General Notes

SPECIFICATIONS: All references to the stondord Specifications ore to the current edition of the Kentucky Department of Highways Standord Specifications
for Rood ond Bridge Construction. with current supplemental specifications. All references to the AASHTO Specifications ore to the current edt
AASHTO LRFD Bridge Design Specifications, with interims.

DESIGN LOADS: Beam sections ore designed for H2O Live Lood
DESIGN LOAD DISTRIBUTION: Controry to AASHTO LRFD Bridge Design Specifications the design moment and shear distribution for all beams is 0.6 lanes. FUTURE WEARING SURFACE: These beams ore designed for a 15 PSF future weoring surface
lood. SUBSTRUCTURE DESIGN LOADS: Unfactored design reaction forces per beam end, DC (kips): Beam, Slob, and assumed Type ill roiling dead loods.
DW (kips): Future weoring surfoce.

MATERIAL DESIGN SPECIFICATIONS:
for Beam Steel
for Steel Reinfor
for Class "AA" Deck Concrete $\quad F^{\prime} \mathrm{C}=4000 \mathrm{PS}$ I
material steel
High Streng+h Low Alloy
structural Steel
A.S.T.M
-ATO9 GR $50 \quad$ AASHTO
-M270 GR 50

High strength bolts, nuts, ond woshers f3125 Grode A325 M-164 Type
Sheet lead ond Pig lead
B29-79
All steel in longitudinal rolled wide flonge beoms shall meet the longitudinal Charpy
V-Notch tounhness test for non-frocture critical components Zone 2 in occordance
with the followis with the following
M270 GR 50 (up to $2{ }^{\prime \prime}$ thickness) of 15 ft -lbs ot $40^{\circ} \mathrm{F}$.
 of testing shall be (P).
HICH STRENGTH BOLT CONNECTIONS: Unless Otherwise specified on the plans. all bolted
Connnections sholl be ASTM F3125 Grode A325 $3 / 4$ diometer high strength bolts,

BEVELED EDGES: Bevel all exposed edges $3 / 4^{\circ}$.
REINFORCEMENT: Dimensions shown from the face of concrete to reinforcement ore cleor distances. Spacing of reinforcement is from center to center of
reinforcement. All steelreinforcement is to be epoxy cooted in occordance with section 811.10 of the Specifications.
CORROSION PROTECTION: These beams and all steel components are to be hot dip components must be painted. Unpainted weathering steel is not recommended within 10 feet of moving water. Additionally these beams d
fatigue design requirements of unpainted weothering steel. BRIDGE DECK: A golvanized steel metal grid deck may be substituted for the 8^{8} concrete deck.
not to be used.

TABLE OF BEAM SIZES AND DESIGN DATA (4 FT. MAX. BEAM SPACING)

	ROLLED BEAM		DEFLECTION IN INCHES		unfactored beam end reaction		
BEAM SPAN	$\begin{gathered} \text { BEAM } \\ \text { MEMBER } \end{gathered}$	$\begin{gathered} \text { BEAM } \\ \text { DEPTH (IN.) } \end{gathered}$	STEEL ONLY	TOTAL DL	DC (kips)	DW (kips)	LL+I (kips)
15' Max.	W16×40	16.0	0.00	0.06	5.39	0.45	25.96

These beams were sized according to H -20 truck design. This does no meet federal minimum design HL-93
Use of these beams will limit the loaded size of trucks allowed to cross the bridge.
This is suitable for very low volume roads with little potential for future development. These beams can handle a loaded school bus, but are not suitable for a loaded gravel truck or concrete truck. They are not suitoble for typical trucks associoted

\section*{| 40 Max. |
| :---: |
| 45' Max. |
| |
| 50' Max. |}

50' Max.

Max.

Max.

General Notes

SPECIFICATIONS: All references to the standard Specifications ore to the current edition of the Kentucky Department of Highways Stondord Specifications
for Rood ond Bridge Construction. with current supplemental specifications. All references to the AASHTO Specifications ore to the current edition of the
AASHTO LRFD Bridge Design Specifications, with interims.
design loads: Beam sections ore designed for $1.25 \cdot \mathrm{HL} 93$ (KYHL93) Live Lood. DESIGN LOAD DISTRIBUTION: Controry to AASHTO LRFD Bridge Design Specifications, the design moment and shear distribution for all beams is 0.6 lanes
FUTURE WEARING SURFACE: These beams ore designed for a 15 PSF future weoring surface
lood.
SUBSTRUCTURE DESIGN LOADS: Unfoctored design reaction forces per beom end DC (kips): Beam, Slob, ond ossumed Type ill railing dead loads.
LL+I (kips): LL with Dynamic lood ollowance.
material design specifications:

$$
\begin{array}{rlrl}
\text { for Beam Stee I } \\
\text { for Steel Reinforcement } & \text { FY } & =50000 \mathrm{PSI} \\
\text { for Class "AA" Deck Concrete } & \text { FY } & =60000 \mathrm{PSI} \\
\text { f'C } & =4000 \mathrm{PSI}
\end{array}
$$

A.S.T.M
-A709 GR 50 \quad-M27SHTO GR 50

High Strength Low Allo
structuralsteel

High strength bolts, nuts, and washers F3125 Grade A325
M-164 Type
Sheet lead ond Pig lead B29-79
All steel in longitudinal rolled wide flonge beoms shall meet the longitudinal Chorpy
V-Notch toughness test for non-frocture critical components Zone 2 in occordonce with the following:
m270 GR 50
(up to $2^{\prime \prime}$ thickness) of $15 \mathrm{ft-lbs}$ of $40^{\circ} \mathrm{F}$.

HICH STRENGTH BOLT CONNECTIONS: Unless Otherwise specified on the plons, all bol ted
connmections sholl be ASTM F3125 Gr ode A325 $3 / 4 / 4$ diometer high strength bolts, nuts, ond

 installed under the bilt heor with the bums focing the underside of the bolt head.
Put a hordened wosher under the nut and tension from the
beveled edges: Bevel all exposed edges $3 / 4$
REINFORCEMENT: Dimensions shown from the face of concrete to reinforcement ore ceinforcement. All steel reinforcement is to be epoxy cooted in occordance with Section 8ll 10 of the specifications.
CORROSION PROTECTION: These beams and all steel components are to be hot dip galvanized. If hot dip galvanizing is cost pronibitive then oll steel
components must be painted. Unpainted weathering steel is not recommended components must be painted. Unpainted weathering steel is not recommend
within 10 feet of moving water. Additionally these beams do not meet within toet of moving water. Additionally these beams d
fotigue design requirements of unpainted weothering steel.
BRIDGE DECK: A golvanized steel metal grid deck may be substituted for the 8 .
concrete deck. This will improve the loadrating, but smaller beams concrete deck.
not to be used.

TABLE OF BEAM SIZES AND DESIGN DATA (4 FT. MAX. BEAM SPACING)

BEAM SPAN	ROLLED BEAM		DEFLECTION IN INCHES		UNFACTORED BEAM END REACTION		
	BEAM MEMBER	BEAM DEPTH (IN.)	STEEL ONLY	TOTAL DL	DC (Kips)	DW (kips)	LL+I (kips)
15^{\prime} Max.	W 18×50	18.0	0.00	0.03	5.54	0.45	46.82

KY-HL93 (1.25XHL93)

DESIGN LOAD
From AASHTO design code ->
Veniculor Live Looding designoted HL-93
shall consist of design truck or design
tondem plus design lone load

[6-0".

Shall consist of o pair of 25,000 pound
oxles spaced ot 4,-0" opart. Transverse axles spaced of 4^{4}
wheel spocing is 6^{\prime}
design lane load The design lane load shall consist of
lood of 640 pound/ foot uniformly distributed in the longitudinal direction.
Tronsversely the load is to be uniformily
The current KY design standord for
stote roads is to increase the federal
minimum (AL-93) by 25% (KY-HLL93).

50' Max.

5 Skewed Tronsverse Bor (SI) Length

O° skew $1 / 2 \mathrm{Wall}$
$15^{\circ} \mathrm{skew}, 1 / 2 \mathrm{Woll}$ 30° skew, skew, 2 Woll $\times 1.035$

regordeess of slab forming
method.
, Place stirrup bars parallel
to foce of
2.) Place stirrup bars para
to face of beams.
Dim. "A" $=$ Beam Depth +4 for Slob
Dim. "A" $=$ Beam Depth -4 "for Grid Deck.

30° Skew \rightarrow (Wall Width $-4^{\prime \prime}$) $\times 1.155$
45° Skew \rightarrow (Wall Width $\left.-4^{4}\right) \times 1.414$

DIAPHRAGM

> When required Ploce 2~\#8 bars
> $\begin{aligned} & 2^{\prime}-\mathrm{O}^{2} \text { Long (D4) between beams } \\ & \text { spaced equally. Embed } l^{\prime}-66^{\prime \prime} \text { into }\end{aligned}$
> $\begin{aligned} & \text { support wall. (Note. only one end } \\ & \text { of bridge to be fixed with dowels) }\end{aligned}$ DIAPHRAGM X-SECTION

Note: It is recommended a crosh tested barrier be ottached Note: It is recommended o crosh tested barrier be ot tached
to the superstructure to contain all venicles within the roodway
Recommented barriers include the Type T631 guardroil. Type 3 , or Recommended borriers include the Type T631 guordrail, Type 3, or $\xrightarrow[\text { D3 BARS }]{\text { \& }}$

PLAN OF SLAB

END OF BEAM DETAIL @ SUPPORTS

FRAMING PLAN

SECTION A-A
INTERMEDIATE DIAPHRAGM

SECTION A-A

SECTION A-A

INTERMEDIATE DIAPHRAGM

INTERMEDIATE DIAPHRAGM

Kentuckit DEPARTMENT OF HIGHWAYS

GENERAL NOTES

```
M,
mastic tope. Prior to application, the joint surfoce shall be dean and tree
*)
Mastic Tape shall be either:
EL-wRAP ruBBER DY PRESS-SEAL gASKET CORPoration,
EZ-WRAP RUBBER by PRESS-SEAL GASKET CORPORATIO
S.l
l
The cost of labor, materials, and incidental items for furnishing and installing
Mastic,Tope sholl be considered incidental to the unit price bid for Concrete
MASTIC TAPE APPLICATION
```

ITEM NUMBER

