DECEMBER 6, 2023

Presentation Items

Kentucky Transportation Cabinet (KYTC) perspective on continuous pavement friction measurement

- ▶ Why is KYTC collecting continuous friction data?
- ▶ What are KYTC's data analysis results so far?
- ► **How** can preservation treatments help KYTC in the area of pavement friction?

► KYTC's friction collection efforts are being funded by the Highway Safety Improvement Program (HSIP), so the primary goal is:

► KYTC's friction collection efforts are being funded by the Highway Safety Improvement Program (HSIP), so the primary goal is:

To prevent transportation related fatalities and serious injuries in KY

- KYTC's friction collection efforts are being funded by the Highway Safety Improvement Program (HSIP), so the primary goal is:
 To prevent transportation related fatalities and serious injuries in KY
- ► Fatalities (K crashes) and serious injuries (A crashes) occurring on KY roadways have an annual economic impact of over \$10 **B**illion
- ► 60%-70% of KY's yearly highway fatalities are the result of Roadway Departure

- From 2013-2017:
 - ▶ 1,250+ KA crashes were the result of Roadway Departure on WET pavement
 - ▶ 250+ KA crashes per year due to Roadway Departure on WET pavement
 - Friction likely has more importance on these crashes than any other crash type

- From 2013-2017:
 - ▶ 1,250+ KA crashes were the result of Roadway Departure on WET pavement
 - ▶ 250+ KA crashes per year due to Roadway Departure on WET pavement
 - Friction likely has more importance on these crashes than any other crash type
- ► A 5% reduction of KY's K & A Roadway Departure crashes occurring on WET pavement would save the public over \$28 Million per Year

- From 2013-2017:
 - ▶ 1,250+ KA crashes were the result of Roadway Departure on WET pavement
 - ▶ 250+ KA crashes per year due to Roadway Departure on WET pavement
 - Friction likely has more importance on these crashes than any other crash type
- ► A 5% reduction of KY's K & A Roadway Departure crashes occurring on WET pavement would save the public over \$28 Million per Year
- This is an opportunity!

What are KYTC's data analysis results so far?

- ► Key Notes :
 - ▶ Using GPS coordinates, collected data is snapped to KYTC's LRS
 - ▶ Once snapped, we have a very robust data set consisting of:
 - ► Collected data (friction, texture, curve radius, grade, cross slope, IRI, etc.)
 - ► Most recent 5-year crash data
 - ► AADT
 - ► Route System designation (Interstate, Parkway, State Primary, or State Secondary)
 - ▶ # of lanes and lane width
 - ► Shoulder type and shoulder width
 - ► Posted Speed Limit

- ► Key Notes :
 - ► Each row of the integrated data set represents 0.005 mile (26.4 ft) along KY's network
 - ► Rolled up data into 0.1-mile segments and assigned to a **Site Category**
 - ► C1 curves (radius < 300 ft)
 - ► **C2** curves (radius 300 700 ft)
 - ► C3 curves (radius 700 1200 ft)
 - ► **C4** curves (radius 1200 2000 ft)
 - ▶ Intersection (526 ft total length centered at the intersection i.e. 264 ft on either side)
 - ▶ Non-Event (any segment that did not include any of the above i.e. tangents)

<u>NOTE</u>: if a 0.1-mile segment included both a tangent and curve (or tangent and intersection), the entire segment was labeled as a curve (or intersection)

Compared WET crash rates with Friction Coefficient bands for each Route System

Compared WET crash rates with Friction Coefficient bands for each Site Category

► Friction Distribution across KYTC's network

► KY's network (blue line) / typical Friction Distribution of other agencies (orange line)

► KY's network (blue line) / typical Friction Distribution of other agencies (orange line)

- ► SPF = Safety Performance Function (crash prediction model)
- Developed an overall network-level SPF
 - ► Included interaction terms for Friction and Texture (mean profile depth)
 - ► Included categorical variables for District, Site Category, and Route System
 - ► Included adjustment variables for speed at collection, curve radius, gradient, IRI, air temperature, and AADT
- ► Calculated "what-if" scenarios
 - ► Change in predicted crashes and resulting crash rates (and associated 95% confidence intervals) over a 5-year period using a 10-point increase in Friction

▶ % Decrease in crash rates: +10-point friction; by site category for each route system (statewide)

	Site Category	CMF (+1 friction)	% Decrease in Crash Rates	Impact Rank
State Secondary	C1	0.9606	33.09 (27/38)	1
	C4	0.9654	29.70 (26/31)	2
	Non-Event	0.9707	25.71 (24/26)	4
	Intersection	0.9713	25.26 (24/26)	5
	C2	0.9721	24.66 (21/27)	6
	С3	0.9725	24.36 (21/26)	7
State Primary	C1	0.9695	26.64 (21/33)	3
	C4	0.9743	22.92 (20/25)	8
	Non-Event	0.9797	18.55 (18/20)	10
	Intersection	0.9803	18.06 (17/19)	11
	C2	0.9811	17.40 (15/21)	13
	C3	0.9815	17.07 (14/20)	14

	Site Category	CMF (+1 friction)	% Decrease in Crash Rates	Impact Rank
Interstate	C1	0.9758	21.69 (15/29)	9
	C4	0.9807	17.73 (14/20)	12
	Non-Event	0.9861	13.06 (12/15)	15
	Intersection	0.9867	12.54 (11/14)	17
	C2	0.9875	11.84 (8/16)	18
	C3	0.9879	11.48 (8/15)	19
Parkway	C1	0.9867	12.55 (5/21)	16
	C4	0.9916	8.12 (3/12)	20
	Non-Event	0.9970	2.92 (0/6)	21
	Intersection	0.9976	2.33 (-1/+5)	22
	C2	0.9984	1.55 (-3/+7)	23
	C3	0.9988	1.15 (-4/+6)	24

▶ % Decrease in crash rates: +10-point friction; by site category for each District

District	C1	C4	C2	Non-Event	Intersection
D1	40.99 (35.42, 46.08)	40.20 (37.50, 42.78)	38.15 (34.94, 41.19)	37.80 (35.69, 39.85)	37.28 (35.24, 39.25)
D11	37.69 (32.04, 42.88)	36.86 (34.23, 39.38)	34.69 (31.6, 37.64)	34.32 (32.28, 36.31)	33.77 (31.88, 35.61)
D4	36.95 (31.25, 42.17)	36.10 (33.80, 38.32)	33.91 (31.00, 36.70)	33.54 (32.16, 34.90)	32.98 (31.70, 34.24)
D8	34.07 (28.06, 39.58)	33.19 (30.60, 35.68)	30.89 (27.73, 33.91)	30.51 (28.77, 32.20)	29.92 (28.32, 31.49)
D9	32.38 (26.22, 38.03)	31.48 (28.80, 34.05)	29.12 (25.87, 32.23)	28.73 (26.84, 30.57)	28.13 (26.36, 29.86)
D12	31.85 (25.58, 37.58)	30.93 (28.09, 33.66)	28.56 (25.14, 31.82)	28.16 (26.08, 30.19)	27.56 (25.60, 29.47)
D7	30.29 (24.02, 36.04)	29.35 (26.79, 31.82)	26.93 (23.74, 29.98)	26.52 (24.95, 28.06)	25.90 (24.50, 27.28)
D10	29.17 (22.75, 35.05)	28.22 (25.30, 31.02)	25.75 (22.34, 29.02)	25.34 (23.14, 27.48)	24.71 (22.69, 26.68)
D5	28.56 (22.10, 34.49)	27.61 (24.92, 30.20)	25.12 (21.79, 28.31)	24.70 (22.91, 26.46)	24.07 (22.50, 25.61)
D6	27.53 (20.95, 33.57)	26.56 (23.69, 29.32)	24.04 (20.58, 27.35)	23.62 (21.48, 25.69)	22.97 (21.01, 24.89)
D3	26.77 (20.16, 32.83)	25.79 (23.10, 28.38)	23.24 (19.88, 26.46)	22.81 (21.15, 24.44)	22.16 (20.66, 23.63)
D2	24.83 (18.06, 31.05)	23.83 (21.07, 26.48)	21.21 (17.75, 24.52)	20.77 (19.20, 22.32)	20.11 (18.66, 21.53)

How can preservation treatments help KYTC in the area of pavement friction?

- ► The bottom line:
 - ▶ Perseveration treatments will help KYTC not only prolong good condition, but will also help maintain adequate friction levels over a pavement's lifecycle

- ▶ The bottom line:
 - ▶ Perseveration treatments will help KYTC not only prolong good condition, but will also help maintain adequate friction levels over a pavement's lifecycle
 - ► All pavements polish
 - ► Some will polish quickly
 - ► Some will polish slowly
 - ► Some will reach a relatively high terminal friction
 - ► Some will reach a relatively low terminal friction

- ▶ The bottom line:
 - ▶ Perseveration treatments will help KYTC not only prolong good condition, but will also help maintain adequate friction levels over a pavement's lifecycle
 - ► All pavements polish
 - ► Some will polish quickly
 - ► Some will polish slowly
 - ► Some will reach a relatively high terminal friction
 - ► Some will reach a relatively low terminal friction
 - ▶ Pavements that polish to a concerning level around mid-life are prime candidates for a preservation treatment

KYTC's future opportunities

- Over time, we expect to better manage friction across the KY network
 - ▶ Preservation treatments will be an important tool to accomplish this
- ▶ If we can achieve a 10-point increase in average friction across the network, we expect to see a minimum of a 10% reduction in <u>ALL</u> crashes (not just WET Roadway Departure crashes)
- ► A 10% reduction of ALL crashes on KYTC routes would save the public:

KYTC's future opportunities

- Over time, we expect to better manage friction across the KY network
 - ▶ Preservation treatments will be an important tool to accomplish this
- ▶ If we can achieve a 10-point increase in average friction across the network, we expect to see a minimum of a 10% reduction in <u>ALL</u> crashes (not just WET Roadway Departure crashes)
- ▶ A 10% reduction of ALL crashes on KYTC routes would save the public :

over \$1.4 Billion per Year

KYTC's future opportunities

- Over time, we expect to better manage friction across the KY network
 - ▶ Preservation treatments will be an important tool to accomplish this
- ▶ If we can achieve a 10-point increase in average friction across the network, we expect to see a minimum of a 10% reduction in <u>ALL</u> crashes (not just WET Roadway Departure crashes)
- ► A 10% reduction of ALL crashes on KYTC routes would save the public:

over \$1.4 Billion per Year

► This IS a MAJOR opportunity!

