212

I. EXECUTTVE SUMMARY

INTRODUCTION

This Value Engineering report summarizes the results of the Value Engineering study performed by Ventry Engineering for the Kentucky Transportation Cabinet. The study was performed during the week of September 8-12, 1997.

The subject of the study was the widening of I-75 in Boone, kenton \& Grant Counties.

PROJECT DESCRIPTION

The proposed project is the reconstruction of I-75 by adding an additional lane to the median of the existing I-75 from KY 491 to north of I-71. This is proposed to be accomplished by paving the additional new lanes on the inside as well as the entire median with the full depth of the proposed new pavement design.

It is proposed to replace the existing KY 491 bridge with a new three lane structure.
It is also proposed to replace the haunched portion of the existing KY $14 / 16$ bridge with a new structure and keep the existing AASHTO girder portion.

In addition, the Eads Road bridge is proposed to be jacked up approximately 4 feet to achieve the required vertical clearance over I-75.

METHODOLOGY

The Value Engineering Team followed the basic Value Engineering procedure for conducting this type of analysis.

This process included the following phases:

1. Investigation
2. Speculation
3. Evaluation
4. Development
5. Presentation
6. Report Preparation

Evaluation criteria identified as a basis for the comparison of alternatives included the following:

- Construction cost
- Maintenance cost
- Constructability
- Maintenance of Traffic
- Design life
- Salvage Value
- Pavement Drainage
- Snow/Ice removal or storage
- Vertical and horizontal clearances
- Cross road profiles
- Traffic operations
- Construction time

RESULTS

The following six areas of focus were analyzed by the Value Engineering team and from these areas the following Value Engineering alternatives were developed and are recommended for Implementation:

I-Drainage Blanket
The Value Engineering Team recommends that Value Engineering Alternative No. 1 be implemented. This alternative uses an untreated stone blanket.

If this recommendation can be implemented, there is a possible savings of $\$ 1,008,735$.

2-KY 14/16 Structure

The Value Engineering Team recommends that Value Engineering Alternative No. 2 be implemented. This alternative replaces the existing bridge with a new structure but does not use a crossover for maintenance of traffic.

If this recommendation can be implemented, there is a possible savings of $\$ \mathbf{4 6 1 , 1 0 0}$.

3-KY 14/16 Interchange Ramp Revision and Culvert Extension

The Value Engineering Team recommends that the Value Engineering Alternative be implemented. This alternative changes the proposed ramp revision and eliminates the culvert extension and fill.

If this recommendation can be implemented, there is a possible savings of $\mathbf{\$ 2 1 6 , 2 5 8}$.

4-Mainline Overlay and New Pavement Thickness
The Value Engineering Team recommends that the Value Engineering Alternative be implemented. This alternative minimizes the thickness by revising the pavement design.

If this recommendation can be implemented there is a possible savings of $\$ 1,359,250$.

pf

5-Typical Section

The Value Engineering Team recommends that Value Engineering Alternative No. 4B be implemented. This alternative uses an 8 meter depressed median, uses a standard height single slope barrier in the median, uses $12^{\prime}(3.6 \mathrm{~m})$ paved shoulders in the median, reduces the thickness of the median shoulder pavement and/or uses lesser grade of materials for the shoulder pavement in the median and feathers the shoulders down from the edge of pavement on the outside and does nothing outside the existing shoulders.

If this recommendation can be implemented, there is a possible savings of \$4,534,366.

If this recommendation can be implemented, there is a possible savings of $\$ \mathbf{8 6 6 , 8 0 0}$.

If all the recommendations can be implemented, there is a possible total savings of $\$ 8,446,509$.
II. LOCATION OF PROJECT

I-75 Reconstruction

III. TEAM MEMBERS AND PROJECT DESCRIPTION

TEAM MEMBERS

NAME	AFFILIATION	EXPERTISE	PHONE
William F. Ventry, P.E., C.V.S.	Ventry Engineering	Team Leader	$850 / 627-3900$
Don Keenan	Ventry Engineering	Structural Team Member	$850 / 627-3900$
Jerry Love	Ventry Engineering	Geometric Team Member	$850 / 627-3900$
Duncan Silver	Ventry Engineering	Pavement Design Team Member	$850 / 627-3900$
Dale Carpenter	Kentucky Transportation Cabinet	Structural Team Member	$502 / 564-4560$
Larry Trenkemp	Kentucky Transportation Cabinet	Construction Team Member	$606 / 341-2700$
Kevin Villier	Kentucky Transportation Cabinet	Roadway Design Team Member	$502 / 367-6411$

PROJECT DESCRIPTION

The proposed project is the reconstruction of I-75 by adding an additional lane to the median of the existing I-75 from KY 491 to north of I-71. This is proposed to be accomplished by paving the additional new lanes on the inside as well as the entire median with the full depth of the proposed new pavement design.

It is proposed to replace the existing KY 491 bridge with a new three lane structure.
It is also proposed to replace the haunched portion of the existing KY $14 / 16$ bridge with a new structure and keep the existing AASHTO girder portion.

In addition, the Eads Road bridge is proposed to be jacked up approximately 4 feet to achieve the required vertical clearance over I-75.

PERSONS CONTACTED

NAME	AFFILIATION	PHONE
Bill Madden	Kentucky Transportation Cabinet, Traffic	$502 / 564-3020$
Robert Parks	Florence \& Hutcheson	$502 / 444-9691$
Joette Fields	Kentucky Transportation Cabinet, Value Engineering	$502 / 654-3280$
Daryl Greer	Kentucky Transportation Cabinet, Value Engineering	$502 / 654-3280$
Janet Coffey	Kentucky Transportation Cabinet, Operations	$502 / 564-4560$
Leo Frank	Kentucky Transportation Cabinet, Pavement Design	$502 / 564-3280$

IV. INVESTIGATION PHASE

FUNCTIONAL ANALYSIS WORKSHEET, INVESTIGATION PHASE
PROJECT: I-75 WIDENING; BOONE, KENTON \& GRANT COUNTIES
DATE: SEPTEMBER 8-12, 1997

ITEM	$\frac{\text { FUNCT. }}{\text { VERB }}$	$\frac{\text { FUNCT. }}{\text { NOUN }}$	TYPE	$\underset{*}{\text { COST }}$	WORTH	VALUE INDEX
Base, New Pavement	Support	Pavement	B	\$3,500	\$2,000	1.8
Drainage Blanket	Drain	Subgrade	S	\$1,760	\$ 800	2.2
Surface, New Pavement	Support	Vehicles	B	\$ 800	\$ 600	1.3
Base, Inside Shoulder	Support	Pavement	B	\$4,200	\$2,100	2.0
Surface, Inside Shoulder	Protect	Pavement Edge	B	\$1,000	\$ 500	2.0
Perforated Drain Pipe	Remove	Water	S	\$ 775	\$ 775	1.0
Milling of Existing Pavement	Remove	Material	B	\$ 900	\$ 0	∞
Overlay of Existing Pavement	Support	Vehicles	B	\$3,100	\$2,700	1.1
Median Drainage System	Convey	Water	B	\$ 900	\$ 900	1.0
Temporary Barrier Wall	Protect	Workers	S	\$1,575	\$ 575	3.0
Permanent Barrier Wall	Redirect	Vehicle	B	\$2,173	\$2,173	1.0
Earthwork	Achieve	Profile	S	\$1,617	\$1,000	1.6
KY 491 Bridge	Span	I-75	B	\$1,250	\$ 500	
Eads Road Bridge	Provide	Clearance	S	\$ 250	\$ 250	1.0
KY 14/16 Bridge	Provide	Clearance	S	\$ 800	\$ 150	
Guardrail	Redirect	Vehicles	B	\$ 444	\$ 444	1.0
Ramp Realignment/Culvert Extension	Revise	Area	S	\$ 700	\$ 400	1.8

ITEM	FUNCT. VERB	FUNCT. NOUN	TYPE	COST $*$	Traffic	Control
Maintenance of Traffic	B	$\$ 800$	WORTH $*$	VALUE INDEX		
Base, Outside Shoulder	Match	Mainline	S	$\$ 650$	$\$ 300$	1.0
Surface, Outside Shoulder	Match	Mainline	S	$\$ 700$	$\$ 350$	2.0

B = Basic Function
$S=$ Secondary Function

* = All amounts x 1000

The following have been identified by the Value Engineering Team as areas of focus and investigation for the Value Engineering process:

1. Drainage Blanket
2. KY 14/16 Structure
3. KY 14/16 Interchange Ramp Revision and Culvert Extension
4. Mainline Overlay and New Pavement Thickness

5. Typical Section

6. KY 491 Structure

V. SPECULATION PHASE

SPECULATION

Ideas generated, utilizing the brainstorming method, for performing the functions of previously identified areas of focus.

1. DRAINAGE BLANKET

- Use untreated stone
- Use a rock subgrade
- Change slope on subgrade and use existing edge drain
- Eliminate drainage blanket entirely
- Use milled material
- Use ground tires

2. KY 14/16 STRUCTURE

- Shift the alignment and keep the existing bridge
- Cut a notch in the existing haunch and add post-tensioning
- Jack the old and new bridges to obtain vertical clearance
- Lower I-75 to obtain vertical clearance
- Replace with a new bridge but do not use a crossover for maintenance of traffic

3. KY 14/16 INTERCHANGE RAMP REVISION AND CULVERT EXTENSION

- Change proposed ramp revision
- Eliminate the culvert extension and fill
- Provide culvert extension but do not fill over the culvert extension

4. MAINLINE OVERLAY AND NEW PAVEMENT THICKNESS

- Minimize the thickness by revising pavement design
- Substitute open graded friction course for surface course
- Eliminate overlay entirely
- Use stage construction for a future resurfacing at ten years
- Break the pavement design north and south of I-71
- Do not mill the existing pavement
- Mill only the bad areas of the existing pavement

5. TYPICAL SECTION

- Use spilt wall with earth fill in median
- Use single slope barrier wall in median
- Reduce thickness of median shoulder pavement
- Reduce the median shoulder width to 12^{\prime} (3.6 m)
- Use lesser grade of materials for the shoulder pavement in the median
- Use permanent precast barrier wall for temporary wall and the use in permanent position in median
- Eliminate or minimize outside ditch regrading
- Modify the proposed outside ditch section
- Minimize the thickness of the outside shoulders
- Use lesser grade of materials on the outside shoulders
- Feather down from the edge of pavement and do nothing to the outside shoulders
- Use standard height barrier in the median
- Use tribeam guardrail in the median
- Use two single face guardrail in the median
- Shift the alignment to the outside to obtain clear zone requirements and eliminate median barrier entirely

6. KY 491 STRUCTURE

- Salvage the existing bridge by jacking it up to obtain required vertical clearance - Widen the existing bridge to obtain desired typical section
- Provide a new bridge but eliminate the proposed crossovers
- Construct a new bridge on the existing foundations
- Use a single span bridge with MSE walls
- Replace with a new four span bridge
- Use a steel through bridge
- Eliminate proposed widen of the bridge typical by moving turning movement off the bridge
- Shift the alignment to obtain better vertical clearance

VI. EVALUATION PHASE

VI.(a) ALTERNATIVES

ALTERNATIVES

The following alternatives were formulated during the "eliminate and combine" portion of the Evaluation Phase.

1. DRAINAGE BLANKET

Value Engineering Alternative No. 1-Use untreated stone
Value Engineering Alternative No. 2-Change slope on subgrade and use existing edge drain Value Engineering Alternative No. 3-Eliminate entirely

2. KY $14 / 16$ STRUCTURE

Value Engineering Alternative No. 1-Shift the alignment and keep the existing bridge by jacking the old and new bridges to obtain vertical clearance

Value Engineering Alternative No. 2-Replace with a new bridge but do not use a crossover for maintenance of traffic

3. KY 14/16 INTERCHANGE RAMP REVISION AND CULVERT EXTENSION

Value Engineering Alternative-Change proposed ramp revision and eliminate the culvert extension and fill

4. MAINLINE OVERLAY AND NEW PAVEMENT THICKNESS

Value Engineering Alternative-Minimize the thickness by revising pavement design

5. TYPICAL SECTION

Value Engineering Alternative No. 1-In a 9.2 meter depressed median, use double faced guardrail in the median, $12^{\prime}(3.6 \mathrm{~m})$ paved shoulders, reduce the thickness of the median shoulder pavement and/or use lesser grade of materials for the shoulder pavement in the median and minimize the thickness of the outside shoulders and modify the proposed outside ditch section.

Value Engineering Alternative No. 2-In a 9.2 meter raised median, use a standard height single slope barrier wall or a split barrier with earth fill in the median, 12 ' 3.6 m) paved shoulders, reduce the thickness of the median shoulder pavement and/or use lesser grade of materials for the shoulder pavement in the median, minimize the thickness of the outside shoulders and modify the proposed outside ditch section.

Value Engineering Alternative No. 3-In a 9.2 meter raised median, use a double face guardrail in the median, 10 ' paved shoulders, reduce the thickness of the median shoulder pavement and/or use lesser grade of materials for the shoulder pavement in the median, minimize the thickness of the outside shoulders and modify the proposed outside ditch section.

Value Engineering Alternative No. 4-In a 8 meter depressed median, use a standard height single slope barrier in the median, $12^{\prime}(3.6 \mathrm{~m})$ paved shoulders, reduce the thickness of the median shoulder pavement and/or use lesser grade of materials for the shoulder pavement in the median and feather down from the edge of pavement and do nothing to the outside shoulders.

Value Engineering Alternative No. 5-In a 8 meter depressed median, use double faced guardrail in the median, $12^{\prime}(3.6 \mathrm{~m})$ paved shoulders, reduce the thickness of the median shoulder pavement and/or use lesser grade of materials for the shoulder pavement in the median and feather down from the edge of pavement and do nothing to the outside shoulders.

6. KY 491 STRUCTURE

Value Engineering Alternative No. I-Salvage the existing bridge by jacking it up to obtain required vertical clearance and widen the existing bridge to obtain desired typical section

Value Engineering Alternative No. 2-Provide a new two span bridge but eliminate the proposed crossovers

Value Engineering Alternative No. 3-Construct a new bridge on the existing foundations and replace with a new four span bridge
VI.(b) ADVANTAGES AND DISADVANTAGES

EVALUATION

The following Advantages and Disadvantages were developed for the Value Engineering Alternatives previously generated during the speculation phase. It also includes the Advantages and Disadvantages for the As Proposed.

1. DRAINAGE BLANKET

"As Proposed"-Use treated stone blanket

Advantages

- May extend pavement life on a portion of the project
- Adds structural support

Disadvantages

- High construction cost
- Treatment of stone may not be required
- Blanket will only be under a portion of the final typical section

Conclusion:

Recommend to be carried forward for further Evaluation

Value Engineering Altemative No. 1-Use untreated stone blanket

Advantages

- May extend pavement life on a portion of the project
- Adds structural support
- Medium construction cost

Disadvantages

- Blanket will only be under a portion of the final typical section

Conclusion:

Recommend to be carried forward for further Evaluation

Value Engineering Alternative No. 2-Change slope on subgrade and use existing edge drain

Advantages

- May reduce the volume of blanket required
- Medium construction cost
- Median drain pies would not be required

Disadvantages

- Would require more bituminous material
- Existing drain pipe will be under pavement
- Existing drain pipe may be damaged during construction

Conclusion:
Eliminate from further Evaluation

Value Engineering Alternative No. 3-Eliminate entirely

Advantages

- Low construction cost
- Less construction time

Disadvantages

- Reduced pavement life

Conclusion:

Eliminate from further Evaluation

2. KY $14 / 16$ STRUCTURE

"As Proposed"-Replace the haunched portion of the bridge with a new AASHTO girder portion and leave the existing AASHTO portion as is

Advantages

- Achieves required vertical clearance
- Matches existing profile

Disadvantages

- Constructability
- Maintenance of traffic on I-75
- High construction cost
- Does not salvage to remaining life of the existing bridge

Conclusion:
Recommend to be carried forward for further Evaluation

Value Engineering Alternative No. 1-Shift the alignment and keep the existing bridge by jacking the old and new bridges to obtain vertical clearance

Advantages

- Salvages the remaining life of the existing bridge
- Less maintenance of traffic on I-75
- Medium construction cost
- Achieves vertical clearance

Disadvantages

- Changes profile on KY 14/16
- More maintenance of traffic on KY 14/16

Conclusion:

Recommend to be carried forward for further Evaluation

Value Engineering Alternative No. 2-Replace with a new bridge but do not use a crossover for maintenance of traffic

Advantages

- Medium construction cost
- Achieves required vertical clearance
- Matches existing profile
- Less maintenance of traffic on I-75

Disadvantages

- Constructability
- Does not salvage to remaining life of the existing bridge

Conclusion:

Recommend to be carried forward for further Evaluation

3. KY 14/16 INTERCHANGE RAMP REVISION AND CULVERT EXTENSION

"As Proposed"-Revise the ramp layout and extend the existing box culvert and fill over the extended box culvert

Advantages

- Provide two lanes on the ramp

Disadvantages

- May cause operation conflicts on the ramp
- High construction cost
- More culvert maintenance
- Possible conflict with sanitary sewer
- Requires borrow for fill over culvert

Conclusion:

Recommend to be carried forward for further Evaluation

Value Engineering Alternative-Change proposed ramp revision and eliminate the culvert extension and fill

Advantages

- Eliminates need for borrow
- Medium construction cost
- Less conflict with sanitary sewer
- Less culvert maintenance

Disadvantages

- None apparent

Conclusion:

Recommend to be carried forward for further Evaluation

4. MAINLINE OVERLAY AND NEW PAVEMENT THICKNESS

"As Proposed"-5 1/2"
Advantages

- Extended pavement life
- Better riding surface

Disadvantages

- High construction cost

Conclusion:

Recommend to be carried forward for further Evaluation

Value Engineering Alternative-Minimize the thickness by revising pavement design
Advantages

- Lower construction cost
- Extended pavement life
- Better riding surface

Disadvantages

- None apparent

Conclusion:

Recommend to be carried forward for further Evaluation

5. TYPICAL SECTION

"As Proposed"-In a 9.2 meter depressed median, use high barrier in the median, 14' full depth(same as mainline) paved shoulders in the median, 10' full depth(same as mainline) thickness outside shoulders and regrade all the existing ditches and slopes on the outside

Advantages

- More snow storage area in median
- Excess capacity in shoulders
- Excavation of outside area to new criteria
- Good pavement drainage

Disadvantages

- High construction cost
- Disturbs the existing area outside the existing shoulders

Conclusion:

Recommend to be carried forward for further Evaluation

Value Engineering Alternative No. 1-In a 9.2 meter depressed median, use double faced guardrail in the median, 12 ' $(3.6 \mathrm{~m})$ paved shoulders, reduce the thickness of the median shoulder pavement andlor use lesser grade of materials for the shoulder pavement in the median and minimize the thickness of the outside shoulders and modify the proposed outside ditch section

Advantages

- Medium construction cost
- More snow storage in median

Disadvantages

- Increased guardrail maintenance

Conclusion:

Recommend to be carried forward for further Evaluation

Value Engineering Alternative No. 2-In a 9.2 meter raised median, use a standard height single slope barrier wall or a split barrier with earth fill in the median, 12 ' $(3.6 \mathrm{~m})$ paved shoulders, reduce the thickness of the median shoulder pavement and/or use lesser grade of materials for the shoulder pavement in the median, minimize the thickness of the outside shoulders and modify the proposed outside ditch section

Advantages

- No median drains required
- Medium construction cost

Disadvantages

- Poorer roadway cross-slope drainage
- Increased snow and ice removal

Conclusion:

Recommend to be carried forward for further Evaluation

Value Engineering Alternative No. 3-In a 9.2 meter raised median, use a double face guardrail in the median, 10' paved shoulders, reduce the thickness of the median shoulder pavement and/or use lesser grade of materials for the shoulder pavement in the median, minimize the thickness of the outside shoulders and modify the proposed outside ditch section

Advantages

- No median drains required
- Low construction cost

Disadvantages

- Poorer roadway cross-slope drainage
- Increased snow and ice removal
- Increased guardrail maintenance

Conclusion:

Recommend to be carried forward for further Evaluation

Value Engineering Alternative No. 4-In a 8 meter depressed median, use a standard height single slope barrier in the median, 12 '(3.6m) paved shoulders, reduce the thickness of the median shoulder pavement and/or use lesser grade of materials for the shoulder pavement in the median and feather down from the edge of pavement and do nothing to the outside shoulders

Advantages

- Snow storage
- Low construction cost
- Low maintenance cost
- Good pavement drainage
- Less outside ditch maintenance

Disadvantages

- Does not utilize 4^{\prime} of existing paved shoulder

Conclusion:

Recommend to be carried forward for further Evaluation

Value Engineering Alternative No. 5-In a 8 meter depressed median, use double faced guardrail in the median, $12^{\prime}(3.6 \mathrm{~m})$ paved shoulders, reduce the thickness of the median shoulder pavement and/or use lesser grade of materials for the shoulder pavement in the median and feather down from the edge of pavement and do nothing to the outside shoulders

Advantages

- Snow storage
- Lowest construction cost
- Good pavement drainage
- Less outside ditch maintenance

Disadvantages

- Does not utilize 4' of existing paved shoulder
- More guardrail maintenance

Conclusion:
Recommend to be carried forward for further Evaluation

6. KY 491 STRUCTURE

"As Proposed"-remove the existing bridge and replace with a two span AASHTO girder structure

Advantages

- Provide new HS 25 structure
- Increases the capacity of the crossroad

Disadvantages

- Raises the existing profile by approximately 6'
- High construction cost
- Difficult maintenance of traffic on I-75
- Does not salvage the remaining life of the existing bridge

Conclusion:

Recommend to be carried forward for further Evaluation

Value Engineering Alternative No. 1-Salvage the existing bridge by jacking it up to obtain required vertical clearance and widen the existing bridge to obtain desired typical section

Advantages

- Reduces the maintenance of traffic on I-75
- Uses the remaining life of the existing bridge
- Low construction cost

Disadvantages

- Raises the existing profile grade approximately 4'
- Some increase in maintenance of traffic on KY 491

Conclusion:

Recommend to be carried forward for further Evaluation

Value Engineering Alternative No. 2-Provide a new two span bridge but eliminate the proposed crossovers

Advantages

- Provide new HS 25 structure
- Increases the capacity of the crossroad
- Less maintenance of traffic on I-75

Disadvantages

- Raises the existing profile by approximately 6^{\prime}
- High construction cost
- Does not salvage the remaining life of the existing bridge

Conclusion:

Recommend to be carried forward for further Evaluation

Value Engineering Alternative No. 3-Construct a new bridge on the existing foundations and replace with a new four span bridge

Advantages

- Low to medium construction cost
- Minimizes profile grade changes
- Reduced maintenance of traffic on I-75
- New superstructure
- Salvages the remaining life of the foundations of the existing bridge
- Can meet HS 25 on superstructure

Disadvantages

- None apparent

Conclusion:

Recommend to be carried forward for further Evaluation

VI.(c) EVALUATION MATRIX

*NOTE: Matrices are used to determine a preferred alternative when more than one competing Alternative to the "As Proposed" Alternative survives the advantages and disadvantages process.

EVALUATION MATRIX

TYPICAL SECTION

VII. DEVELOPMENT PHASE
VII.(a) DRAINAGE BLANKET

VII.(a)(1) AS PROPOSED

"As Proposed"

The proposed design calls for a drainage blanket (Type II - Asphalt) placed to a depth of 260 mm under the widened pavement and median shoulder.
VII.(a)(2) V.E. ALTERNATIVE

V.E. Alternative

The V.E. Alternative proposes to utilize an untreated drainage blanket 260 mm in depth in lieu of the asphalt treated. Since the primary function of the drainage blanket is to drain water percolating through the pavement structure to the perforated underdrain, the untreated crushed and graded material should adequately convey any water that may collect under the pavement structure.

DRAINAGE BLANKET COST COMPARISON

DESCRIPTION	UNIT COST	PROP'D QTY.	PROP'D COST	V.E. QTY.	V.E. COST
DRAINAGE BLANKET TYPE II ASPHALT	$\$ 22.00$	$80,000 \mathrm{MT}$	$\$ 1,760,000$	0	0
DRAINAGE BLANKET TYPE I - UNTREATED	$\$ 9.58$	0	0	$78,420 / \mathrm{MT}$	$\$ 751,265$

Possible Savings \$1,008,735

VII.(b) KY 14/16 STRUCTURE

VII.(b)(1) AS PROPOSED

"As Proposed"

The existing bridge is a 2 span reinforced concrete deck girder (RCDG) bridge that has been widened with prestressed concrete I beams (PCIB). The "As Proposed" is to remove the RCDG portion of the bridge and replace it with PCIB beams. This scheme uses a maintenance of traffic (MOT) that utilizes a traffic crossover. This crossover is estimated to cost $\$ 521,068$ and does not include the MOT cost for traffic on KY 14/16.

VI.(b)(2) V.E. ALTERNATIVES

V.E. Alternative No. 1

The V. E. Alternative No. 1 is to jack each portion of the existing KY $14 / 16$ bridge approximately .57 meters higher than the present elevation. This will provide 5 meters of vertical clearance. The alignment of I-75 is shifted . 6 meters to the outside to minimize the amount of jacking. The .56 meter of elevation change will affect the KY 14/16 and four ramps. This alternative will minimize the maintenance of traffic (MOT). The "As Proposed" requires an expensive crossover of I-75 traffic and MOT of KY 14/16. The V. E. Alternative 1 does not require major I-75 MOT costs. The V. E. Alternative costs \$270,886 less than the "As Proposed".
V.E. Alternative No. 2

The V.E. Alternative No. 2 is the same as the "As Proposed" except the maintenance of traffic plan for the V.E. Alternative No. 2 does not utilize a crossover. The V.E. Alternative No. 2 utilizes the on/off ramps to divert traffic during the demolition of the existing spans over traffic and erection of new beams. The MOT plan is detailed in the MOT plan. The V.E. Alternative No. 2 costs $\$ 461,068$ less than the "As Proposed". This is the recommended alternative.

The "As Proposed" KY 14/16 bridge utilizes a crossover to maintain I-75 traffic during demolition and construction. The estimated cost of the crossover is $\$ 521,000$. The V.E. proposal is to utilize the on/off ramps at the I-75/KY 14/16 interchange to detour I-75 traffic. The detours would only be used during off peak hours.

The MOT plan is to restrict the I-75 traffic to one lane and detour the traffic to the off ramp across KY $14 / 16$ and onto the on ram proceeding onto $\mathrm{I}-75$. The existing bridge will be removed in sections. The prestressed concrete AASHTO girder portion of the bridge will remain in place and be used to maintain KY $14 / 16$ traffic. I- 75 will be diverted to demolition the reinforced concrete deck girder portion of the existing bridge and erect the new beams.

The need for diverting traffic will be as follows.
2 nights to demolition RCDG Bridge
2 nights to set beams
1 night to cast deck
Total 5 nights and $\$ 10,000$ for additional MOT of KY $14 / 16$.

KY 14/16 V.E. ALTERNATIVE NO. 1 COST COMPARISON

DESCRIPTION	UNIT COST	PROP'D QTY.	PROP'D COST	V.E. QTY.	V.E. COST
'AS PROPOSED' NEW SUPERSTRUCTURE \& UTILIZE EXISTING SUBSTRUCTURE	$\$ 160,000$	1	$\$ 160,000$		
MOT CROSSOVER	$\$ 521,068$	1	$\$ 521,068$		
DEMOLITION	$\$ 100,000$	1	$\$ 100,000$		
V.E. BRIDGE JACK BOTH BRIDGES	$\$ 306,182$			1	$\$ 306,182$
ROADWAY RECONSTRUCTION	$\$ 144,000$			1	$\$ 144,000$
MOT USING RAMPS	$\$ 60,000$				

Possible Savings: $\quad \$ 270, \mathbf{8 8 6}$

KY 14-16 VE-1
Cost of lacking both Structures
(a) $K 414-16$ and shiffing

Jack $1470 \mathrm{~m}^{2} .57 \mathrm{~m} @^{\$ 150 / \mathrm{m}^{2}=220500.00}$
Conc. for Substr seats \ddagger
wing wall extensions $70.65 \mathrm{~m}^{3} \times 445 / \mathrm{m}^{3}=31,439.25$
Retoars $8,494 \mathrm{~kg}$ @ $1,40 / \mathrm{kg}=11,891,60$
Drilled epoxy cons anchors
328@10 each
Bearing Pads 72 (a) 300 each

$$
=3280.0
$$

Exp.lts. 56 m @ $312 / \mathrm{m}$

$$
=\frac{17,472,00}{\Delta_{30} 6,182,85}
$$

Demolition

$$
10,000
$$

MOT

$$
\$ 30,000
$$

Raw
I-15 SB of R Rump
I is in on Pan
IE NB Off Ramp
I-75 NB On Gamp
KY $14-16$ Over Br
$K \psi$ 14-16 Along I-75 South
I-75 Shift

KY 14-16 VE-1
Bridge Area

$$
29.497 \mathrm{~m} \text { wide } \times 49.34^{1} \mathrm{long}=1470.1 \mathrm{~m}^{2}
$$

Conc. for beam seats
Trig. Cap . $85 \mathrm{~m} \times .91 \mathrm{~m}$ wide $\times 10.5 \mathrm{~m}$ long $=8.12 \mathrm{~m}^{3}$
New Pier $.85 \mathrm{~m} \times, 91 \mathrm{~m}$ wide $\times 16,76 \mathrm{~m}$ long $=\frac{12,96 \mathrm{~m}^{3}}{21.09 \mathrm{~m}^{3}}$
End Bents Wing Wall Extensions

$$
\begin{aligned}
& .85 \mathrm{~m} \times .91 \mathrm{~m} \text { wite } \times 27,26 \mathrm{~m} \text { long } \times 2=42.17 \mathrm{~m}^{3} \\
& 2.0 \times .5 \times 1.55 \times 4=\frac{7.4 \mathrm{~m}^{3}}{70.65 \mathrm{~m}^{3}}
\end{aligned}
$$

Rebars
$m^{3}=35.31 \cdot f{ }^{2}$

$$
\begin{aligned}
& 570 \times 70.65 \mathrm{~m}^{3} \times 35,31 \times 150=18,710 \\
& 18,710 \times 454 \mathrm{~g} / 16=8,494,340 \mathrm{~g}=8,494 \mathrm{Kg}
\end{aligned}
$$

Anchors a .5 m irs each face of each substr.

$$
\begin{aligned}
(10.5+16.76) \times 2 \times 3=163.56 \div .5 & =327 \text { Sp } \\
& =323 \text { Anchors }
\end{aligned}
$$

Ky $14 / 16$ - Grade Race.

AREA
$27.262 \times(111+127)$
238

阴 $14 / 16$ BASE $=6488 \times 2.35 \times 275 / 1000=4200$ T.003
RAmps LEFT - . 207 FIll
BaSE $2 \times 123 \mathrm{~m} \times 7.2 \times 2.35 \times 100 / 1000=412$ Tons
Ramps Right - . 259 Fiche
BASE $2 \times 122 M \times 7.2 \times 2.35 \times 130 / 1000=\frac{537 \text { ToNS }}{B_{\text {ABE }}} 51.20$ ToNe
Supp ky $14 / 16$
Surf $6488 \times 2.35 \times 40 / 1000=609$ TONS
RAMPS LEFT $2 \times 122 M \times 7.2 \times 2.35 \times 40 / 1000=165$ Ton RT $2 \times \mathrm{k} 2 \mathrm{~m} \times 7.2 \times 2.25 \times 40 / 1000=\frac{165 \text { Tons }}{330 \text { ToN }}$

$$
\begin{aligned}
\text { BASE } 5150 \times 23 & =113,000 \\
\text { SuRF } 330 \times 34 & =11,220 \\
M_{\text {Mot }} & =10,000 \\
M_{\text {a, ,uT STANE }} & =10,000144,220
\end{aligned}
$$

KY 14/16 V.E. ALTERNATIVE 2 COST COMPARISON

DESCRIPTION	UNIT COST	PROP'D QTY.	PROP'D COST	V.E. QTY.	V.E. COST
MOT CROSSOVER	$\$ 521,068$	1	$\$ 521,068$		
BRIDGE RECONSTRUCTION AND DEMOLITION	$\$ 260,000$	1	$\$ 260,000$	1	$\$ 260,000$
MOT USING RAMPS	$\$ 60,000$			1	$\$ 60,000$

Possible Savings \$461,068

KY 14-16 VE-2
As proposed except no crossover
Replace portion of bridge with hauncued beams.
From consult anis cost Estimate
Class. AA Conc. $141 \mathrm{~m}^{3} \times 445 / \mathrm{m}^{3}=62,745$
Reloars $\quad 16,920 \mathrm{Kg} x^{6} 1,40 / \mathrm{kg}=23,688$
PCIB III $\quad 193 \mathrm{~m}$ ब $279 / \mathrm{m}=53,847$
50 mm Expansion its, $21 \mathrm{~m} @^{d} 312 / \mathrm{m}=6,552$ Class i Conc. $15 \mathrm{~m}^{3} \times 4390 / \mathrm{m}^{3}=5,850$
Reborn $-100 k_{\hat{3}} \times{ }^{3} 1,20 / \mathrm{kg}=1,080$
Remove Part -: Exist. Slab $11 \mathrm{~m}^{3} \times 250 / \mathrm{m}^{3}=2,500$
Drilled Conc. Anchors $140 \times 10 \mathrm{ea}_{4}=\frac{1,400}{157,662}$
MOTI-2510,000/nigítairecion knights ${ }^{2}$ 6,000

Rdwy cost to la same as A_{s}-Proposed
VII.(c) KY 14/16 INTERCHANGE RAMP REVISION AND CULVERT EXTENSION

VII.(c)(1) AS PROPOSED

"As Proposed"

The proposed plan for the interchange improvements include upgrading the ramp terminals on I-75 to meet present day design standards and minor improvements to the ramp intersections with KY 14/16. All of the existing ramp alignments are generally maintained with the exceptions of Ramp D which has been shifted to the west and widened to two lanes to provide additional ramp storage for the high volume of trucks from SB I-75 destined for the large truck terminal on the west side of KY $14 / 16$ immediately west of the ramp intersections. Access to the truck terminal is from KY 14/16. It has been recognized that there is insufficient spacing between the ramp D \& A intersections with KY $14 / 16$ and the KY 1292/KY 14/16 intersection to provide desirable traffic operations. The distance between these two intersections is approximately 50 m . The only feasible means of correcting this condition is to relocate KY 1292 and KY $14 / 16$ to the west which has been considered to be beyond the scope of the $\mathbf{1 - 7 5}$ corridor improvements.

In addition to the ramp improvements, the proposed plan also includes the combining and extending of concrete box culverts under and along the west side of ramp \mathbf{D}.

The proposed ramp alignment and culvert locations are shown on the following sheet. The existing raised median on the interchange structure is being removed and single lane left turn lanes and two through lanes are being provided in each direction as shown in the typical section. The existing profile of KY $14 / 16$ is being maintained through the interchange area.

AS PROPOSED

AS PROPOSED
VII.(c)(2) V.E. ALTERNATIVE

V.E. Alternative

The V.E. Alternative for the KY 14/16 interchange is described as follows.

- Upgrade ramp terminals on I-75 to current design standards as now proposed.
- Widen Ramp D to 2 lanes generally following the existing ramp alignment as shown on the following sheets. See cross section drawings for the elimination of a major portion of the culvert extension. Widen Ramp \mathbf{C} to accommodate double left turning traffic.
- Provide 2 lane ramp exits and entrances at ramp intersections with KY 14/16 as shown in the Value Engineering plans.
- Provide 2 through lanes in each direction on KY 14/16 between ramp terminals. Provide 2 eastbound left turn lanes, 1 westbound left turn lane, and a flush median as shown on the Value Engineering KY 14/16 typical section.
- Provide inter-connected traffic signals at the three intersections in the interchange area.

Cost Comparison

The cost comparison indicates that the V.E. Alternative would result in a savings of approximately $\$ 216,288$. This reduction in cost is due primarily to maintaining Ramp \mathbf{D} on the existing ramp alignment to the extent possible and the elimination of the large box culvert extension. The proposed design called for placing waste material along the westerly side of Ramp D; however it has been determined that the proposed construction contract for this section of I-75 requires borrow material and it therefore, becomes more costly to place fill in this areas where it is not required to develop the widened ramp section.

Traffic Analysis

Traffic volumes provided by the department for the KY 14/16 interchange included in this section. The design hourly volumes significantly exceed the volume warrants for signalized intersections particularly with the high percentage of trucks. An inter-connected signal system for the three intersections in the interchange area have therefore been included in the V. E. Alternative.

As shown in the traffic volume sheets, two critical volumes in the interchange include the high volumes of left turning traffic from eastbound KY 14/16 to NB I-75 in the p.m., (800 vph including high truck percent), and traffic from SB l-75 to westbound KY 14/16 (976 vph), also in the p.m. Two left turn lanes are definitely needed and are therefore proposed for the 800 vph left turning traffic onto NB I-75. As shown in the typical section, two left turn lanes in the eastbound direction can be provided by eliminating the shoulders on the interchange structure.

Although two right turn lanes should be provided for the 975 vph right turning traffic from the SB I-75 off ramp, the short distance between the ramp intersections 50 M and the intersection serving the truck terminal prohibit the development of two right turn lanes, particularly in view of the high volume of trucks from the SB off-ramp proceeding to the truck terminal.

A capacity analysis of the merge of Ramp C with NB I-75 was made, using the Highway Capacity Analysis procedure. As noted in the data sheet, the merging ramp should operate at Level of Service C.

Summary

Because of the estimated construction cost savings and the additional traffic capacity provided by providing two left turn lanes for the high volume left turning traffic NB I-75, it is recommended that this V.E. Alternative be adopted.

ALTERNATIVE

KY 14/16-1-75 INTERCHANGE \& CULVERT EXTENSIONS COST COMPARISON

DESCRIPTION	UNIT COST	PROP’D QTY.	PROP'D COST	V.E. QTY.	V.E. COST
EMBANKMENT IN PLACE	$\$ 6.00 /$ CM	28,100	$\$ 168,600$	12508	$\$ 75,048$
BIT. CONC. SURFACE	$\$ 38.00 / \mathrm{MT}$	1452	$\$ 55,176$	1522	$\$ 57,836$
BIT. CONC. BASE	$\$ 34.00 / \mathrm{MT}$	1944	$\$ 67,796$	2180	$\$ 74,120$
DGA BASE	$\$ 12.00 / \mathrm{MT}$	1545	$\$ 18,540$	1610	$\$ 19,320$
TRAFFIC SIGNALS	L. SUM.	1	$\$ 150,000$	1	$\$ 655,100$
3 INTERSECTIONS					

CS: Ramps Release 2.1

File Name
Facility Section.....
Analyst.
Time of Analysis.....
Date of Analysis.....
Other Information....
9/11/97

B. Adjustment Factors

VII.(d) MAINLINE PAVEMENT OVERLAY AND NEW PAVEMENT THICKNESS

VII.(d)(1) AS PROPOSED

"As Proposed"

The "As Proposed" pavement is based on 59 million EAL's loading. This loading required a 5.5 inch thick pavement overlay that dictates the thickness of the new pavement widening.

VII.(d)(2) V.E. ALTERNATIVE

V.E. Alternative

During the V.E. evaluation, we investigated the reasonableness of the design pavement loading. The design ESL's were evaluated and the ESL forecasts were not consistently determined between the project sections. The design ESL's varied from 30 million to 59 million in this 8 mile section.

Our review determined that the variation was due to the lane distribution factor and not a change in the ADT or the midpoint design ESL's. The midpoint design ESL's was relatively constant at approximately 12,000 .

The V.E. team determined that a reasonable design ESL's should be 40 million. The V.E. team recomputed the required structural number to be 7.3 verses the "As Proposed" structural number of 8.1. The revised structural number resulted in a new pavement thickness of 4 inches. The pavement layers were adjusted to the structural number of 7.3. See next page for the pavement layer thickness.

The cost savings: $\$ 1,359,200$.

OVERLAY OF EXISTING PAVEMENT AND NEW PAVEMENT THICKNESS COST COMPARISON

DESCRIPTION	UNIT COST	PROP'D QTY.	PROP'D COST	V.E. QTY.	V.E. COST
BITUMINOUS SURFACE	38	61,672	$\$ 2,343,536$	25,902	$\$ 984,285$

Possible Savings

ROAD NO: I 75
COUNTY: GRANT-KENTON-BOONE
ROAD NAME: Lexington - Covington
DISTRICT: 6
FROM: 0.1 mi South of KY 491
TO: 1.04 mi North of I 71
MP: 165.79
MP: 173.50
LENGIH: 7.71
ADT (95) : 41450 POSTED SPEED: 65 MPH
CONSTRUCTED NOV 61 DGA: 6 INCHES CBR: JOINT SPACING: 50 CONTRACTOR FOR JUL 85 ACTION: G \& G KY Const, Et AI

DATE	ACTION	$\begin{aligned} & \text { PAVEMI } \\ & \text { INCHES } \end{aligned}$	$\begin{aligned} & \text { ENT } \\ & \text { TYPE } \end{aligned}$	$\begin{aligned} & \text { SURFACE } \\ & \text { TYPE } \\ & \hline \end{aligned}$	REMARKS
NOV 61	CONSTRUCTED	10.0	PCC		
DEC 78	RESURFACED	2.0	AC		
SEP 84	MTLLED SEAT	-2.0	AC		
SEP 84 SEP 84	BREAK \& SEAT RESURFACED	6.5	AC		Also Edge Drains
JUL 85	SURFACED			OGFC	

visual condition survey

UAL CONDITION SURVEY	$\begin{aligned} & \text { MAXIMUM } \\ & \text { EXI SEV } \end{aligned}$			NB		LANE		SB	
(DEMERIT POINTS)			EXI	SEV	SUM		EXI	SEV	SUH
CRACKING	18	13	2	5	7		2	4	6
base failures FAULTING	9	9			1				0.1
RAVELING - WEAR SPALLING	6	6	4	5	9		4	5	9
OUT OF SECTION	6	6			2				2
PATCHING	12				01				0
APPEARANCTE		$\underline{15}$			5				4
>---- TOTAL ---->					24.1				21.1

REMARKS:
GUARDRAIL: POOR FAIR GOOD SHOULDER: AC : POOR FAIR GOOD

- NUMBER OF LaNES: 4

PREVIOUS RI (94):
RI (95):
DECREASE IN RI:
RUTTING (INCHES):
SRID NUMBER:
RECOMMENDED ACIION(S): REPAIR GRIND BREAK \& SEAT EDGE DRAINS OVERLAY míl sami replace pavement ESTIMATED REMAINING SERVICE LIFE (YEARS): $2 \quad$ NB YEAR: 1997
(YEARS): \qquad
RATERS: RIZENBERGS BURCHETT DABE REMARRS: \qquad

State: Agency: Company: Contractor: Engineer:

Job Number:
Location:

Shoulder En.
Flexible Analysis
Structural Number
Design E 18's
Reliability
Overall Deviation
Resilient Modulus
Initial Serviceability
Terminal Serviceablity
$=6.29$
$=\quad 12,000,000$
= 95.00 percent
$=\quad 0.45$
$=4,500.0$
$=\quad 4.20$
$=\quad 2.50$

Layer
Number
===ニ== 1

Layer Coefficient == a (i) ==

Drainage
Layer
Coefficient Thickness a(i)*Cd*t ==== Cd ===

State:
Agency:
Company: Contractor: Engineer:

Job Number:
Location:

Flexible Analysis

Structural Number
Design E 18's
Reliability
Overall Deviation
Resilient Modulus Initial Serviceability Terminal Serviceablity

Layer Number ======

1
2
3
4
5
6

Layer Coefficient == a (i) ==

Drainage Coefficient ==== Cd ===

Layer
Thickness a(i)*Cd*t
=== $t===$

State: Agency: Company: Contractor: Engineer:

Job Number:
Location:

Structural Number Design E 18's Reliability
Overall Deviation
Resilient Modulus
$=$
$=$
$=$
$=$
Initial Serviceability $=$ $=$

Terminal Serviceablity

Layer
Number

=ニ====

 12
3
4
5
6

Layer Coefficient $==a(i)=$

Drainage Coefficient Thickness Thickness a(i)*Cd*t === $\mathrm{t}============$

$$
\text { Total } \mathrm{SN}=\begin{aligned}
& ======== \\
& 0.00
\end{aligned}
$$

KY VE STUDY

KY VE STUDY

OVERLAY OF EXISTING PAVEMENT AND						
	AS PROPOSED					
		TONS	TONS	TONS	TONS	
		BSURF	BBASE	DRABLK	DGA	
	UNIT \$	38	34	22	12	
	PVT-OL	42039				
	PVT-WID	19633				
	TOTAL	=SUM(C7:C10)	=SUM(D7:D10)	=SUM(E7:E10)	=SUM(F7:F10)	
	COST	$=C 6 * C 11$	=D6*D11	=E6*E11	=F6*F11	=SUM (C13:F13)
	VE					
		TONS	TONS	TONS	TONS	
		BSURF	BBASE	DRABLK	DGA	
	UNIT \$	38	34	0	0	
	PVT-OL	=C8*0.42	=D8*1			
	PVT-WID	= ${ }^{\text {c }}$ +0.42	=D9*1			
	TOTAL	=SUM(C20:C22)	=SUM(D20:D22)	=SUM(E20:E22)	=SUM(F20:F22)	
	COST	=C23* ${ }^{\text {C }} 18$	=D23*D18	=E23*E18	=F23*F18	=SUM(C25:F25)
	SAV					=G13-G25

F Florence \& Hutcheson Inc.
H) Consulting Engineers

FAX COVER
Phone (502)444-9691
P. O. Box 7267

Paducah. KY 47003 Fax (502)443-3943 Email flohut@vci.net Paducah, KY 42002-7267
ношы"
To: \qquad
\qquad
\qquad Fax No. 502 SO $51-3324$
\qquad
\qquad
\qquad
 FROM: ROBERT PARES
No. of Pages: 3 (Include Cover)

MESSAGE: \qquad
\qquad
\qquad
\qquad

FLEXIBLE PAVEMENT ALTERNATE
DRIVING LANES COURSE THICKNESS (m)

\author{

* 18,560 DLA ON OUTSIDE OF SHOULDER
}

FAX COVER

2550 Irvin Cobb Drive
Phone (502)444-969]
P. O. Box 7267

Paducah, KY 42003 Fax (502)443-3943 Email flohut@vci.net Paducah, KY 42002-7267

To: berte LIECDS
Date: \qquad 7-10. 37

Fax No. () \qquad
\qquad
\qquad
\qquad

Finf:
FROM:
 Y AERS
No. of Pages: $\quad 7 \quad$ (Include Cover)

MESSAGE: \square Pamp
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

SHOULDERS				ADDITIONAL AREAS (DIGITIZED, ETC.)					
DESCRIPTION							AREA (SQ.M.)		
SHOULDERS SIJBTOTAL								0	
TOTAL LENGTH ALONG EDGE OF SHOULDERS							1789.1		
BITUMINOUS SEAL COAT AREAS DIGITIZED(ONLY									
Al	A2	A3	A4	A5	A6	A7	TOTAL		
							0		

Fred N. Nudge Secretary of Transportation

TO: William Grace, Director
Division of Operations
FROM: Bruce S. Siria, Director Division of Transportation Plannitis
DATE: April 15, 1996
SUBJECT: Grant, Kenton and Boone Counties Traffic Forecast I-75 from M.P. 165.79 to M.P. 173.50

In response to your August 10, 1995 e-mail requesting traffic forecasts on the subject project, we are providing current year ADTs, 2006 design year ALTs, 2016 design year ADTs, and estimated equivalent axleload accumulations on the attached map and worksheets.

If you have any questions, please call Rob Bostrom of this Division.
BSS:RR:Ih
Attachments
c: Gary W. Sharpe

COUNTY
Ref. Stations

GRAMT

ROUTE 10:
Road Name.
Project Nos...........
Project Limits.........
Ref. Stations..........
FUNCTIOHAL CLASS:
Rural - 01 interstate
07 Major Collector
08 Minor collector
09 Lecal

X

DATES: \begin{tabular}{c}

Constrction
Year

\hline 1996

\hline
\end{tabular}

traffic parameters:

dailh eals at mid-term:

4-Tired Vehicles:	$44,012$ MADT	\times	$\begin{gathered} .770 \\ 1-(K T / 100) \end{gathered}$	x	. 005		
Non-Coal Trucks:	$\begin{aligned} & 44,012 \\ & \text { AADT } \end{aligned}$	\times	$\left.\begin{array}{l} (x T / 100) x \\ (1 \end{array}\right)$	x	$\begin{aligned} & 4.458 \\ & \text { A/HCT } \end{aligned}$	x	$\underset{\text { EAL/NCA }}{.200}$
Coal Trucks:	$44,012$	\times	$\begin{array}{r} .001 \\ (X T / 100) x \\ (X C T / 100) \end{array}$	\times	$\begin{aligned} & 4.874 \\ & \text { / } \mathrm{CT} \end{aligned}$	x	EAL/CA
		Total Mid-term daily Eals..................					
design eals:	9,264.012 Mid-term Dally EALs	x	365	\times	$\operatorname{Design}_{\substack{\text { Period }}}^{10}$	\times	.4016 Lane Ad Jus tment
No. of Lanes..	4		1 or 2 Way.		2		

TD 10-1 Nu...

Route Ho	1-75
Item No.	
File No.	95_130A.WXS
T.E. No.	95.13
Segment	A

1994 Vol. Count a stn 521 PTR Rpt, Stn 521, APRIL 1994	1993 Man'l Class C 1994 EALs, FC 1 COAL94.SEG

TD 10-1 Na...

Route No...... $1-75$
Item No.......
File No....... 95_130B.WKS
T.E. NO....... 95.13

Segment....... A

Ref. Stations
1994 Vol. Count a stn 521 PTR Rpt, Stn 521, APRIL 1994

1993 Man'l Class Cnt, stn p23 1994 EALS, fC 1 COAL94.SEG

FUNCTIONAL CLASS:
Rural -
01 Interstate
02 principal Arterl
06 Minor Arterial
07 Major Collector
08 Minor Collector
09 Local

Urban:
11 interstate
12 Othr Fre'ws a x-Mys
14 Othr Prncpl Arterl
16 Minor Arterial
17 Collector
19 Local

DATES: | $\begin{array}{c}\text { Constrction } \\ \text { Year }\end{array}$ |
| :---: |
| 1996 |

Year at Mid-term

2006

TRAFFIC PARAMETERS:

	Cnstretn Yr Foracast		Annual Change		Years to Mid-term		Mid-term Incremnt		Cnstretn Yr Forecast		Mid-term Forecast
Volune (AADT)	38,900	x	1.0250	-	10.0	$=$	10,895	+	38,900	$=$	49,795
Percent Trucks (XT)	23.0	X	1.0000	-	10.0	$=$. 000	+	23.000	=	23.0
Percent Trucks Hauling Coal (XCT)	. 2	x	1.0000	-	10.0	=	. 000	+	. 2	$=$. 2
Non-Coal Trucks:											
Axles/Truck (A/NCT)	4.458	x	1.0000	*	10.0	=	. 000	+	4.458	$=$	4.458
EALs/Axle (EAL/HCA)	. 200	\times	1.0000	-	10.0	=	.000	+	. 200	=	.200
Coal Trucks:											
Axles/Truck (A/CT)	4.874	\times	1.0000	-	10.0	*	. 000	+	4.874	.	4.874
EALs/axle (EAL/CA)	. 810	x	1.0000	-	10.0	=	. 000	+	. 810	=	.810

OAILY EALS AT MID-TERH:

4-Tired Vehicles:	$\begin{aligned} & 49,795 \\ & \text { ADT } \end{aligned}$	x	$\begin{gathered} .770 \\ 1 \cdot(x T / 100) \end{gathered}$	x	. 005		
Non-Cosl Trucks:	$\begin{aligned} & 49,795 \\ & \text { MAT } \end{aligned}$	X	$\left.\begin{array}{r} .229 \\ (1 \end{array}\right)$	x	4.458 A/NCT	x	EAL/NCA
Coat Trucks:	$49,795$ MDT	X	$\begin{array}{r} .001 \\ (x T / 100) x \\ (x C T / 100) \end{array}$	x	$\begin{aligned} & 4.874 \\ & A / C T \end{aligned}$	x	$\begin{gathered} .810 \\ \text { EAL/CA } \end{gathered}$
		Total Mid-term daily EAls...................					
DESIGN EALs:	$\begin{aligned} & 10,481.380 \\ & \text { Mid-rerm } \\ & \text { Dally EALs } \end{aligned}$	x	365	x		x	.3891 Lane Adjustment
Mo. of Lanes...	4		1 or 2 Way .	-	2		

$=\begin{array}{r}191.712 \\ =10,188.594 \\ 101.074 \\ =10,481.380 \\ =19,773,000 \\ =1081 g n \text { EAL }\end{array}$
$=1$ in Critical Lane Form TF93_95.HKS

county......................	B00ME	
ROUTE ID:		
Roed Hans.	Willamstown-Covington Rd.	
Project Mos.............		
Project Limits..........	M.P. 177.345 to M.P. 172.544	
Ref. Stations...........	1994 Vol. Count a Stn 338 PTR Rpt, Stn 338, APRIL 1994	$\begin{aligned} & 1993 \text { Man'l Class Cnt, Stn p23 } \\ & 1994 \text { EALs, FC } 1 \\ & \text { caAL94, SEG } \end{aligned}$

FUNCTIONAL CLASS:
Rural -
01 Interstate
02 Principal Arterl
06 Minor Arterial
07 Major Collector
08 Minor Collector
09 Local

DATES:

traffic parameters:

Volume (ADT)
Percent Trucks (XT)
Percent Trucks Hauling Cost (XCT)

Non-Coal Trucks:
Axles/Truck (A/NCT)
EALs/Axle (EAL/NCA)
Coal Trucks:
Axles/Truck (A/CT)

Urban =

DAILY EALS AT MID-TERH:

4-Tired Vehiclest	$42,251$	x	$\begin{gathered} .707 \\ 1=\left(X_{T} / 100\right) \end{gathered}$. 005			=	149.356
Non-Coal Trucks:	$42,251$ NDI	x	${ }_{(1}^{\left(x_{\mathrm{T}} / 100\right) x^{.292}}$		$\begin{aligned} & 4.580 \\ & \mathrm{~A} / \mathrm{NCT} \end{aligned}$	x	$\underset{\text { EAL/NCA }}{.200}$	=	11,316.421
Coal Trueks:	$\begin{aligned} & 42,251 \\ & A A D T \end{aligned}$	\times	$\begin{array}{r} .001 \\ (x T / 100) x \\ (x<T / 100) \end{array}$	x	$\begin{aligned} & 4.874 \\ & \text { A/CT } \end{aligned}$	x	EAL/CA	-	99.656
			Total Mid-term dally Eals..................						11,565.432
design eals:	11,565.432 Midnterm Daily EAL:	x	365	\times	$\begin{gathered} \text { Design } \\ \text { Period } \end{gathered}$	x	$.7000$ Lane Adjustment	=	59,099,000
No. of Lanes.	2		1 or 2 May.		1			Form	TF93 95.4Ks

 EOR TYPICAI SECTION SEE ATTACHED SHEET(S)

PAVEMENT Trafific Lanes		
(Widening)		
(2) 7	STABILIZED AGGREGATE BASE	200 mm DEPTH
358	BITUMINOUS CURING SEAL	$0.7 \mathrm{KG} / \mathrm{SO} \mathrm{M}$
18	DRAIN BLANKET-TYPE II-ASPH PG64-22	260 mm DEPTH
137	BIT CONC BASE CLASS CI PG64-22	$200 \mathrm{~mm} \mathrm{DEPTH} \mathrm{(} 100 \mathrm{~mm}+100 \mathrm{~mm})$
(Overall)		
$13 ミ$	BIT BASE CL CI PG76-22 W/50\%ER	70 mm DEPTH
161	BIT SURE CL I-20/30 PG76-22/ER	30 mm DEPTH
243	BIT SURF CL AK/A PG76-22/50\%ER	40 mm DEPTH
356	BITUMINOUS MATERIAL FOR TACK	SEE PLAN NOTE NO. 453
Median \& Inside Shoulder		
(2) 7	StABILIZED AGGREGATE BASE	200mm DEPTH
358	BITUMINOUS CURING SEAL	$0.7 \mathrm{KG} / \mathrm{SQ} \mathrm{M}$
18	DRAIN BLANKET-TYPE II-ASPH PG64-22	260 mm DEPTH
137	BIT CONC BASE CLASS CI PG64-22	$270 \mathrm{~mm} \mathrm{DEPTH} \mathrm{(} 100 \mathrm{~mm}+100 \mathrm{~mm}+70$)
161	BIT SURF CL I-20/30 PG76-22/ER	30 mm DEPTH
246	BIT CONC SURF CL AK/S PG64-22	40 mm DEPTH
356	BITUMINOUS MATERIAL FOR TACK	SEE PLAN NOTE NO. 453
	(Cont. on Sheet No. 2)	$\begin{aligned} & L J F \\ & 5-15-97 \end{aligned}$
MITTED_ DATE Asst. Dir., Division of Design		
MMENDED__ DATE ___ Director of Design		
ROVED__ DATE Asst. State Highway Engineer		
ROVED	DATE For Di	ision Administrator FHWA

outsige Shoulders

1	DGA BASE
137	BIT CONC BASE CLASS CI こG64-22
161	SIT SURE CL I-20/30 FG76-22/ER
246	SIT CONC SURE CL AK/S FG64-22
356	BITUMINOUS MATERIAL EOR TACK

M TON (See Sht. Nos. $5 \&$ 70 mm DEPTH
30 mm DEPTH
40 mm DEPTH
SEE PIAN NOTE NO. 453

Bituminous Seal required from outside edge of paved shoulder to a point where the DGA ties into the existing ditch or fill slope. Two applications of the following:

291 EMULSIFIED ASPHALT RS-2
100 BITUMINOUS SEAL AGGREGATE
$1.3 \mathrm{~kg} / \mathrm{SQ} \mathrm{M}$
$10.8 \mathrm{KG} / \mathrm{SQ} \mathrm{M}$ (Size No. 8 or 9 M)

Longicudinal Payement Edge Drains (Median)
(3) 2599 EABRIC-GEOTEXTILE TYPE IV SQ M
(3) 71 CRUSHED AGGREGATE SIZE NO 57 200mm DEPTH (Trench)

1001 PERFORATED PIPE-150MM
(4) 1011 NON-PERFORATED PIPE-150MM METER

1741 CORED HOLE DRAINAGE BOX CON 150MM METER
10 EACH

Remove and Replace for Clearance Under Structures (7)
2091 REMOVING PAVEMENT
(2) 7 STABILIZED AGGREGATE BASE

SQ M
18 DRAIN BLANKET-TYPE II-ASPH PG64-22
200 mm DEPTH
137 BIT CONC BASE CLASS CI PG64-22
160 mm DEPTH
270 mm DEPTH
161 BIT SURF CL I-20/30 PG76-22/ER
356 BITUMINOUS MATERIAL FOR TACK
$(100 \mathrm{~mm}+100 \mathrm{~mm}+70 \mathrm{~mm})$
30 mm DEPTH
SEE PLAN NOTE NO. 453

NOTES:
(1) The Contractor is advised that the compaction of asphalt mixtures furnished for mainline usage, at 25 mm (one inch) or greater, on this project will be accepted by OPTION A of the Special Note for Control and Acceptance of Asphalt Mixtures (Bb). The compaction of all other asphalt mixtures will be accepted by OPTION B.
(2) The stabilized aggregate base shall be accomplished utilizing the existing DGA in place. (See attached Special Note).
(3) EABRIC-GEOTEXTILE TYPE IV and CRUSHED AGGREGATE SIZE NO 57 shall be incidental to the Contract Unit Bid Price for PERFORATED PIPE-I50mm.
(4) All longitudinal pipe drainage systems for the pavement drainage blanket shall be outletted to a Median Box Inlet. Outlets shall be in a fill section whenever possible. Outlet spacing shall not exceed 150 meter except grades 1\% or less, then the spacing of outlets shall not exceed 75 meter. All sags shall have an outlet. The Design Engineer shall spot these on the plans or in the proposal.
:IOTES (COnt.)
5) Eor superelevated sections, tie pavement drainage bianket for widening to the inside shall be constructed so as to provide positive dzainage (2 \% or greater to the PERFORATED PIPE-150mm in the median.
6) The Division of Transportaticn Elanning has three sets of traffic counting loops imbedded in the existing pavement at milepoints $170.0,172.1$ and 174.1 . The site at milepoint 170.0 has two loops per lane in both the north and southbound directions for a cotai of 12 loops. The site at milepoint 172.1 has one loop per lane in both the north and southbound directions for a total of six loops. The site at 174.1 has two loops per lane in both the north and southbound directions for a cotal of 12 loops. The Contractor will install a total of 30 loops in the new pavement. Installation shall be coordinated wit! and approved by the Division of Planning. See the attachment labeled "Specia. Notes for Installation of Traffic Loops and Piezoelectric Sensors" for quantities of materials and installation details.
(7) Mill Open Graded Friction Course before overlay is applied.

PIAN NOTE NO.: 444; 446
SPECIAL PROVISION
(1043) NO. 43F (94)MARSHALL DESIGN METHOD CRITERIA
(1070) No. 70D (94) STABILIZED AGGREGATE BASES
(1087) No. 87A (94)BITUMINOUS CONCRETE BASE, CLASS K
(1094) No. 94 (94)COMPACTION TEST STRIPS CLASS I MIXTURES
(1079) No. 79B (94)STRESS ABSORBING MEMBRANE INTERLAYER (SAMI)

SPECIAI NOTE FOR
(2066) POLYMER ASPHALT EMULSIONS (3-9-92)
(2067) BITUMINOUS INDENTED RUMBLE STRIPS (5-2-95)
(2086) PAVEMENT DRAINAGE BLANKET (5-14-91)
(2093) BITUMINOUS CONCRETE SUREACE, CLASS AK/A, AK/B AND AK/S (7-31-96)
(2094) POLISH RESISTANT AGGREGATE REQUIREMENTS (6-6-95)
(2100) CONTROL AND ACCEPTANCE OF ASPHALT MIXTURES (12-19-96)
(2128) MINERAL ADMIXTURES IN PORTLAND CEMENT CONCRETE (4-19-95)
() BITUMINOUS CONCRETE BASE, CLASS CI (7-14-94) Attached
() STABILIZATION OF EXISTING DENSE GRADED AGGREGATE (5-29-96) Attached
() INSPECTION AND CERTIFICATION OF EDGE DRAIN SYSTEMS (9-30-96) ATTACHED
() INSTALLATION OF TRAFFIC LOOPS AND PIEZOELECTRIC SENSORS ATTACHED
Grant County
Item 6-016.0
000IR 007570 0bl

chantsts
-016morn

Gront County
Iteme $6-016.0$
000018 00757 obi
$\frac{\text { Existing }}{171 \text { to Ky } 338}$

Sheet 6
Pavement Replacement and Tapering of Overlays
for Clearance Under Structures

(1) TAPER - I: 1000 RATE.
(2) MILL EXISTING PAVEMENT TO RECEIVE
40 mm BS AK/A PG76-22 $W / 50 \%$ ER
TAPERING OF OVERLAYS AT BRIDGE ENDS

Grant Courbly
Item $6-016.0$
0001f 00757 081

> Θ ©

TERMINI PROJECT OVERLAYS AT TAPERING OF

Grant Countity
Item 6-016.0 0001 K 00757081

$521 S$

TOTALS
1050
660
600
600
630
930
1410
2110
2260
2200
2400
2390
2240
2240
2560
3120
3200
3100
2670
2150
1930
1810
1400
1390
338 N

TOTALS
710
520
520
540
770
1690
3190
3430
3020
3070
3030
3130
3140
3180
3480
3600
3410
3040
2680
2130
1830
1490
1390
980
个各
$\begin{array}{rr}05 & 06 \\ \text { FRI } & \text { SAT }\end{array}$
04
THU
360
270
280
280
410
880
1610
1700
1490
1460
8740 AVERAGE DAILY TRAFFIC: 26715
AVERAGE DAILY TRAFFIC: 26715

BOONE COUNTY

	WEEK OF		IL	
03	04	05	06	07
WED	THU	FRI	SAT	SUN
350	360			
250	270			
240	280			
260	280			
360	410			
810	880			
1580	1610			
1730	1700			
1530	1490			
1610	1460			
1510				
1520				
1560				
1620				
1640				
1710				
1820				
1600				
1440				
1090				
900				
730				
710				
540				

8740 AVERAGE DAILY TRAFFIC: 26715

[^0]900

NS TATE CI HET PAF NT HI AY
DIVISION OF TRANSPORTATION PLANNING
PORTABLE TRAFFIC RECORDER REPORT
BOONE COUNTY
WEEK OF APRIL 02 TO APRIL 081996

MONTHLY FACTOR: 99
AXLE FACTOR: 100
TOTAL HOURS: 48
AM HIGH HOUR: 1750 BETWEEN $9-10$ AM ON THURSDAY
NUMBER: P98 MULTIPLE
ONE-WAY:
DATA SOURCE:
N
V

CEN_KYYNS TAT CR HET PAK $\quad \mathrm{NT} \mathrm{HI}$ AYS
DIVISION OF TRANSPORTATION PLANNING
PORTABLE TRAFFIC RECORDER REPORT
ROUTE: I 75
BOONE COUNTY
STATION:
266 N
WEEK OF APRIL 02 TO APRIL 081996

MXLE FACTOR:
$\begin{array}{lr}\text { AXLE FACTOR: } & 100 \\ \text { TOTAL HOURS: } & 48\end{array}$
AM HIGH HOUR: 2380 BETWEEN 7-8 AM ON WEDNESDAY PM HIGH HOUR: 2590 BETWEEN 4-5 PM ON WEDNESDAY

MACHINE NUMBER: P90 MULTIPLE
ONE-WAY:
DATA SOURCE N

INS TAT I C TET PAF NT DIVISION OF TRANSPORTATION PLANNING

BOONE COUNTY
WEEK OF APRIL 02 TO APRIL 081996

DATE:	02	03	04	05	06	07	08	
DAY:	TUE	WED	THU	FRI	SAT	SUN	MON	TOTALS
12-1 AM		720	960					1680
1-2 AM		490	630					1120
2-3 AM		520	570					1090
3- 4 AM		400	630					1030
4-5 AM		540	610					1150
5-6 AM		740	890					1630
6-7 AM		1160	1410					2570
7-8 AM		1710	1980					3690
8-9 AM		1730	2080					3810
9-10 AM		1900	2520					4420
10-11 AM	1840	2100						3940
11-12 AM	1880	2020						3900
12-1 PM	1830	1950						3780
1-2 PM	1850	2000						3850
2-3 PM	2020	2300						4320
3-4 PM	2480	2820						5300
4-5 PM	2640	0						2640
5-6 PM	2650	2620						5270
6-7 PM	2210	2390						4600
7-8 PM	1620	2000						3620
8-9 PM	1450	1800						3250
9-10 PM	1370	1680						3050
10-1.1 PM	960	1390						2350
11-12 PM	990	1320						2310
TOTALS :	25790	36300	12280					74370
			AVERAG	LY T	: 36			

DIVISION OF TRANSPORTATION PLANNING

ROUTE: I75
GRANT COUNTY
STATION: 23 N
WEEK OF AUGUST 10 TO AUGUST 161997

DATE:	10	11	12	13	14	15	16	
DAY:	SUN	MON	TUE	WED	THU	FRI	SAT	TOTALS
12-1 AM	512	464	279	305	324	360	417	2661
1-2 AM	343	299	230	189	242	280	329	1912
2-3 AM	237	248	224	190	233	259	268	1659
3- 4 AM	201	190	187	214	226	246	246	1510
4-5 AM	159	254	240	267	265	284	239	1708
5-6 AM	158	536	486	486	497	495	274	2932
6-7 AM	219	746	675	695	684	709	382	4110
7-8 AM	340	874	820	822	823	788	557	5024
8-9 AM	541	793	798	783	825	844	897	5481
9-10 AM	948	910	944	856	867	1023	1189	6737
10-11 AM	1227	1001	921	945	1007	1136	1337	7574
11-12 AM	1633	1107	941	1018	1075	1291	1417	8482
12-1 PM	2042	1099	1114	1093	1128	1306	1469	9251
1-2 PM	2297	760	1124	1183	1262	1431	1481	9538
2-3 PM	2303	1263	1202	1355	1383	1561	1499	10566
3-4 PM	2488	1938	1277	1267	1455	1584	1629	11638
4-5 PM	2363	1613	1241	1248	1471	1579	1517	11032
5-6 PM	2258	1389	1150	1341	1373	1644	1645	10800
6-7 PM	2441	1144	1057	1107	1252	1477	1491	9969
7-8 PM	1834	933	827	936	904	1208	1309	7951
8-9 PM	1644	716	707	691	833	899	1060	6550
9-10 PM	1290	679	642	665	734	1062	1013	6085
10-11 PM	1011	591	523	493	622	776	804	4820
11-12 PM	656	390	402	410	469	530	659	3516
TOTALS :	29145	19937	18011	18559	19954	22772	23128	151506

AVERAGE DAY OF WEEK: 21644
PEAK HOUR: 248B SUNDAY BETWEEN 3-4 PM

DIVISION OF TRANSPORTATION PLANNING

ROUTE: I75
GRANT COUNTY
STATION: 23 S
WEEK OF AUGUST 10 TO AUGUST 161997

AVERAGE DAY OF WEEK: 24351
PEAK HOUR: 2139 FRIDAY BETWEEN 3-4 PM

 27อ7รนข7นI 9 ：ヨd人

으응ㅇㅇ응
どビいいい

[^1]

\qquad 음뭄 $\stackrel{\square}{2}$
至各品品 즌즌흔 －
\[

$$
\begin{aligned}
& \text { DEPARTMENT OF HIGHWAYS } \\
& \text { AVERAGE AWARDED UNIT BED PRICES }
\end{aligned}
$$
\]

ENGLISH

 1 D G A BASE3 CRUSHED STONE BASE
B．CEMENT MODIFIED ROAD日ED．

바눌

즌즘즌즌준즌른

889
9
荡
0
0

 9%
88
N
N
N

 TRANSPORTATION CABINET
DEPARTMENT OF HIGHWAYS

[^2]| |
| :---: |
| | |
| | |
| | |

にトトケトケトトにトにに

$\underset{\square}{6} 0$

EACH
EACH
LIN FT
LIN FT
EACH
EACH
管

$\stackrel{\text { 픈 }}{\ddagger}$

 AVE U BID

[^3]

NON-REINF

[^4]

UNITS／B TOTAL QUAN
 LIVMIGYS NOI IVI甘DdSN甘YI
average awarded unit bid prices
 SQ
LIN
CYCL
LIN
CRE

I

3
$\frac{3}{8}$
$\frac{1}{4}$
5

[^5]

$$
1 \mathrm{M}=7
$$
LIN FT
IN HOV3
HOV3
HOV3
HOVI
LA NI7
LJ NI7
HOV3
HOV3
HOV3
HOV3矛甹要甹

妾甹甹 든증․․․․ 87
760
87 ENGLISH
CABLE－NO．4／3C DUCTED
CABLE－NO．2／3C DUCTED CABLE－NO． $2 / 30$ PL
PDLE－35 FT HOODEN STEEL STRAIN POL
SIGNAL PEDESTAL ANCHOR MESSENGER－ 10800 LB
LQQP SAW SLOT AND FILL PEDESTRIAN DETECTOR SIGNAL－8 INCH
SIGNAL－3 SECTION 12 INCH
SIGNAL－4 SECTION 12 INCH
SIGNAL－5 SECTION 12 INCH
SIGNAL－PEDESTRIAN
SIGNAL CONTROLLER－TYPE 170
MASTER CONTROLLER
INTERCONHECT PANEL
BEACON CONTROLLER－2 CIRCUIT
REMOVE LIGHTING
 EASTERN WHITE PINE 5－6 FT

AVE U BID

AVE U BID $\underset{1995}{\text { FROM }}$

*

แ11 ํutuluid

䱏器器器器器

 armarararama

cITY
cir

ROUTE/STREET 9075

MOLNEX 650 flamod

 KENTUCKYACCIDENTREPORTINGSYSTEM

 \qquad

DATE 09/09/97 PAGE 3

cITY						
CITY	CNP TR LT ROW CT CN	TYPE VEH		2NO HM VE EN DR COL FC FC FC TR	SEX	PERATOR-RT RS AG
MALTOM	01 \$101	01	01	O0 12101401	*	00156
		01	07	$00161010{ }^{14}$	F	14131
		01	11	00161014	F	14126
malton	011109	01	12	3404101405	M	00339
		03	01		\cdots	00333
MALTOM	011401	04	05	D0 12101405	N	00342
		01	01	00 10101405	\ldots	14148
MALTON	011101	01	01	3112100801	\cdots	01277
MALTON	011101	01	01	0012 10 1401	N	00372
		01	01	00 181810	F	00319
WALTOM	010001	01	14	2302101402	F	01116
		04	01	00 i8 101401	M	00349
yaltom	011301	01	0.	0001101405	M	14123
		01	07	0015 10 14000	F	00329
WALTOM	$\begin{array}{lll} 01 & 10 & 01 \\ 11 \end{array}$	01	01	0015101401	F	14123
MALTON	011106	04	01	0015101401	N	000
		a)	14	0016101401	.	14120
RICHMOOO	021201	01	01	0016100105	N	14137

DATE 09/09/97
CTIV

RQUTE/STREET 9075

COLNTY 008 BDOME
R1348

ROUTE/STREET 9075
VII.(e) TYPICAL SECTION

VII.(e)(1) AS PROPOSED

"As Proposed"

Shoulder Pavement - Overlay

- The "As Proposed" shoulder pavement is based on 59 million EAL's loading and full depth shoulders. This loading required a 5.5 inch thick pavement overlay.

Shoulder Pavement - Widening

- The "As Proposed" shoulder pavement is based on 59 million EAL's loading and full depth shoulders. This loading required a 31.5 inches thick pavement.

As shown on the following typical section, the "As Proposed" rehabilitation of I-75 incorporates the following features.

- Adds an additional lane in the median area providing 3 lanes in each direction on I-75.
- Provides a full depth pavement section for the median area 14^{\prime} (4.6m) on either side of the proposed high wall traffic barrier located on the centerline .
- Incorporates a two foot lateral shift in the pavement section toward the median.
- Flattens the outside slopes, requiring the removal of additional earthwork for embankment and excavation.
- Overlaps the existing four lanes (asphalt concrete surface) with a total asphalt concrete thickness. Since the proposed pavement overlay (including additional lane) and drainage blanket have been included in preceding sections of this report, this section is limited to an analysis and discussion of the typical section, excluding the pavement resurfacing, the additional pavement lane, and the drainage blanket.

VII.(e)(2) V.E. ALTERNATIVES

V.E. Alternative

Outside Shoulder Pavement - Overlay
During the V.E. evaluation, we investigated the shoulder overlay thickness. The V.E. team recommends that the pavement thickness be reduced from 5.5 inches to 4 inches; therefore the V.E. team determined that the outside shoulder overlay should be 4 inches. In addition, we determined that the outside shoulder overlay can be tapered from 4 inches to 1.5 inches and still meet the required shoulder EAL loading.

Median Shoulder Pavement - Widening

During the V.E. evaluation, we investigated the shoulder pavement thickness. The mainline pavement thickness was reduced from 31.5 inches to 30 inches; therefore the V.E. Team determined that the median shoulder pavement thickness could be reduced. In addition, we determined that the shoulder pavement layers can be adjusted by using a thicker layer of lower cost Drainage Blanket to replace higher cost Bituminous Base. The new thickness satisfies the shoulder structural number of 6.3.

As shown in the typical sections, V.E. Alternatives 4A and 4B are described as follows.

- Both alternatives have an overall median width of 26^{\prime} with a traffic barrier. The outside shoulder is identical for both alternatives.
- Alternative 4A incorporates the full depth pavement section under the 12^{\prime} (3.6 m) wide paved median shoulder and a traffic barrier with a constant slope face. The embankment and cut slopes have been revised to incorporate desirable ditch and clear zone widths.
- Alternative 4B is identical to Alternative 4A with the exception of the $\mathbf{1 2}^{\prime}(3.6 \mathrm{~m})$ paved median shoulder which has a reduced shoulder pavement thickness and the existing outside embankment and cut slopes have been retained.
- Both alternatives provide an additional lane in each direction on I-75.

The summary of the shoulder pavement structural analysis for V.E. alternative 4B is shown on the following pages.

Cost Comparison

The primary difference in the proposed typical section and the V.E. Alternatives is the cost savings associated with the reduced median shoulder thickness (4B) and width (4A \& 4B). In addition, there is a reduction in the earthwork with V.E. Alternative 4A because of the reduction of 4 feet in the median width. Since V.E. Alternative $4 B$ maintains the existing outside slopes and ditch section there is a significant reduction in the earthwork quantities.

The total cost comparison of the "As Proposed" and V.E. Alternative Nos. 4A \& 4B are summarized as follows.
"As Proposed" Typical Section
V.E. Alternative No. 4A
V.E. Alternative No. 4B
\$8,248,218
\$5,768,520
\$3,713,852

Potential Savings V.E. Alternative No. 4A $\$ 2,479,608$
Potential Savings V.E. Alternative No. 4B \$4,534,366

Recommendation

In view of the potential cost savings with V.E. Alternative No. 4B which maintains the outside slopes and ditch section and incorporates a reduced shoulder structural thickness, it is recommended for adoption.

VALUE ENGINEERING alternative
VE 4-B WITH REDUCED MEDIAN WIDTH
AND PAVEMENT THICKNESSES
WITHOUT OUTSIDE EARTHWORK

VE 4-B
WITH REDUCED MEDIA
AND PAVEMENT THIC
WITHOUT OUTSIDE EAR

V.E. ALTERNATIVE NO. 4B COST COMPARISON

DESCRIPTION	UNIT COST	PROP’D QTY.	PROP’D COST	V.E. QTY.	V.E. COST
BITUMINOUS SURFACE	$\$ 38.00$	23,413	$\$ 889,694$	8,555	$\$ 325,094$
BITUMINOUS BASE	$\$ 34.00$	90,308	$\$ 3,070,472$	48,712	$\$ 1,656,213$
DRAINAGE BLANKET	$\$ 22.00$	36,000	$\$ 792,000$		
UNTREATED DRAINAGE BLANKET	$\$ 9.60$	0	0	43,222	$\$ 414,927$
DGA	$\$ 12.00$	69,943	$\$ 839,316$	60,850	$\$ 730,205$
EXCAVATION	$\$ 7.00$	$96,800 /$ CUM	$\$ 677,600$	0	0
EMBANKMENT	$\$ 6.00$	$225,992 /$ CUM	$\$ 695,952$	0	0
BIT. SURFACE (SHOULDER OVERLAY)	$\$ 38.00$	17,822	$\$ 677,236$	7,485	$\$ 284,439$
BIT. BASE (SHOULDER OVERLAY)	$\$ 34.00$	17,822	$\$ 605,948$	8,911	$\$ 302,974$

Possible Savings \$ 4,534,366

V.E. ALTERNATIVE NO. 4A

COST COMPARISON

DESCRIPTION	UNIT COST	PROP'D QTY.	PROP'D COST	V.E. QTY.	V.E. COST
BITUMINOUS SURFACE	$\$ 38.00$	23,413	$\$ 889,694$	20,369	$\$ 774,034$
BITUMINOUS BASE	$\$ 34.00$	90,308	$\$ 3,070,472$	78,568	$\$ 2,671,311$
DRAINAGE BLANKET	$\$ 22.00$	36,000	$\$ 792,000$		
UNTREATED DRAINAGE BLANKET	$\$ 9.60$	0	0	31,320	$\$ 300,672$
DGA	$\$ 12.00$	69,943	$\$ 839,316$	60,850	$\$ 730,205$
EXCAVATION	$\$ 7.00$	96,800 CUM	$\$ 677,600$	46,055	$\$ 322,385$
EMBANKMENT	$\$ 6,00$	$115.992 /$ CUM	$\$ 695.952$	63,750	$\$ 382,500$
BIT. SURFACE (SHOULDER OVERLAY)	$\$ 38.00$	17,822	$\$ 677,236$	7,485	$\$ 284,439$
BIT. BASE					
(SHOULDER OVERLAY)					

KY VE STUDY

SHOULDER DETAIL PAVEMENT OUTSIDE						
		AS PROPO	OSED			
		TONS	TONS	TONS	TONS	TOTAL
		BSURF	BBASE	DRAB	DGA	
	UNIT	\$38	\$34	\$22	\$12	
	SH-O	17822	17822			
	\cos	\$677,236	\$605,948			\$1,283,184
		VE				
		TONS	TONS	TONS	TONS	
		BSURF	BBASE	DRAB	DGA	
	UNIT	\$38	\$34	\$22	\$12	
	SH-O	7485	8911			
	COS	\$284,439	\$302,974			\$587,413
	SAV					\$695,771

KY VE STUDY

	SHOULDER PAVEMENT DETAIL MEDIAN							
			TONS	TONS	TONS	TONS	TONS	
			BSURF	BBASE	DRABLK	DRABLK	DGA	
		UNIT \$	38	34	22	9.6	12	
		AS PROPO	SED					
COST	30^{\prime}	SH-WID	23413	90308	36000	36000	69943	
	30^{\prime}	SH-WID	\$889,694	\$3,070,472	\$792,000		\$839,316	\$5,591,482
		VE-4A						
	26^{\prime}	SH-WID	20369	78568		31320	60850	
SAV	26^{\prime}	SH-WID	\$774,034	\$2,671,311	\$0	\$300,672	\$730,205	\$4,476,221
								\$1,115,261
		VE-4B						
	26^{\prime}	SH-WIDVE	8555	48712		43222	60850	
COST	26^{\prime}	SH-WIDVE		\$1,656,213	\$0	\$414,927	\$730,205	\$2,801,345
SAV								\$2,790,137
		WORKSHEET						
	30^{\prime}	SH-WIDVE	9833	55990.96		49680	69943	
COST	30^{\prime}	SH-WIDVE	\$373,671	\$1,903,693	$\$ 0$	\$476,928	\$839,316	\$3,593,608
SAV								\$1,997,874

KY VE STUDY

	SH							
			TONS	TONS	TONS	TONS	TONS	
			BSURF	BBASE	DRABLK	DRABLK	DGA	
		UNIT \$	38	34	22	9.6	12	
		AS PROPOSED						
	30'	SH-WID	23413	90308	36000	36000	69943	
COST	30^{\prime}	SH-WID	=D5*D8	=E5*E8	=F5*F8		= $\mathrm{H} 5^{*} \mathrm{H} 8$	=SUM(D9:H9)
		VE-4A						
	26°	SH-WID	= D8*0.87	=E8*0.87		=G8*0.87	= $\mathrm{H}^{*} 0.87$	
COST	26^{\prime}	SH-WID	=D5*D12	=E5*E12	=F5*F12	=G5*G12	= $\mathrm{H} 5 \times \mathrm{H} 12$	=SUM(D13:H13)
SAV								=J9-J13
		VE-4B						
	26'	SH-WIDVE	$=$ D20*0.87	=E20*0.87		=G20*0.87	$=\mathrm{H} 20 * 0.87$	
COST	26^{\prime}	SH-WIDVE		= E5*E16	=F5*F16	=G5*G16	= $\mathrm{H} 5^{*} \mathrm{H} 16$	$=$ SUM(D17:H17)
SAV								$=\mathrm{J} 9-\mathrm{J} 17$
		WORKSHEET						
	30°	SH-WIDVE	=D8*0.42	=E8*0.62		=68*1.38	= $\mathrm{H}^{*} 1$	
COST	30^{\prime}	SH-WIDVE	=D5*D20	= E5*E20	=F5*F20	=G5*G20	= H [* H 2 O	=SUM(D21:H21)
SAV								= J9-J21

VII.(f) KY 491 STRUCTURE

VII.(1)(1) AS PROPOSED

"As Proposed"

The existing bridge is a four span reinforced concrete deck girder bridge (RCDG). The "As Proposed" is a two span bridge, ($31.25 \mathrm{~m}-31.25 \mathrm{~m}$) utilizing prestressed concrete Type IV beams and MSE walls. This alternatives maintenance of traffic (MOT) plan utilizes an expensive crossover to divert traffic while the existing bridge is demolitioned and beams are set.

dasodoud sy

VII.(f)(2) V.E. ALTERNATIVES

V.E. Alternatives

V.E. Alternative No. 1 is to jack the existing bridge and to widen as required to provide the required bridge width. This alternative utilizes the on/off ramps to divert traffic during the minor demolition and beam erection.

This alternative costs $\$ 866,799$ less than the "As Proposed". This is the recommended alternative.
V.E. Alternative No. 2 is to use a two span ($23.77 \mathrm{~m}-23.77 \mathrm{~m}$) bridge using prestressed concrete Type III girders and MSE walls. Barriers will be used at the face of the wall. The maintenance of traffic (MOT) plan is to use the on/off ramps to divert I-75 traffic during demolition and beam erection. This alternative costs $\$ 562,391$ less than the "As Proposed".
V. E. Alternative No. 3 is to use the "As Proposed" bridge, a two span ($31.25 \mathrm{~m}-31.25 \mathrm{~m}$) with Type IV girders and MSE walls. The maintenance of traffic (MOT) would be different. The "As Proposed" uses a crossover to divert traffic during demolition and beam erection. The V.E. 3 Alternative's MOT plan will use the on/off ramps to divert traffic. It is expected to divert I-75 traffic a total of twelve nights.

This alternative costs $\$ 710,585$ less than the "As Proposed".

\qquad

The "As Proposed" KY 491 bridge utilizes a crossover to maintain I-75 traffic during demolition and construction. The estimated cost of the crossover is $\$ 521,000$. The V.E. proposal is to utilize the on/off ramps at the I-75/KY-491 interchange to detour I-75 traffic. The detours would only be used during off peak hours.

The MOT plan is to restrict the I-75 traffic to one lane and detour the traffic to the off ramp across KY 491 and onto the on ramp proceeding onto I-75. The existing bridge will be removed in sections. The existing bridge will remain in place during construction of the first phase of the new bridge. The existing bridge will be used for maintaining KY-491 traffic. I-75 will be diverted when beams are erected in the new bridge phase 1 construction.

The need for diverting traffic will be as follows:
2 nights to set beams in Phase 1 new bridge
2 nights to cast deck in Phase 1
2 nights/span to demolition existing bridge (total 4 nights)
2 days to set girders in Phase II
2 nights to cast deck in Phase II

Total of 12 nights

It might be considered to include an incentive in the contract for minimizing the time for diverting traffic. Allow a certain amount of time and reward the contractor for using less time. This would minimize traffic constraint and user cost.
\square

MAINT of Traffecic/Night/Direction
Interstate Closures
Two Lane Closure
Drum Spacine - 16.76 M in TapRES, 33.53 M Elsewhe

$$
\begin{aligned}
& \text { TAPGRS }=2 \times 270 \mathrm{M}=540 \mathrm{M} \Rightarrow 33 \\
& \text { TANGEWTS }=3 \times 270 \mathrm{~m}=810 \mathrm{M} \Rightarrow \frac{25}{60} \\
& \text { SAY }
\end{aligned}
$$

Per Clasure
DRUMLS $\sigma^{08} / 000$
Rreow $2-e^{100}$
PRROW 2-e $300 / \omega K$
VMS 1-e 1000 /wK

$$
1000
$$

Signs

$$
500
$$

TRUCK-2 Fitbrese ${ }^{6} 40$

$$
\frac{640}{\$ 3740}
$$

$$
\begin{array}{r}
\$ 3740 \\
+15 \%=4300 \\
\hline
\end{array}
$$

LABOR -
SETYP/TAKEDOW - 4 HeS-Premm Time
8 MENe $38 /$ HR $Q 4$ HRS

$$
=1216
$$

FLAGMEN W/ BLVELIGHTS

$$
\begin{gathered}
4060 \text { litR } \times 8 \text { HRS }=\frac{1920}{3136} \\
\text { SUTOTAL }=825 \%=\frac{3920}{} \\
\text { TOT }=99500
\end{gathered}
$$

KY 491
V.E. ALTERNATIVE NO. 1

COST COMPARISON

DESCRIPTION	UNIT COST	PROP'D QTY.	PROP’D COST	V.E. QTY.	V.E. COST
"AS PROPOSED" 2 SPAN CONTINUOUS (31.25-31.25) WITH MSE WALLS	$\$ 626,818$	1	$\$ 626,818$		
CROSSOVER	$\$ 521,068$	1	$\$ 521,068$		
DEMOLITION "AS PROPOSED"	$\$ 120,000$	1	$\$ 120,000$		
V.E. NO. 1 JACK EXISTING STRUCTURE AND WIDEN	$\$ 371,087$			1	$\$ 371.087$
MOT	$\$ 20,000$			1	$\$ 20,000$
DEMOLITION	$\$ 10,000$				$\$ 10,000$

Possible Savings $\$ \mathbf{8 6 6 , 7 9 9}$

KY 491 VE-1
Bridge Area

$$
81.69 \mathrm{~m} \times 11.46 \mathrm{~m}=936.17 \mathrm{~m}^{2}
$$

Conc. Tor ceurn scais
EB Cap 51 m nian $\times 79 \mathrm{~m} .1 .11 .92 \mathrm{~m}$ long $=5.27 \mathrm{~m}^{3}$; Pier Cap .56 m mian' $^{2} \times .91 \mathrm{~m} w \times 11.07 \mathrm{~m}$ long' $5.64 \mathrm{~m}^{3}$ Winguall utansion $2 v .5 \times 1.85 \times 4=2,4$

$$
\text { Conce. } \begin{array}{cc}
5.27: 2: & 10.54 \\
5.4: 2: & 16.92 \\
& \frac{7.4}{} \\
& 34.86 \mathrm{~m}^{3}
\end{array}
$$

Widem EB 7.32 m

$$
\begin{aligned}
7.32 \times 1.17 \mathrm{~m} \times 1.37 \mathrm{~m}= & 11,73 \mathrm{~m}^{3} \\
.91 \mathrm{~m} \times 2.13 \times 1.52 \times 2= & 5.89 \\
.61 \mathrm{~m} \times 1.17 \mathrm{~m} \times 1.69 \times 3= & 1.45 \\
& 19,10 \mathrm{~m}^{3} \text { fesch } E B
\end{aligned}
$$

Win

$$
\begin{aligned}
& \text { Cap . } 11 \times 1.07 \times 7.32=7.13 \mathrm{~m}^{3} \\
& \text { Ctg } .91 \times .91 \times 4 \mathrm{A2}=3.66 \mathrm{~m}^{3} \\
& \text { Ftg } .91 \times 2.13 \times 2.13=\frac{4.13 \mathrm{~m}^{3}}{14.92 \mathrm{~m}^{3} / \text { pier }}
\end{aligned}
$$

KY 491 VE-1
Conc.
Raise beam cats
Widen EB $\quad 12,10 \times 2$
Widen Piers 14.92×3
$34.86 \mathrm{~m}^{3}$
$38.20 \mathrm{~m}^{3}$
$\frac{44.76}{117.82 \mathrm{~m}^{3}}$
Rebars

$$
\begin{aligned}
& 5 \% \times 117,82 \times 2 \times 150=31,201 \\
& -1,201 \times 454 \mathrm{~g} / 16=14,165,254 \mathrm{~g}=14,165 \mathrm{~kg}
\end{aligned}
$$

Drilled Archers a .5 m e irs each fare of each suosta

$$
(11.07 \times 3)+(11.92 \times 2)=57.05 \times 2 \div 5=57
$$

Bearing Macs
4 Ext. Beans + now brand
$8 /$ span $\times 4$ Spans $\times 2$ enos $=64$
Sup- Widen
7.62 m wide $y .20$ thick $y ~ \$ 1.69 \mathrm{~m}=124.50 \mathrm{~m}^{3}$

Super Repairs

$$
\begin{aligned}
& 5 \% \times 124,50 \times 35.31 \times 150=32,970^{*} \\
& 32,970 \times 454 \mathrm{~g} / 16 .=14,968,380 \mathrm{~g}=14,968 \mathrm{~kg}
\end{aligned}
$$

COST COMPARISON

DESCRIPTION	UNIT COST	PROP'D QTY.	PROP'D COST	V.E. QTY.	V.E. COST
"AS PROPOSED' BRIDGE	$\$ 602,000$	1	$\$ 602,000$		
ADD. EMBANKMENT	$\$ 25,960$	1	$\$ 25,960$		
CROSSOVER	$\$ 521,068$	1	$\$ 521,068$		
V.E. 2 BRIDGE INCLS. RDWY.	$\$ 466,637$			1	$\$ 466,637$
MOT	$\$ 120,000$			1	$\$ 120,000$

Possible Saviogs $\quad \$ 562,391$

KY 491 VE-2
New Erifige with, No Crossovers (25pans-with HAS Walls - 7 lines Type III ($23.77 \mathrm{~m}-23.77 \mathrm{~m}$)
From Consultants Cost Estimate
Class AA Contr. $213 \mathrm{~m}^{3} \times 445 / \mathrm{m}^{3}=94,785$
Rebars $\quad 19,465 \mathrm{~kg} x^{3} 1,40 / \mathrm{Kg}=27,251$
Type III Bums $14 \times 23.79 \times 8.874 / \mathrm{m}=91,181$
43 mm Exp. At. $36 \mathrm{~m}_{3} x^{6} 246 / \mathrm{m}=8,856$
Class A Conc. $82 \mathrm{~m}^{3} \times 390 / \mathrm{m}^{3}={ }^{4} 31,980$
Rebars $\quad 9,840 \mathrm{Kg} x^{+3} 1.20 / \mathrm{Kg}={ }^{3} 11,808$
MSE Walls $432 \mathrm{~m}^{2} \gamma^{4} 323 / \mathrm{m}^{2}=139,536$
Rock Excavation $389 \mathrm{~m}^{3} \times 52 / \mathrm{m}^{3}={ }^{4} 20,176$
Ped. Half Cage $128 \mathrm{~m} \times^{5} 118 / \mathrm{m}=15,104$
Add. Raw Costs

$$
=\frac{25,960}{466,637}
$$

Demolition

$$
\text { MOT (6-73) } 10,000 / \text { night /direction } \times 12 \text { nights }=\stackrel{6}{=}, 20,000
$$

$K \psi 491$ VE-2
Class A Super Conc.

$$
17.028 \mathrm{~m} \times 23.77 \mathrm{~m} \times 2 \times .20 \mathrm{~m}=161.90 \mathrm{~m}^{3}
$$

Rebars

$$
\begin{aligned}
& .05 \times 161,90 \times 5,31 \times 150-42,875 \\
& 42,875^{*} \times 4,54 \mathrm{~g} / 16=19,465,250 \mathrm{~g}=19,465
\end{aligned}
$$

KY 491
V.E. ALTERNATIVE NO. 3 COST COMPARISON

DESCRIPTION	UNIT COST	PROP'D QTY.	PROP'D COST	V.E. QTY.	V.E. COST
"AS PROPOSED" 2 SPAN (31.25-31.25) WITH MSE WALLS	$\$ 626,818$	1	$\$ 626,818$		
CROSSOVER	$\$ 521,068$	1	$\$ 521,068$		
DEMOLITION ("AS PROPOSED")	$\$ 120,000$	1	$\$ 120,000$		
V.E. NO. 3 NEW SUPER EXISTING SUBSTN	$\$ 374,706$			1	$\$ 374,706$
MOT	$\$ 120,000$			1	$\$ 120,000$
DEMOLITION V.E. NO.					

KY 491 VF 3
New Bridge on Existing Foundations a Widen

Assume Type III Cone Bums.
(1) $7-10$ etrs
Class AA Conc $83 \mathrm{~m}^{3} x^{3} 445 / \mathrm{m}^{3}=36,935$
Rears $9,974 \mathrm{Kg} \times 1.40 / \mathrm{kg}=13,944$
PCIB III $7 \times 81.69 \mathrm{~m} \times{ }^{*} 274.18 / \mathrm{m}=156,784$
40 mm Exp It. $36 \mathrm{~m} x^{5} 246 / \mathrm{m}=8,856$
Class A Conc. $278 \mathrm{~m}^{3} \times{ }^{5} 390 / \mathrm{m}^{3}={ }^{5} 108,420$
Rebars $33,423 \mathrm{~kg} x 1,20 / \mathrm{ta}=40,108$
Ped. Half Cage, $\quad 31.66_{\mathrm{m}} \times 118 / \mathrm{m}=\frac{9,639}{374,70^{\circ}}$
Demolition ${ }^{\$} 45 / m^{2} \times 81,69 \mathrm{~m} \times 17,028 \mathrm{~m}=62,595$
MOT $=75 \begin{gathered}1 \\ \\ i 10,000 / \text { day } / \text { direction }\end{gathered}$

Concert
$\begin{aligned} & \text { Widen } E B-19,10 \mathrm{~m}^{3} / E B \times 2=38,20 \mathrm{~m}^{3} \\ & \text { Pier }-14.92 \mathrm{~m}^{3} / \text { Pier }^{3}=\frac{44,76}{82,96} \mathrm{~m}^{3}\end{aligned}$
Rebars

$$
\begin{aligned}
& .05 \times 82,96 \mathrm{~m}^{3} \times 35,31 \times 150=21970 \\
& 21,970^{*} \times 454 \mathrm{~g} / 16=9,974,380 \mathrm{~g}=9,974 \mathrm{Kg} \\
& \text { Conc - Super }- \text { Class A } \\
& 81,69 \mathrm{~m} \text { long } \times 20 \text { deep } \times 17,028 \mathrm{~m} \text { wide }=278,20 \mathrm{~m}^{3}
\end{aligned}
$$

Rebars

$$
\begin{aligned}
& 52 \times 278 \times 35.31 \times 150=73621^{\#} \\
& 73,621^{*} \times 454 \mathrm{~g} / \mathrm{1b}=33,423,934 \mathrm{~g}=33,423 \mathrm{Kg}
\end{aligned}
$$

VIII. SUMMARY OF RECOMMENDATIONS

SUMMARY OF RECOMMENDATIONS

It is the recommendation of the Value Engineering team that the following Value Engineering Alternatives be carried into the Project Development process for further development.

Recommendation Number 1-Drainage Blanket
The Value Engineering Team recommends that Value Engineering Alternative No. 1 be implemented. This alternative uses an untreated stone blanket.

If this recommendation can be implemented, there is a possible savings of $\mathbf{\$ 1 , 0 0 8 , 7 3 5}$.

Recommendation Number 2-KY 14/16 Structure

The Value Engineering Team recommends that Value Engineering Alternative No. 2 be implemented. This alternative replaces the existing bridge with a new structure but does not use a crossover for maintenance of traffic.

If this recommendation can be implemented, there is a possible savings of $\$ \mathbf{4 6 1 , 1 0 0}$.

The Value Engineering Team recommends that the Value Engineering Alternative be implemented. This alternative changes the proposed ramp revision and eliminates the culvert extension and fill.

If this recommendation can be implemented, there is a possible savings of $\$ \mathbf{2 1 6 , 2 5 8}$.

Recommendation Number 4-Mainline Overlay and New Pavement Thickness

The Value Engineering Team recommends that the Value Engineering Alternative be implemented. This alternative minimizes the thickness by revising the pavement design.

If this recommendation can be implemented, there is a possible savings of
$\$ 1,359,250$.

The Value Engineering Team recommends that Value Engineering Alternative No. 4 B be implemented. This alternative uses an 8 meter depressed median, uses a standard height single slope barrier in the median, uses $12^{\prime}(3.6 \mathrm{~m})$ paved shoulders in the median, reduces the thickness of the median shoulder pavement and/or uses lesser grade of materials for the shoulder pavement in the median and feathers the shoulders down from the edge of pavement on the outside and does nothing outside the existing shoulders.

If this recommendation can be implemented, there is a possible savings of \$4,534,366.

YRecommendation Number 6-KY 491 Structure
The Value Engineering Team recommends that Value Engineering Alternative No. 1 be implemented. This alternative salvages the existing bridge by jacking it up to obtain the required vertical clearance and widens the existing bridge to obtain the desired typical section width.

If this recommendation can be implemented, there is a possible savings of $\$ \mathbf{8 6 6 , 8 0 0}$.
If all the recommendations can be implemented, there is a possible total savings of
$\$ 8,446,509$.

I-75 WIDENING
V.E. STUDY PRESENTATION

SEPTEMBER 12, 1997

NAME	AFFILIATION	PHONE
BILL VENTRY	VENTRY ENGINEERING	$(850) 627-3900$
DON KEENAN	VENTRY ENGINEERING	$(850) 627-3900$
DUNCAN SILVER	VENTRY ENGINEERING	$(801) 649-9559$
KEVIN VILLIER	KYTC DIST. 5 DESIGN	$(502) 367-6411$
JOETTE FIELDS	KYTC HWY. DESIGN	$(502) 564-3280$
ROBERT SEMONES	KYTC HWY. DESIGN	$(502) 564-3280$
DALE CARPENTER	KYTC BRIDGE DESIGN	$502) 564-4560$
DARYL GREER	KYTC HWY. DESIGN	$(502) 564-3280$
LARRY TRENKAMP	KYTC D.6 COAST	$(606) 341-2700$
JERRY LOVE	VENTRY ENGINEERING	$(850) 627-3900$
ROBERT PARKS	FLORENCE \& HUTCHESON	$(502) 444-9691$
GEORGE HOFFMAN	KYTC D6 PRE. CONSTR.	$(606) 341-2700$
JANET R. COFFEY	KYTC OPERATIONS	$(502) 564-4556$
TIM THARPE	KYTC OPERATIONS	$(502) 5644556$
DAVID KRATT	KYTC DESIGN	$(502) 564-3280$
LEO FRANK	KYTC C/O DESIGN	$(502) 564-3280$

[^0]: $\begin{array}{llll}\text { 7- } 8 & \text { AM ON WEDNESDAY } \\ 3-4 & \text { PM ON TUESDAY }\end{array}$
 $\begin{array}{llll}\text { 7- } 8 & \text { AM ON WEDNESDAY } \\ 3-4 & \text { PM ON TUESDAY }\end{array}$
 BETWEEN
 BETWEEN

[^1]:

[^2]:

[^3]:

[^4]:

[^5]:

