

DIMENSIONS FOR I-BEAM PADS									
PAD A B C *MAXIMUM REACTION MAXIMUM MOVEN (One Direction)									
1F	14'	10'	2~0.12" × 13.630" × 9.630"	88k	0.5"				
2F	16"	10'	2~0.12" × 15.630" × 9.630"	107k	0.5"				
3F	20"	10'	2~0.12" × 19.630" × 9.630"	145k	0.5"				
4F	24"	10 '	2~0.12" × 23.630" × 9.630"	185k	0.5"				
5F	24"	11"	2~0.12" × 23.630" × 10.630"	219k	0.5"				

* Use actual reactions to determine anchorage requirements for pads.

DIMENSIONS FOR I-BEAM PADS									
PAD	А	В	С	*MAXIMUM REACTION	MAXIMUM MOVEMENT (One Direction)				
1E	14"	10"	6~0.12" × 13.630" × 9.630"	88k	1.22"				
2E	16"	10"	6~0.12" × 15.630" × 9.630"	107k	1.22"				
3E	20"	10"	6~0.12" × 19.630" × 9.630"	145k	1.22"				
4E	24"	10"	6~0.12" × 23.630" × 9.630"	185k	1.22"				
5E	24"	11"	7~0.12" × 23.630" × 10.630"	219k	1.44"				

* Use actual reactions to determine anchorage requirements for pads.

SPECIFICATIONS: Fabricate the Elastomeric Bearing Pads to the design and dimensions as shown on these drawings and to AASHTO Standard Specifications for Highway Bridges, Division II, Section 18.

Ensure bearings are low temperature Grade 3 with durometer hardness of 50 and subjected to the load testing requirements corresponding to Design Method A.

) Include the price of bearing pads in the bid for the beams.

DIMENSIONS FOR BOX-BEAM PADS												
PAD	PAD A B C D *MAXIMUM REACTION MAXIMUM MOVEMENT (One Direction)											
A1	1′-10"	7"	3~0.12" × 21.630" × 6.630"	1.290"	123k	0.500"						
A2	1′-10"	7"	5~0.12" × 21.630" × 6.630"	2.090"	123k	0.750"						
B1	11"	7"	3~0.12" × 10.630" × 6.630"	1.290"	50k	0.500"						
B2	11"	7"	5~0.12" × 10.630" × 6.630"	2.090"	50k	0.750"						
[

* Use actual reactions to determine anchorage requirements for pads.

GENERAL NOTES

SPECIFICATIONS: Fabricate the Elastomeric Bearing Pads to the design and dimensions as shown on these drawings and to AASHTO Standard Specifications for Highway Bridges, Division II, Section 18.

Ensure bearings are low temperature Grade 3 with durometer hardness of 50 and subjected to the load testing requirements corresponding to Design Method A.

Include the price of bearing pads in the bid for the beams.

PRECAST PRESTRESSED BOX BEAMS

General Notes

SPECIFICATIONS: All references to the standard Specifications are to the current edition of the Kentucky Department of Highways Standard Specifications for Road and Bridge Construction, with current supplemental specifications. All references to the AASHTO Specifications are to the current edition of the AASHTO Standard Specifications for Highway Bridges, with interims.

DESIGN LOADS: Beam sections are designed for HS25 live load or alternate loading of two 24-kip axles spaced at 4 ft. apart, whichever produces the greater stress. The HS25 live load is arrived by increasing the standard HS20-44 truck and lane loads as specified in the AASHTO Specifications by 25 percent.

MATERIAL DESIGN SPECIFICATIONS:

for	Steel Reinforcement	FΥ	=	60000 PSI	
for	Prestressed Girder Concrete	F′C	=	5800 PSI	
		F'CI	=	4500 PSI	
for	Prestressing Steel	F′ S	=	270000 PSI	

DESIGN LENGTH: Beam lengths shown in the Standards represent total beam length. Beams are designed for spans from centerline of bearing to centerline of bearing. Use the next greater designed section for non-Standard lengths.

CONSTRUCTION METHOD: Transferring bond stress to the concrete will not be allowed, nor releasing of end anchors until the concrete has attained a minimum compressive strength of 4500 PSI as shown by standard cylinders made and cured identically with the girders; attain 5800 PSI at or prior to 28 days. Apply an initial prestress force of 28000 lbs. per low relaxation strand. Beams with honeycomb of such extent as to affect the strength of resistance to deterioration will not be accepted. The allowance of .0005L (length) is made for shortening of beams due to shrinkage and elastic change. Furnish shop plans showing a detensioning plan by numbering. In sequence, the strend pattern.

PRESTRESSING STRANDS: Ensure prestressing strands to be $\frac{1}{2}$ ", Grade 270 low-relaxation strands conforming to AASHTO M 203. If an alternate strand arrangement or strand type is preferred by the Contractor, the designer that developed the original plans will provide the design and also revise the original plans to reflect the changes. These design and plan modifications will be done at the Contractor's expense.

CORROSION INHIBITOR: Provide a corrosion inhibitor for B-type (non-composite) beams in accordance with the current Special Note for Corrosion Inhibitors.

BEVELED EDGES: Bevel all exposed edges 7/8".

REINFORCEMENT: Dimensions shown from the face of concrete to reinforcement are clear distances. Spacing of reinforcement is from center to center of reinforcement. All steel reinforcement is to be epoxy coated in accordance with Section 811.10 of the Specifications. Consider bars marked "C" to be a stirrup for purposes of bend diameters. Non-epoxy reinforcement may be used for fabrication purposes, only, provided that the steel is not used in the top 5½" of the beam and the location of the steel is indicated on the shop drawings. CURBS: Pour curbs on B-type beams in the plant. Concrete must have the same mix design as the beam section, except that the cylinder strength need not exceed that for Class "AA" Concrete. Include the cost of the curbs in the price of beam.

GROUT: Provide non-shrink grout for anchor dowels, shear keys, and tensioning rod block-outs conforming with Section 601.03.03 of the Specifications. When side by side superstructure is utilized, grouting will be completed after lateral tension rods have been fully tightened and before leveling devices have been removed. Include the cost of furnishing and placing grout in the price of beam.

RAILING SYSTEM TYPE II: Furnish this material per these specifications.

Ferrule 2½ "x 5" ASTM A108 (ILLI7 Steel) B633, Type II, Class 2 Wire ¾ " ASTM A510 (IOL8 Steel) B633, Type II, Class 2 Nut for I¼ "Bolt ASTM A108 (I2L14 Steel) B633, Type II, Class 2	ITEM	DESCRIPTION	MATERIAL SPECIFICATION	COATING SPECIFICATION
Washers for 11/4 " Stud ASTM A325M B633, Type 11, Class 2	Channel Plate Tubing Bolts Nuts Washers Stud Ferrule Wire Nut	C7×9.8 1/2 "× 7" 8×4×0.1875 1/4 " for 1/4 " 2/2 "× 5" 3/8 " for 1/4 " Bolt for 1/4 " Stud	ASTM A36 ASTM A36 ASTM A500 or A501 ASTM A503, Grade A or better ASTM A563, Grade A or better ASTM A108 (1045 C.D. Bar) ASTM A108 (11L17 Steel) ASTM A510 (1018 Steel) ASTM A108 (12L14 Steel) ASTM A108	A 1 2 3 A 1 2 3 A 1 2 3 A 1 5 3 A 1 5 3

Us	e the current edition of the references listed below with these standards.		
S	TANDARD DRAWINGS		
BBP-003 BHS-007 BJE-001	Elastomeric Bearing Pads Railing System Type II Armored Edge & Neoprene Joints		
	Steel Beam Guardrail Guardrail Components		KENTUCKY DEPARTMENT OF HIGHWAY
	SPECIAL NOTES		BOX BEAM
for Corro	osion Inhibitors		GENERAL NOTES
			& REFERENCES
		J	STANDARD DRAWING NO. BDP-001-03
			SUBMITTED

APPROVED

STATE HICHWAY ENGINEER

furnishing and placing these shims in the price per beam.

General Notes

SLAB OPTION: The superstructure option shown on this Standard Drawing may be used in lieu of composite or non-composite adjacent box beams. Notify the Director of the Division of Bridge Design when this option is used.

CLASS "AA" REINFORCED CONCRETE: All falsework is to remain in place until the Class "AA" Concrete compressive strength is 4000 PSI. Class "AA" Concrete is to be used throughout the superstructure.

ELEVATIONS: Determine final elevations using the elevations, slopes, and grades shown on the detailed plans.

STEEL REINFORCEMENT: Ensure steel reinforcement is ASTM A 615 Grade 60 and epoxy coated.

SURFACE FINISH: The top of the slab surface may be finished with a floated surface finish in accordance with Section 601.03.18 and textured in accordance with Section 609.03.11.

Desci	ription of So	il Compact	tness or Con	sistency					
SOI	IL TYPE	COMPACTNESS OR Consistency		RANGE OF UNCONFINED COMPRESSIVE STRENGTH	AI LI	Activity Index Liquidity Index			LIMESTONE
Coarse grained soils (More than half of materialis larger than No. 200 sieve size.)		Very loose Loose Medium compact Compact Very compact Very soft	Less than 4 blows per ft. 4 to 10 t 10 to 30 30 to 50 Greater than 50	Not applicable Less than 0.25 tsf	N S+C(%) ⊖ ⊕ ⊚	Penetration Resister Material finer than Rockline Soundings Disturbed Sample Bo Undisturbed Sample	No.200 sieve pring		SANDSTONE
Fine grained soils (More than half of material is smaller than No. 200 sieve size.)		Soft Medium stiff Stiff Very stiff Hard	Not applicable	0.25 to 0.50 0.50 to 1.0 1.0 to 2.0 2.0 to 4.0 Greater than 4.0	©	Undisturbed Sample Rock Core Slope Inclinometer	Boring & Rock Core Installation ns: 수 		COAL
	Unified \$	Soil Classi	fications		OW □ < UU (psi)	7-Day (or greater) Thin-walled Tube Sa Standard Penetrati Unconsolidated, Und	on Test Sample)))	NONDURABLE SHALE (SDI < 90)
MAJOR		SYMBOL	NAI	ME	Qu (psi)	Unconfined Compres		$\widehat{}$	
		GW	Well-graded gravels or mixtures, little or no t Poorly graded gravels	fines.	w (%) RQD (%) SDI (JS)		ation lex (Jar Slake Test)		DURABLE SHALE (SDI <u>></u> 90)
	GRAVEL AND GRAVELLY SOILS SAND AND SANDY SOILS		Silty gravels, gravel-sa	fines.	Rec. (%) Ø Ø c (psi)	Core Recovery Angle of Internal F Effective Angle of Cohesion		· · · · · · · · · · · · · · · · · · ·	TALUS OR MINE WASTE OR FILL MATERIAL
COARSE GRAINED		GC s s	Clayey gravels, gravel-s	sand-clay mixtures.	c (psi) γ RDZ	Effective Cohesion Total Unit Weight Rock Disintegration Zone	Zone		ROADWAY FILL- Granular
SOILS		SW 00000	Well graded sands or gr ittle or no fines.	avelly sands,	OB IB R	Overburden Bench Intermediate Bench Refusal			EMBANKMENT
			Poorly graded sands or ittle or no fines. Silty sands, sand-silt m		NR VS (psi)	Refusal Not Encoun Field Vane Shear St		<	STRUCTURE GRANULAR BACKFILL
			Clayey sands, sand-clay						SLOPE PROTECTION
	SILTS AND CLAYS	ML	Inorganic silts and ver flour, silty or clayey f silts with slight plastic	fine sands or clayey ity.				\circ \circ \circ \circ	
FINE GRAINED	LL IS LESS THAN 50	CL	Inorganic clays of low gravelly clays, sandy cl ean clays.		Rela	RDQ (%)	n situ Rock Quality Rock Quality		KENTUCKY TMENT OF HIGHWAYS
SOILS	SILTS AND CLAYS		inorganic silts, micaceo fine sandy or silty soil			90 - 100 75 - 90 50 - 75 25 - 50	Excellent Good Fair Poor		GEOTECHNICAL LEGEND
	LL IS GREATER THAN 50	СН	Inorganic clays of high	plasticity, fat clays.		0 - 25	Very Poor		DRAWING NO. BGX-012-02
UNCLASSIFIED MATERIAL			Non-classified material(ment, slag, etc.)include					SUBMITTEDDI	RECTOR DIVISION A BRIDGE DESIGN DATE TATE DIVISION A BRIDGE DESIGN DATE TATE DIGHNA ENGINEER DATE

SECTION THROUGH DRAIN

PLAN OF DRAIN (Barrier not in place)

NOTE: Field bend top transverse slab reinforcement in the area of the drain to maintain $2l/2^{"}$ of concrete cover through the drain. Bend reinforcement approximately 1'-0" from the gutter line. Transverse slab reinforcement adjacent to the opening is not to be bent. Longitudinal reinforcement is not to be tied to the transverse reinforcement adjacent to the drain for a distance sufficient to allow the reinforcement to sag under the bent reinforcement in the drain area.

THROUGH BARRIER DRAIN DETAILS

THROUGH CURB DRAIN DETAILS

SPLICE PLATES: Ensure all pile splicing options conform to A.S.T.M. A36, current Specifications. In lieu of Splice Option "A' or Splice option "B", splice plates may be flame cut from HP12x53 sections. If flange sections are used, the portion cut at the web must be turned outside in order to obtain a tight fit. Grind the edges smooth prior to welding.

SPLICE OPTION "B": The pile splicer shown in the details for Splice Option "B" may be Champion H-Pile Splicer, Model HP 30000, or an approved equal. Ensure the splicer is in accordance to the manufacturer's recommendations and subject to the Engineer's approval.

FIELD WELDS: Ensure field welding material and workmanship for all piling conforms to the current Joint Specifications ANSI/AASHTO/AWS DI.5 Bridge Welding Code. Splice piles as indicated above only when driven below cut-off elevation.

MILL TEST REPORTS: Furnish mill test reports in triplicate to the Department showing that all materials furnished conform to the Specifications.

SPLICE PLATES: Ensure all pile splicing options conform to A.S.T.M. A36, current Specifications. In lieu of Splice Option "A' or Splice option "B", splice plates may be flame cut from HP14x73 sections. If flange sections are used, the portion cut at the web must be turned outside in order to obtain a tight fit. Grind the edges smooth prior to welding.

SPLICE OPTION "B": The pile splicer shown in the details for Splice Option "B" may be Champion H-Pile Splicer, Model HP 30000, or an approved equal. Ensure the splicer is in accordance to the manufacturer's recommendations and subject to the Engineer's approval.

FIELD WELDS: Ensure field welding material and workmanship for all piling conforms to the current Joint Specifications ANSI/AASHTO/AWS DI.5 Bridge Welding Code. Splice piles as indicated above only when driven below cut-off elevation.

MILL TEST REPORTS: Furnish mill test reports in triplicate to the Department showing that all materials furnished conform to the Specifications.

Specifications, In lieu of Splice Option "A" or Splice option "B", splice plates may be flame cut from HP14x89 sections. If flange sections are used, the portion cut at the web must be turned outside in order to obtain a tight fit. Grind the edges smooth prior to welding.

SPLICE OPTION "B": The pile splicer shown in the details for Splice Option "B" may be Champion H-Pile Splicer, Model HP 30000, or an approved equal. Ensure the splicer is in accordance to the manufacturer's recommendations and subject to the Engineer's approval.

FIELD WELDS: Ensure field welding material and workmanship for all piling conforms to the current Joint Specifications ANSI/AASHTO/AWS DI.5 Bridge Welding Code. Splice piles as indicated above only when driven below cut-off elevation.

Specifications.