APPENDIX A

PROJECT TEAM MEETING MINUTES

AGENDA

Programming Study – Initial Project Team Meeting Union County US 60, Item No. 02-8102 10:30 a.m. CST, March 25, 2003 District 2 Conference Room

- 1) Introduction and Purpose
 - a) Listed in six-year highway plan as "Planning study to construct 4 lanes on US 60 from Sturgis to Morganfield."
 - b) Evaluate Roadway Improvements and prioritize projects for future programming documents
 - c) Provide input for the statewide transportation plan.
- 2) Project Goals and Objectives
 - a) Identify general project areai) Sturgis to Morganfield
 - b) Discuss available data and reports
 - i) Traffic data
 - ii) Accident data
 - iii) Existing roadway geometry
 - (1) Little data available
 - (2) Resurfacing plans for 1930 with no plan profiles
 - (3) Old Earth Road? 1921 plans

iv) Other

- c) Discuss problems with existing roadway or network
- d) Discuss benefits of proposed project
- e) Identify additional information needed to document problems
 - i) Traffic data
 - ii) Accident data
 - iii) Existing roadway geometry
 - iv) Other (ITS/Bikes/Ped.) Real Estate Questionnaire
- f) Environmental Justice
 - i) Provided by ADD
- g) Identify logical termini
 - i) MP 5.671 (KY 109 (Main Street)) to MP 16.339 (KY 56)
 - ii) MP 5.671 to MP 15.412 (US 60 Bypass/ KY 3393)
 - iii) MP 5.671 to MP 18.051 (US 60 Bypass Northern end)
 - iv) MP 8.300 (Proposed Sturgis Bypass) to 15.412
 - v) other
- h) Develop project goals and objectives
 - i) Define the need for the project
 - ii) Determine location of termini
 - iii) Describe existing conditions
 - iv) Develop environmental footprints
 - v) Estimate project cost
 - vi) Initiate contact with public officials and organizations

- 3) Discuss Possible Alternatives and Corridors
 - i) No build
 - ii) Spot Improvements
 - iii) Reconstruct with minimal relocation
 - iv) New route
 - v) Combination
 - vi) Other
- 4) Define Environmental Footprint Area
 - a) From KY 109 (MP 5.671) to US 60B (MP 15.412), to be provided by QK4 consultants.
- 5) Discuss Probable Design Criteria
 - a) Functional class
 - i) remain rural minor arterial
 - b) ADT/DHV
 - i) 2002 traffic 6980 ADT/ 789 DHV (11.3% from KYTC Division of Multimodal's Traffic Forecasting Report)
 - ii) 2030 traffic (2.4% growth rate from KYTC Division of Multimodal's Traffic Forecasting Report) ADT 13560/DHV 1532
 - c) Design speed
 - i) Majority 55 mph
 - ii) Some 35 mph urban sections
 - d) Typical section
 - i) 4-lanes
 - ii) median
 - iii) 8-12 foot shoulders
 - e) ITS
 - f) Bicycle/Pedestrian facilities
 - i) Bicycle route running parallel to route along KY 130.
 - g) Other criteria
- 6) Discuss Agency Coordination Needs
 - a) General agency coordination
 - b) Other local or interested agencies or groups
- 7) Discuss Public Involvement Needs
 - a) No public information meetings are planned for this study
- 8) Discuss Documentation/Reports
 - a) Previously developed information
 - b) Information to include in report
 - c) Level of detail in corridor/alternate development
 - d) Distribution
 - e) Other
- 9) Field Review of Project Area

Minutes Programming Study – Initial Team Meeting Union County, Item No. 8102.00 US 60 From Sturgis to Morganfield

Meeting Location:District 2 Office, Conference RoomMeeting Date:April 9, 2003

Introduction & Purpose

The meeting began at 10:00 AM local time. Handouts were distributed and attendees introduced themselves. Those present were:

Ted Merryman	D-2 Chief District Engineer
Everett Green	D-2 Preconstruction
T.C. Chambers	D-2 Construction
Kenny Potts	D-2 Traffic
Kevin McClearn	D-2 Planning
Nick Hall	D-2 Planning
Charlotte Cotton	D-2 Design
Joe Plunk	D-2 Design
Joe Luck	D-2 Design
Mark Allen	D-2 Utilities
Phillip Whitmer	D-2 ROW
Doug Taylor	D-2 Environmental Coordinator
Jennifer Alvey	Green River ADD
Gina Boaz	Green River ADD
Daryl Greer	CO Planning
Joe Tucker	CO Planning

The project was described as being listed in the 2002 Six-Year Highway Plan as "Planning study to construct 4 lanes on US 60 from Sturgis to Morganfield," with no other phases other than planning currently listed in the Six-Year Plan.

The purpose of the study is to evaluate various roadway improvements, prioritize projects for future programming documents, and to provide input for the statewide transportation plan.

Project Description

Project Area

The general project area is Union County US 60 from Sturgis to Morganfield.

<u>Available Data</u>

Traffic Data

Existing traffic ranges from 4500 to 8520 vehicles per day with the highest traffic being near Morganfield.

Automatic Traffic Recorder (ATR) data is recorded south of Sturgis. However, it should not be used for this section due to the number of trucks south of Sturgis. The statewide model should be used instead.

Crash Data

Items highlighted in yellow in the crash analysis handout were seen as being more relevant due to being more recent. These numbers are derived from the CRASH database for January 1, 2000 to December 31, 2002. This information also showed a decrease in the number of crashes since the previous time period from January 1, 1996 to December 31, 1999.

The highest concentration of crashes was shown as being in the residential area near the Morganfield Bypass. This area was expected to have a high number of rear-end crashes, and the severity and types of crashes here should be evaluated further.

It was also noted that this project should stop at the Morganfield Bypass, and the crashes from the bypass into Morganfield should be evaluated as a separate project.

The schools and hospital just west of KY 1176 were noted as having high accident spots. The problems due to turning movements would probably be solved by a four-lane section.

Roadway Geometry

No old plans had been found. The team suggested checking old studies and using that information. The District agreed to look for plans on microfilm.

The curve near the liquor store just west of the Bypass was believed to have some horizontal and vertical problems. Blueberry Hill was also mentioned as having vertical problems.

Available Reports

1988 and 1998 studies are available and have been reviewed for this study. Both of these studies prioritized this section of roadway into three segments with the highest priority being from the Morganfield Bypass to KY 492. The second priority was from KY 492 to KY 950. The third priority was KY 950 to the Sturgis Bypass. The team agreed that the priorities should remain the same.

Problems with Existing Roadway

Proper turn lanes at the schools and hospital are a concern.

A previous curve revision just East of Hamner in the late 1980's to 12 foot lanes with shoulders has improved part of the geometric alignment.

Benefits of Proposed Project

- Four lane sections would provide a LOS of A throughout the project.
- The intent is to have 4 lanes from Henderson to Paducah. It was noted that this study should plan on 4 lanes throughout and allow the funding to dictate whether actual construction will be 4 lanes or 2 lanes on 4 lane ultimate right of way.
- A Sister project on KY 56 to Shawneetown Bridge may increase truck traffic in the project area.
- The project will improve connectivity to other roadways in the area and is the continuation of improvements to US 60 between Henderson and Paducah.
- An improved US 60 will provide a connection to the improvements on US 641 and future I-69.
- The project will improve safety by improving the cross sections to meet current design standards. Currently there are narrow shoulders, little to no clear zone, and vertical and horizontal sight distance problems.
- The capacity of the road will be increased to accommodate design year 2030 traffic.

Additional Information Needed

Traffic Data

2.4% growth rates were used for traffic projections. The District will provide traffic projections that were used for the other side of the Morganfield Bypass.

Possible future traffic generators such as I-69 and increased connectivity between existing and future roadway projects should be considered in the traffic projections.

Other (ITS/ Bikes/ Peds.)

There are no apparent ITS solutions.

The Rambling River Bike Tour is adjacent to this section of roadway on KY 130. So no specific bike facilities are anticipated for this project. The planned shoulders would be sufficient for bicycle traffic.

Pedestrians are not expected along the route due to the lack of population clusters.

Real Estate Questionnaire

- In a rural area it may not be beneficial.
- There was no significant relocations noted on other segments of US 60, so it is not expected here.
- Homes are pretty far off the road and few relocations are expected for this project.
- The market is expected to easily be able to absorb the relocations.
- Widening US 60 through Sturgis would be difficult due to the potential relocations involved and historic property concerns.

Environmental Justice

The Area Development District was asked to do an environmental justice report, and a letter request will be sent out.

No apparent community impact issues, clusters, gathering places, or other concentrations of populations were noted.

Logical Termini

- The Morganfield Bypass was chosen as the eastern terminus.
- The proposed Sturgis Bypass would be the logical western terminus, but no point has been tied down.
- The study should include the city of Sturgis, but it is doubtful that the improvements will go into Sturgis.
- District 1 will be contacted to find out their plans for getting US 60 to Sturgis.

Project Goals and Objectives

- 1. Provide corridor and system connectivity between improved and future improvements on US 60 from Paducah to Henderson.
- 2. Increase capacity to handle the existing and induced traffic along US 60.
- 3. Improve safety by correcting horizontal, vertical, and providing lane and shoulder widths that meet current standards.
- 4. Enhance regional and local network by providing improved access to schools and the hospital.

Cost Estimates

The initial cost estimate, which is based on other projects on US 60 in Union County listed in the Six-Year Plan, appears to be reasonable. Other similar projects on US 60 are at or below current six-year plan totals.

Possible Alternatives and Corridors

Expect to stay on existing alignment for most of the route. One area of concern is at the schools and hospital. It may be desirable to look at a larger area there in order to avoid potential section 4(f) areas and adversely affecting the schools or hospital. Blueberry Hill is another place where it may be desirable to deviate from the existing alignment.

Environmental Footprint Area

QK-4 consultants will provide the environmental footprint.

Probable Design Criteria

Functional Class

Rural Minor Arterial- will discuss with Jay Hoskins the effects of these improvements on the functional class.

Future ADT/ DHV

Design year 2030 traffic (2.4% growth rate from KYTC Division of Multimodal's Traffic Forecasting Report) ADT 13560/ DHV 1532

Design Speed

Mainly 55 mph speed with some 45 mph curb and gutter sections near Morganfield.

Typical Section

Should remain consistent with other improvements planned or finished along US 60. The District provided these typicals at the meeting.

<u>Other</u>

Partial access on 4 lane. Access by permit in Morganfield.

Agency Coordination Needs

Agencies to be included:

- Delta Regional Authority
- City and County Planning Commission
- Elected Officials
- Chamber of Commerce
- School Board
- Hospital
- Vocational School
- Industrial Foundation
- EMS
- Convention Center in Sturgis
- Airport in Sturgis

Public Involvement Needs

Not planning on having a public meeting but may meet with elected officials. A decision on meeting with the elected officials will be made at a later date.

An article about the study should be put into the local papers:

- The Union County Advocate
- The Henderson Gleaner
- The Sturgis paper

Field Review of Project Area

	Ge	eneral In	formatic	on					
County:	Union								
Route:	US 60	Beg MP:	- 5.671	End MP:	16.300				
Item No:	8102	-							
Description:	Planning Study Morganfield. (0		4 lanes on U	S 60 from Stur	gis to				
	ADD:		Green Riv	er ADD					
	District:								
	Functional Class	sification:	State Primary (Other)						
	State System:								
	National Truck	Network:							
	NHS:		No		- All Marine and Experiment				
	Truck Weight Cl	ass:	AAA		<u> </u>				
	Type Road:		Undivided Highway Rolling						
	Type of Terrain:								
	Number of Bridg	jes:	2						
	Pavement type:		Mixed						

							Crash Data	Data										
			Length	H	Number of	Rural	Critical		Crashes	hes		HMVW	NN		Rates p	Rates per HMVM	_	Critical Rate
Route	Begin MP	End MP	(Miles)	Ā	Lanes	Urban	Crash Rate	Fatal	Injury	PDO	Total			Fatal	Injury	PDO	Total	Factor
					Jai	January 1, 19	1996 to December	31,	1999 Cr	Crash Data	ta							
115 BD	5 671	5 847	0.177	6630	2	Rural	593,594	0	2	11	13	0.0171	1.713	0.0	116.7	642.0	758.8	1.278
115,60	5 848	6 199	0.352	6980	2	Rural	481.848	0	-	7	8	0.0359	3.587	0.0	27.9	195.1	223.0	0.463
09 20	6 200	7 196	0.997	6130	2	Rural	394.500	0	10	27	37	0.0892	8.923	0.0	112.1	302.6	414.7	1.051
09 01	7 197	10.514	3 318	5360	2	Rural	334.176	1	15	39	55	0.2597	25.965	3.9	57.8	150.2	211.8	0.634
09 01	10515	13 288	2 774	6520	2	Rural	333.471	0	12	32	44	0.2641	26.406	0.0	45.4	121.2	166.6	0.500
115 60	13 289	15.411	2.123	4500	~	Rural	365.078	0	26	51	77	0.1395	13.948	0.0	186.4	365.6	552.0	1.512
115 60	15 412	16 264	0.853	4500	2	Rural	433.660	0	19	28	47	0.0560	5.604	0.0	339.0	499.6	838.7	1.934
US 60	16.265	16.300	0.035	8520	0	Rural	986.593	0	8	20	28	0.0044	0.435	0.0	1837.5	4593.8	6431.3	6.519
						January 1, 2000		31,	2002 Cr	Crash Data	ta							
11S 60	5 671	5 847	0.176	6630	2	Rural	652.896	0	-	4	5	0.0128	1.278	0.0	78.3	313.1	391.3	0.599
IIS 60		6 199	0.351	6980	0	Rural	520.303	0	1	S	9	0.0268	2.683	0.0	37.3	186.4	223.7	0.430
115 60		7 196	0.996	6130	2	Rural	417.633	0	e	10	13	0.0669	6.686	0.0	44.9	149.6	194.5	0.466
US 60		10.514	3.317	5360	2	Rural	347.248	0	14	15	29	0.1947	19.468	0.0	71.9	0.77	149.0	0.429
US 60		13.288	2.773	6520	2	Rural	346.431	F	17	25	43	0.1980	19.798	5.1	85.9	126.3	217.2	0.627
US 60		15.411	2.122	4500	2	Rural	383.244	1	17	36	54	0.1046	10.456	9.6	162.6	344.3	516.4	1.348
IIS 60	15 412	16 264	0.852	4500	2	Rural	463.488	0	11	26	37	0.0420	4.198	0.0	262.0	619.3	881.3	1.902
US 60		16.300	0.035	8520	2	Rural	1120.750	0	4	6	13	0.0033	0.327	0.0	1225.0	2756.3	3981.3	3.552
						January 1, 19	1996 to December 31,	ber 31,	2002	Crash Data	Ita							
US 60	5.671	5.847	0.176	6630	2	Rural	505.601	0	3	15	18	0.0298	2.981	0.0	100.6	503.1	603.7	1.194
US 60		6.199	0.351	0869	2	Rural	423.432	0	2	12	14	0.0626	6.260	0.0	32.0	191.7	223.7	0.528
US 60		7.196	0.996	6130	3	Rural	358.741	0	13	37	50	0.1560	15.600	0.0	83.3	237.2	320.5	0.893
US 60		10.514	3.317	5360	2	Rural	313.774	1	29	54	84	0.4543	45.426	2.2	63.8	118.9	184.9	0.589
US 60		13.288	2.773	6520	2	Rural	313.248	1	29	57	87	0.4619	46.194	2.2	62.8	123.4	188.3	0.601
US 60	-	15.411	2.122	4500	0	Rural	336.838	-	43	87	131	0.2440	24.398	4.1	176.2	356.6	536.9	1.594
US 60		16.264	0.852	4500	5	Rural	387.759	0	30	54	84	0.0980	9.796	0.0	306.3	551.3	857.5	2.211
US 60		16.300	0.035	8520	2	Rural	786.112	0	12	29	41	0.0076	0.762	0.0	1575.0	3806.3	5381.3	6.845
					Project Ave	rages- Jan	Averages- January 1, 1996 to	to Dece	December 31, 2002	1, 2002	Crash	Data						
US 60	5.671	16.300	10.629	5580	2	Rural	285.549	3	161	345	509	1.5154	151.537	2.0	106.2	227.7	335.9	1.176
					High Accident		Spots- January 1, 1996 to December 31, 2002 Crash Data	6 to De	cember	31, 200	2 Cras	h Data						1 11
-	1.5		Length	TUA	Number of	Rural	Critical	1.000	33	Crashes		HMVM	MVM		Kates	Kates per MVM	1	Crincal
Koute			(Miles)	Ā	Lanes	Urban	Crash Rate	e Fatal	Injury	PDO	Total			Fatal	Injury	PDO	Total	Rate
US 60	16.000	16.300	0.300	4980	2	Rural	1.429	0	24	62	86	0.0382	12.724	0.0	6.1	4.9	6.8	4.730
US 61		15.100	0.300	4500	2	Rural	1.466	0	20	39	59	0.0345	11.498	0.0	1.7	3.4	5.1	3.501
US 62		14.600	0.300	4500	2	Rural	1.466	0	2	18	22	0.0345	11.498	0.0	0.6	9.	2.2	1483
US 64	5.671	5.971	0.300	6630	2		1.335	•		and its	23	0.0508	16.940	0.0	0.2		4.1	/10.L
					High Accident		Spots- January 1, 2000 to December	0 to De		31, 2002	2 Cras	Crash Data					đ	0100
US 60		16.300	0.300	4980	2	Rural	1.813	0	10	28	38	0.0164	5.453	0.0	2.	0.0	0.7	0.040
US 61		15.100	0.300	4500	~ ~	Rural	1.873	00	2	19	26	0.0148	4.928	0.0	0.8	1.0	1.8	0.975
US 62	14.300	14.600	0.500	0000	NC	Punal	1.0/3		4 0	n u	10	0.0508	16 940	0.0	0.1	0.3	0.4	0.310
10 00		1/2.0	0.000	0000	7	ואחומו	2000-1	,	4	,								

T	0.	1						1	<u> </u>	1	
	2002 2030 LOS LOS No Improv.		۵	٥	۵	۵	٥	۵	ш		
	2002 LOS	υ	U	υ	U	ပ	U	υ	۵		
	Speed Limit (MPH)	25	35	55	55	55	55	35	25		
	Direction Split	57.1%-42.9%	57.1%-42.9%	57.1%-42.9%	57.1%-42.9%	57.1%-42.9%	57.1%-42.9%	57.1%-42.9%	57.1%-42.9%		
	Access Points Per Mile	17	20	10	2	2	3	7	29		
	Shoulder % Passing Width Sight (Feet) Distance	34	34	34	60	60	20	20	20		
	Shoulder Width (Feet)	0	0	3	3	3	3	3	0		
	Lane Width (Feet)	12	12	12	11	11	11	12	14		
	Number of Lanes	2	2	2	2	2	2	2	7		
Level of Service Calculations	% Trucks	6.4%	6.4%	6.4%	6.4%	6.4%	6.4%	6.4%	6.4%		
and the second s	2030 ADT	12880	13560	11909	10413	12666	8742	8742	16552		
	Annual Growth Rate	2.4%	2.4%	2.4%	2.4%	2.4%	2.4%	2.4%	2.4%		
	2002 ADT	6630	6980	6130	5360	6520	4500	4500	8520		
	End MP	5.848	6.200	7.197	10.515	13.289	15.412	16.265	16.300		
	Begin MP	5.671	5.848	6.200	7.197	10.515	13.289	15.412	16.265		

.

		Cost Estimates from 6-Year Plan	ar Pla	u u					
Lenath	Project Number	Description	Design		ROW	Utilit	с К	Utility Const.	Total
5.6	02-79.20	Reconstruct from Waverly to Corydon	\$ 1.80		\$ 4.00	\$ 2.00		\$16.00	\$23.80
3.7	02-122.01	Morganfield Bypass to Waverly	\$ 0.30	\$ 02	3.10	\$ 2.30		\$14.30	\$20.00
2.3	02-123.01	Waverly Bypass	\$ 0.30	•••	\$ 1.25	\$ 0.75		\$ 9.00	\$11.30
2.1	02-139.00	Sullivan Bypass	\$ 0.80		\$ 1.50	\$ 1.00		\$ 8.00	\$11.30
		Per Mile	Design		ROW	Utility		Const.	Total
5.6	02-079.20	Reconstruct from Waverly to Corydon	\$0.	0.32 \$	0.71	\$ \$	0.36 \$	2.86	\$ 4.25
3.7	02-122.01	Morganfield Bypass to Waverly	\$ \$	0.08 \$	0.84	\$ 0.0	0.62 \$	3.86	\$ 5.41
2.3	02-123.01	Waverly Bypass	\$	0.13 \$	0.54	°0 \$	0.33 \$	3.91	\$ 4.91
21	02-139.00	Sullivan Bypass	\$ 0	0.38 \$	0.71	\$ 0.	0.48 \$	3.81	\$ 5.38
		Maximum	.0 \$	0.38 \$	0.84	\$ 0.	0.62 \$	3.91	\$ 5.75
		Minimum	°.	0.08 \$	0.54	ю \$	0.33 \$	2.86	\$ 3.81
		Averade	\$	0.23 \$	0.70	.0 \$	0.45 \$	3.61	\$ 4.99
	Weig	Weighted Average	\$ 0.	0.23 \$	0.72	°. S	0.44 \$	3.45	\$ 4.85
								2.4	
7.112	02-81.02.00	Proposed Sturgis Bypass to Morganfield Bypass	\$ 7	1.60 \$		\$ 3.	20 \$	5.00 \$ 3.20 \$ 25.70 \$ 35.50	\$ 35.5

					ash His s of US	· · ·		
Route	Total Crashes	Fatal	Injury	PDO	Traffic Volume	НМ∨М	Critical Crash Rate	CRF
KY 365	7	0	3	4	2020	0.0463	452.91	0.3340
KY 109	44	2	12	30	5820	0.3005	328.27	0.4461
KY 270 E	2	0	0	2	1120	0.0327	493.41	0.1239
KY 270 W	3	0	0	3	619	0.0181	583.83	0.2843
KY 950	1	0	1	0	212	0.0062	852.51	0.1895
KY 1176	4	0	1	3	352	0.0103	704.00	0.5528
KY 492	7	0	1	6	450	0.0131	646.79	0.8236
US 60B	6	2	1	3	8500	0.0621	424.22	0.2279
KY 3393	1	0	1	0	8500	0.2482	336.10	0.0120
KY 56	80	0	21	59	5238	0.3059	327.57	0.7984
KY 130	33	0	15	18	4770	0.2786	331.27	0.3576

2
õ
· 5
5
5
2.4
~
~
- 2
õ
X
0

Kentucky Transportation Cabinet Unscheduled State Highway Plan Needs

2001 State Wide Priority	NOM	LOW	T
2001 Highway district Priority	FOW	мот	Ŧ
2001 ADD/ MPO Priority (Rank)	ГОМ	MED	Ξ
2001 Local Priority	LOW	MED	Ξ
Funct. Sys.	MN A MM	MNA	MNA
State Sys.	с С	с С	с С
Fed. Sys.	STP	STP	STP
Total Unsch Cost (\$Mil)	14.5	17.6	12
Project Description	Major widening to 4 lanes from proposed Sturgis bypass to KY 950 to KY 492. See Segment 22 in April, 1998 Advance Planning Study.	Major widening to 4 lanes from KY 950 to KY 492. See segment 23 in April, 1998 Advance Planning Study.	Major widening to 4 lanes from KY 492 to Morganfield Bypass. See Segment 24 in April, 1998 Advance Planning Study.
Length (Miles)	2.2	2.8	1.9
ADD/ MPO Area	Union Green River	Green River	Green River
County	Union	Union	Union
Route	US 60	US 60	US 60
Corr. No.	17	4	17
State LRP Control No.	02 113 B0060 81.00	02 113 B0060 82.10	02 113 B0060 82.20

ž