

Prepared for Kentucky Transportation Cabinet

Prepared by The Corradino Group

September 2021

EXECUTIVE SUMMARY

The Kentucky Transportation Cabinet (KYTC) strives to provide a safe and secure highway system, maintain and improve existing infrastructure, ensure dependable, effective and efficient facilities, improve connectivity and access, and integrate all appropriate modes of transportation. The Statewide Corridor Plan (SWCP), also known as "Linking Kentucky", used KYTC's planning and asset management tools to develop investment strategies for statewide and regional corridors through 2045.

The SWCP analysis utilized a tiered approach. Tier 1 analysis identified corridors that had the greatest needs to better connect Kentucky's regions and improve safety, mobility, and accessibility. The Tier 2 analysis delved into more detail, dividing 26 corridors that advanced after Tier 1 screening into 45 smaller segments, so specific investment in these segments could be analyzed and prioritized. Quantitative and qualitative factors, as well as input from stakeholders, were incorporated into the Tier 2 corridor analysis. **Figure ES.1** illustrates the Tier 2 segments studied. **Figure ES.2** summarizes the Tier 2 analysis. Each segment's rank is based on Tier 2 performance criteria such as safety, mobility, reliability, accessibility, infrastructure, economics, and multi-infrastructure opportunity. Information on benefit, cost, and project delivery time is also provided in **Figure ES.2**.

Priority segments were identified and advanced to the Visioning phase based on the Tier 2 analysis. **Figure ES.3** illustrates those 20 visioning segments. The visions outlined existing and future corridor issues and needs, possible improvements to address those needs, and implementation strategies. An interactive GIS Online Tool was also developed to assemble, display, and disseminate corridor visions to the general public and stakeholders. A one-page summary of the visions and general information for each of those 20 priority segments was also provided in this phase of the plan.

It is important to note that the Statewide Corridor Plan is a planning tool and is not a detailed alternative analysis. The improvement options noted in this report are not intended to be all-encompassing. Other potential improvements are possible, including innovative solutions that could be cost-effective and address the reasons for improvement. Further study may be needed as part of the project development process.

Linking Kentucky

Linking Kentucky

CORRIDOR 4B

KY 4 FROM NEWTOWN PIKE TO US 25 (RICHMOND ROAD)

CORRIDOR OVERVIEW

Corridor 4B on New Circle Road begins as a major arterial at the New Circle Road/Newtown Pike interchange in Fayette County and circulates around the east side of Lexington until it reaches US 25 (Richmond Road), where it becomes corridor 4A. The corridor is approximately 6 miles long and currently contains one interchange. The entirety of this corridor is part of the National Highway System (NHS).

HIGHWAY DISTRICT(s)
7
ADD(s)
Bluegrass
MPO(s)
LAMPO

TIER 2 OVERALL SCORE = 33.5, RANK = 2

Note: In general, a higher score means there is a greater need of improvement for the corridor and greater statewide/regional benefits are expected from the corridor improvement.

IMPROVEMENT CONCEPTS

NOTE: Complete corridor data is available in the GIS Online Tool.

Potential Improvement Section(s) Entire corridor: Widen to a 6-lane divided arterial (5.5 miles).

Other Improvement(s)	
Potential Intersection Modification:	11
Bridge Rehab/Widening:	5

CORRIDOR 5

MAN O' WAR BOULEVARD FROM US 60 (WEST) TO I-75 IN LEXINGTON

CORRIDOR OVERVIEW

Corridor 5 on Man O' War Boulevard begins at the Man O' War Boulevard/US 60 intersection in Fayette County and extends south toward US 68 and US 27. Man O' War continues east towards Tates Creek Road, Alumni Drive, and US 25, ending at the I-75 interchange in Fayette County. The corridor is approximately 16 miles long and currently contains one interchange at I-75. The entirety of this corridor is part of the National Highway System (NHS).

HIGHWAY DISTRICT(s) 7 ADD(s) Bluegrass MPO(s) LAMPO

TIER 2 OVERALL SCORE = 76.0, RANK = 7

Note: In general, a higher score means there is a greater need of improvement for the corridor and greater statewide/regional benefits are expected from the corridor improvement.

IMPROVEMENT CONCEPTS

Potential Improvement Section(s) Entire corridor: Alt 1: Widen to a 6-lane divided arterial (15 miles). Alt 2: Right-In, Right-Out at non-signalized intersections. **Potential Interchange Modification** @ I-75 Other Improvement(s) **Potential Intersection Modification:** 27 Bridge Rehab/Widening: 2 Cost Estimate (in 2020 Dollars) Total \$593.5M Design \$49.2M Right-of-way \$176.1M

Utilities \$40.7M Construction \$327.5M

CORRIDOR 6A

US 60 FROM I-64 IN LOUISVILLE TO KY 1848 IN SIMPSONVILLE

CORRIDOR OVERVIEW

Corridor 6A on US 60 begins at the I-64 ramps in Jefferson County and extends east to Simpsonville in Shelby County. The corridor is approximately 21 miles long and currently contains two interchanges at I-264 and I-265. This corridor from I-64 to I-265 in Louisville is part of the National Highway System (NHS).

HIGHWAY DISTRICT(s)	
5	
ADD(s)	
KIPDA	
MPO(s)	
KIPDA	

TIER 2 OVERALL SCORE = 57.2, RANK = 22

Note: In general, a higher score means there is a greater need of improvement for the corridor and greater statewide/regional benefits are expected from the corridor improvement.

IMPROVEMENT CONCEPTS

management (12 miles). <u>Section 2:</u> Widen to a 6-lane arterial (3 miles). <u>Section 3:</u> Spot safety improvements (9 miles). <u>Potential Interchange Modification</u> @ I-264, @ I-265 <u>Other Improvement(s)</u> Potential Intersection Modification: 24 Bridge Rehab/Widening: 3 <u>Cost Estimate (in 2020 Dollars)</u> <u>Total</u> \$279M

Right-of-way \$83M

Utilities \$19.2M Construction \$153.7M

Design \$23.1M

Potential Improvement Section(s)

Section 1: Complete streets and access

CORRIDOR 6B

US 60 FROM KY 1848 IN SIMPSONVILLE TO US 62 IN VERSAILLES

CORRIDOR OVERVIEW

Corridor 6B on US 60 begins at KY 1848 in Simpsonville in Shelby County. It runs parallel to I-64 through Shelbyville and Frankfort (in Franklin County) and ends at US 62 in Versailles (in Woodford County). The corridor is approximately 41 miles long and contains two interchanges at KY 676 and I-64. This corridor from the E Main St/Wilkinson Blvd intersection in Frankfort to US 62 in Versailles is part of the National Highway System (NHS).

HIGHWAY DISTRICT(s) 5, 7 ADD(s) KIPDA, Bluegrass MPO(s) None

TIER 2 OVERALL SCORE = 68.4, RANK = 11

Note: In general, a higher score means there is a greater need of improvement for the corridor and greater statewide/regional benefits are expected from the corridor improvement.

IMPROVEMENT CONCEPTS

Potential Improvement Section(s)	
Section 1: Intersection improvements (3	
miles).	
Section 2: Widen to a 5-lane arterial (2	
miles).	
Section 3: Intersection improvements and	
access management (9 miles).	
Potential Interchange Modification	
@ I-64	
Other Improvement(s)	
Potential Intersection Modification:	25
Bridge Rehab/Widening:	7
Bridge Rehab/Widening: Bridge Replacement	7
Bridge Rehab/Widening: Bridge Replacement	7
Bridge Rehab/Widening: Bridge Replacement <u>Cost Estimate (in 2020 Dollars)</u>	7

CORRIDOR 18B

CORRIDOR OVERVIEW

Corridor 18B on US 31 W begins at the US 31 W/I-65 interchange in Hardin County and extends north through Meade County to I-265 in Jefferson County. The corridor is approximately 29 miles long and currently contains eight interchanges. The entirety of this corridor is part of the National Highway System (NHS).

TIER 2 OVERALL SCORE = 98.0, RANK = 1

Note: In general, a higher score means there is a greater need of improvement for the corridor and greater statewide/regional benefits are expected from the corridor improvement.

IMPROVEMENT CONCEPTS

NOTE: Complete corridor data is available in the GIS Online Tool.

Potential improvement Section(s)
Section 1: Add Auxiliary Lane (20 miles).
Section 2: Widen to a 6-lane divided
arterial (6 miles).
Potential New Interchange(s)
@ KY 1357, @ US 60
Other Improvement(s)
Potential Intersection Modification: 21
Bridge Replacement: 1
Bridge Rehab/Widening: 2
Cost Estimate (in 2020 Dollars)

HIGHWAY DISTRICT(s)

4, 5 ADD(s)

Lincoln Trail, KIPDA

MPO(s) Radcliff - Elizabethtown MPO, KIPDA

CORRIDOR 19

US 25 & US 119 FROM I-75 TO WEST VIRGINIA STATE LINE

CORRIDOR OVERVIEW

Corridor 19 on US 25 E begins at the US 25 E/I-75 interchange in Laurel County and extends south through Knot County to US 119 in Bell County. In Bell County, the corridor extends north through Harlan County to US 23 in Letcher County. The corridor runs north until turning east and becoming US 119 again in Pike County, where it eventually ends at the West Virginia state line. The corridor is approximately 174 miles long and currently contains seven interchanges. The entirety of this corridor is part of the National Highway System (NHS).

HIGHWAY DISTRICT(s) 11, 12 ADD(s) Cumberland Valley, Kentucky River, Big Sandy MPO(s) None

TIER 2 OVERALL SCORE = 44.6, RANK = 31

Note: In general, a higher score means there is a greater need of improvement for the corridor and greater statewide/regional benefits are expected from the corridor improvement.

IMPROVEMENT CONCEPTS

NOTE: Complete corridor data is available in the GIS Online Tool.

Potential Improvement Section(s)

<u>Section 1:</u> Intersection improvements and access management (4 miles).

<u>Section 2:</u> Improve shoulders and widen lanes (29 miles).

<u>Section 3:</u> Intersection improvements (5 miles).

<u>Section 4:</u> Intersection improvements and access management (7 miles).

Other Improvement(s)

Potential Intersection Modification:17Bridge Rehab/Widening:13

CORRIDOR 27B

US 27 FROM US 27/ US 68 SPLIT IN PARIS TO KY 9 (AA HIGHWAY) IN CAMPBELL COUNTY

CORRIDOR OVERVIEW

Corridor 27B on US 27 begins at the US 27/US 68 split in Bourbon County and extends north through Harrison and Pendleton Counties to KY 9 (AA Highway) in Campbell County. The corridor is approximately 63 miles long and currently contains one interchange at the AA Highway. This corridor is not part of the National Highway System (NHS). HIGHWAY DISTRICT(s) 6, 7 ADD(s) Bluegrass, Northern Kentucky MPO(s) OKI

TIER 2 OVERALL SCORE = 50.2, RANK = 26

Note: In general, a higher score means there is a greater need of improvement for the corridor and greater statewide/regional benefits are expected from the corridor improvement.

IMPROVEMENT CONCEPTS

Section 1: Improve shoulders (4 miles).

Potential Improvement Section(s)

<u>Section 2:</u> Widen to a 6-lane divided arterial (4 miles).

Other Improvement(s)	
Potential Intersection Modification:	7
Bridge Rehab/Widening:	5
Bridge Replacement:	1

Cost Estimate (in 2020 Dollars)

CORRIDOR 28A

US 68 FROM MAN O' WAR BLVD TO I-64/I-75 INTERCHANGE

CORRIDOR OVERVIEW

Corridor 28A on US 68 begins at the US 68/Man O' War Blvd intersection and ends at the I-64/I-75 interchange in Fayette County. The corridor is approximately 8 miles long and currently contains two interchanges at New Circle Road and I-64/I-75. The entirety of this corridor is part of the National Highway System (NHS).

HIGHWAY DISTRICT(s)	
7	
ADD(s)	
Bluegrass	
MPO(s)	
LAMPO	

TIER 2 OVERALL SCORE = 61.9, RANK = 18

Note: In general, a higher score means there is a greater need of improvement for the corridor and greater statewide/regional benefits are expected from the corridor improvement.

IMPROVEMENT CONCEPTS

Section 1: Widen to a 6-lane divided arterial (3 miles). Section 2: Improve access management (2 miles). Section 3: Complete street and access management (3 miles). Other Improvement(s) Potential Intersection Modification: 22 Bridge Rehab/Widening: 1 Cost Estimate (in 2020 Dollars)

Potential Improvement Section(s)

CORRIDOR 30A US 27 FROM TENNESSEE STATE LINE TO US 27 BYPASS NEAR NICHOLASVILLE

CORRIDOR OVERVIEW

Corridor 30A on US 27 begins at the Tennessee state line in McCreary County and extends north through Pulaski, Lincoln, and Garrard Counties to the end of the US 27 Bypass in Jessamine County. The corridor is approximately 103 miles long and currently contains three interchanges. The entirety of this corridor is part of the National Highway System (NHS). HIGHWAY DISTRICT(s) 7, 8 ADD(s) Lake Cumberland, Bluegrass MPO(s) LAMPO

TIER 2 OVERALL SCORE = 64.7, RANK = 15

Note: In general, a higher score means there is a greater need of improvement for the corridor and greater statewide/regional benefits are expected from the corridor improvement.

IMPROVEMENT CONCEPTS

NOTE: Complete corridor data is available in the GIS Online Tool.

Potential Improvement Section(s)

<u>Section 1:</u> Intersection improvements (8 miles).

Section 2: Improve shoulders (18 miles). Section 3: Improve shoulders (6 miles). Section 4: Concept 1: Access management; Concept 2: Bypass around Lancaster (1 mile). Section 5: Improve shoulders and add turn lanes (7 miles).

<u>Section 6:</u> Widen to a 6-lane divided arterial (3 miles).

(5 111105).	
Other Improvement(s)	
Potential Intersection Modification:	22
Bridge Rehab/Widening:	3

CORRIDOR 31A

US 31 E/US 150 FROM BLUEGRASS PKWY TO I-265 IN LOUISVILLE

CORRIDOR OVERVIEW

Corridor 31A on US 31 E/US 150 begins at the US 31 E/Bluegrass Parkway interchange in Nelson County and extends north through Bullitt and Spencer Counties to I-265 in Jefferson County. The corridor is approximately 28 miles long and currently contains two interchanges at Bluegrass Parkway and I-265. This corridor is not part of the National Highway System (NHS).

HIGHWAY DISTRICT(s) 4, 5 ADD(s) Lincoln Trail, KIPDA MPO(s) KIPDA

TIER 2 OVERALL SCORE = 72.7, RANK = 9

Note: In general, a higher score means there is a greater need of improvement for the corridor and greater statewide/regional benefits are expected from the corridor improvement.

IMPROVEMENT CONCEPTS

Section 1: Concept 1: Widen to a 4-lane undivided arterial; Concept 2: Convert to a 3-lane facility (2 miles). Section 2: Intersection Improvements (2 miles). Section 3: Widen to a 6-lane divided arterial (7 miles). Potential Interchange Modification @I-265 Other Improvement(s) Potential Intersection Modification: 13 Bridge Rehab/Widening: 7

Potential Improvement Section(s)

CORRIDOR 31B

US 31 E/US 150 FROM I-265 IN LOUISVILLE TO INDIANA STATE LINE

CORRIDOR OVERVIEW

Corridor 31B on US 31 E/US 150 begins at the US 31 E/I-265 interchange in Jefferson County and extends northwest to the Indiana state line in Jefferson County. The corridor is approximately 14 miles long and currently contains two interchanges at I-265 and I-264. The entirety of this corridor is part of the National Highway System (NHS).

HIGHWAY DISTRICT(s) 5 ADD(s) KIPDA MPO(s) KIPDA

TIER 2 OVERALL SCORE = 68.8, RANK = 10

Note: In general, a higher score means there is a greater need of improvement for the corridor and greater statewide/regional benefits are expected from the corridor improvement.

IMPROVEMENT CONCEPTS

Potential Improvement Section(s)	
Entire Corridor: Complete streets and	
access management where feasible (14	
miles).	

Other Improvement(s)	
Bridge Rehab/Widening:	5
Bridge Replacement:	2

Cost Estimate (in 2020 Dollars)

Specific plans on complete streets and access management were not developed for this highly challenging corridor as part of this study. Further study is recommended for detailed improvement strategies and cost estimate.

CORRIDOR 32

KY 11/KY 32/US 460 FROM AA HIGHWAY TO US 23 IN PAINTSVILLE

CORRIDOR OVERVIEW

Corridor 32 on KY 11 begins at the KY 11/KY 9 intersection in Mason County and extends south through Fleming County, where it becomes KY 32. From Fleming County, KY 32 extends south to Rowan County, shifting into US 60, then KY 519 in Morehead. KY 519 extends further south to Morgan County, where it becomes KY 7. From Morgan County, KY 7 turns into US 460, where it travels through Magoffin County, eventually ending in Johnson County at US 23 near Paintsville. The corridor is approximately 104 miles long and currently contains two interchanges at I-64 and US 23. This corridor from Mountain Parkway in Salyersville to US 23 near Paintsville is part of the National Highway System (NHS).

HIGHWAY DISTRICT(s) 9, 10, 12 ADD(s) Big Sandy, Gateway, Buffalo Trace MPO(s) None

TIER 2 OVERALL SCORE = 44.7, RANK = 30

Note: In general, a higher score means there is a greater need of improvement for the corridor and greater statewide/regional benefits are expected from the corridor improvement.

IMPROVEMENT CONCEPTS

Potential Improvement Section(s) Section 1: Improve shoulders (15 miles). Section 2: Improve shoulders and access management (5 miles). Section 3: Widen to a 6-lane arterial and access management (3 miles). Section 4: Widen to a 4-lane divided arterial (0.5 mile). Section 5: Improve shoulders (24 miles). **Potential Interchange Modification** @ I-64 Other Improvement(s) Potential Intersection Modification: 13 Bridge Rehab/Widening: 8 **Bridge Replacement:** 1

Cost Estimate (in 2020 Dollars)

CORRIDOR 35B

US 231 FROM NATCHER PKWY (SOUTH OF BOWLING GREEN) TO US 68 IN

BOWLING GREEN

CORRIDOR OVERVIEW

Corridor 35B on US 231 begins at Natcher Parkway in Warren County and extends northwest to US 68 in Warren County. The corridor is approximately 7 miles long and currently contains one interchange at I-65. The entirety of this corridor is part of the National Highway System (NHS). HIGHWAY DISTRICT(s)

3

ADD(s)

Barren River

MPO(s) Bowling Green MPO

TIER 2 OVERALL SCORE = 65.0, RANK = 13

Note: In general, a higher score means there is a greater need of improvement for the corridor and greater statewide/regional benefits are expected from the corridor improvement.

IMPROVEMENT CONCEPTS

Potential Improvement Section(s)	
Widen to a 6-lane divided arterial (6 mile	s).
Other Improvement(s)	
Potential Intersection Modification:	8
Bridge Rehab/Widening:	1

Cost Estimate (in 2020 Dollars)

CORRIDOR 38

US 431 FROM TENNESSEE STATE LINE TO US 60 IN OWENSBORO

\$

r

\$

r

E

CORRIDOR OVERVIEW

Corridor 38 on US 431 begins at the Tennessee state line in Logan County and extends north through Muhlenberg County and McLean County to US 60 in Daviess County. The corridor is approximately 84 miles long and currently contains two interchanges at Western Kentucky Parkway and US 60. This corridor includes one bypass: US 68/US 431 Bypass in the City of Russellville. This corridor from Clarksville Rd to US 68 Bypass (north) in Russellville is part of the National Highway System (NHS). 2, 3 ADD(s) Barren River, Pennyrile, Green River MPO(s)

HIGHWAY DISTRICT(s)

Owensboro-Daviess County MPO

TIER 2 OVERALL SCORE = 56.3, RANK = 24

Note: In general, a higher score means there is a greater need of improvement for the corridor and greater statewide/regional benefits are expected from the corridor improvement.

IMPROVEMENT CONCEPTS

Potential Improvement Section(s)	
Section 1: Intersection Improvements (4	
niles).	
Section 2: Intersection Improvements (1	
nile).	
Other Improvement(s)	
Potential Intersection Modification	8
Bridge Rehab/Widening:	18
Bridge Replacement:	1
Cost Estimate (in 2020 Dollars)	

CORRIDOR 39

KY 100/US 31E/KY 90 FROM I-65 EXIT 6 TO US 27 NEAR SOMERSET

CORRIDOR OVERVIEW

Corridor 39 on KY 100/US 31E/KY 90 begins at the I-65 Exit 6 in Simpson County and extends east through multiple counties to US 27 in Pulaski County. The corridor is approximately 134 miles long and currently contains four interchanges at I-65, Cumberland Expressway (west), Cumberland Expressway (east), and US 27. This corridor from US 31 E (Sccottsville Rd) to E Main St in Glasgow is part of the National Highway System (NHS). HIGHWAY DISTRICT(s) 3, 8 ADD(s) Barren River, Lake Cumberland MPO(s)

None

TIER 2 OVERALL SCORE = 44.7, RANK = 29

Note: In general, a higher score means there is a greater need of improvement for the corridor and greater statewide/regional benefits are expected from the corridor improvement.

IMPROVEMENT CONCEPTS

Potential Improvement Section(s) Section 1: Convert to a 2+1 facility (1 mile). Section 2: Widen to a 4-lane divided arterial (1 mile). Section 3: Intersection improvements (5 miles). Other Improvement(s) **Potential Intersection Modification** 8 Bridge Rehab/Widening: 20 Cost Estimate (in 2020 Dollars) Total \$31.3M Right-of-way \$2.1M Design \$3.1M

Utilities \$1.7M Construction \$24.4M

CORRIDOR 41A

US 421 FROM US 27 IN LEXINGTON TO KY 341 (I-64 EXIT 65)

CORRIDOR OVERVIEW

Corridor 41A on US 421 begins at US 27 in Fayette County and extends northwest through Scott County to KY 341 (I-64 Exit 65) in Woodford County. The corridor is approximately 12 miles long and currently contains one interchange at KY 4 (New Circle Rd). This corridor from US 27 to KY 4 (New Circle Rd) in Lexington is part of the National Highway System (NHS).

HIGHWAY DISTRICT(s)	
7	
ADD(s)	
Bluegrass	
MPO(s)	
LAMPO	

TIER 2 OVERALL SCORE = **20.5**, RANK = **4**

Note: In general, a higher score means there is a greater need of improvement for the corridor and greater statewide/regional benefits are expected from the corridor improvement.

IMPROVEMENT CONCEPTS

NOTE: Complete corridor data is available in the GIS Online Tool.

Potential Improvement Section(s)

<u>Section 1:</u> Intersection Improvements (0.5 mile).

<u>Section 2:</u> Widen to a 4-lane undivided arterial (0.7 mile).

<u>Section 3:</u> Widen to a 6-lane divided arterial (1 mile).

<u>Section 4:</u> Widen to a 6-lane divided arterial (1 mile).

<u>Section 5:</u> Widen to a 4-lane divided arterial (8 miles).

Other Improvement(s)

Potential Intersection Modification10Bridge Rehab/Widening:6

Cost Estimate (in 2020 Dollars)

KY 44 FROM I-65 TO KY 1319

CORRIDOR 44A

CORRIDOR OVERVIEW

Corridor 44A on KY 44 begins at I-65 in Bullitt County and extends east to KY 1319 in Bullitt County. The corridor is approximately 12 miles long and currently contains one interchange at I-65. This corridor is not part of the National Highway System (NHS).

HIGHWAY DISTRICT(s) 5 ADD(s) KIPDA MPO(s) KIPDA

TIER 2 OVERALL SCORE = 75.5, RANK = 8

Note: In general, a higher score means there is a greater need of improvement for the corridor and greater statewide/regional benefits are expected from the corridor improvement.

IMPROVEMENT CONCEPTS

 Potential Improvement Section(s)

 Entire Corridor:
 Upgrade to a 3-lane

 arterial and construct a new 4-lane divided
 connector west of Mt. Washington (12

 miles).
 Potential Interchange Modification

 @ 1-65
 Other Improvement(s)

 Potential Intersection Modification
 6

 Bridge Rehab/Widening:
 2

 Cost Estimate (in 2020 Dollars)
 Total

 Total
 Total

CORRIDOR OVERVIEW

Corridor 44B on KY 44 begins at KY 1319 in Bullitt County and extends east to KY 55 in Spencer County. The corridor is approximately 10 miles long and currently contains no interchange. This corridor is not part of the National Highway System (NHS).

HIGHWAY DISTRICT(s)	
5	
ADD(s)	
KIPDA	
MPO(s)	
ΚΙΡΠΑ	

TIER 2 OVERALL SCORE = 58.9, RANK = 19

Note: In general, a higher score means there is a greater need of improvement for the corridor and greater statewide/regional benefits are expected from the corridor improvement.

IMPROVEMENT CONCEPTS

Potential Improvement Section(s)	
Entire Corridor: Construct a new 4-lane	
divided arterial connector (10 miles).	
Other Improvement(s)	
Potential Intersection Modification	1
Bridge Rehab/Widening:	3
Bridge Replacement:	1

Cost Estimate (in 2020 Dollars)

NOTE: Complete corridor data is available in the GIS Online Tool.

KY 44 FROM KY 1319 TO KY 55

CORRIDOR 46A

KY 245 FROM I-65 IN CLERMONT TO BLUEGRASS PARKWAY

CORRIDOR OVERVIEW

Corridor 46A on KY 245 begins at I-65 in Bullitt County and extends southeast to Bluegrass Parkway in Nelson County. The corridor is approximately 19 miles long and currently contains two interchanges at I-65 and Bluegrass Parkway. This corridor is not part of the National Highway System (NHS). HIGHWAY DISTRICT(s) 4, 5 ADD(s) Lincoln Trail, KIPDA MPO(s) KIPDA

TIER 2 OVERALL SCORE = 39.6, RANK = 36

Note: In general, a higher score means there is a greater need of improvement for the corridor and greater statewide/regional benefits are expected from the corridor improvement.

IMPROVEMENT CONCEPTS

 Potential Improvement Section(s)

 Section 1: Widen to a 3-lane facility (2 miles).

 Section 2: Widen to a 3-lane facility (3 miles).

 Other Improvement(s)

 Potential Intersection Modification

 6

 Cost Estimate (in 2020 Dollars)

 Total \$59.8M

 Design \$6.3M
 Right-of-way \$5.6M

 Utilities \$3.1M
 Construction \$44.8M

CORRIDOR 50B

US 60 FROM KY 425 BYP IN HENDERSON TO I-165 (FORMERLY NATCHER PARKWAY) IN OWENSBORO

CORRIDOR OVERVIEW

Corridor 50B on US 60 begins at the KY 425 BYP in Henderson County and extends east to I-165 (Formerly Natcher Parkway) in Daviess County. The corridor is approximately 38 miles long and currently contains seven interchanges at US 41 in Henderson, Audubon Parkway, KY 81 (West Parrish Ave), Carter Rd, US 431 (Frederica St), US 231 (New Hartford Rd), and I-165 in Owensboro. This corridor from KY 425 to US 41 in Henderson and from KY 331 to I-165 in Owensboro is part of the National Highway System (NHS).

Evansville - Henderson MPO Owensboro MPO

TIER 2 OVERALL SCORE = 66.4, RANK = 12

Note: In general, a higher score means there is a greater need of improvement for the corridor and greater statewide/regional benefits are expected from the corridor improvement.

IMPROVEMENT CONCEPTS

NOTE: Complete corridor data is available in the GIS Online Tool.

Potential Improvement Section(s)	
Intersection improvements (3 miles).	
Other Improvement(s)	
Potential Intersection Modification	6
Bridge Rehab/Widening:	8
Bridge Replacement	1

Cost Estimate (in 2020 Dollars)

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION.	1
CHAPTER 2: STUDY GOALS	3
CHAPTER 3: STATEWIDE CORRIDOR NETWORK	4
3.1 STATEWIDE CORRIDOR NETWORK	6
3.2 FLAGGED CORRIDORS	8
3.3 GAP CORRIDORS	8
CHAPTER 4: STUDY APPROACH	9
4.1 TIERED APPROACH	9
4.2 DATA & TOOLS	9
4.2.1 KYSTM Overview.	9
4.2.2 Highway Information System (HIS)	12
4.2.3 Pavement Management System	13
4.2.4 Bridge Management System	13
4.2.5 Crash Data	13
4.2.6 SHIFT	14
4.2.7 Speed Data & LOTTR	14
4.2.8 TREDIS	15
4.2.9 Bicycle, Pedestrian & Transit Data	16
4.2.10 Kentucky Geography Network	16
4.3 PREVIOUS STUDIES	16
CHAPTER 5: TIER 1 CORRIDOR SCREENING	17
5.1 PERFORMANCE CRITERIA AND RATING SYSTEM	17
5.2 MOBILITY.	18
5.3 ACCESSIBILITY	21
5.4 SAFETY	24
5.5 TIER 1 FINDINGS AND RECOMMENDATIONS	26

TABLE OF CONTENTS (continued)

5.5.1 Screening Process and Recommendations	26
5.5.2 Tier 1 Corridors Not Carried Forward to Tier 2	30
CHAPTER 6: TIER 2 CORRIDOR PRIORITIZATION	31
6.1 BREAKING CORRIDORS INTO SEGMENTS	31
6.2 TIER 2 CORRIDOR SCOPING.	31
6.3 TIER 2 PERFORMANCE CRITERIA & SCORING	34
6.3.1 Mobility	35
6.3.2 Accessibility	39
6.3.3 Safety	41
6.3.4 Infrastructure	44
6.3.5 Economy	47
6.3.6 Multi-Infrastructure Bonus	49
6.4 TIER 2 PERFORMANCE INDICATORS	52
6.4.1 Project Delivery Timeline	53
6.4.2 Cost	55
6.4.3 Economic Feasibility	60
6.5 TIER 2 CORRIDOR SCORING AND RECOMMENDATIONS	62
6.5.1 Tier 2 Quantitative Scores	62
6.5.2 Tier 2 Composite Scores and Corridor Selection for Visioning	66
CHAPTER 7: CORRIDOR VISIONS	70
7.1 CORRIDOR OVERVIEW	72
7.2 TRAFFIC AND GROWTH	
7.2.1 Traffic Flow	73
7.2.2 Traffic Growth	73
7.2.3 Land Use Growth	76

TABLE OF CONTENTS (continued)

7.3 ISSUES AND CONCERNS
7.3.1 Congestion
7.3.2 Safety
7.3.3 Infrastructure
7.3.4 Environmental Concerns
7.4 OTHER MODES
7.4.1 Transit
7.4.2 Bike and Pedestrian
7.5 IMPROVEMENT CONCEPTS
7.5.1 Potential Improvements
7.5.1.1 Bottleneck Improvements
7.5.1.2 Interchange and Intersection Improvements
7.5.1.3 Bridge Improvements
7.5.1.4 Phasing
7.5.2 Safety
7.5.3 ITS & CAV Opportunities
7.5.5 Economic Feasibility
7.6 STAKEHOLDER INPUTS
7.7 SCOPING REPORT

LIST OF FIGURES

Figure 3.1 – SWCP Study Corridors
Figure 4.1 – v8_KYSTMv18 TAZ11
Figure 4.2 – v8_KYSTMv18 Network11
Figure 4.3 – Level of Service of Safety (LOSS)14
Figure 4.4 – Data Requirements for Travel Time Reliability15
Figure 5.1 – Special Generators21
Figure 5.2 – Tier 1 Corridors Recommendations29
Figure 6.1 – Tier 2 Segments32
Figure 6.2 – Tier 2 Quantitative Ranks64
Figure 6.3 – Tier 2 Corridor Selection for Visioning69
Figure 7.1 – Tier 2 Visioning Corridors71
Figure 7.2 – Tier 2 Score Chart72
Figure 7.3 – Visioning Corridor Daily Total Traffic Growth74
Figure 7.4 – Visioning Corridor Daily Truck Traffic Growth75
Figure 7.5 – Potential Bottlenecks (Capacity Constraints)79
Figure 7.6 – Potential Bottlenecks (Unreliable Segments)80
Figure 7.7 – Level of Service of Safety (LOSS) - KAB82
Figure 7.8 – Pavement Conditions84
Figure 7.9 – Bridge Conditions85
Figure 7.10 – Example Red Flag Environmental Analysis88
Figure 7.11 – Example of Transit Service and Propensity91
Figure 7.12 – Example of Bike & Pedestrian Facilities and Scaled 5D Livability Score94
Figure 7.13 – Stakeholder Comments Collected by VeraVoice©

LIST OF TABLES

Table 1.1 – Target Stakeholders in Linking Kentucky
Table 3.1 – Statewide Corridor Network
Table 3.2 – Flagged Corridors
Table 3.3 – Gap Corridors
Table 4.1 – Major Existing and Committed (E+C) Projects
Table 5.1 – Tier 1 Performance Measures17
Table 5.2 – Mobility Index18
Table 5.3 – Mobility Scoring19
Table 5.4 – Accessibility Index
Table 5.5 – Accessibility Score
Table 5.6 – Safety Index24
Table 5.7 – Safety Scoring25
Table 5.8 – Tier 1 Scoring27
Table 6.1 – Tier 2 Segments
Table 6.2 – Tier 2 Performance Measures34
Table 6.3 – Tier 2 Mobility Index and Reliability Bonus
Table 6.4 – Tier 2 Mobility Scoring
Table 6.5 – Tier 2 Accessibility Index
Table 6.6 – Tier 2 Accessibility Scoring40
Table 6.7 – Tier 2 Safety Index42
Table 6.8 – Tier 2 Safety Scoring42
Table 6.9 – Tier 2 Infrastructure Index45
Table 6.10 – Tier 2 Infrastructure Scoring45
Table 6.11 – Tier 2 Economic Index47
Table 6.12 – Tier 2 Economic Scoring48
Table 6.13 – Tier 2 Multi-Infrastructure Bonus50
Table 6.14 – Tier 2 Multi-Infrastructure Bonus Scoring51
Table 6.15 – Project Delivery Timeline53
Table 6.16 – Project Delivery Timeline Scoring54
Table 6.17 – Unit Cost by Improvement Category & District57
Table 6.18 – Cost of Tier 2 Improvement Concepts59
Table 6.19 – Tier 2 Economic Feasibility60
Table 6.20 – Tier 2 Economic Feasibility Scoring60

LIST OF TABLES (continued)

Table 6.21 – Tier 2 Quantitative Scores & Ranks	.62
Table 6.22 – Tier 2 Quantitative Scores, Ranks & Qualitative Indicators	65
Table 6.23 – Structure of Composite Score	.66
Table 6.24 – Tier 2 Composite Scoring & Recommendations - Visioning Corridors	.67
Table 7.1 – Quartile Analysis of Traffic Growth	.73
Table 7.2 – Traffic Growth Categories	.73
Table 7.3 – Quartile Analysis of Population and Employment Growth	.76
Table 7.4 – Population and Employment Growth Categories	77
Table 7.5 – KYTC Criteria on Pavement Conditions	.83
Table 7.6 – Red Flag Resources Analyzed in Corridor Vision	.86
Table 7.7 – Improvement Categories and Strategies	95
Table 7.8 – Methodology for Structure Replacement/Rehab Recommendation	.96

APPENDICES

Appendix A: Communication Plan
Appendix B: Survey of Study Goals
Appendix C: Flagged Corridors
Appendix D: Gap Corridors
Appendix E: Tier 1 Stakeholder Survey Report
Appendix F: Tier 2 Stakeholder Survey Report
Appendix G: Tier 2 Scoping Reports
Appendix H: Cost Estimation Sheets
Appendix I: Corridor Visions Survey Report (VeraVoice)
Appendix J: GIS Online Tool Development and Transfer
Appendix K: Funding and Fiscal Analysis

CHAPTER 1: INTRODUCTION

The Kentucky Transportation Cabinet (KYTC) initiated a study to build on the success of the Strategic Highway Investment Formula for Tomorrow (SHIFT) and begin meaningful long-term planning that would support the next Long-Range State Transportation Plan (LRSTP) and future Six-Year Highway Plans. As a result, the Kentucky Statewide Corridor Plan (SWCP), also known as *Linking Kentucky*, kicked-off in the fall of 2019. *Linking Kentucky* identified current and future statewide mobility, accessibility, and safety needs for transportation corridors. It also prioritized those statewide and regional corridors which have the greatest potential for improved safety, reduced travel time, improved system reliability, and economic benefits to Kentucky through better transportation service to people and goods. These are vital transportation corridors that drive the state's economy, connect citizens to jobs, and attract businesses as well as investment.

Using a data-driven approach, *Linking Kentucky* was unrolled in two tiers to identify the most impactful corridors based on existing (2015), intermediate (2030), and long-term (2045) transportation needs. Tier 1 started with 52 long corridors (aka Statewide Corridor Network) and narrowed them to 26 corridors that had the greatest potential to better link Kentucky's regions and improve safety, mobility and accessibility. Tier 2 subdivided the 26 corridors into 45 segments for more detailed analysis and then selected 20 priority segments by accounting for comprehensive, quantitative, and qualitative factors as well as input from stakeholders. Then, practical visions were developed for those 20 priority corridor segments, outlining possible improvements to address the needs and also propose possible implementation strategies. An interactive GIS Online Tool was also developed to assemble, display, and disseminate corridor visions to the general public and stakeholders.

A three-level hierarchy of target stakeholders was established at the beginning of *Linking Kentucky* to provide guidance and input throughout the study. **Table 1.1** summarizes the targeted stakeholders and their roles. **Appendix A** provides details of the extensive stakeholder communication efforts that were made in the lifecycle of Linking Kentucky.

The *Linking Kentucky* plan was accomplished by following a detailed work program consisting of the following activities:

- Develop study goals and objectives.
- Collect and analyze a variety of data, including land use, roadway facilities, traffic counts/forecasts, freight, speed/travel time, infrastructure conditions (e.g., pavement, bridge), crashes, environmental concerns, transit routes, bike/pedestrian facilities, Intelligent Transportation Systems (ITS), costs, etc.
- Develop methodology for identifying needs, including mobility, accessibility, and safety.
- Identify statewide needs, including "gaps" where new roadway connections may be needed.
- Develop Communication Plan and provide visuals/materials to support plan messaging.
- Engage state legislators, FHWA, KYTC Central Office and Highway Districts, planning partners (MPOs and ADDs), public agencies, and grasstops (e.g., state legislators, Chambers of Commerce, county judge/ executives, mayors and city managers, sheriff/police/fire/EMS).
- Develop evaluation criteria and rating systems for identifying and prioritizing corridors with greatest potential for impact.
- Perform planning-level corridor scoping to summarize corridor conditions and issues, and recommend potential improvement concepts.
- Prioritize statewide and regional corridors with greatest potential for impactful improvements.
- Conduct a planning-level fiscal analysis to ensure reasonable recommendations.
- Develop practical corridor visions, including intermediate and long-term improvement strategies, potential impacts, and planning-level cost estimates.

• Develop a GIS Online Tool to interactively integrate corridor visioning data, and present background and history of the study.

TARGET STAKEHOLDERS	GROUPS INCLUDED (1)	PROJECT PHASE ENGAGED
Project Team	 KYTC Central Office KYTC Highway District Office (HDO) Planning representatives MPO/ADD representatives 	 Study Goals Statewide Corridor Network Tier 1 Tier 2 Visioning
Planning Partners	 All other MPO/ADD leaders All other HDO Chief District Engineers (CDEs), Transportation Engineering Branch Managers (TEBMs) for Project Development, and Planners 	 Statewide Corridor Network Tier 1 Tier 2 Visioning
Key Stakeholders ("grasstops")	 State Legislators Chambers of Commerce County Judge/Executives Mayors and City Managers Sheriff/Police/Fire/EMS 	Tier 1Tier 2Visioning

Table 1.1 – Target Stakeholders in Linking Kentucky

⁽¹⁾ See Appendix A – Communication Plan for details.

The remainder of the report is organized by the following chapters.

- Chapter 2: Study Goals. Overview of the development of study goals.
- Chapter 3: Statewide Corridor Network. Overview of the procedure used to establish the Statewide Corridor Network, as well as "flagged" and "gap" corridors. The "flagged" corridors include parkways that have recently upgraded to interstate, are in progress of being upgraded, or are being studied to be upgraded, and the Ohio River Bridge mega-projects. The "gap" corridors represent potential major gaps in the statewide roadway network.
- **Chapter 4: Study Approach.** Description of the tiered analysis approach and KYTC tools and systems used for data collection and analysis.
- Chapter 5: Tier 1 Corridor Screening. Tier 1 corridors analyzed, explanation of Tier 1 performance criteria and rating system, and summary of Tier 1 scores and corridor selection.
- Chapter 6: Tier 2 Corridor Prioritization. Segmentation of Tier 2 corridors to shorter segments, explanation of Tier 2 performance criteria and rating system, Tier 2 corridor scoping, and summary of Tier 2 scores and visioning corridor selection.
- Chapter 7: Corridor Visions. Overview of corridor visioning elements and description of the development of GIS Online Tool.

The report also includes appendices which provide detailed information of activities and results that were completed as part of the study.

CHAPTER 2: STUDY GOALS

A set of goals were developed to guide *Linking Kentucky* through a collaborative process between the KYTC Project Management team (KYTC), KYTC Central Office, KYTC Highway Districts, and representatives from MPOs and ADDs (Project Team), and the consultants. These goals support the Kentucky Transportation Cabinet's mission, performance targets, current and future Long Range Statewide Transportation Plan (LRSTP), and future Six-Year Highway Plans.

Four draft goals were developed by KYTC and the consultants to comply with general long-range planning requirements and procedures as well as KYTC expectations of the study. Then, an on-line survey was used to effectively distribute the draft goals to the Project Team and solicit their input and feedback. All 38 members of the Project Team completed the initial survey. The survey indicated the Project Team strongly supported the draft goals in general, which provided a solid foundation for continuous and productive discussion amongst the Project Team. **Appendix B** shows details of the survey. A series of Project Team Meetings were held to review, revise, and finalize the study goals.

KYTC adjusted the study goals, taking into consideration input from the online survey. The final study goals are:

The Statewide Corridor Plan will support KYTC's mission, performance targets, current and future long-range transportation plans, and future six-year highway plans. The development of this plan will be consistent with general long-range planning requirements and procedures.

- **Goal 1.** To identify current and future statewide needs regarding corridor performance, including safety, mobility, accessibility, and system preservation.
- **Goal 2.** To prioritize statewide and regional corridors with the greatest potential to improve safety, reduce travel time, improve system reliability, improve system linkage, and promote economic development.
- **Goal 3.** To develop practical visions for the most impactful corridors. These visions will identify intermediate (2030) and long-term (2045) transportation performance and preservation needs, possible improvement types that address the needs, logical construction sections, as appropriate, and improvement strategies for staged implementation (intermediate and long-term) based on expected corridor performance.
- **Goal 4.** To gather and utilize input from key stakeholders, and planning partners.
- **Goal 5.** To present study goals, methods, and findings throughout the planning process in a straight-forward manner.

CHAPTER 3: STATEWIDE CORRIDOR NETWORK

The Statewide Corridor Network represents a strategic highway network that is the target of potential investment in Kentucky. It is one of the most important elements of *Linking Kentucky* and provides a foundation for subsequent Tier 1 screening, Tier 2 prioritization, as well as corridor visioning in the SWCP. Along with the development of the Statewide Corridor Network, the Project Team also identified separate "flagged" corridors and "gap" corridors throughout the state. These study corridors are briefly described below and shown in **Figure 3.1**.

- **Statewide Corridor Network** (52 corridors). These corridors have statewide significance and will be analyzed to identify those with the greatest potential to improve mobility, accessibility, and safety.
- **Flagged** (10 corridors). These corridors include parkways that have recently been upgraded to interstates, are in progress of being upgraded, or are being studied to be upgraded, and two Ohio River Bridge megaprojects (Brent Spence Bridge and I-69 ORX). Their importance is acknowledged and they are briefly summarized in the study documentation, but not included in Tier 1 and Tier 2 analysis, or visioning.
- **Gaps** (5 corridors). These corridors represent major gaps in the statewide roadway network. Traffic forecasts were made for these corridors, but they were not analyzed or prioritized in the same way as the Statewide Corridor Network.

The following sections explain the procedure used to identify the Statewide Corridor Network, "flagged" corridors, and "gap" corridors.

Figure 3.1 – SWCP Study Corridors

3.1 STATEWIDE CORRIDOR NETWORK

The Project Team established the following initial criteria to identify major corridors with statewide and regional significance in Kentucky, which form the backbone of the Statewide Corridor Network.

- Functional Classification of Principal Arterial or higher;
- Listed on the National Highway System (NHS);
- 2015 Annual Average Daily Traffic (AADT) > 20,000 using 2015 base year data from the Kentucky Statewide Traffic Model (5961 zone v8_KYSTMv18); and
- Listed on the Primary Highway Freight System (PHFS) and other Interstate portions not on PHFS.

During the process, some adjoining major corridors were combined to create longer, continuous corridors. Other critical roadways (e.g., relatively low-volume but regionally significant highways) were added to the list of corridors to provide important connections and balance statewide coverage. These activities led to a draft Statewide Corridor Network.

The Project Team shared the draft Statewide Corridor Network with the Planning Partners and solicited their comments. A final Statewide Corridor Network was established by incorporating select new corridors with regional significance, using input from the Planning Partners. The final Statewide Corridor Network (see **Figure 3.1**) is composed of 52 corridors with approximately 3,900 centerline miles in total. These corridors were evaluated in Tier 1 screening. **Table 3.1** lists the corridors, their beginning and ending points, and a Corridor ID, used throughout the study.

CORRIDOR ID	CORRIDOR NAME	FROM	то
1	I-275	Ohio River (West)	Ohio River (East)
2	I-471	I-275	Ohio River
3	I-75	TN state line	I-275
4	KY 4 (New Circle Road)	N/A	N/A
5	Man O War Boulevard	US 60 (West) in Lexington	I-75 in Lexington
6	US 60	I-64 in Louisville	I-75 in Lexington
7	I-71	I-64	I-75
8	KY 80 & KY 121	US 51 near Wickliffe	US 68 near Aurora
9	KY 9 (AA Highway)	I-275	I-64 near Grayson
10	KY 100/US 79	TN state line	I-65 near Franklin
11	KY 11/KY 30/KY 715	Mountain Parkway	London
12	KY 922	US 68 in Lexington	I-75/64
13	KY 313	I-65	IN state line
14	Mountain Parkway/KY 114	I-64	US 23 in Prestonsburg
15	KY 15	Campton	Whitesburg
16	US 68	Paducah	I-65
17	I-65	TN state line	IN state line
18	US 31W & KY 61	I-64 in Louisville	Columbia

Table 3.1 – Statewide Corridor Network

CORRIDOR ID	CORRIDOR NAME	FROM	то
19	US 25 & US 119	I-75	WV state line
20	I-265/KY 841 (Gene Snyder Freeway)	US 31 W in Louisville	I-71
21	I-64	IN state line	I-75 (North Split) in Lexington
22	I-64	I-75 (South Split) in Lexington	WV state line
23	US 23	OH state line	US 119 near Pikeville
24	I-24	Ohio River	TN state line
25	US 25	KY 192 in London	US 25E in Corbin
26	I-264 (Watterson Expterssway)	I-64 (West)	I-71
27	US 27	OH state line	US 421 in Lexington
28	US 68	OH state line	Man o' War Boulevard in Lexington
29	Hal Rogers Parkway & KY 80	US 27 at Somerset	US 23 at Prestonsburg
30	US 27	US 421 in Lexington	TN state line
31	US 31 E	IN state line	Bluegrass Parkway
32	KY 11/KY 32/US 460	AA Highway in Maysville	US 23 in Paintsville
33	US 127	I-71	TN state line
34	КҮ 34	US 27 NE of Danville	US 127 in Danville
35	US 231	US 68 in Bowling Green	TN state line
36	KY 536	US 42 in Union	US 27 near Alexandria
37	KY 425	US 60 in Henderson	I-69
38	US 431	US 60 in Owensboro	TN state line
39	KY 100/US 31E/KY 90	I-65 Exit 6	US 27 near Somerset
40	US 641	US 60 in Marion	TN state line
41	US 421	IN state line	US 27 in Lexington
42	US 421	US 27 in Lexington	TN state line
43	KY 3174 (future US 460)	US 23 in Robinson Creek	VA state line
44	KY 44	I-65	KY 55
45	US 45	Mayfield	Paducah
46	KY 245/US 150	I-65 in Clermont	I-75 at Mt. Vernon
47	KY 55/KY 555	Bluegrass Parkway	Cumberland Parkway
48	KY 627/KY 1958	I-75	I-64
49	KY 259	US 60 near Hardinsburg	I-65 near Smith Grove
50	US 60	IL state line	US 31 W near Radcliff
51	KY 61	TN state line	Cumberland Parkway
52	US 25/KY 52/KY 82/KY 89	I-75 in Richmond	Mountain Parkway in Clay City

3.2 FLAGGED CORRIDORS

The Project Team set aside ten "flagged" corridors (see **Figure 3.1**), which include parkways that have recently been upgraded to interstates, are in progress of being upgraded, or are being studied to be upgraded, and the Ohio River Bridge mega-projects. **Table 3.2** provides details of the "flagged" corridors. These corridors were not included in Tier 1 screening, Tier 2 prioritization, or visioning. Nevertheless, they were acknowledged and summarized in **Appendix C** based on available information. The "flagged" corridors will be incorporated into a separate Statewide Interstate and Parkway Plan (SWIPP) for detailed analysis. By eliminating these ten corridors, the SWCP could focus on the Statewide Corridor Network, conserve resources by not re-studying corridors, and minimize conflicts with the existing and ongoing studies and plans.

CORRIDOR ID	CORRIDOR NAME	FROM	то
80	Purchase Parkway	TN state line	I-24 in Marshall County
81	I-69	I-24 near Eddyville	Henderson Bypass
82	I-69 ORX	Henderson Bypass (KY 425)	Ohio River
83	Audubon Parkway (future I-369)	US 41 in Henderson	US 60 in Owensboro
84	Pennyrile Parkway (future I-169)	I-24 in Christian County	I-69 in Hopkins County
85	Western KY Parkway	I-69 in Hopkins County	Elizabethtown
86	Natcher Parkway (I-165)	US 231 in Bowling Green	US 60 in Owensboro
87	Cumberland Parkway	I-65 near Glasgow	US 27 near Somerset
88	Bluegrass Parkway	I-65 near Elizabethtown	US 60 near Lexington
89	I-75	I-275	Ohio River

Table 3.2 – Flagged Corridors

3.3 GAP CORRIDORS

Based on the comments collected through the extensive efforts of Planning Partner engagement, the Project Team developed five new conceptual corridors (see **Figure 3.1**) that are likely to fill potential major gaps in the statewide roadway network or meet the need of new connections identified by the Planning Partners. **Table 3.3** provides details of the "gap" corridors. As part of the SWCP, study of the "gap" corridors was limited to a 2045 future year traffic forecast. **Appendix D** summarizes analysis results. Gap corridors were not included in Tier 1 screening, Tier 2 prioritization, or visioning.

Table 3.3 – Gap	Corridors
-----------------	-----------

CORRIDOR ID	CORRIDOR NAME	FROM	то
100	Coal Fields Connector	Western Kentucky Parkway	I-75, Mt. Vernon
101	65-71 Regional Connector	I-65, Bullitt County	I-71, Oldham County
102	Northern Kentucky Outer Loop	I-71, Gallatin County	AA Highway, Campbell County
103	Kentucky Parkway Network Connector	Bluegrass Parkway/US 60	I-64
104	Danville-Richmond Connector	Danville	Richmond

CHAPTER 4: STUDY APPROACH

4.1 TIERED APPROACH

A two-tier, data-driven approach was utilized for corridor analysis in the Statewide Corridor Plan (SWCP). The Tier 1 screening methodology, analysis, and results are discussed in detail in **Chapter 5**, while Tier 2 prioritization is covered in **Chapter 6**.

The primary goal of the Tier 1 analysis was to identify corridors that have potential to improve safety, mobility, and accessibility through the planning horizon year of 2045. As funding is always a challenge, it is necessary to develop a sound investment strategy to identify and prioritize smaller segments within each of the Tier 1 corridors to maximize benefits for the entire state of Kentucky. Therefore, the corridors identified as highest priority through Tier 1 were carried forward into Tier 2, where each corridor was split into shorter segments for more detailed analysis. The Tier 2 analysis aimed to prioritize individual segments expected to maximize statewide and regional benefits from the proposed improvement concepts. The anticipated benefits were evaluated in terms of comprehensive quantitative measures (e.g., safety, mobility, accessibility, reliability, infrastructure condition, economic vitality, and multi-modal opportunity) and qualitative factors (e.g., project delivery time, economic feasibility, and cost). Improvement concepts were developed for each corridor segment through a planning-level corridor scoping process as part of Tier 2 analysis.

20 priority segments selected through Tier 2 analysis advanced to corridor visioning. The corridor visions identified intermediate (2030) and long-term (2045) transportation needs and practical improvement strategies. Data, tools and methodologies for developing corridor visions were described in **Chapter 7**. Details of the visioning corridors are illustrated in a GIS Online Tool (see **Appendix J**).

4.2 DATA & TOOLS

KYTC has a variety of databases, tools, and asset management systems in place utilized to accomplish the aforementioned Tier 1 and Tier 2 analyses. KYTC tools and systems usually serve as stand-alone entities, providing useful information for a single function or division within KYTC. One of the SWCP's goals is to set up a system to pull information from various places within KYTC, and to use the integrated information to support the decision-making process. This allows future corridors to be analyzed in a similar fashion to quickly determine where they should fit within KYTC's overall priorities.

One of KYTC's most powerful and valuable planning tools, the Kentucky Statewide Traffic Model (KYSTM), provides information regarding roadway capacities, traffic flows, future growth patterns, socio-economic benefits of proposed corridor improvements, etc. The KYSTM was used in tandem with KYTC's asset management systems, such as Highway Information System (HIS), Pavement Management System (PMS), Bridge Data Miner System, and Strategic Highway Investment Formula for Tomorrow (SHIFT), to provide well-rounded and consistent information for decision making in the SWCP. Supporting data collected from supplemental sources such as MPOs, ADDs, and Kentucky Geography Network (https://kygeonet.ky.gov) were also used in corridor analysis. The subsections below provide a brief description of the major tools and systems used in the SWCP. A relatively detailed description of the KYSTM is provided due to its complex nature.

4.2.1 KYSTM Overview

The Kentucky Statewide Traffic Model (KYSTM) has its roots in mainframe computer software dating from the early 1970's. The current TransCAD-based model stems from a version developed in 2005. Since that time, it has been modified and enhanced extensively. The KYSTM has been used to support a wide variety of statewide transportation studies.

To meet the needs of SWCP, the KYSTM was updated to a new base year of 2015 and a new future year of 2045 with 5,961 traffic analysis zones (TAZs), running in TransCAD version 8. KYTC named this new version 5961 zone v8_KYSTMv18 (aka v8_KYSTMv18). This model updated zonal socioeconomic data (e.g., population, households, employment, etc.) and the highway network to represent 2015 and 2045 conditions. All traffic volume estimates, speeds, and congestion levels were based on traffic counts and model traffic assignments.

The v8_KYSTMv18 uses zonal data for the base (2015) and future (2045) years and uses linear interpolation to estimate data for interim forecast years. Important features of the model are:

- The model covers the continental US and includes centroid connectors that extend into Canada and Mexico, comprising 5,961 traffic analysis zones (TAZs). Zones in Kentucky are at a detailed level. There is a ring of zones around Kentucky within about 100 miles of the state line, with intermediate detail. Zones outside of this ring are large. The zonal system also contains a set of special generators inside Kentucky. Figure 4.1 and Figure 4.2 illustrate the v8_KYSTMv18 TAZs and network respectively.
- The model calculates the free-flow speeds and capacities of all roadway links, following the methodologies described in 2010 Highway Capacity Manual.
- Zonal data include estimates of population, households, and employment for all zones (2015 and 2045).
- The model produces daily, capacity-restrained assignments (auto, light trucks, heavy trucks), with congested travel times and speeds for all links. Separate estimates are made for autos and trucks. Person trips are estimated for autos, and occupancy factors are applied to estimate vehicle trip tables.
- The model uses seed trip tables for:
 - o Long-distance trips (more than 50 miles) based on the 1995 American Travel Survey.
 - o Work trips based on 2000 Census Journey-to-Work data.
 - o Trucks (light and heavy) based on TRANSEARCH, and later enhanced using classified traffic counts and the OD Matrix Estimation (ODME) technique.
- Traditional trip generation methods and a gravity model are used to estimate short-distance non-work trips. Growth factor models (also known as Fratar models) are used to factor the seed trip tables for other purposes. A gravity model is used to supplement the home-based work (HBW) and long-distance trips for TAZs that were empty in the base year.
- The model supports selected link assignments. In most cases, the selected links are composed of long study corridors. This feature was used extensively in this study.
- The model has a set of routines that can be used to create Transportation Economic Development Impact System (TREDIS see Section 4.2.8) inputs for economic analysis. This feature was used extensively in this study. The model produces a set of extensive evaluation metrics with every run.
- The model is set up to extract a subarea, which is useful for estimating external traffic for regional models (not used in this study).

Figure 4.1 – v8_KYSTMv18 TAZ

During the development of 2030 and 2045 models in the study, KYTC identified a list of the existing and committed (E+C) projects with major roadway capacity improvements. These projects were properly coded into 2030 and 2045 model networks based on their anticipated completion timeline. **Table 4.1** summarizes these E+C projects.

Linking Kentucky

DISTRICT ITEM NO.	DISTRICT	COUNTY	PROJECT TYPE	CT TYPE PROJECT DESCRIPTION	
5-483.30	5	Oldham	New Interchange	NewOldham County interchangeInterchangebetween KY 393 and KY 53.	
4-142.20	4	Taylor	New Route	Heartland Parkway: improve mobility and connectivity via newNew RouteCampbellsville Bypass from KY 55 south of Campbellsville to KY 70. Section 1.	
11-14.80	11	Whitley	Widen I-75 to 8 lanes from MP 20.2Major Wideningin Whitley County to MP 28.85, US25 E north of Corbin.		2030 & 2045
5-483	5	Jefferson & Oldham	6 lane priority section of I-7 Major Widening between I-265 and KY 329. (I-M Kentucky).		2030 & 2045
5-537	5	Jefferson	Major Widening	6 lane priority section of I-265 between Taylorsville Road and I-71. (I-MOVE Kentucky).	2030 & 2045
6-78	6	Boone	Major Widening	Improve freight mobility at I-275 and Graves Road. (Continuation of 6-8953: Interchange Justification Study on I-275/Graves Road).	2030 & 2045
2-1088	2	Henderson	New Route	New Route Ohio River Crossing (ORX): includes bridge and approach/connector.	

4.2.2 Highway Information System (HIS)

KYTC maintains the road centerline network and a Highway Information System (HIS) for Kentucky's state highways and local roads system. The HIS covers comprehensive roadway inventory data in GIS and tabular formats, including the following major categories.

- Highway System (e.g., functional class, National Highway System, National Highway Freight Network, truck network)
- Roadway Information (e.g., access control, speed limit)
- Roadway Features (e.g., number of lanes, shoulders, medians, bike/pedestrian facilities, horizontal/vertical curves)
- Traffic Counts
- Route Log
- Non-Highway Modes

4.2.3 Pavement Management System

KYTC utilizes its Pavement Management System (PMS) to identify preservation, repair, rehabilitation, and replacement actions that will sustain a state of good repair over the lifecycle of the pavements. Pavement data includes automated pavement distress, rutting, cross slope, International Roughness Index (IRI), faulting, curve and grade, GPS data, and roadway images. To meet the study needs, KYTC provided the Pavement Distress Index (PDI), year of next treatment, and year of the Six-Year Plan for all roadway sections of study corridors.

4.2.4 Bridge Management System

KYTC inventories and inspects over 14,000 bridges in accordance with the National Bridge Inspection Standards (NBIS). Over 250 data items are collected and maintained on each bridge. The data is managed through KYTC's Bridge Data Miner system. To meet the study needs, KYTC provided a complete list of bridges and culverts throughout the state along with key attributes such as structure ID, NBIS classification (poor/fair/good), sufficiency rating, substructure rating, superstructure rating, deck rating, vertical/horizontal clearance, etc. The file contains latitude/longitude of each structure, so the bridges/culverts can be geocoded and attached to each study corridor.

4.2.5 Crash Data

KYTC provided statewide crash data in a GIS format to support safety analysis in the study. The dataset includes critical rate factor (CRF), excess expected crashes (EEC), and level of service of safety (LOSS) based on 2014-2018 crash data in Kentucky. Definitions of CRF, EEC, and LOSS are provided below.

- **CRF.** KYTC uses a systematic procedure to identify locations having high crash rates. The actual number of crashes, as obtained from the Kentucky's Open Portal Solution (KYOPS) database, occurring within a roadway segment is used to calculate the Actual Crash Rate using the number of crashes, roadway length, AADT, and the number of years for which crash data is being examined. Using an analysis procedure from the Kentucky Transportation Center and referenced in *The Analysis of Traffic Crash Data in Kentucky (2014-2018)*, Actual Crash Rates are compared to the Critical Crash Rate for similar types of Kentucky roadways. The Critical Crash Rate is the rate which is greater statistically than the average crash rate for similar roadways and represents a rate above which crashes may be occurring in a non-random fashion. This ratio of Actual Crash Rate to the Critical Crash Rate is the Critical Crash Rate Factor (CRF). Thus, a CRF greater than 1.0 indicates crashes may be occurring more often than can be attributed to random occurrence. This procedure is used as a screening technique indicating locations where further analysis may be needed. It is not a definitive statement of a crash problem, nor a measurement of a crash problem.
- EEC and LOSS. KYTC uses AASHTO's 2010 Highway Safety Manual (HSM) methodologies to measure the safety performance of roadways allowing for more informed decisions during the project development process. The Excess Expected Crashes (EEC) is a measurement which estimates the number of crashes above what is predicted by a crash prediction model of roadways or intersections of similar type, length, and characteristics in Kentucky. A negative EEC means the roadway or intersection is experiencing fewer crashes than is predicted by the models. EECs are then grouped into one of four categories, identified as the Level of Service of Safety (LOSS). Summarized graphically in Figure 4.3, LOSS categories I and II represent sites with fewer than anticipated crashes, up to category IV which has more than 1.5 standard deviations more crashes than expected. Because LOSS-IV sites experience such elevated crash rates, there is a higher probability that safety countermeasures at these locations will result in larger improvements.

ADT

4.2.6 SHIFT

The Strategic Highway Investment Formula for Tomorrow (SHIFT) is KYTC's data-driven, objective approach to compare capital improvement projects and prioritize limited transportation funds. SHIFT allows policy makers to see just how far down the priority list the limited funds will go and which other projects could be funded if additional funds were generated. Based on five key attributes (i.e., safety, asset management, congestion, economic growth, and benefit/cost), SHIFT uses measurable data to assess the need for and benefits of planned projects and compares them to each other. The SHIFT formulas were obtained from KYTC and reviewed by the Project Team to ensure consistent performance measures were used for corridor analysis in the study.

4.2.7 Speed Data & LOTTR

KYTC provided directional speed data for SWCP corridors, based on HERE's 2015-2017 speed data. The dataset also includes the Level of Travel Time Reliability (LOTTR) values derived by KYTC. As part of the FHWA's System Performance Measure Final Rule, LOTTR is a required measurement of travel time reliability on the interstate and non-interstate National Highway System (NHS). According to FHWA's Transportation Performance Management (TPM) framework, LOTTR is defined as the ratio of the longer travel times (80th percentile) to a "normal" travel time (50th percentile), using data from FHWA's National Performance Management Research Data Set (NPMRDS) or equivalent (e.g., INRIX, HERE). Data are collected in 15-minute segments during all time periods between 6am and 8pm local time (see **Figure 4.4**). The reporting corridor segment is considered reliable when LOTTR is less than 1.50 for all time periods, otherwise it is classified as unreliable.

Figure 4.4 – Data Requirements for Travel Time Reliability

Source: FHWA TPM

The KYTC speed dataset also provides v8_KYSTMv18 network link IDs corresponding to each Traffic Message Channel (TMC) record for which HERE speed and LOTTR data are available, so the speed data and LOTTR values can be efficiently attached to each section of all study corridors.

4.2.8 TREDIS

KYTC has purchased access to the Transportation Economic Development Impact System (TREDIS) for Kentucky. TREDIS is a predictive impact model. It uses information about future travel patterns, market access, and construction spending to estimate the costs, benefits, and economic impacts that flow from them. As such, results are based on comparisons between two alternative futures. In most cases, TREDIS results are shown as differences in benefits, costs, and economic activity between the "no-build" and "build" scenarios in a given year. TREDIS is dependent upon certain outputs from KYTC's transportation demand models (e.g., KYSTM):

- Scenarios ("no-build" and "build") and years (current and future)
- Mode type (freight, auto, others)
- Geographic extent (TREDIS only allows analysis at the level of single or multiple counties. Partial county analysis is not possible.)
- Total vehicle miles traveled (VMT) by mode type, scenario, and year
- Total vehicle hours traveled (VHT) by mode type, scenario, and year

Once the information is fed into TREDIS, the model can run and results can be analyzed. Example results from TREDIS are the estimated totals of net societal benefit of a project (including user benefits, logistics benefits, indirect benefits) and the number of jobs that a project is estimated to create over the lifetime of the project. It should be noted that TREDIS shows benefits that are based on travel time savings and VMT savings from KYSTM, which provides a very general level of analysis for economic benefits. If the project does not significantly change any of the conditions, then TREDIS may not show a significant economic impact or benefits from a transportation project alone.

Linking Kentuck

4.2.9 Bicycle, Pedestrian & Transit Data

KYTC provided GIS data of statewide bicycle and pedestrian facilities including sidewalks, crosswalks, separated/ shared bike lanes, bike paths, multi-use paths, etc. The Project Team also requested GIS data of existing transit routes and stops from the nine MPOs and 15 ADDs in the state of Kentucky. Most MPOs and ADDs provided geospatial data for their respective boundaries. As generally expected, with such a large-scale data collection process, not all requested information was available and some gaps within data still exist.

4.2.10 Kentucky Geography Network

The Kentucky Geography Network (https://kygeonet.ky.gov) is the Geospatial Data Clearinghouse for the Commonwealth of Kentucky. A variety of datasets can be located and downloaded, static map products can be reviewed, and many web mapping applications and services are easily accessible. Using the powerful search capabilities offered by the Kentucky Geoportal in the Kentucky Geography Network, various GIS point layers were collected for colleges/universities, industrial sites, hospitals, etc. These layers were used to identify major special generators and support corridor accessibility analysis in the study.

4.3 PREVIOUS STUDIES

KYTC's current planning documents, such as Kentucky's Long-Range Statewide Transportation Plan (2014-2035), the Kentucky Freight Plan (2017), and the Transportation Asset Management Plan (2019), were reviewed and used to gather base-line information for the SWCP study.

Kentucky's FY 2020 – FY 2026 Highway Plan became available while the SWCP study was under way. The Project Team reviewed the document and available GIS data of project listings while corridor improvement concepts were developed. In addition, information from the following recent studies provided by KYTC was reviewed and used to support developing improvement concepts for relevant study corridors.

- 65-71 Regional Corridor Study (KYTC Item No: 5-564.00)
- Traffic Analysis for US 27 in Newport KY (KYTC Item No: 6-451)
- US 231 Scottsville Road Scoping and Traffic Operations Study (KYTC Item No: 3-8702.00)
- Frankfort Small Area (SUA) Study
- AA Highway Improvement Study
- BUILD Grant Application, KY 536 Priority Section 1, Boone and Kenton County
- TIGER FY 2015 Discretionary Grant, Transforming Dixie Highway, Louisville Metro Government

CHAPTER 5: TIER 1 CORRIDOR SCREENING

As described in Chapter 3, 52 corridors from the Statewide Corridor Network were included in the data-driven Tier 1 corridor screening. The Tier 1 analysis uses quantitative performance measures to score each corridor and identify the 26 corridors where improvements would have the greatest potential to improve mobility, accessibility, and safety. Tier 1 score ranges from 0 to 100, with 100 being the highest possible score for a corridor to advance to the Tier 2 analysis.

5.1 PERFORMANCE CRITERIA AND RATING SYSTEM

Early in this task, the Project Team developed a draft performance-based decision-making process to support the Tier 1 screening. Based on discussions within the Project Team, it was decided to restrict the Tier 1 performance measures to Mobility, Accessibility, and Safety. An on-line survey was also conducted to gather input from Project Team, Planning Partners, and key stakeholders on the importance of each of the three performance measures. The Tier 1 survey was live for four weeks from March 2 through March 27, 2020. Detailed data gathered from the survey are shown in **Appendix E**. A Tier 1 rating system was developed using weights derived from survey results.

The three Tier 1 corridor level performance measures were used for Tier 1 analysis and screening to determine which corridors would advance to more detailed analysis in Tier 2. They are listed in **Table 5.1**. Each performance index is assigned a value ranging from 0 to 5 points, with the latter indicating the highest need or deficiency for the corresponding performance measure. The mobility, accessibility, and safety scores are combined to create an overall score that ranges from 0 to 100. A higher score indicates greater need of improvement for the corridor and greater statewide/regional benefits expected from the corridor improvement.

SCORING FACTOR NUMBER	TIER 1 CORRIDOR PERFORMANCE MEASURES	SCORE RANGE	SCORE WEIGHT	MAX. POSSIBLE WEIGHTED SCORE
#1	Mobility Index	0 – 5	6	30
#2	Accessibility Index	0 – 5	6	30
#3	Safety Index	0 – 5	8	40
				Sum = 100

Table 5.1 – Tier 1 Performance Measures

Each of the three performance indices were derived from unique criteria and weights, based on the Project Team's discussion and the survey results as mentioned above. A detailed description of each performance index follows.

5.2 MOBILITY

The mobility index measures each corridor's overall congestion and network connectivity to modal hubs. **Table 5.2** summarizes the mobility index and its performance criteria. The weight of each criterion was determined from data collected from the Tier 1 on-line survey. The mobility score was weighted as 35% for existing delay, 50% for future delay, and 15% for a direct connection to a modal hub.

- Existing Vehicle Hour Delay (Year 2015). This measures the level of congestion along a corridor in the base year 2015. Link-level vehicle hour delay was calculated as the link traffic volume multiplied by the delay (i.e., free-flow time congested time) from a 2015 model run of the 5961 zone v8_KYSTMv18 (aka v8_KYSTMv18). The total delay of a corridor is a sum of all link-level delays in the corridor.
- Future Vehicle Hour Delay (Year 2045). This forecasts the level of congestion along a corridor in the future year 2045. It was calculated in the same way as the existing vehicle hour delay mentioned above but used results from a 2045 model run of the 5961 zone v8_KYSTMv18.
- Direct Connection to Modal Hub. This indicates if there is an adjacent modal hub within a 30-minute travel distance from a corridor. Based on discussions with the Project Team, the modal hubs were identified as the primary commercial service airports (i.e., Cincinnati (CVG), Lexington (LEX), Louisville (SDF), Owensboro (OWB), Paducah (PAH), Huntington (HTS), and Evansville (EVV)) and riverports within or in states directly adjacent to Kentucky.

MOBILITY INDEX							
Existing Vehicle Hour Delay (Year 2015) - X ₁	% of Score 35%		Future Vehicle Hour Delay (Year 2045) - X ₂	% of Score 50%		Direct Connection to Modal Hub - X ₃	% of Score 15%
X ₁ < 400	0		X ₂ < 400	0		Yes	5
400 <= X ₁ < 1,500	1		400 <= X ₂ < 1,500	1		No	0
1,500 <= X ₁ < 3,500	2		1,500 <= X ₂ < 3,500	2			
3,500 <= X ₁ < 8,000	3		3,500 <= X ₂ < 8,000	3			
8,000 <= X ₁ < 15,000	4		8,000 <= X ₂ < 15,000	4			
X ₁ >= 15,000	5		X ₂ >= 15,000	5			
Mobility Score = $0.35X_1 + 0.50X_2 + 0.15X_3$							
Final Score Weight = 30%, Multiplier = 6							

Table 5.2 – Mobility Index

Table 5.3 summarizes the Tier 1 mobility scores. Corridors passing through or near urban or developed areas tend to have higher scores, because most delays are caused by greater congestion in these areas. Easy connections to modal hubs also contribute to mobility scores. I-75, US 60 (between Louisville and Lexington), and I-65 have the highest mobility scores, due to large delays in the metropolitan areas of Louisville, Lexington, and northern Kentucky. Other corridors with high mobility scores include I-275, I-71, I-265/KY 841 (Gene Snyder Freeway), I-64 (between Louisville and Lexington), I-264 (Watterson Expressway), US 27 (between Lexington and Tennessee state line), and US 31 E (between Louisville and the Bluegrass Parkway).

Corridor ID	Corridor Name	From	То	Vehicle Hour Delay 2015	Vehicle Hour Delay 2045	Direct Connection to Modal Hub	Tier 1 Mobility Score
1	I-275	Ohio River (West)	Ohio River (East)	8,549	29,073	Yes	27.9
2	I-471	I-275	Ohio River	1,271	2,591	Yes	12.6
3	I-75	TN state line	I-275	19,535	69,951	Yes	30.0
4	KY 4 (New Circle Road)	N/A	N/A	7,556	29,773	Yes	25.8
5	Man O War Blvd	US 60 (West) in Lexington	I-75 in Lexington	3,766	13,465	Yes	22.8
6	US 60	I-64 in Louisville	I-75 in Lexington	16,481	39,293	Yes	30.0
7	I-71	I-64	I-75	8,036	21,290	Yes	27.9
8	KY 80 & KY 121	US 51 near Wickliffe	US 68 near Aurora	82	145	Yes	4.5
9	KY 9 (AA Highway)	I-275	I-64 near Grayson	4,576	5,856	Yes	19.8
10	KY 100/US 79	TN state line	I-65 near Franklin	758	1,518	No	8.1
11	KY 11/KY 30/KY 715	Mountain Pkwy	London	68	102	No	0.0
12	KY 922	US 68 in Lexington	I-75/64	2,999	8,764	Yes	20.7
13	KY 313	I-65	IN state line	376	1,296	Yes	7.5
14	Mountain Pkwy/ KY 114	I-64	US 23 in Prestonsburg	282	402	No	3.0
15	KY 15	Campton	Whitesburg	1,465	3,238	No	8.1
16	US 68	Paducah	I-65	2,367	7,265	Yes	17.7
17	I-65	TN state line	IN state line	25,184	82,670	Yes	30.0
18	US 31W & KY 61	I-64 in Louisville	Columbia	8,959	19,778	Yes	27.9
19	US 25 & US 119	I-75	WV state line	3,760	6,020	No	15.3
20	I-265/KY 841 (Gene Snyder Frwy)	US 31 W in Louisville	I-71	8,409	21,503	Yes	27.9
21	I-64	IN state line	I-75 (North Split) in Lexington	13,812	38,604	Yes	27.9
22	I-64	I-75 (South Split) in Lexington	WV state line	1,391	3,022	Yes	12.6
23	US 23	OH state line	US 119 near Pikeville	4,813	6,458	Yes	19.8
24	I-24	Ohio River	TN state line	4,799	23,927	Yes	25.8
25	US 25	KY 192 in London	US 25E in Corbin	62	111	No	0.0
26	I-264 (Watterson Expwy)	I-64 (West)	I-71	10,375	24,058	Yes	27.9

Table 5.3 – Mobility Scoring

Corridor ID	Corridor Name	From	То	Vehicle Hour Delay 2015	Vehicle Hour Delay 2045	Direct Connection to Modal Hub	Tier 1 Mobility Score
27	US 27	OH state line	US 421 in Lexington	8,143	14,235	Yes	24.9
28	US 68	OH state line	Man o' War Blvd	5,632	14,550	Yes	22.8
29	Hal Rogers Pkwy & KY 80	US 27 at Somerset	US 23 at Prestonsburg	1,455	2,722	No	8.1
30	US 27	US 421 in Lexington	TN state line	11,789	24,915	Yes	27.9
31	US 31 E	IN state line	Bluegrass Pkwy	9,979	21,452	Yes	27.9
32	KY 11 / KY 32 / US 460	AA Highway in Maysville	US 23 in Paintsville	1,018	1,662	Yes	12.6
33	US 127	I-71	TN state line	1,875	3,012	Yes	14.7
34	KY 34	US 27 NE of Danville	US 127 in Danville	273	437	No	3.0
35	US 231	US 68 in Bowling Green	TN state line	1,470	4,714	No	11.1
36	KY 536	US 42 in Union	US 27 near Alexandria	7,579	11,892	Yes	22.8
37	KY 425	US 60 in Henderson	I-69	27	59	Yes	4.5
38	US 431	US 60 in Owensboro	TN state line	884	1,221	Yes	9.6
39	KY 100/US 31E/ KY 90	I-65 Exit 6	US 27 near Somerset	1,209	2,927	No	8.1
40	US 641	US 60 in Marion	TN state line	443	829	Yes	9.6
41	US 421	IN state line	US 27 in Lexington	2,955	10,094	Yes	20.7
42	US 421	US 27 in Lexington	TN state line	4,823	13,060	Yes	22.8
43	KY 3174 (future US 460)	US 23 in Robinson Creek	VA state line	11	19	No	0.0
44	KY 44	I-65	KY 55	1,838	5,552	Yes	17.7
45	US 45	Mayfield	Paducah	726	854	Yes	9.6
46	KY 245/US 150	I-65 in Clermont	I-75 at Mt. Vernon	1,534	3,745	Yes	17.7
47	KY 55/KY 555 (Heartland Parkway)	Bluegrass Pkwy	Cumberland Expwy	288	595	No	3.0
48	KY 627/KY 1958	I-75	I-64	303	686	No	3.0
49	KY 259	US 60 near Hardinsburg	I-65 near Smith Grove	202	368	No	0.0
50	US 60	IL state line	US 31 W near Radcliff	4,022	5,055	Yes	19.8
51	KY 61	TN state line	Cumberland Expwy	89	139	No	0.0
52	US 25/KY 52/KY 82/ KY 89	I-75 in Richmond	Mountain Pkwy in Clay City	654	1,117	No	5.1

5.3 ACCESSIBILITY

The accessibility index measures the market (total trips) served by a corridor and corridor utilization (vehicle hours traveled (VHT) spent on corridor) when trips access the special generators identified by the Project Team. Special generators include hospitals or trauma centers, colleges or universities (campus/main campus only), and non-retail job centers (v8_KYSTMv18 zones with more than 200 non-retail employment in 2015). Several trauma centers and large college/university campuses in neighboring states and adjacent to the Kentucky state line were also included in the analysis. Figure **5.1** illustrates the special generators.

Figure 5.1 – Special Generators

Table 5.4 summarizes the accessibility index and its performance criteria. The weight of each criterion was determined based on data collected from the Tier 1 on-line survey mentioned above. The number of trips served is 35% of the Index, while corridor travel time is 65% of the Index.

- Total Trips Served by Corridor (Year 2015). This measures the magnitude of the market accessible to all special generators via a corridor using 2015 data from v8_KYSTMv18. The larger the market served by a corridor, the higher the score awarded to the corridor.
- VHT Spent on Corridor (Year 2015). This measures the utilization of a corridor when trips travel to the closest special generator, using 2015 data from v8_KYSTMv18. It is calculated as the corridor travel time multiplied by origin-destination (OD) trips served by the corridor. The longer the time spent on a corridor or the higher the volume of traffic traveling on a corridor, the more important the corridor is to providing access to special generators, and the higher the score is awarded to the corridor.

	1 miles
C	þ
Linking K	entucky

ACCESSIBILITY INDEX									
Total Trips Served by Corridor (Year 2015) - X ₁	% of Score 35%		VHT Spent on Corridor (Year 2015) - X ₂	% of Score 65%					
X ₁ < 10,000	0		X ₂ < 80	0					
10,000 <= X ₁ < 20,000	1		80 <=X ₂ < 150	1					
20,000 <= X ₁ < 35,000	2		150 <= X ₂ < 250	2					
35,000 <= X ₁ < 60,000	3		250 <= X ₂ < 500	3					
60,000 <= X ₁ < 125,000	4		500 <= X ₂ < 1,000	4					
X ₁ >= 125,000	5		X ₂ >= 1,000	5					
Accessibility Score = $0.35X_1 + 0.65X_2$									
Final Score Weight = 30%, Multiplier = 6									

Table 5.4 – Accessibility Index

Table 5.5 summarizes the Tier 1 accessibility scores. Rural corridors tend to have higher scores as they have better geometrics and wider typical sections than other competing routes in rural regions (usually narrower local roads with lower posted speeds), which provides easier and faster access to destinations and leads to a larger share of traffic received. High-volume corridors also tend to receive higher scores.

Corridor ID	Corridor Name	From	То	Total Trips Served by Corridor 2015	VHT Spent on Corridor 2015	Tier 1 Accessibility Score
1	I-275	Ohio River (West)	Ohio River (East)	109,484	203	16.2
2	I-471	I-275	Ohio River	48,359	35	6.3
3	I-75	TN state line	I-275	187,413	825	26.1
4	KY 4 (New Circle Road)	N/A	N/A	108,377	47	8.4
5	Man O War Blvd	US 60 (West) in Lexington	I-75 in Lexington	57,282	150	10.2
6	US 60	I-64 in Louisville	I-75 in Lexington	317,828	1,299	30
7	I-71	I-64	I-75	57,990	166	14.1
8	KY 80 & KY 121	US 51 near Wickliffe	US 68 near Aurora	3,669	53	0
9	KY 9 (AA Highway)	I-275	I-64 near Grayson	29,578	509	19.8
10	KY 100/US 79	TN state line	I-65 near Franklin	10,195	177	9.9
11	KY 11/KY 30/KY 715	Mountain Pkwy	London	1,376	67	0
12	KY 922	US 68 in Lexington	I-75/64	55,774	15	6.3
13	KY 313	I-65	IN state line	8,532	101	3.9
14	Mountain Pkwy/KY 114	I-64	US 23 in Prestonsburg	7,723	98	3.9
15	KY 15	Campton	Whitesburg	19,009	936	17.7
16	US 68	Paducah	I-65	56,414	454	18
17	I-65	TN state line	IN state line	183,960	228	18.3

Table 5.5 – Accessibility Score

Corridor ID	Corridor Name	From	То	Total Trips Served by Corridor 2015	VHT Spent on Corridor 2015	Tier 1 Accessibility Score
18	US 31W & KY 61	I-64 in Louisville	Columbia	133,054	916	26.1
19	US 25 & US 119	I-75	WV state line	48,298	2,975	25.8
20	I-265/KY 841 (Gene Snyder Frwy)	US 31 W in Louisville	I-71	110,169	261	20.1
21	I-64	IN state line	I-75 (North Split) in Lexington	168,278	335	22.2
22	I-64	I-75 (South Split) in Lexington	WV state line	36,626	225	14.1
23	US 23	OH state line	US 119 near Pikeville	42,732	1,780	25.8
24	I-24	Ohio River	TN state line	22,366	146	8.1
25	US 25	KY 192 in London	US 25E in Corbin	2,734	13	0
26	I-264 (Watterson Expwy)	I-64 (West)	I-71	205,626	37	10.5
27	US 27	OH state line	US 421 in Lexington	87,011	582	24
28	US 68	OH state line	Man o' War Blvd in Lexington	99,843	307	20.1
29	Hal Rogers Pkwy & KY 80	US 27 at Somerset	US 23 at Prestonsburg	19,381	547	17.7
30	US 27	US 421 in Lexington	TN state line	151,668	1,187	30
31	US 31 E	IN state line	Bluegrass Pkwy	151,537	239	18.3
32	KY 11/KY 32/US 460	AA Highway in Maysville	US 23 in Paintsville	18,833	707	17.7
33	US 127	I-71	TN state line	76,316	1,556	27.9
34	KY 34	US 27 NE of Danville	US 127 in Danville	5,098	87	3.9
35	US 231	US 68 in Bowling Green	TN state line	36,192	400	18
36	KY 536	US 42 in Union	US 27 near Alexandria	23,451	189	12
37	KY 425	US 60 in Henderson	I-69	2,352	1	0
38	US 431	US 60 in Owensboro	TN state line	30,590	464	15.9
39	KY 100/US 31E/KY 90	I-65 Exit 6	US 27 near Somerset	32,181	667	19.8
40	US 641	US 60 in Marion	TN state line	32,312	803	19.8
41	US 421	IN state line	US 27 in Lexington	68,212	258	20.1
42	US 421	US 27 in Lexington	TN state line	122,177	1,238	27.9
43	KY 3174 (future US 460)	US 23 in Robinson Creek	VA state line	594	78	0
44	KY 44	I-65	KY 55	8,637	84	3.9
45	US 45	Mayfield	Paducah	17,559	197	9.9
46	KY 245/US 150	I-65 in Clermont	I-75 at Mt. Vernon	50,614	700	21.9
47	KY 55/KY 555 (Heartland Parkway)	Bluegrass Pkwy	Cumberland Expwy	24,268	270	15.9
48	KY 627/KY 1958	I-75	I-64	23,330	131	8.1
49	KY 259	US 60 near Hardinsburg	I-65 near Smith Grove	21,533	291	15.9
50	US 60	IL state line	US 31 W near Radcliff	128,799	3,389	30
51	KY 61	TN state line	Cumberland Expwy	3,847	227	7.8
52	US 25/KY 52/KY 82/ KY 89	I-75 in Richmond	Mountain Pkwy in Clay City	13,877	571	17.7

5.4 SAFETY

The safety index measures the existing safety performance along each corridor, by using Critical Rate Factor (CRF) and Excess Expected Crashes (EEC). The CRF represents a ratio of the crash rate of a segment in comparison to the Critical Crash Rate (CCR) for similar roadways, as determined by KYTC. A CRF greater than one indicates that the crash rate of the segment is greater than should be expected. The EEC value represents the number of additional crashes over the expected number of crashes for similar roadways. An EEC value greater than zero indicates that there are more crashes on the segment than should be expected. KYTC provided 2014-2018 safety data in GIS format which contained CRFs, EECs, Level of Service of Safety (LOSS), and KABCO (Fatality (K), Disabling Injury (A), Evident Injury (B), Possible Injury (C), and Property Damage Only (O)) counts. The CRF and EEC data were then processed and assigned to corresponding statewide corridors for analysis.

Table 5.6 summarizes the safety index and its performance criteria. Note that the weights of the safety criteria (CRF and EEC) were not directly weighted by the survey. They were assigned 50% each based on discussion with the Project Team.

- % Corridor VMT with CRF > 1. This measures the existing percentage of corridor vehicle miles traveled (VMT) that has safety issues (CRF > 1). It is a ratio of the summation of VMT for all sections with CRF > 1 to the total VMT of the corridor. VMT was calculated by v8_KYSTMv18 model data for base year 2015.
- % Corridor VMT with EEC > 0. This measures the existing percentage of corridor VMT that has safety issues (EEC >0). It was calculated using the same approach as above and used EEC for each section.

SAFETY INDEX									
T% Corridor VMT with CRF > 1 - X_1	% of Score 50%		% Corridor VMT with EEC > 0 - X ₂	% of Score 50%					
X ₁ < 20%	0		X ₂ < 15%	0					
20% <= X ₁ < 30%	1		15% <= X ₂ < 25%	1					
30% <= X ₁ < 35%	2		125% <= X ₂ < 30%	2					
35% <= X ₁ < 50%	3		30% <= X ₂ < 35%	3					
50% <= X ₁ < 60%	4		35% <= X ₂ < 40%	4					
X ₁ >= 60%	5		X ₂ >= 40%	5					
Safety Score = $0.5X_1 + 0.5X_2$									
Final Score Weight = 40%, Multiplier = 8									

Table 5.6 – Safety Index

Table 5.7 summarizes the Tier 1 safety scores. Five interstates in the Louisville, Lexington, and Northern Kentucky areas have the highest scores, including I-275, I-471, I-71, I-64, and I-264 (Watterson Expressway). Rural corridors tend to have lower safety scores. It was noted that each of the highest scoring interstate corridors has recent, current, or planned projects that will likely improve safety.

Corridor ID	Corridor Name	From	То	% Corridor VMT with CRF >1	% Corridor VMT with EEC >0	Tier 1 Safety Score
1	I-275	Ohio River (West)	Ohio River (East)	87%	50%	40
2	I-471	I-275	Ohio River	99%	62%	40
3	I-75	TN state line	I-275	42%	38%	28
4	KY 4 (New Circle Road)	N/A	N/A	35%	47%	32
5	Man O War Blvd	US 60 (West) in Lexington	I-75 in Lexington	65%	6%	20
6	US 60	I-64 in Louisville	I-75 in Lexington	52%	27%	24
7	I-71	I-64	I-75	52%	55%	36
8	KY 80 & KY 121	US 51 near Wickliffe	US 68 near Aurora	48%	28%	20
9	KY 9 (AA Highway)	I-275	I-64 near Grayson	28%	16%	8
10	KY 100/US 79	TN state line	I-65 near Franklin	30%	43%	24
11	KY 11/KY 30/KY 715	Mountain Pkwy	London	32%	37%	24
12	KY 922	US 68 in Lexington	I-75/64	77%	18%	24
13	KY 313	I-65	IN state line	53%	9%	16
14	Mountain Pkwy / KY 114	I-64	US 23 in Prestonsburg	13%	35%	12
15	KY 15	Campton	Whitesburg	44%	27%	20
16	US 68	Paducah	I-65	19%	24%	4
17	I-65	TN state line	IN state line	60%	38%	32
18	US 31W & KY 61	I-64 in Louisville	Columbia	37%	28%	20
19	US 25 & US 119	I-75	WV state line	25%	20%	8
20	I-265/KY 841 (Gene Snyder Frwy)	US 31 W in Louisville	I-71	69%	18%	24
21	I-64	IN state line	I-75 (North Split) in Lexington	59%	50%	36
22	I-64	I-75 (South Split) in Lexington	WV state line	33%	27%	16
23	US 23	OH state line	US 119 near Pikeville	37%	14%	12
24	I-24	Ohio River	TN state line	52%	27%	24
25	US 25	KY 192 in London	US 25E in Corbin	53%	14%	16
26	I-264 (Watterson Expwy)	I-64 (West)	I-71	88%	37%	36
27	US 27	OH state line	US 421 in Lexington	45%	30%	24
28	US 68	OH state line	Man o' War Blvd in Lexington	34%	32%	20
29	Hal Rogers Pkwy & KY 80	US 27 at Somerset	US 23 at Prestonsburg	9%	18%	4
30	US 27	US 421 in Lexington	TN state line	56%	26%	24
31	US 31 E	IN state line	Bluegrass Pkwy	33%	31%	20

Table 5.7 – Safety Scoring

Corridor ID	Corridor Name	From	То	% Corridor VMT with CRF >1	% Corridor VMT with EEC >0	Tier 1 Safety Score
32	KY 11/KY 32/US 460	AA Highway in Maysville	US 23 in Paintsville	32%	31%	20
33	US 127	I-71	TN state line	26%	28%	12
34	KY 34	US 27 NE of Danville	US 127 in Danville	48%	20%	16
35	US 231	US 68 in Bowling Green	TN state line	47%	43%	32
36	KY 536	US 42 in Union	US 27 near Alexandria	31%	26%	16
37	KY 425	US 60 in Henderson	I-69	0%	29%	8
38	US 431	US 60 in Owensboro	TN state line	64%	34%	32
39	KY 100/US 31E/KY 90	I-65 Exit 6	US 27 near Somerset	20%	32%	12
40	US 641	US 60 in Marion	TN state line	33%	40%	24
41	US 421	IN state line	US 27 in Lexington	19%	31%	12
42	US 421	US 27 in Lexington	TN state line	19%	23%	4
43	KY 3174 (future US 460)	US 23 in Robinson Creek	VA state line	0%	0%	0
44	KY 44	I-65	KY 55	48%	29%	20
45	US 45	Mayfield	Paducah	10%	30%	8
46	KY 245/US 150	I-65 in Clermont	I-75 at Mt. Vernon	25%	31%	16
47	KY 55/KY 555 (Heartland Parkway)	Bluegrass Pkwy	Cumberland Expwy	25%	33%	16
48	KY 627/KY 1958	I-75	I-64	50%	25%	24
49	KY 259	US 60 near Hardinsburg	I-65 near Smith Grove	19%	32%	12
50	US 60	IL state line	US 31 W near Radcliff	19%	37%	16
51	KY 61	TN state line	Cumberland Expwy	0%	13%	0
52	US 25/KY 52/KY 82/KY 89	I-75 in Richmond	Mountain Pkwy in Clay City	25%	30%	12

5.5 TIER 1 FINDINGS AND RECOMMENDATIONS

5.5.1 Screening Process and Recommendations

The Tier 1 overall scores and rankings were determined by combining the mobility, accessibility, and safety scores on 100-point scales with allocated weights (mobility – 30%, accessibility – 30%, and safety – 40%) outlined in Section 5.1. **Table 5.8** lists Tier 1 corridors in descending order of the overall score. The table also provides mobility, accessibility and safety scores and recommendations for each corridor.

As **Table 5.8** shows, most interstate corridors have higher overall scores and ranks, because they carry heavy traffic and experience more safety issues. The top 10 corridors are concentrated in the Louisville, Lexington, Northern Kentucky region, and also central Kentucky. As a result, there are fewer rural corridors on the top of the list, especially for the eastern and southern regions of Kentucky. Based on discussions with the Project Team, it was decided to remove interstates and parkways from the SWCP and include them in a separate future study of interstates and parkways. The 26 arterial corridors with the highest Tier 1 overall scores, which have a balanced geographical distribution throughout the state, were selected to advance to Tier 2 analysis. **Figure 5.2** illustrates recommendations of Tier 1 corridors.

Table 5.8 – Tier 1 Scoring

Corridor ID	Corridor Name	From	То	Mobility	Accessibility	Safety	Tier 1 Score	Recommendation	
21	I-64	IN state line	I-75 (North Split) in Lexington	27.9	22.2	36.0	86.1	Future Study	
1	I-275	Ohio River (West)	Ohio River (East)	27.9	16.2	40.0	84.1	Future Study	
3	I-75	TN state line	I-275	30.0	26.1	28.0	84.1	Future Study	
6	US 60	I-64 in Louisville	I-75 in Lexington	30.0	30.0	24.0	84.0	Advance to Tier 2	
30	US 27	US 421 in Lexington	TN state line	27.9	30.0	24.0	81.9	Advance to Tier 2	
17	I-65	TN state line	IN state line	30.0	18.3	32.0	80.3	Future Study	
7	I-71	I-64	I-75	27.9	14.1	36.0	78.0	Future Study	
26	I-264 (Watterson Expy)	I-64 (West)	I-71	27.9	10.5	36.0	74.4	Future Study	
18	US 31W & KY 61	I-64 in Louisville	Columbia	27.9	26.1	20.0	74.0	Advance to Tier 2	
27	US 27	OH state line	US 421 in Lexington	24.9	24.0	24.0	72.9	Advance to Tier 2	
20	l-265/KY 841 (Gene Snyder Fwy)	US 31 W in Louisville	I-71	27.9	20.1	24.0	72.0	Future Study	
31	US 31 E	IN state line	Bluegrass Pkwy	27.9	18.3	20.0	66.2	Advance to Tier 2	
4	KY 4 (New Circle Road)			25.8	8.4	32.0	66.2	Advance to Tier 2	
50	US 60	IL state line	US 31 W near Radcliff	19.8	30.0	16.0	65.8	Advance to Tier 2	
28	US 68	OH state line	Man o' War Blvd in Lexington	22.8	20.1	20.0	62.9	Advance to Tier 2	
35	US 231	US 68 in Bowling Green	TN state line	11.1	18.0	32.0	61.1	Advance to Tier 2	
2	I-471	I-275	Ohio River	12.6	6.3	40.0	58.9	Future Study	
24	I-24	Ohio River	TN state line	25.8	8.1	24.0	57.9	Future Study	
23	US 23	OH state line	US 119 near Pikeville	19.8	25.8	12.0	57.6	Advance to Tier 2	
38	US 431	US 60 in Owensboro	TN state line	9.6	15.9	32.0	57.5	Advance to Tier 2	
46	KY 245/US 150	I-65 in Clermont	I-75 at Mt. Vernon	17.7	21.9	16.0	55.6	Advance to Tier 2	
42	US 421	US 27 in Lexington	TN state line	22.8	27.9	4.0	54.7	Advance to Tier 2	
33	US 127	I-71	TN state line	14.7	27.9	12.0	54.6	Advance to Tier 2	
40	US 641	US 60 in Marion	TN state line	9.6	19.8	24.0	53.4	Advance to Tier 2	
5	Man O War Blvd	US 60 (West) in Lexington	I-75 in Lexington	22.8	10.2	20.0	53.0	Advance to Tier 2	
41	US 421	IN state line	US 27 in Lexington	20.7	20.1	12.0	52.8	Advance to Tier 2	
12	KY 922	US 68 in Lexington	I-75/64	20.7	6.3	24.0	51.0	Advance to Tier 2	

Corridor ID	Corridor Name	From	То	Mobility	Accessibility	Safety	Tier 1 Score	Recommendation	
36	KY 536	US 42 in Union	US 27 near Alexandria	22.8	12.0	16.0	50.8	Advance to Tier 2	
32	KY 11/KY 32/US 460	AA Highway in Maysville	US 23 in Paintsville	12.6	17.7	20.0	50.3	Advance to Tier 2	
19	US 25 & US 119	I-75	WV state line	15.3	25.8	8.0	49.1	Advance to Tier 2	
9	KY 9 (AA Highway)	I-275	l-64 near Grayson	19.8	19.8	8.0	47.6	Advance to Tier 2	
15	KY 15	Campton	Whitesburg	8.1	17.7	20.0	45.8	Advance to Tier 2	
22	I-64	I-75 (South Split) in Lexington	WV state line	12.6	14.1	16.0	42.7	Future Study	
10	KY 100/US 79	TN state line	I-65 near Franklin	8.1	9.9	24.0	42.0	Advance to Tier 2	
44	KY 44	I-65	KY 55	17.7	3.9	20.0	41.6	Advance to Tier 2	
39	KY 100/US 31E/ KY 90	I-65 Exit 6	US 27 near Somerset	8.1	19.8	12.0	39.9	Advance to Tier 2	
16	US 68	Paducah	I-65	17.7	18.0	4.0	39.7	Dismiss	
48	KY 627/KY 1958	I-75	I-64	3.0	8.1	24.0	35.1	Dismiss	
47	KY 55/KY 555 (Heartland Parkway)	Bluegrass Pkwy	Cumberland Expwy	3.0	15.9	16.0	34.9	Dismiss	
52	US 25/KY 52/KY 82/KY 89	I-75 in Richmond	Mountain Pkwy in Clay City	5.1	17.7	12.0	34.8	Dismiss	
29	Hal Rogers Pkwy & KY 80	US 27 at Somerset	US 23 at Prestonsburg	8.1	17.7	4.0	29.8	Dismiss	
49	KY 259	US 60 near Hardinsburg	I-65 near Smith Grove	0.0	15.9	12.0	27.9	Dismiss	
45	US 45	Mayfield	Paducah	9.6	9.9	8.0	27.5	Dismiss	
13	KY 313	I-65	IN state line	7.5	3.9	16.0	27.4	Dismiss	
8	KY 80 & KY 121	US 51 near Wickliffe	US 68 near Aurora	4.5	0.0	20.0	24.5	Dismiss	
11	KY 11/KY 30/ KY 715	Mountain Pkwy	London	0.0	0.0	24.0	24.0	Dismiss	
34	KY 34	US 27 NE of Danville	US 127 in Danville	3.0	3.9	16.0	22.9	Dismiss	
14	Mountain Pkwy /KY 114	I-64	US 23 in Prestonsburg	3.0	3.9	12.0	18.9	Dismiss	
25	US 25	KY 192 in London	US 25E in Corbin	0.0	0.0	16.0	16.0	Dismiss	
37	KY 425	US 60 in Henderson	I-69	4.5	0.0	8.0	12.5	Dismiss	
51	KY 61	TN state line	Cumberland Expwy	0.0	7.8	0.0	7.8	Dismiss	
43	KY 3174 (future US 460)	US 23 in Robinson Creek	VA state line	0.0	0.0	0.0	0.0	Dismiss	

Linking Kentucky

5.5.2 Tier 1 Corridors Not Carried Forward to Tier 2

As mentioned above, the Tier 1 interstate corridors did not advance to Tier 2 analysis. Per KYTC's guidance, they will be included with the previously identified "flagged" corridors (other interstates and parkways) in a dedicated Statewide Interstate and Parkway Plan (SWIPP) study in the future. This decision was based on several factors:

- Interstates are more straightforward and are already a known priority for improvement.
- Interstates have either clear-cut improvement options or would benefit from out-of-the box thinking, which is different from most other highways.
- Most interstates have had studies completed on them in the past 10 years.
- This approach allows more attention to be given to geographically diverse arterials in the SWCP.

With regard to the arterial corridors that are not being carried forward from Tier 1 to Tier 2 for further analysis, it is important to note that it does not mean that a particular corridor improvement would not be beneficial. Spot improvements on these corridors might provide significant local benefits, but the needs do not rise to the corridor level, and the benefits of the improvements might not be as significant statewide as other Tier 1 corridors. Additional study of some of the corridors not being carried forward for Tier 2 analysis might be warranted.

CHAPTER 6: TIER 2 CORRIDOR PRIORITIZATION

The Tier 2 analysis follows an overall similar approach to that of Tier 1. However, Tier 2 analyzes individual segments within each corridor instead of the entire corridor. Tier 2 incorporates refined quantitative factors, new qualitative indicators, and stakeholders' input to evaluate benefits of proposed corridor improvements, while avoiding potential conflicts with KYTC's previous or ongoing efforts. The 20 priority segments identified by Tier 2 analysis were carried forward to Corridor Visioning.

6.1 BREAKING CORRIDORS INTO SEGMENTS

At the beginning of Tier 2 analysis, the 26 corridors identified by Tier 1 screening were divided into 45 segments of logical termini and independent utilities (e.g., volume changes, functional class, major junctions, etc.) based on consensus of the Project Team. The shorter segment length allowed more specific corridor scoping and improvement concept development, as well as more detailed analysis of corridor performance. **Figure 6.1** illustrates the Tier 2 segments and **Table 6.1** lists the Tier 2 segments.

6.2 TIER 2 CORRIDOR SCOPING

A comprehensive corridor scoping was conducted for each Tier 2 segment at planning level. The major goal of the Tier 2 corridor scoping was to develop practical corridor improvement concepts based on a thorough review of each segment's existing conditions, issues and needs. Extensive efforts were made to coordinate with the Project Team to develop the improvement recommendations. For each Tier 2 segment, the recommended improvement concept was coded into the 5961 zone v8_KYSTMv18 (aka v8_KYSTMv8) network for the Build model run and corridor performance analysis. For some corridor segments, multiple improvement concepts were recommended at the same location, and only the largest-scale improvement concept was coded at those locations in the model to fully estimate corridor benefits in Tier 2 analysis.

Appendix G includes complete scoping reports for all Tier 2 segments.

Table 6.1 – Tier 2 Segments

SEGMENT ID	SEGMENT NAME	FROM	то
4A	KY 4 (New Circle Road)	Richmond Rd (US 25/421)	Newtown Pike (KY 922)
4B	KY 4 (New Circle Road)	Newtown Pike (KY 922)	Richmond Rd (US 25/421)
5	Man O War Blvd	Versailles Rd (US 60) in Lexington	I-75 in Lexington
6A	US 60	I-64 in Louisville	KY 1848 in Simpsonville
6B	US 60	KY 1848 in Simpsonville	US 62 in Versailles
6C	US 60	US 62 in Versailles	I-75 in Lexington
9	KY 9 (AA Highway)	I-275	I-64 near Grayson
10	KY 100/US 79	TN State Line	I-65 near Franklin
12	KY 922	Broadway (US 68) in Lexington	I-64/I-75
15	KY 15	Campton	Whitesburg
18A	US 31W & KY 61	Columbia	I-65 in Elizabethtown
18B	US 31W & KY 61	I-65 in Elizabethtown	I-265 in Louisville
18C	US 31W & KY 61	Snyder Frwy (I-265) in Louisville	l-64 in Louisville
19	US 25 & US 119	I-75	WV State Line
23	US 23	OH State Line	US 119 near Pikeville
27A	US 27	Main St (US 421) in Lexington	US 27/US 68 Split in Paris
27B	US 27	US 27/US 68 Split in Paris	KY 9 (AA Highway)
27C	US 27	KY 9 (AA Highway)	OH State Line
28A	US 68	Man O War Blvd in Lexington	I-64/I-75
28B	US 68	I-64/I-75	OH State Line
30A	US 27	TN State Line	US 27 BYP (North of Nicholasville)
30B	US 27	US 27 BYP (North of Nicholasville)	US 421 in Lexington
31A	US 31 E	Bluegrass Pkwy south of Bardstown	Snyder Frwy (I-265) in Louisville
31B	US 31 E	Snyder Frwy (I-265) in Louisville	Clark Bridge (IN State Line)
32	KY 11/KY 32/US 460	KY 9 (AA Highway) in Maysville	US 23 in Paintsville
33A	US 127	TN State Line	I-64 near Frankfort
33B	US 127	I-64 near Frankfort	I-71
35A	US 231	TN State Line	Natcher Pkwy (South of Bowling Green)
35B	US 231	Natcher Pkwy (South of Bowling Green)	US 68 in Bowling Green
36A	KY 536	US 42 in Union	KY 17 in Independence
36B	KY 536	KY 17	US 27 near Alexandria
38	US 431	US 60 in Owensboro	TN State Line
39	KY 100/US 31E/KY 90	I-65 Exit 6	US 27 near Somerset
40	US 641	TN State Line	US 60 in Marion
41A	US 421	Broadway (US 27) in Lexington	KY 341 (I-64 Exit 65) near Midway
41B	US 421	KY 341 (I-64 Exit 65)	IN State Line
42A	US 421	VA State Line	I-75 (Exit 97)
42B	US 421/KY 418	I-75 (Exit 104)	US 27 in Lexington
44A	KY 44	I-65 in Shepherdsville	KY 1319 East of Mt. Washington

SEGMENT ID	SEGMENT NAME	FROM	то
44B	KY 44	KY 1319 East of Mt. Washington	Taylorsville Rd (KY 55)
46A	KY 245/US 150	I-65 in Clermont	Bluegrass Pkwy
46B	KY 245/US 150	Bluegrass Pkwy near Bardstown	I-75 at Mt. Vernon
50A	US 60	IL State Line	KY 425 BYP in Henderson
50B	US 60	KY 425 BYP in Henderson	Natcher Pkwy in Owensboro
50C	US 60	Natcher Pkwy in Owensboro	US 31 W near Radcliff

6.3 TIER 2 PERFORMANCE CRITERIA & SCORING

Building upon the corridor scoring and screening in Tier 1, additional and more detailed performance measures were added to Tier 2 quantitative performance criteria based on discussion within the Project Team. An additional on-line survey was conducted to gather input from Project Team, Planning Partners, and key stakeholders on the Tier 2 performance criteria and weights. The Tier 2 survey was live for two weeks from July 21 through August 4, 2020. Detailed data gathered from the survey are shown in **Appendix F**. A Tier 2 rating system was developed using weights derived from survey results and slightly adjusted by the Project Team.

Six quantitative performance criteria were developed in Tier 2 to assess benefits of corridor improvements and determine which segments would advance to Corridor Visioning. Table **6.2** lists the performance criteria and their weights. Each performance criteria was assigned a value ranging from 0 to 5 points, with the latter indicating the highest need or benefit for the corresponding performance measure. The mobility performance criteria includes a 5-point bonus factor based on a segment's "travel time reliability", described later in this chapter. The Tier 2 performance criteria also include a 5-point Multi-Infrastructure bonus score representing the feasibility of alternative infrastructure strategies as a potential corridor improvement. All Tier 2 performance criteria scores are converted to weighted scores and combined to create an overall weighted score that ranges from 0 to 110. A higher score generally indicates a greater benefit potential from the proposed corridor improvement. A detailed description of each performance criteria and the scoring results follows.

SCORING FACTOR NUMBER	TIER 2 CORRIDOR PERFORMANCE MEASURES	SCORE RANGE	SCORE WEIGHT	MAX. POSSIBLE WEIGHTED SCORE
#1	Mobility Index	0 – 5	4	20
	Reliability Bonus	0 – 5	1	+5
#2	Accessibility Index	0 – 5	4	20
#3	Safety Index	0 – 5	5	25
#4	Infrastructure Index	0 – 5	4	20
#5	Economic Index	0 – 5	3	15
#6	Multi-Infrastructure Bonus	1-5	1	+5
				Sum = 110

Table 6.2 – Tier 2 Performance Measures

6.3.1 Mobility

The Tier 2 mobility criteria are composed of two parts: mobility index and reliability bonus. **Table 6.3** summarizes the mobility criteria. The mobility index evaluates the improvement concepts impact on congestions at corridor and systemwide levels in future year (2045), as well as estimated truck volumes on corridors in future year (2045). According to data collected from the Tier 2 on-line survey mentioned above, the score of mobility index was weighted as 40% for corridor delay reduction, 30% for systemwide delay reduction, and 30% for corridor truck volumes. In overall Tier 2 scoring, the mobility index contributes a maximum of 20 points. The reliability bonus factor measures the existing condition of travel time reliability along corridors, with a maximum of 5 points towards the final total score.

• Mobility Index

- Corridor Delay Reduction (2045). This forecasts the reduction of vehicle hour delays along a corridor in the future year 2045, which would result from the recommended improvement for the corridor. For each corridor segment, the improvement concept recommended by Tier 2 corridor scoping was coded into v8_KYSTMv18 network for a 2045 "Build" model run. The corridor delay reduction is the difference of the vehicle hour delays for the corridor segment between 2045 "No Build" and 2045 "Build".
- Systemwide Delay Reduction (2045). This forecasts the reduction of vehicle hour delays at system level in the future year 2045, which would result from the recommended improvement for the corridor. It was calculated in the same way as the corridor delay reduction mentioned above, except for including all roadways in the v8_KYSTMv18 network.
- **Corridor Truck Volumes (2045).** This was calculated as the corridor-level average daily truck volumes along a corridor in 2045 "No Build". Corridors carrying higher truck flows play an important role in the freight/logistics industry in support of the state's economy and are expected to gain more benefit from the recommended improvements.

• Reliability Bonus

% Corridor Vehicle Mile Traveled (VMT) Unreliable. This measures the level of travel time reliability along a corridor based on analysis of v8_KYSTMv18 and observed speed data. Unreliable locations were determined by a combination of bottlenecks identified by v8_KYSTMv18 (2015 volume/capacity ratio > 0.6) and the Level of Travel Time Reliability (LOTTR) value greater than 1.5. A higher percentage of unreliable corridor VMT indicates the existing mobility has higher variability of operation speeds, which may be caused by capacity constraint, incidents, weather, maintenance or short-term construction, and is more likely to benefit from the recommended improvements.

				DEX					RELIAB
Corridor Delay Reduction (Year 2045) - X ₁	Score		Systemwide Delay (Year 2045) - X ₂	Score		Corridor Truck Volumes (Year 2045) - X ₃	Score		% Co Unr
X ₁ < 0	0		X ₂ < 0	0		X ₃ < 1,000	0		
0 <= X ₁ < 100	1		0 <= X ₂ < 500	1		1,000 <= X ₃ < 1,500	1]	5% <
100 <= X ₁ < 400	2		500 <= X ₂ < 1,500	2		1,500 <= X ₃ < 2,000	2	+	15%
400 <= X ₁ < 1,000	3		1,500 <= X ₂ < 3,500	3		2,000 <= X ₃ < 2,500	3]	30%
1,000 <= X ₁ < 2,000	4		3,500 <= X ₂ < 6,500	4		2,500 <= X ₃ < 4,000	4]	65%
X ₁ >= 2,000	5		X ₂ >= 6,500	5		X ₃ >= 4,000	5]	х
Mobility Score = 0.4.	Mobility Score = $0.4X_1 + 0.3X_2 + 0.3X_3$								
Final Score Weight =	20%, Mi	ulti	olier = 4					1	

Table 6.3 – Tier 2 Mobility	Index and	Reliability	Bonus
-----------------------------	-----------	-------------	-------

RELIABILITY BONUS (+5 PIS)
% Corridor VMT Unreliable - X	Score
X < 5%	0
5% <= X < 15%	1
15% <= X < 30%	2
30% <= X < 65%	3
65% <= X < 85%	4
X >= 55%	5

Table 6.4 summarizes the Tier 2 mobility scores for each segment. Unsurprisingly, the congested high-volume arterials in major metropolitan areas, including Segment 4B (New Circle Road (KY 4)), Segment 12 (KY 922) and Segment 42B (US 421) in Lexington, Segment 18B (US 31 W) and Segment 31B (US 31 E) in Louisville, Segment 36A (KY 536 (from US 42 to KY 17)) in northern Kentucky, are at the high end of the mobility and reliability scores. This is because the recommended roadway widening and spot improvements at major interchanges or intersections provide a significant amount of additional capacity and improve traffic operations. In addition, these major arterials carry relatively high truck volumes, which provides benefit in the scoring.

			MOBILITY INDEX RELIABILITY B			MOBILITY INDEX			
Segment ID	Segment Name	From	То	Corridor Delay Reduction (2045)	Systemwide Delay Reduction (2045)	Truck Volumes (2045)	Score	% Corridor VMT Unreliable	Score
4A	KY 4 (New Circle Road)	Richmond Rd (US 25/421)	Newtown Pike (KY 922)	3,504	6,759	6,269	20.0	63.9%	3
4B	KY 4 (New Circle Road)	Newtown Pike (KY 922)	Richmond Rd (US 25/421)	993	3,446	6,247	14.4	96.9%	5
5	Man O War Blvd	Versailles Rd (US 60) in Lexington	I-75 in Lexington	1,404	8,453	2,319	16.0	83.4%	4
6A	US 60	l-64 in Louisville	KY 1848 in Simpsonville	-750	5,869	3,355	9.6	84.8%	4
6B	US 60	KY 1848 in Simpsonville	US 62 in Versailles	361	381	1,088	5.6	39.7%	3
6C	US 60	US 62 in Versailles	I-75 in Lexington	41	11,531	5,408	13.6	81.8%	4
9	KY 9 (AA Highway)	I-275	l-64 near Grayson	3,782	5,615	1,547	15.2	30.4%	3

Table 6.4 – Tier 2 Mobility Scoring

				MOBILITY INDEX			RELIABILITY	BONUS	
Segment ID	Segment Name	From	То	Corridor Delay Reduction (2045)	Systemwide Delay Reduction (2045)	Truck Volumes (2045)	Score	% Corridor VMT Unreliable	Score
10	KY 100/US 79	TN State Line	l-65 near Franklin	-315	-913	986	0.0	9.6%	1
12	KY 922	Broadway (US 68) in Lexington	I-64/I-75	-380	1,720	6,073	9.6	95.8%	5
15	KY 15	Campton	Whitesburg	357	-109	1,906	5.6	5.6%	1
18A	US 31W & KY 61	Columbia	l-65 in Elizabethtown	24	-210	918	1.6	3.1%	0
18B	US 31W & KY 61	l-65 in Elizabethtown	I-265 in Louisville	5,734	15,013	3,733	18.8	68.7%	4
18C	US 31W & KY 61	Snyder Frwy (I-265) in Louisville	l-64 in Louisville	-1,239	1,267	2,338	6.0	82.7%	4
19	US 25 & US 119	I-75	WV State Line	613	752	2,474	10.8	14.0%	1
23	US 23	OH State Line	US 119 near Pikeville	1,705	1,588	3,370	14.8	15.3%	2
27A	US 27	Main St (US 421) in Lexington	US 27/US 68 Split in Paris	-1,262	-327	2,010	3.6	44.2%	3
27B	US 27	US 27/US 68 Split in Paris	KY 9 (AA Highway)	1,272	1,572	1,063	11.2	23.2%	2
27C	US 27	KY 9 (AA Highway)	OH State Line	1,818	3,894	3,614	16.0	82.5%	4
28A	US 68	Man O War Blvd in Lexington	I-64/I-75	-3,212	3,393	2,749	8.4	100.0%	5
28B	US 68	I-64/I-75	OH State Line	85	-205	920	1.6	4.2%	0
30A	US 27	TN State Line	US 27 BYP (North of Nicholasville)	1,141	473	1,646	10.0	19.3%	2
30B	US 27	US 27 BYP (North of Nicholasville)	US 421 in Lexington	-1,108	2,717	7,265	9.6	82.4%	4
31A	US 31 E	Bluegrass Pkwy south of Bardstown	Snyder Frwy (I-265) in Louisville	4,866	6,738	2,117	17.6	47.7%	3
31B	US 31 E	Snyder Frwy (I-265) in Louisville	Clark Bridge (IN State Line)	-3,210	-982	1,523	2.4	99.4%	5
32	KY 11/KY 32/ US 460	KY 9 (AA Highway) in Maysville	US 23 in Paintsville	920	553	929	7.2	22.4%	2
33A	US 127	TN State Line	I-64 near Frankfort	-371	1,350	934	2.4	7.1%	1
33B	US 127	I-64 near Frankfort	I-71	168	-376	773	3.2	27.2%	2

				MOBILITY INDEX				MOBILITY INDEX RELIABILI		MOBILITY INDEX RELIABILIT		RELIABILITY	ABILITY BONUS		
Segment ID	Segment Name	From	То	Corridor Delay Reduction (2045)	Systemwide Delay Reduction (2045)	Truck Volumes (2045)	Score	% Corridor VMT Unreliable	Score						
35A	US 231	TN State Line	Natcher Pkwy (South of Bowling Green)	80	-420	2,423	5.2	3.9%	0						
35B	US 231	Natcher Pkwy (South of Bowling Green)	US 68 in Bowling Green	208	1,232	2,179	9.2	81.4%	4						
36A	KY 536	US 42 in Union	KY 17 in Independence	8,292	11,732	5,448	20.0	81.9%	4						
36B	KY 536	KY 17	US 27 near Alexandria	-3	-42	422	0.0	5.8%	1						
38	US 431	US 60 in Owensboro	TN State Line	69	222	1,123	4.0	7.6%	1						
39	KY 100/US 31E/KY 90	I-65 Exit 6	US 27 near Somerset	398	-261	1,625	5.6	3.6%	0						
40	US 641	TN State Line	US 60 in Marion	54	-816	1,418	2.8	8.3%	1						
41A	US 421	Broadway (US 27) in Lexington	KY 341 (I-64 Exit 65) near Midway	1,110	6,169	2,617	16.0	72.9%	4						
41B	US 421	KY 341 (I-64 Exit 65)	IN State Line	-173	47	446	1.2	21.6%	2						
42A	US 421	VA State Line	I-75 (Exit 97)	-240	-139	581	0.0	12.1%	1						
42B	US 421/KY 418	I-75 (Exit 104)	US 27 in Lexington	-1,183	3,403	4,452	9.6	86.4%	5						
44A	KY 44	l-65 in Shepherdsville	KY 1319 East of Mt. Washington	665	2,406	3,575	13.2	40.7%	3						
44B	KY 44	KY 1319 East of Mt. Washington	Taylorsville Rd (KY 55)	-7	-202	2,085	3.6	1.3%	0						
46A	KY 245/US 150	l-65 in Clermont	Bluegrass Pkwy	35	-641	2,230	5.2	22.5%	2						
46B	KY 245/US 150	Bluegrass Pkwy near Bardstown	I-75 at Mt. Vernon	-388	46	1,097	2.4	4.8%	0						
50A	US 60	IL State Line	KY 425 BYP in Henderson	7	-637	1,232	2.8	13.3%	1						
50B	US 60	KY 425 BYP in Henderson	Natcher Pkwy in Owensboro	330	402	1,532	6.8	29.2%	2						
50C	US 60	Natcher Pkwy in Owensboro	US 31 W near Radcliff	-2	-508	1,532	2.4	1.7%	0						

6.3.2 Accessibility

The Tier 2 accessibility index measures the corridor's importance to statewide/regional accessibility by serving long-distance trips and the percent of travel time saved when accessing the closest special generators due to corridor improvements, in the future year of 2045. **Table 6.5** summarizes the accessibility index. The weight of each performance measure was determined based on data collected from the Tier 2 on-line survey mentioned above. The long-distance trips served by corridor is 45% of the index, while the percent travel time savings is 55% of the index. In overall Tier 2 scoring, the accessibility index contributes a maximum of 20 points. The Tier 2 analysis used the same special generators (i.e., hospital/trauma centers, colleges/universities, non-retail job centers) identified in Tier 1.

- Long-Distance Trips Served by Corridor (2045). This measures the number of long-distance trips (greater than 50 miles) that fully or partially use the corridor to reach special generators, using 2045 "No Build" ODs and congested travel time skims from v8_KYSTMv18. The statewide/regional major corridors are intended to provide efficient long-distance connectivity between regions and major special generators across Kentucky. Long-distance trip makers usually have little knowledge of local roadway networks and alternative routes, so they tend to stay on the corridor during their journey even though unfavorable traffic conditions exist. Therefore, the improvement concepts would provide greater benefits to those corridors carrying more long-distance trips. The more long-distance trips served by a corridor, the higher the score awarded to the corridor.
- % Travel Time Savings to the Closest Generators (2045). This measures the percent travel time savings from all trips that use some part of the corridor to access the closest special generators, due to recommended corridor improvements. For all Origin-Destination (OD) pairs that include the corridor in their path to access the closest special generators (by three types: hospital/trauma centers, colleges/universities, non-retail job centers), improved travel times were estimated using the v8_KYSTMv18 2045 "Build" model and aggregated to an average travel time under 2045 "Build". Then, the 2045 "Build" travel times were compared to 2045 "No Build" travel times to get the percent travel time savings. The greater the percent travel time savings achieved by a corridor, the more benefit the corridor improvement provides, the higher the score awarded to the corridor.

ACCESSIBILITY INDEX							
Long-Distance Trips Served by Corridor (Year 2045) - X ₁	Score		% Travel Time Savings to Closest Generators (Year 2045) - X ₂	Score			
X ₁ < 1,000	0		X ₂ < 0.5%	0			
1,000 <= X ₁ < 2,000	1		0.5% <= X ₂ < 1%	1			
2,000 <= X ₁ < 2,500	2		1% <= X ₂ < 2%	2			
2,500 <= X ₁ < 3,000	3		2% <= X ₂ < 3%	3			
3,000 <= X ₁ < 4,000	4		3% <= X ₂ < 5%	4			
X ₁ >= 4,000	5		X ₂ >= 5%	5			
Accessibility Score = $0.45X_1 + 0.55X_2$							
Final Score Weight = 20%, Multiplier = 4							

Table 6.5 – Tier 2 Accessibility Index

Table 6.6 summarizes Tier 2 accessibility scores. Segment 6B (US 60 (between Simpsonville and Versailles)), Segment 6C (US 60 (between Versailles and Lexington)), Segment 18B (US 31 W (between Elizabethtown and I-265)), Segment 5 (Man O War Boulevard), and Segment 50B (US 60 (between Henderson and Owensboro)) received the top scores, because they serve larger numbers of long-distance trips between major cities or have greater potential of travel time savings to access special generators. It is also noted that a few rural corridors (e.g., Segment 32 - KY 11/KY 32/US 460 in eastern Kentucky, Segment 38 - US 431 in western Kentucky, Segment 39 - KY 100/US 31 E/KY 90 in southern Kentucky) score higher due to their role of providing primary access to major destinations in their regions.

				ACCESSIBILITY INDEX		
Segment ID	Segment Name	From	То	Long-Distance Trips Served by Corridor (2045)	% Travel Time Savings to Closest Generators (2045)	Score
4A	KY 4 (New Circle Road)	Richmond Rd (US 25/421)	Newtown Pike (KY 922)	2,584	0.9%	7.6
4B	KY 4 (New Circle Road)	Newtown Pike (KY 922)	Richmond Rd (US 25/421)	1,530	2.5%	8.4
5	Man O War Blvd	Versailles Rd (US 60) in Lexington	I-75 in Lexington	3,106	5.5%	18.2
6A	US 60	I-64 in Louisville	KY 1848 in Simpsonville	2,714	0.9%	7.6
6B	US 60	KY 1848 in Simpsonville	US 62 in Versailles	3,599	5.2%	18.2
6C	US 60	US 62 in Versailles	I-75 in Lexington	7,328	5.8%	20.0
9	KY 9 (AA Highway)	I-275	I-64 near Grayson	1,729	4.0%	10.6
10	KY 100 / US 79	TN State Line	I-65 near Franklin	3,327	0.7%	9.4
12	KY 922	Broadway (US 68) in Lexington	I-64/I-75	3,628	1.7%	11.6
15	KY 15	Campton	Whitesburg	1,446	3.7%	10.6
18A	US 31W & KY 61	Columbia	I-65 in Elizabethtown	3,832	0.2%	7.2
18B	US 31W & KY 61	I-65 in Elizabethtown	I-265 in Louisville	8,334	8.4%	20.0
18C	US 31W & KY 61	Snyder Frwy (I-265) in Louisville	I-64 in Louisville	1,399	1.3%	6.2
19	US 25 & US 119	I-75	WV State Line	3,827	1.2%	11.6
23	US 23	OH State Line	US 119 near Pikeville	4,153	1.7%	13.4
27A	US 27	Main St (US 421) in Lexington	US 27/US 68 Split in Paris	2,815	2.7%	12.0
27B	US 27	US 27/US 68 Split in Paris	KY 9 (AA Highway)	587	-0.3%	0.0
27C	US 27	KY 9 (AA Highway)	OH State Line	443	3.1%	8.8
28A	US 68	Man O War Blvd in Lexington	I-64/I-75	3,119	1.6%	11.6
28B	US 68	I-64/I-75	OH State Line	2,847	1.1%	9.8
30A	US 27	TN State Line	US 27 BYP (North of Nicholasville)	2,427	4.5%	12.4
30B	US 27	US 27 BYP (North of Nicholasville)	US 421 in Lexington	2,760	3.5%	14.2
31A	US 31 E	Bluegrass Pkwy south of	Snyder Frwy (I-265) in	1,915	5.2%	12.8

Table 6.6 – Tier 2 Accessibility Scoring

				ACCESSIBILITY INDEX			
Segment ID	Segment Name	From	То	Long-Distance Trips Served by Corridor (2045)	% Travel Time Savings to Closest Generators (2045)	Score	
31B	US 31 E	Snyder Frwy (I-265) in Louisville	Clark Bridge (IN State Line)	2,936	-0.1%	5.4	
32	KY 11/KY 32/US 460	KY 9 (AA Highway) in Maysville	US 23 in Paintsville	2,490	8.3%	14.6	
33A	US 127	TN State Line	I-64 near Frankfort	7,552	1.2%	13.4	
33B	US 127	I-64 near Frankfort	I-71	1,032	0.8%	4.0	
35A	US 231	TN State Line	Natcher Pkwy (South of Bowling Green)	1,642	1.1%	6.2	
35B	US 231	Natcher Pkwy (South of Bowling Green)	US 68 in Bowling Green	869	4.7%	8.8	
36A	KY 536	US 42 in Union	KY 17 in Independence	2,434	5.6%	14.6	
36B	KY 536	KY 17	US 27 near Alexandria	339	-2.3%	0.0	
38	US 431	US 60 in Owensboro	TN State Line	4,782	2.2%	15.6	
39	KY 100/US 31E/KY 90	I-65 Exit 6	US 27 near Somerset	7,261	2.2%	15.6	
40	US 641	TN State Line	US 60 in Marion	4,290	0.8%	11.2	
41A	US 421	Boradway (US 27) in Lexington	KY 341 (I-64 Exit 65) near Midway	2,162	14.8%	14.6	
41B	US 421	KY 341 (I-64 Exit 65)	IN State Line	2,510	1.4%	9.8	
42A	US 421	VA State Line	I-75 (Exit 97)	2,186	2.8%	10.2	
42B	US 421/KY 418	I-75 (Exit 104)	US 27 in Lexington	1,489	4.8%	10.6	
44A	KY 44	I-65 in Shepherdsville	KY 1319 East of Mt. Washington	242	1.5%	4.4	
44B	KY 44	KY 1319 East of Mt. Washington	Taylorsville Rd (KY 55)	1,410	2.0%	8.4	
46A	KY 245/US 150	I-65 in Clermont	Bluegrass Pkwy	1,601	0.4%	1.8	
46B	KY 245/US 150	Bluegrass Pkwy near Bardstown	I-75 at Mt. Vernon	3,239	1.6%	11.6	
50A	US 60	IL State Line	KY 425 BYP in Henderson	3,831	0.4%	7.2	
50B	US 60	KY 425 BYP in Henderson	Natcher Pkwy in Owensboro	5,044	3.0%	17.8	
50C	US 60	Natcher Pkwy in Owensboro	US 31 W near Radcliff	5,136	0.1%	9.0	

6.3.3 Safety

The Tier 2 safety index measures the overall crash severity of a corridor segment based on the same safety data from KYTC used in Tier 1 analysis. Each corridor segment is broken down into sections by mile point from the KYTC safety data. Each section has an associated VMT, KABCO crash counts, and number of Excess Expected Crashes. **Table 6.7** summarizes the safety index and performance measures. Note that the weights of the safety criteria (KA crashes per mile and % of Excess Expected Crashes) were not directly scored by the survey. They were assigned 50% each based on discussion within the Project Team. In overall Tier 2 scoring, the safety index contributes a maximum of 25 points.

- KA Crashes per Mile. This evaluates the worst outcomes from a corridor's crashes by focusing on fatality crashes (K) and disabling injury crashes (A). The total number of "K" and "A" crashes along a corridor segment was divided by segment's mileage. Higher KA crashes per mile result in higher score.
- % of Excess Expected Crashes. This measures the average percentage of Excess Expected Crashes along a corridor segment, weighted by VMT of each section. Higher percentage of Excess Expected Crashes are associated with poorer safety performance and result in higher score.

SAFETY INDEX					
KA Crashes per Mile - X ₁	Score		% of Excess Expected Crashes - X ₂	Score	
X ₁ < 0.5	0		X ₂ < 97%	0	
0.5 <= X ₁ < 0.75	1		97% <= X ₂ < 98.5%	1	
0.75 <= X ₁ < 1	2	98.5% <= X ₂ < 100.5% 2		2	
1 <= X ₁ < 1.5	3	100.5% <= X ₂ < 101.5% 3		3	
1.5 <= X ₁ < 2.5	4		101.5% <= X ₂ < 103%	4	
X ₁ >= 2.5	5		X ₂ >= 103%	5	
Safety Score = $0.5X_1 + 0.5X_2$					
Final Score Weight = 25%, Multiplier = 5					

Table 6.7 – Tier 2 Safety Index

Table 6.8 summarizes Tier 2 safety scores. Corridor segments that carry heavier traffic and have more safety issues in urban or suburban areas generally scored higher, including US 31 E and US 31 W (Segments 18B, 18C and 31B) in Louisville and US 421/KY 418 (Segment 42B) in Lexington. Greater benefits would be expected for these segments if the recommended improvements were made. Rural corridors in eastern, southern, and western Kentucky tended to have lower safety scores.

Table 6.8 – Tier 2 Safety Scoring

					FETY INDEX	
Segment ID	Segment Name	From	То	KA Crashes Per Mile	% of Excess Expected Crashes	Score
4A	KY 4 (New Circle Road)	Richmond Rd (US 25/421)	Newtown Pike (KY 922)	1.5	100.7%	17.5
4B	KY 4 (New Circle Road)	Newtown Pike (KY 922)	Richmond Rd (US 25/421)	5.0	100.7%	20.0
5	Man O War Blvd	Versailles Rd (US 60) in Lexington	I-75 in Lexington	1.6	100.1%	15.0
6A	US 60	I-64 in Louisville	KY 1848 in Simpsonville	2.1	100.2%	15.0
6B	US 60	KY 1848 in Simpsonville	US 62 in Versailles	1.1	99.5%	12.5
6C	US 60	US 62 in Versailles	I-75 in Lexington	3.5	99.1%	17.5
9	KY 9 (AA Highway)	I-275	I-64 near Grayson	0.7	93.4%	2.5
10	KY 100/US 79	TN State Line	I-65 near Franklin	0.8	96.4%	5.0
12	KY 922	Broadway (US 68) in Lexington	I-64/I-75	0.9	95.2%	5.0

					SAFETY INDEX	
Segment ID	Segment Name	From	То	KA Crashes Per Mile	% of Excess Expected Crashes	Score
15	KY 15	Campton	Whitesburg	0.8	96.4%	5.0
18A	US 31W & KY 61	Columbia	I-65 in Elizabethtown	0.4	97.1%	2.5
18B	US 31W & KY 61	I-65 in Elizabethtown	I-265 in Louisville	4.6	101.1%	20.0
18C	US 31W & KY 61	Snyder Frwy (l-265) in Louisville	l-64 in Louisville	2.1	106.7%	22.5
19	US 25 & US 119	I-75	WV State Line	0.8	93.5%	5.0
23	US 23	OH State Line	US 119 near Pikeville	0.9	92.4%	5.0
27A	US 27	Main St (US 421) in Lexington	US 27/US 68 Split in Paris	2.8	101.2%	20.0
27B	US 27	US 27/US 68 Split in Paris	KY 9 (AA Highway)	0.7	101.9%	12.5
27C	US 27	KY 9 (AA Highway)	OH State Line	1.4	98.7%	12.5
28A	US 68	Man O War Blvd in Lexington	I-64/I-75	3.5	101.2%	20.0
28B	US 68	I-64/I-75	OH State Line	0.4	97.4%	2.5
30A	US 27	TN State Line	US 27 BYP (North of Nicholasville)	4.1	101.3%	20.0
30B	US 27	US 27 BYP (North of Nicholasville) US 421 in Lexington		1.2	99.5%	12.5
31A	US 31 E	Bluegrass Pkwy south of Snyder Frwy (I-265) in Bardstown Louisville		1.4	99.6%	12.5
31B	US 31 E	Snyder Frwy (l-265) in Louisville	Clark Bridge (IN State Line)	3.5	103.0%	25.0
32	KY 11/KY 32/US 460	KY 9 (AA Highway) in Maysville	US 23 in Paintsville	0.4	97.4%	2.5
33A	US 127	TN State Line	I-64 near Frankfort	0.7	98.0%	5.0
33B	US 127	I-64 near Frankfort	I-71	0.5	98.5%	7.5
35A	US 231	TN State Line	Natcher Pkwy (South of Bowling Green)	0.5	105.9%	12.5
35B	US 231	Natcher Pkwy (South of Bowling Green)	US 68 in Bowling Green	1.9	101.6%	20.0
36A	KY 536	US 42 in Union	KY 17 in Independence	0.8	102.6%	15.0
36B	KY 536	KY 17	US 27 near Alexandria	0.7	105.4%	15.0
38	US 431	US 60 in Owensboro	TN State Line	0.6	102.0%	12.5
39	KY 100/US 31E/KY 90	I-65 Exit 6	US 27 near Somerset	0.5	97.2%	2.5
40	US 641	TN State Line	US 60 in Marion	0.7	102.2%	12.5
41A	US 421	Broadway (US 27) in Lexington	KY 341 (l-64 Exit 65) near Midway	1.7	101.1%	17.5
41B	US 421	KY 341 (I-64 Exit 65)	IN State Line	0.5	101.1%	7.5
42A	US 421	VA State Line	I-75 (Exit 97)	0.6	97.3%	5.0
42B	US 421/KY 418	I-75 (Exit 104)	US 27 in Lexington	4.9	107.7%	25.0
44A	KY 44	I-65 in Shepherdsville	KY 1319 East of Mt. Washington	1.9	102.3%	20.0
44B	KY 44	KY 1319 East of Mt. Washington	Taylorsville Rd (KY 55)	0.6	108.7%	15.0
46A	KY 245/US 150	I-65 in Clermont	Bluegrass Pkwy	1.2	97.9%	10.0

		SAFETY INDEX				
Segment ID	Segment Name	From	То	KA Crashes Per Mile	% of Excess Expected Crashes	Score
46B	KY 245/US 150	Bluegrass Pkwy near Bardstown	I-75 at Mt. Vernon	1.0	112.5%	20.0
50A	US 60	IL State Line	KY 425 BYP in Henderson	0.8	101.5%	15.0
50B	US 60	KY 425 BYP in Henderson	Natcher Pkwy in Owensboro	1.0	105.1%	20.0
50C	US 60	Natcher Pkwy in Owensboro	US 31 W near Radcliff	0.7	97.9%	5.0

6.3.4 Infrastructure

The Tier 2 infrastructure index evaluates the pavement and bridge conditions along the corridor segments. **Table 6.9** summarizes the infrastructure index. Note that the pavement conditions and bridge conditions were assigned a weight of 30% and 70% respectively, based on the Project Team consensus. In overall Tier 2 scoring, the infrastructure index contributes a maximum of 20 points.

• **Pavement Condition.** The pavement condition was broken down by pavement distress index (PDI), year of next treatment (YearNT), and year of six-year improvement plan (YearSYP), weighted by length of sections for a corridor segment. This factor (X1) was calculated using the same formula used in KYTC's Strategic Highway Investment Formula for Tomorrow (SHIFT) program, as shown below:

 $X_1 = [(1 - 0.688/PDI) + (10/(YearNT - YearSYP + 1))]$

• Bridge Condition. Bridge condition scores were based on the National Bridge Inspection Standards (NBIS) ratings of the deck, superstructure, and substructure, weighted by the deck area of each bridge within a corridor segment. If all three items are rated 6 or above, the bridge is in good condition and is given a score of one. A deck rating of less than six (while substructure and superstructure are a six or higher) indicates that only deck rehabilitation is needed and is given a score of 2. A superstructure rating of five (while the deck and substructures score six or above) indicates the need for superstructure rehabilitation and is given a score of 3. A substructure rating of five necessitates a substructure rehabilitation and is given a score of 4. A superstructure or substructure rating of less than five requires a bridge replacement and receives a score of 5. The bridge condition factor (X2) that is a part of the Infrastructure Score equation is shown below:

X₂ = [(If Deck, Super, Sub >= 6, 1), (If Deck<6, Super, Sub >= 6, 2), (If Super=5, Deck, Sub >= 6, 3), (If Sub = 5, Deck, Super >= 6, 4), (If Sub, Super =< 4, 5)]

	Linki					
Table 6.9 – Tier 2 Infrastructure Index						
INFRASTRUCTURE INDEX						
Pavement Condition – X ₁	Score		Bridge Condition - X ₂	Score		
X ₁ < 1.4	0		X ₂ < 1	0		
1.4 <= X ₁ < 1.55	1		1 <= X ₂ < 1.1	1		
1.55 <= X ₁ < 1.65	2		1.1 <= X ₂ < 1.4	2		
1.65 <= X ₁ < 1.75	3		1.4 <= X ₂ < 1.8	3		
1.75 <= X ₁ < 1.95	4		1.8 <= X ₂ < 3	4		
X ₁ >= 1.95	5]	X ₂ >= 3	5		
Infrastructure Score = $0.3X_1 + 0.7X_2$						
Final Score Weight = 15%, Multiplier = 3						

Table 6.10 summarizes the infrastructure scores for all 45 segments. Infrastructure scoring is not dependent on the type of facility but is more related to the age of the facility or repeated exposure to challenging weather conditions. It is noted that corridor segments in eastern Kentucky have lower infrastructure scores, indicating better pavement and bridge conditions.

Cognost				INFRASTRUCTURE INDEX		
ID	Segment Name	From	То	Pavement Condition	Bridge Condition	Score
4A	KY 4 (New Circle Road)	Richmond Rd (US 25/421)	Newtown Pike (KY 922)	1.64	3.56	16.4
4B	KY 4 (New Circle Road)	Newtown Pike (KY 922)	Richmond Rd (US 25/421)	2.30	4.50	20.0
5	Man O War Blvd	Versailles Rd (US 60) in Lexington	Versailles Rd (US 60) in Lexington I-75 in Lexington		1.00	2.8
6A	US 60	I-64 in Louisville	KY 1848 in Simpsonville	1.94	2.13	16.0
6B	US 60	KY 1848 in Simpsonville	US 62 in Versailles	1.64	3.73	16.4
6C	US 60	US 62 in Versailles	I-75 in Lexington	1.55	3.03	15.2
9	KY 9 (AA Highway)	I-275	I-64 near Grayson	1.51	1.02	4.0
10	KY 100/US 79	TN State Line	I-65 near Franklin	1.58	3.36	16.4
12	KY 922	Broadway (US 68) in Lexington	I-64/I-75	1.27	1.00	2.8
15	KY 15	Campton	Whitesburg	1.47	1.33	6.8
18A	US 31W & KY 61	Columbia	I-65 in Elizabethtown	1.78	1.93	16.0
18B	US 31W & KY 61	I-65 in Elizabethtown	I-265 in Louisville	2.26	2.04	17.2
18C	US 31W & KY 61	Snyder Frwy (l-265) in Louisville	I-64 in Louisville	3.32	0.00	6.0
19	US 25 & US 119	I-75	WV State Line	1.68	1.26	9.2
23	US 23	OH State Line	US 119 near Pikeville	1.46	1.45	9.6
27A	US 27	Main St (US 421) in Lexington	US 27/US 68 Split in Paris	1.37	1.69	8.4

Comment				INFRASTRUCTURE INDEX		
ID	Segment Name	From	То	Pavement Condition	Bridge Condition	Score
27B	US 27	US 27/US 68 Split in Paris	KY 9 (AA Highway)	1.55	1.72	10.8
27C	US 27	KY 9 (AA Highway)	OH State Line	1.66	1.00	6.4
28A	US 68	Man O War Blvd in Lexington	I-64/I-75	1.54	0.00	1.2
28B	US 68	I-64/I-75	OH State Line	1.32	1.69	8.4
30A	US 27	TN State Line	US 27 BYP (North of Nicholasville)	1.40	1.41	9.6
30B	US 27	US 27 BYP (North of Nicholasville)	US 421 in Lexington	1.16	1.00	2.8
31A	US 31 E	Bluegrass Pkwy south of Bardstown	Snyder Frwy (l-265) in Louisville	1.98	1.00	8.8
31B	US 31 E	Snyder Frwy (l-265) in Louisville	Clark Bridge (IN State Line)	1.33	5.00	14.0
32	KY 11/KY 32/US 460	KY 9 (AA Highway) in Maysville US 23 in Paintsville		1.62	1.26	8.0
33A	US 127	TN State Line	I-64 near Frankfort	1.57	1.47	10.8
33B	US 127	I-64 near Frankfort	I-71	1.67	1.57	12.0
35A	US 231	TN State Line	Natcher Pkwy (South of Bowling Green)	2.31	3.02	20.0
35B	US 231	Natcher Pkwy (South of Bowling Green)	US 68 in Bowling Green	1.83	1.00	7.6
36A	KY 536	US 42 in Union	KY 17 in Independence	1.68	1.00	6.4
36B	KY 536	KY 17	US 27 near Alexandria	1.84	1.00	7.6
38	US 431	US 60 in Owensboro	TN State Line	2.17	2.80	17.2
39	KY 100/US 31E/KY 90	I-65 Exit 6	US 27 near Somerset	1.72	1.52	12.0
40	US 641	TN State Line	US 60 in Marion	1.93	1.38	10.4
41A	US 421	Broadway (US 27) in Lexington	KY 341 (I-64 Exit 65) near Midway	1.19	1.43	8.4
41B	US 421	KY 341 (I-64 Exit 65)	IN State Line	1.76	1.30	10.4
42A	US 421	VA State Line	I-75 (Exit 97)	1.68	1.15	9.2
42B	US 421/KY 418	I-75 (Exit 104)	US 27 in Lexington	1.81	1.00	7.6
44A	KY 44	I-65 in Shepherdsville	KY 1319 East of Mt. Washington	1.97	3.74	20.0
44B	KY 44	KY 1319 East of Mt. Washington	Taylorsville Rd (KY 55)	1.41	5.00	15.2
46A	KY 245/US 150	I-65 in Clermont	Bluegrass Pkwy	1.88	1.00	7.6
46B	KY 245/US 150	Bluegrass Pkwy near Bardstown	l-75 at Mt. Vernon	1.68	1.14	9.2
50A	US 60	IL State Line	KY 425 BYP in Henderson	1.38	1.85	11.2
50B	US 60	KY 425 BYP in Henderson	Natcher Pkwy in Owensboro	1.50	2.37	12.4
50C	US 60	Natcher Pkwy in Owensboro	US 31 W near Radcliff	1.35	1.00	2.8

6.3.5 Economy

The Tier 2 economic index measures the economic benefits expected from the recommended corridor segment improvements. For the purpose of economic modeling, all corridor segments are assumed to start construction in 2025, complete construction in 2030, and operate over the next 15 years (2031 – 2045), so the economic benefits can be estimated and compared across all segments in a consistent way. For each corridor segment, v8_KYSTMv18 was used to generate 2025, 2030, 2045 "No Build" and "Build" model data, including VMT and VHT by trip purpose, vehicle type, and internal-internal/external-internal/internal-external trip patterns, etc. The model data was entered into the Transportation Economic Development Impact System (TREDIS) software for economic benefit analysis.

Table 6.11 summarizes the economic index and its performance measures: the cumulative number of new jobs and the percent change of Gross Regional Product (GRP). These two performance measures use the same factors from the SHIFT statewide economic competitiveness measure (ECM). The weight of each performance measure was determined based on data collected from the Tier 2 on-line survey mentioned earlier. The cumulative number of new jobs is 55% of the index, while the percent change of GRP is 45% of the index. In overall Tier 2 scoring, the economic index contributes a maximum of 15 points.

• **Cumulative # of Jobs (2030-2045).** This factor (X1) evaluates the relative magnitude of total new jobs created over a 15-year period (2031 – 2045). This is based upon the assumption of completing improvement projects for each corridor segment. As the formula shows below, the cumulative number of new jobs was derived by using TREDIS outputs (e.g., #_Jobs – estimated new jobs in the last year of operation (2045)), then scaled to a value of 0 to 100 by calculating its percentile rank among all Tier 2 segments.

X₁ = #_Jobs x 15 years x 0.5 (scaled by percentile rank)

% Change of GRP (2030-2045). This factor (X2) uses TREDIS outputs to calculate the percent change in GRP over a 15-year period (2031 – 2045). This is based upon the assumption of completing improvement projects for each corridor segment, then scaled to a value of 0 to 100 by calculating its percentile rank among all Tier 2 segments.

ECONOMIC INDEX					
Cumulative # of Jobs (2030-2045) - X ₁	Score		% Change of GRP (2030-2045) - X ₂	Score	
X ₁ < 10	0		X ₂ < 10	0	
10 <= X ₁ < 30	1	10 <= X ₂ < 30 1			
30 <= X ₁ < 50	2	$30 \le X_2 \le 50$ 2		2	
50 <= X ₁ < 65	3	$50 \le X_2 \le 65$ 3		3	
65 <= X ₁ < 85	4		65 <= X ₂ < 85	4	
X ₁ >= 85	5	X ₂ >= 85 5		5	
Economic Score = $0.55X_1 + 0.45X_2$					
Final Score Weight = 15%, Multiplier = 3					

Table 6.11 – Tier 2 Economic Index

Table 6.12 summarizes economic scores. As anticipated, the congested urban corridors in Louisville, Lexington and northern Kentucky tend to score higher for the economic criteria, because they usually connect economic centers and the recommended projects will effectively promote the regional economy by improving safety, mobility, accessibility, etc.

				ECONOMIC INDEX			
Segment ID	Segment Name	From	То	Cumulative # of Job-Years (2030- 2045), Scaled	% Change of GRP (2030- 2045), Scaled	Score	
4A	KY 4 (New Circle Road)	Richmond Rd (US 25/421)	Newtown Pike (KY 922)	75.0	63.6	10.7	
4B	KY 4 (New Circle Road)	Newtown Pike (KY 922)	Richmond Rd (US 25/421)	70.4	54.5	10.7	
5	Man O War Blvd	Versailles Rd (US 60) in Lexington	I-75 in Lexington	100.0	100.0	15.0	
6A	US 60	I-64 in Louisville	KY 1848 in Simpsonville	0.0	0.0	0.0	
6B	US 60	KY 1848 in Simpsonville	US 62 in Versailles	63.6	47.7	7.7	
6C	US 60	US 62 in Versailles	I-75 in Lexington	90.9	90.9	15.0	
9	KY 9 (AA Highway)	I-275	I-64 near Grayson	61.3	84.0	10.4	
10	KY 100 / US 79	TN State Line	I-65 near Franklin	6.8	2.2	0.0	
12	KY 922	Broadway (US 68) in Lexington	I-64/I-75	4.5	20.4	1.4	
15	KY 15	Campton	Whitesburg	43.1	77.2	8.7	
18A	US 31W & KY 61	Columbia	I-65 in Elizabethtown	11.3	6.8	1.7	
18B	US 31W & KY 61	I-65 in Elizabethtown	I-265 in Louisville	97.7	93.1	15.0	
18C	US 31W & KY 61	Snyder Frwy (I-265) in Louisville	I-64 in Louisville	95.4	86.3	15.0	
19	US 25 & US 119	I-75	WV State Line	34.0	40.9	6.0	
23	US 23	OH State Line	US 119 near Pikeville	47.7	65.9	8.7	
27A	US 27	Main St (US 421) in Lexington	US 27/US 68 Split in Paris	56.8	18.1	6.3	
27B	US 27	US 27/US 68 Split in Paris	KY 9 (AA Highway)	65.9	50.0	10.7	
27C	US 27	KY 9 (AA Highway)	OH State Line	59.0	68.1	10.4	
28A	US 68	Man O War Blvd in Lexington	I-64/I-75	72.7	52.2	10.7	
28B	US 68	I-64/I-75	OH State Line	45.4	15.9	4.7	
30A	US 27	TN State Line	US 27 BYP (North of Nicholasville)	52.2	45.4	7.7	
30B	US 27	US 27 BYP (North of Nicholasville)	US 421 in Lexington	77.2	61.3	10.7	
31A	US 31 E	Bluegrass Pkwy south of Bardstown	Snyder Frwy (I-265) in Louisville	93.1	88.6	15.0	
31B	US 31 E	Snyder Frwy (I-265) in Louisville	Clark Bridge (IN State Line)	84.0	72.7	12.0	
32	KY 11/KY 32/US 460	KY 9 (AA Highway) in Maysville	US 23 in Paintsville	38.6	59.0	7.4	

Table 6.12 – Tier 2 Economic Scoring

				ECONOMIC INDEX			
Segment ID	Segment Name	From	То	Cumulative # of Job-Years (2030- 2045), Scaled	% Change of GRP (2030- 2045), Scaled	Score	
33A	US 127	TN State Line	I-64 near Frankfort	27.2	29.5	3.0	
33B	US 127	I-64 near Frankfort	I-71	22.7	25.0	3.0	
35A	US 231	TN State Line	Natcher Pkwy (South of Bowling Green)	18.1	27.2	3.0	
35B	US 231	Natcher Pkwy (South of Bowling Green)	US 68 in Bowling Green	50.0	75.0	10.4	
36A	KY 536	US 42 in Union	KY 17 in Independence	68.1	97.7	13.4	
36B	KY 536	KY 17	US 27 near Alexandria	54.5	56.8	9.0	
38	US 431	US 60 in Owensboro	TN State Line	20.4	22.7	3.0	
39	KY 100/US 31E/KY 90	I-65 Exit 6	US 27 near Somerset	40.9	36.3	6.0	
40	US 641	TN State Line	US 60 in Marion	15.9	13.6	3.0	
41A	US 421	Broadway (US 27) in Lexington	KY 341 (I-64 Exit 65) near Midway	88.6	95.4	15.0	
41B	US 421	KY 341 (I-64 Exit 65)	IN State Line	25.0	34.0	4.4	
42A	US 421	VA State Line	I-75 (Exit 97)	31.8	43.1	6.0	
42B	US 421/KY 418	I-75 (Exit 104)	US 27 in Lexington	2.2	11.3	1.4	
44A	KY 44	I-65 in Shepherdsville	KY 1319 East of Mt. Washington	79.5	70.4	12.0	
44B	KY 44	KY 1319 East of Mt. Washington	Taylorsville Rd (KY 55)	86.3	81.8	13.7	
46A	KY 245/US 150	I-65 in Clermont	Bluegrass Pkwy	81.8	79.5	12.0	
46B	KY 245/US 150	Bluegrass Pkwy near Bardstown	I-75 at Mt. Vernon	36.3	31.8	6.0	
50A	US 60	IL State Line	KY 425 BYP in Henderson	9.0	4.5	0.0	
50B	US 60	KY 425 BYP in Henderson	Natcher Pkwy in Owensboro	29.5	38.6	4.4	
50C	US 60	Natcher Pkwy in Owensboro	US 31 W near Radcliff	13.6	9.0	1.7	

6.3.6 Multi-Infrastructure Bonus

The multi-infrastructure bonus factor evaluates alternative infrastructure opportunities that may be feasible to improve the corridor segment. Based on discussion within the Project Team, five types of alternative strategies, including transit, bike/pedestrian, complete street, Intelligent Transportation system (ITS), and connected/ autonomous vehicles (CAV), were considered for locations where issues are identified and improvements are needed. The alternative strategies bring multi-modal planning benefits and innovative technologies to improve problematic locations, especially when it would be challenging to implement traditional capacity improvement solutions due to various limitations. For each corridor segment, the feasibility of each alternative infrastructure strategy was determined at a high planning level, as described below.

- The transit opportunity is generally considered if it is warranted by the following typical conditions:
 - For improvement locations where there are existing transit facilities, it could be a good opportunity to upgrade or enhance the existing transit service along with the proposed corridor improvements.

- For improvement locations where no transit service exists but it is determined as a gap based on a review of available facilities in the proximity of the corridor and an assessment of access to other adjacent facilities which may connect to the broader regional networks, it could be a good opportunity to propose new transit services.
- Bike/pedestrian opportunities are generally considered if it is warranted by the following typical conditions:
 - In urban and suburban areas, bike/pedestrian facilities are generally recommended as warranted, except for full-access controlled roadway facilities.
 - In rural areas, bike/pedestrian facilities are generally recommended if the improvement locations are in or near small towns or communities.
- Complete Street concepts are generally recommended for locations in urban settings where there are gaps on bike/pedestrian facilities or limited transit service to promote safety and accessibility to activity centers.
- ITS is considered a solution in isolation to address an identified safety issue. All Tier 2 segments have opportunities to deploy the ITS technology.
- CAV technology is considered feasible if there is significant transit service and coordinated traffic signals along the corridor. CAV is not recommended in rural areas, areas with no significant transit service, or if no coordinated traffic signal system exists along the corridor.

Table 6.13 summarizes the rating structure of the multi-infrastructure bonus factor, depending on how many alternative strategies are determined feasible for a given corridor segment. The multi-infrastructure bonus has a maximum of 5 points towards the Tier 2 final total score.

MULTI-INFRASTRUCTURE BONUS (+5 PTS)				
# of Alternative Infrastructure Opportunities (e.g., Transit, Bike/Ped, Complete St, ITS, CAV)	Score			
0 or 1	1			
2 or 3	3			
4 or more	5			

Table 6.13 – Tier 2 Multi-Infrastructure Bonus

Table 6.14 summarizes multi-infrastructure bonus scores. Unsurprisingly, most of the corridors that had high scores are in major urbanized areas including Louisville, Lexington, northern Kentucky, and Bowling Green. Several corridors that run through cities in southern and western Kentucky also received higher scores.

Table 6.14 – Tier 2	Multi-Infrastructure	Bonus Scoring
---------------------	----------------------	----------------------

Comment			MULTI-INFRASTRUCTURE BONUS (+5				5 (+5 PTS)		
ID	Segment Name	From	То	Transit	Bike & Ped	Complete Street	ITS	CAV	Score
4A	KY 4 (New Circle Road)	Richmond Rd (US 25/421)	Newtown Pike (KY 922)	Unlikely	Unlikely	Unlikely	Likely	Likely	3
4B	KY 4 (New Circle Road)	Newtown Pike (KY 922)	Richmond Rd (US 25/421)	Likely	Likely	Unlikely	Likely	Likely	5
5	Man O War Blvd	Versailles Rd (US 60) in Lexington	I-75 in Lexington	Likely	Likely	Unlikely	Likely	Likely	5
6A	US 60	I-64 in Louisville	KY 1848 in Simpsonville	Likely	Likely	Likely	Likely	Likely	5
6B	US 60	KY 1848 in Simpsonville	US 62 in Versailles	Likely	Likely	Unlikely	Likely	Likely	5
6C	US 60	US 62 in Versailles	I-75 in Lexington	Likely	Likely	Likely	Likely	Likely	5
9	KY 9 (AA Highway)	I-275	I-64 near Grayson	Likely	Unlikely	Unlikely	Likely	Unlikely	3
10	KY 100 / US 79	TN State Line	I-65 near Franklin	Unlikely	Unlikely	Unlikely	Likely	Unlikely	1
12	KY 922	Broadway (US 68) in Lexington	I-64/I-75	Likely	Likely	Unlikely	Likely	Likely	5
15	KY 15	Campton	Whitesburg	Unlikely	Unlikely	Unlikely	Likely	Unlikely	1
18A	US 31W & KY 61	Columbia	l-65 in Elizabethtown	Unlikely	Unlikely	Unlikely	Likely	Unlikely	1
18B	US 31W & KY 61	l-65 in Elizabethtown	I-265 in Louisville	Likely	Likely	Unlikely	Likely	Unlikely	3
18C	US 31W & KY 61	Snyder Frwy (l- 265) in Louisville	I-64 in Louisville	Likely	Likely	Likely	Likely	Likely	5
19	US 25 & US 119	I-75	WV State Line	Unlikely	Unlikely	Unlikely	Likely	Unlikely	1
23	US 23	OH State Line	US 119 near Pikeville	Likely	Likely	Unlikely	Likely	Unlikely	3
27A	US 27	Main St (US 421) in Lexington	US 27/US 68 Split in Paris	Likely	Likely	Likely	Likely	Likely	5
27B	US 27	US 27/US 68 Split in Paris	KY 9 (AA Highway)	Likely	Likely	Unlikely	Likely	Unlikely	3
27C	US 27	KY 9 (AA Highway)	OH State Line	Likely	Likely	Unlikely	Likely	Likely	5
28A	US 68	Man O War Blvd in Lexington	I-64/I-75	Likely	Likely	Likely	Likely	Likely	5
28B	US 68	I-64/I-75	OH State Line	Unlikely	Unlikely	Unlikely	Likely	Unlikely	1
30A	US 27	TN State Line	US 27 BYP (North of Nicholasville)	Likely	Likely	Unlikely	Likely	Unlikely	3
30B	US 27	US 27 BYP (North of Nicholasville)	US 421 in Lexington	Likely	Likely	Likely	Likely	Likely	5
31A	US 31 E	Bluegrass Pkwy south of Bardstown	Snyder Frwy (l- 265) in Louisville	Likely	Likely	Unlikely	Likely	Unlikely	3
31B	US 31 E	Snyder Frwy (l- 265) in Louisville	Clark Bridge (IN State Line)	Likely	Likely	Likely	Likely	Likely	5
32	KY 11/KY 32/US 460	KY 9 (AA Highway) in Maysville	US 23 in Paintsville	Likely	Likely	Unlikely	Likely	Unlikely	3

Comment				MULTI-INFRASTRUCTURE BONUS (+5 PT					
ID	Segment Name	From	То	Transit	Bike & Ped	Complete Street	ITS	CAV	Score
33A	US 127	TN State Line	I-64 near Frankfort	Likely	Likely	Unlikely	Likely	Unlikely	3
33B	US 127	l-64 near Frankfort	I-71	Likely	Likely	Unlikely	Likely	Unlikely	3
35A	US 231	TN State Line	Natcher Pkwy (South of Bowling Green)	Likely	Likely	Unlikely	Likely	Unlikely	3
35B	US 231	Natcher Pkwy (South of Bowling Green)	US 68 in Bowling Green	Likely	Likely	Unlikely	Likely	Likely	5
36A	KY 536	US 42 in Union	KY 17 in Independence	Likely	Likely	Unlikely	Likely	Unlikely	3
36B	KY 536	KY 17	US 27 near Alexandria	Likely	Likely	Unlikely	Likely	Unlikely	3
38	US 431	US 60 in Owensboro	TN State Line	Unlikely	Likely	Unlikely	Likely	Unlikely	3
39	KY 100/US 31E/ KY 90	I-65 Exit 6	US 27 near Somerset	Likely	Likely	Unlikely	Likely	Unlikely	3
40	US 641	TN State Line	US 60 in Marion	Unlikely	Unlikely	Unlikely	Likely	Unlikely	1
41A	US 421	Broadway (US 27) in Lexington	KY 341 (I-64 Exit 65) near Midway	Likely	Likely	Unlikely	Likely	Likely	5
41B	US 421	KY 341 (I-64 Exit 65)	IN State Line	Likely	Likely	Unlikely	Likely	Likely	5
42A	US 421	VA State Line	I-75 (Exit 97)	Likely	Likely	Unlikely	Likely	Likely	5
42B	US 421/KY 418	I-75 (Exit 104)	US 27 in Lexington	Likely	Likely	Unlikely	Likely	Likely	5
44A	KY 44	l-65 in Shepherdsville	KY 1319 East of Mt. Washington	Likely	Likely	Unlikely	Likely	Unlikely	3
44B	KY 44	KY 1319 East of Mt. Washington	Taylorsville Rd (KY 55)	Unlikely	Likely	Unlikely	Likely	Unlikely	3
46A	KY 245/US 150	I-65 in Clermont	Bluegrass Pkwy	Unlikely	Unlikely	Unlikely	Likely	Unlikely	1
46B	KY 245/US 150	Bluegrass Pkwy near Bardstown	I-75 at Mt. Vernon	Likely	Likely	Unlikely	Likely	Unlikely	3
50A	US 60	IL State Line	KY 425 BYP in Henderson	Likely	Likely	Unlikely	Likely	Likely	5
50B	US 60	KY 425 BYP in Henderson	Natcher Pkwy in Owensboro	Unlikely	Likely	Unlikely	Likely	Likely	3
50C	US 60	Natcher Pkwy in Owensboro	US 31 W near Radcliff	Unlikely	Unlikely	Unlikely	Likely	Likely	3

6.4 TIER 2 PERFORMANCE INDICATORS

The Tier 2 quantitative performance criteria only tell a portion of the story. There are "intangible" performance indicators such as project delivery timeline, planning-level project cost estimation, and economic feasibility (calculation of a planning level Benefit/Cost (B/C) ratio) that are part of the decision-making process as well to support Tier 2 corridor prioritization and selection. Brief descriptions for these performance indicators follow.

6.4.1 Project Delivery Timeline

Table 6.15 shows a project deliver timeline indicator based on the amount of time estimated to develop the improvement concepts and get them constructed. Concepts which are anticipated to have a faster delivery receive a higher score.

PROJECT DELIVERY TIMELINE					
Duration	Score				
> 15 Years	Very Low (0)				
10 - 15 Years	Low (L)				
5 - 10 Years	Medium (M)				
< 5 Years	High (H)				

Table 6.15 – Project Delivery Timeline

In general, the complexity of project (and sometimes length) will control delivery time, not necessarily cost. The project delivery timeline was determined at a high planning level based on a guideline provided by KYTC, as described below:

- < 5 Years
 - Spot improvements with no right of way or utilities (cost ballpark around \$500,000).
 - Basic signal work, optimization, ITS deployments.
 - Bridge rehabilitation with no associated environmental concerns or roadway improvements (otherwise roadway improvements control timeline).
 - Minor intersection improvements (adding a turn lane where there's currently a median, etc.).
 - Anything that would require minimal environmental documentation such as a Categorical Exclusion (CE) for Minor Projects (CEMP), CE 1, or CE 2.
 - Completing an original 2 lane initial/4 lane ultimate where the right-of-way (ROW) for other lanes have been bought, cleared and graded.
 - Freeway widening (in median) and rehabilitation between adjacent interchanges (unless there's significant bridge work; if bridge work involved then it would increase to the next level of 5-10 years).
- 5-10 Years
 - Select longer (7-15 mile) segments with no ROW or utilities (e.g., adding a couple feet of shoulder on existing ROW).
 - Shorter segments (less than approximately 7 miles) with minimal/low ROW, utility impacts.
 - Bridge replacement with no associated environmental concerns or roadway improvements (otherwise roadway will control).
 - Rural interchange modifications (i.e., parkway tollbooth interchange to simple diamond).
 - Major intersection improvements requiring ROW, utility relocation.
 - Anything requiring a CE 3.
- 10-15 Years
 - Long segments (> 15 miles) with no ROW or utilities.
 - Short segments (< 15 miles) with significant ROW, utility impacts (basically any new 2- to 4-lane

widening).

- New rural service interchange.
- Urban interchange modification.
- Anything that gets to an Environmental Assessment (EA) and a Finding of No Significant Impact (FONSI).
- > 15 Years
 - Long segments (> 15 miles) with significant ROW, utility impacts.
 - New system interchange or system interchange modification.
 - New urban interchange.
 - > 500-ft span bridge replacement.
 - Anything that gets to an Environmental Impact Statement (EIS) and a Record of Decision (ROD).

Table 6.16 summarizes project delivery timeline scores for all Tier 2 segments. It is noted that if there are various types of recommended improvement concepts along a segment, the most time-consuming project controls; if more than one improvement concept is proposed at the same location, the larger-scale project controls. All segments have anticipated delivery timeline greater than five years.

Segment ID	Segment Name From		То	PROJECT DELIVERY TIMELINE	
				Years	Score
4A	KY 4 (New Circle Road)	Richmond Rd (US 25/421)	Newtown Pike (KY 922)	10 - 15	L
4B	KY 4 (New Circle Road)	Newtown Pike (KY 922)	Richmond Rd (US 25/421)	10 - 15	L
5	Man O War Blvd	Versailles Rd (US 60) in Lexington	I-75 in Lexington	> 15	0
6A	US 60	I-64 in Louisville	KY 1848 in Simpsonville	10 - 15	L
6B	US 60	KY 1848 in Simpsonville	US 62 in Versailles	5 - 10	М
6C	US 60	US 62 in Versailles	I-75 in Lexington	10 - 15	L
9	KY 9 (AA Highway)	I-275	I-64 near Grayson	5 - 10	М
10	KY 100/US 79	TN State Line	I-65 near Franklin	10 - 15	L
12	KY 922	Broadway (US 68) in Lexington	I-64/I-75	10 - 15	L
15	KY 15	Campton	Whitesburg	10 - 15	L
18A	US 31W & KY 61	Columbia	I-65 in Elizabethtown	10 - 15	L
18B	US 31W & KY 61	I-65 in Elizabethtown	I-265 in Louisville	> 15	0
18C	US 31W & KY 61	Snyder Frwy (I-265) in Louisville	I-64 in Louisville	5 - 10	М
19	US 25 & US 119	I-75	WV State Line	10 - 15	L
23	US 23	OH State Line	US 119 near Pikeville	10 - 15	L
27A	US 27	Main St (US 421) in Lexington	US 27/US 68 Split in Paris	5 - 10	М
27B	US 27	US 27/US 68 Split in Paris	KY 9 (AA Highway)	10 - 15	L
27C	US 27	KY 9 (AA Highway)	OH State Line	10 - 15	L
28A	US 68	Man O War Blvd in Lexington	I-64/I-75	10 - 15	L
28B	US 68	I-64/I-75	OH State Line	5 - 10	М
30A	US 27	TN State Line	US 27 BYP (North of Nicholasville)	10 - 15	L
30B	US 27	US 27 BYP (North of Nicholasville)	US 421 in Lexington	10 - 15	L

Table 6.16 – Project Delivery Timeline Scoring

Segment ID	Segment Name From		То	PROJECT DELIVERY TIMELINE	
				Years	Score
31A	US 31 E	Bluegrass Pkwy south of Bardstown	Snyder Frwy (I-265) in Louisville	10 - 15	L
31B	US 31 E	Snyder Frwy (I-265) in Louisville	Clark Bridge (IN State Line)	10 - 15	L
32	KY 11/KY 32/US 460	KY 9 (AA Highway) in Maysville	US 23 in Paintsville	10 - 15	L
33A	US 127	TN State Line	I-64 near Frankfort	5 - 10	М
33B	US 127	I-64 near Frankfort	I-71	5 - 10	М
35A	US 231	TN State Line	Natcher Pkwy (South of Bowling Green)	5 - 10	М
35B	US 231	Natcher Pkwy (South of Bowling Green) US 68 in Bowling Green 1		10 - 15	L
36A	KY 536	US 42 in Union	KY 17 in Independence	10 - 15	L
36B	KY 536	KY 17	US 27 near Alexandria	10 - 15	L
38	US 431	US 60 in Owensboro	TN State Line	5 - 10	М
39	KY 100/US 31E/KY 90	I-65 Exit 6	US 27 near Somerset	5 - 10	М
40	US 641	TN State Line	US 60 in Marion	5 - 10	М
41A	US 421	Broadway (US 27) in Lexington	KY 341 (I-64 Exit 65) near Midway	10 - 15	L
41B	US 421	KY 341 (I-64 Exit 65)	IN State Line	5 - 10	М
42A	US 421	VA State Line	I-75 (Exit 97)	10 - 15	L
42B	US 421/KY 418	I-75 (Exit 104)	US 27 in Lexington	10 - 15	L
44A	KY 44	I-65 in Shepherdsville	KY 1319 East of Mt. Washington	10 - 15	L
44B	KY 44	KY 1319 East of Mt. Washington	Taylorsville Rd (KY 55)	10 - 15	L
46A	KY 245/US 150	I-65 in Clermont	Bluegrass Pkwy	5 - 10	М
46B	KY 245/US 150	Bluegrass Pkwy near Bardstown	I-75 at Mt. Vernon	5 - 10	М
50A	US 60	IL State Line	KY 425 BYP in Henderson	5 - 10	М
50B	US 60	KY 425 BYP in Henderson	Natcher Pkwy in Owensboro	5 - 10	М
50C	US 60	Natcher Pkwy in Owensboro	US 31 W near Radcliff	5 - 10	М

6.4.2 Cost

Preliminary cost estimates (in 2020 dollars) were prepared for the improvement concepts through Tier 2 corridor scoping. The detail of the cost estimate was on a high level such as "typical cost per mile", "typical cost per interchange", "typical cost per intersection", or "typical cost per sq ft (bridge deck area)", in terms of improvement categories identified by the Project Team.

Table 6.17 shows itemized unit cost (design, ROW, utility and construction) by improvement category and KYTC district. The unit costs were originally provided by KYTC Districts 6, 8 and 10. The same unit costs were applied to other KYTC districts that are geographically similar and tend to have consistent cost estimates based on an arrangement recommended by KYTC:

- Rolling Settings (D8): D1, D2, D3, D4, D8, D9
- Populous Urban (D6): D5, D6, D7
- Mountainous Settings (D10): D10, D11, D12

The following guidelines were also used in cost estimations to meet project needs:

- 1. The cost estimation may not include additional costs to address the potential impacts of major utilities (e.g., gas line, major water supplier, transmission line) within the proximity of the corridor, due to the lack of data when the cost was estimated. Further investigation is recommended in future phases/studies.
- 2. Cost estimation was based on 2020 dollars. There is a 1-3% inflation rate. Estimated cost could vary -50% to +250% of the actual number as a rule of thumb.
- 3. The widening of a 2-lane facility to a 3-lane facility (with TWLTL or alternating passing lane) is considered as "Minor Widening (Undivided Road) 2 Lane to 4 Lane".
- 4. The cost estimation does not include bridges outside of the bottleneck locations, as they are not assumed to rise to the level of a corridor improvement. The cost estimation only includes necessary bridge replacement/ rehab/widening costs within the bottleneck locations with proposed widening improvement.
- 5. Cost estimation does not account for existing KYTC projects that are included in the proposed improvement concepts and are already under construction.
- 6. Shoulder widening is not included in the cost estimation, as it is a relatively minor cost.
- 7. If multiple improvement concepts are recommended for the corridor, only the cost of the larger-scale improvement concept is estimated.
- 8. For several segments that require railroad widening, the costs were estimated based on research of similar projects.

Table 6.18 lists the total cost (D+R+U+C) of the improvement concept for each Tier 2 segment. Note that the cost was not estimated for corridor 31B (US 31 E from I-265 to Indiana state line in Louisville), because it is a highly challenging corridor with various constraints limiting improvement opportunities and no specific improvement projects were proposed as part of this study. Future study is recommended for corridor 31B.

Appendix H includes complete cost estimation sheets for all Tier 2 segments.

Table 6.17 – Unit Cost by Improvement Category & District

IMPROVEMENTS CATEGORY	UNIT COST		D5, D	06, D7		D1, D2, D3, D4, D8, D9			D10, D11, D12				
New Roadways		D	R	U	с	D	R	U	с	D	R	U	с
New 4 Lane Expressway	Per Mile	\$1,500,000	\$2,000,000	\$400,000	\$10,000,000	\$1,200,000	\$1,600,000	\$1,200,000	\$13,000,000	\$1,000,000	\$850,000	\$500,000	\$10,000,000
New Super 2 Highway	Per Mile	\$1,500,000	\$2,000,000	\$400,000	\$10,000,000	\$500,000	\$1,300,000	\$1,100,000	\$6,000,000	\$650,000	\$625,000	\$275,000	\$6,000,000
New 2 Lane Highway	Per Mile	\$1,125,000	\$1,500,000	\$300,000	\$7,500,000	\$500,000	\$1,200,000	\$1,100,000	\$4,000,000	\$650,000	\$625,000	\$275,000	\$6,000,000
Major Widening (Divided Road)		D	R	U	С	С	R	U	с	D	R	U	С
4 Lane to 6 Lane (Rural)	Per Mile	\$1,000,000	\$2,000,000	\$400,000	\$10,000,000	\$1,500,000	\$600,000	\$500,000	\$4,000,000	\$1,000,000	\$700,000	\$500,000	\$12,500,000
4 Lane to 6 Lane (Urban)	Per Mile	\$1,800,000	\$6,500,000	\$1,500,000	\$12,000,000	\$1,000,000	\$1,200,000	\$800,000	\$5,200,000	\$2,000,000	\$3,500,000	\$1,500,000	\$25,000,000
2 Lane to 4 Lane (Rural)	Per Mile	\$1,000,000	\$2,000,000	\$400,000	\$10,000,000	\$1,100,000	\$600,000	\$500,000	\$4,000,000	\$1,000,000	\$700,000	\$500,000	\$12,500,000
2 Lane to 4 Lane (Urban)	Per Mile	\$1,800,000	\$6,500,000	\$1,500,000	\$12,000,000	\$1,000,000	\$1,200,000	\$800,000	\$5,200,000	\$2,000,000	\$3,500,000	\$1,500,000	\$25,000,000
Minor Widening (Undivided Road)		D	R	U	с	D	R	U	С	D	R	U	с
2 Lane to 4 Lane (Rural)	Per Mile	\$1,200,000	\$1,600,000	\$320,000	\$8,000,000	\$1,100,000	\$600,000	\$400,000	\$4,000,000	\$600,000	\$420,000	\$300,000	\$7,500,000
2 Lane to 4 Lane (Urban)	Per Mile	\$1,800,000	\$6,500,000	\$1,500,000	\$12,000,000	\$1,500,000	\$1,200,000	\$700,000	\$5,200,000	\$1,200,000	\$2,100,000	\$900,000	\$15,000,000
Arterial Upgrade to Pkwy/Expwy		D	R	U	с	D	R	U	С	D	R	U	с
Upgrade with Pavement Reconstruction	Per Mile	n/a	n/a	n/a	n/a	\$1,000,000	\$750,000	\$1,200,000	\$8,000,000	\$2,000,000	\$3,500,000	\$1,500,000	\$15,000,000
Upgrade with Pavement Rehab	Per Mile	n/a	n/a	n/a	n/a	\$500,000	\$200,000	\$100,000	\$1,000,000	\$1,000,000	\$700,000	\$500,000	\$12,500,000

Table 6.17 – Unit Cost by Improvement Category & District (Continued)

IMPROVEMENTS CATEGORY	UNIT COST	D5, D6, D7				D1, D2, D3, D4, D8, D9			D10, D11, D12				
Grade Separation/ Interchange		D	R	U	с	D	R	U	С	D	R	U	с
New Service Interchange (Rural)	Per Interchange	\$1,500,000	\$3,000,000	\$600,000	\$15,000,000	\$1,400,000	\$1,000,000	\$800,000	\$8,500,000	\$1,250,000	\$1,000,000	\$350,000	\$12,500,000
New Service Interchange (Urban)	Per Interchange	\$3,000,000	\$10,000,000	\$2,500,000	\$20,000,000	\$1,500,000	\$1,600,000	\$1,500,000	\$10,000,000	\$1,500,000	\$1,250,000	\$500,000	\$17,500,000
Interchange Modification (Rural)	Per Interchange	\$3,000,000	\$10,000,000	\$2,500,000	\$20,000,000	\$600,000	\$1,200,000	\$300,000	\$7,200,000	\$700,000	\$400,000	\$200,000	\$9,000,000
Interchange Modification (Urban)	Per Interchange	\$3,750,000	\$12,500,000	\$3,125,000	\$25,000,000	\$1,200,000	\$2,400,000	\$1,000,000	\$10,500,000	n/a	n/a	n/a	n/a
Grade Separation Only	Per Grade Separation	\$300,000	\$600,000	\$250,000	\$2,000,000	\$500,000	\$700,000	\$500,000	\$3,500,000	\$625,000	\$500,000	\$175,000	\$6,250,000
Major Intersection Improvement		D	R	U	с	D	R	U	С	D	R	U	С
>= 4 lanes in both directions	Per Intersection	\$600,000	\$2,200,000	\$500,000	\$4,000,000	\$100,000	\$200,000	\$300,000	\$4,000,000	\$350,000	\$500,000	\$350,000	\$3,500,000
< 4 lanes in both directions	Per Intersection	\$375,000	\$1,375,000	\$312,500	\$2,500,000	\$100,000	\$100,000	\$100,000	\$2,000,000	\$250,000	\$350,000	\$250,000	\$2,000,000
Major Structure		D	R	U	С	D	R	U	С	D	R	U	С
Bridge Replacement	Per Sq Ft (Deck Area)	\$50	\$125	\$50	\$300	\$50	\$1	\$1	\$325	\$125	\$75	\$30	\$300
Bridge Rehab	Per Sq Ft (Deck Area)	\$50	\$25	\$10	\$300	\$25	\$0	\$0	\$300	\$300	\$8	\$5	\$200

Table 6.18 – Cost of Tier 2 Improvement Concepts

Segment ID	Segment Name	From	То	D+R+U+C Cost (\$M in 2020 Dollars)
4A	KY 4 (New Circle Road)	Richmond Rd (US 25/421)	Newtown Pike (KY 922)	381.7
4B	KY 4 (New Circle Road)	Newtown Pike (KY 922)	Richmond Rd (US 25/421)	245.6
5	Man O War Blvd	Versailles Rd (US 60) in Lexington	I-75 in Lexington	593.5
6A	US 60	I-64 in Louisville	KY 1848 in Simpsonville	278.9
6B	US 60	KY 1848 in Simpsonville	US 62 in Versailles	258.9
6C	US 60	US 62 in Versailles	I-75 in Lexington	448.9
9	KY 9 (AA Highway)	I-275	I-64 near Grayson	229.0
10	KY 100/US 79	TN State Line	I-65 near Franklin	50.5
12	KY 922	Broadway (US 68) in Lexington	I-64/I-75	236.3
15	KY 15	Campton	Whitesburg	35.8
18A	US 31W & KY 61	Columbia	I-65 in Elizabethtown	9.2
18B	US 31W & KY 61	l-65 in Elizabethtown	I-265 in Louisville	346.5
18C	US 31W & KY 61	Snyder Frwy (I-265) in Louisville	I-64 in Louisville	188.9
19	US 25 & US 119	I-75	WV State Line	79.9
23	US 23	OH State Line	US 119 near Pikeville	188.7
27A	US 27	Main St (US 421) in Lexington	US 27/US 68 Split in Paris	87.6
27B	US 27	US 27/US 68 Split in Paris	KY 9 (AA Highway)	95.2
27C	US 27	KY 9 (AA Highway)	OH State Line	245.7
28A	US 68	Man O War Blvd in Lexington	I-64/I-75	235.2
28B	US 68	I-64/I-75	OH State Line	36.5
30A	US 27	TN State Line	US 27 BYP (North of Nicholasville)	199.0
30B	US 27	US 27 BYP (North of Nicholasville)	US 421 in Lexington	278.4
31A	US 31 E	Bluegrass Pkwy south of Bardstown	Snyder Frwy (I-265) in Louisville	236.6
31B	US 31 E	Snyder Frwy (I-265) in Louisville	Clark Bridge (IN State Line)	n/a
32	KY 11/KY 32/US 460	KY 9 (AA Highway) in Maysville	US 23 in Paintsville	92.0
33A	US 127	TN State Line	I-64 near Frankfort	138.8
33B	US 127	I-64 near Frankfort	I-71	23.7
35A	US 231	TN State Line	Natcher Pkwy (South of Bowling Green)	16.5
35B	US 231	Natcher Pkwy (South of Bowling Green)	US 68 in Bowling Green	91.4
36A	KY 536	US 42 in Union	KY 17 in Independence	104.9
36B	KY 536	KY 17	US 27 near Alexandria	27.0
38	US 431	US 60 in Owensboro	TN State Line	29.9
39	KY 100/US 31E/KY 90	I-65 Exit 6	US 27 near Somerset	31.3
40	US 641	TN State Line	US 60 in Marion	120.9
41A	US 421	Broadway (US 27) in Lexington	KY 341 (I-64 Exit 65) near Midway	233.4
41B	US 421	KY 341 (I-64 Exit 65)	IN State Line	73.9
42A	US 421	VA State Line	I-75 (Exit 97)	119.2
42B	US 421/KY 418	I-75 (Exit 104)	US 27 in Lexington	215.0

Segment ID	Segment Name	From	То	D+R+U+C Cost (\$M in 2020 Dollars)
44A	KY 44	I-65 in Shepherdsville	KY 1319 East of Mt. Washington	258.7
44B	KY 44	KY 1319 East of Mt. Washington	Taylorsville Rd (KY 55)	93.6
46A	KY 245/US 150	I-65 in Clermont	Bluegrass Pkwy	59.7
46B	KY 245/US 150	Bluegrass Pkwy near Bardstown	I-75 at Mt. Vernon	35.7
50A	US 60	IL State Line	KY 425 BYP in Henderson	92.0
50B	US 60	KY 425 BYP in Henderson	Natcher Pkwy in Owensboro	27.6
50C	US 60	Natcher Pkwy in Owensboro	US 31 W near Radcliff	18.4

6.4.3 Economic Feasibility

This economic feasibility indicator evaluates the effectiveness of corridor concepts to improve the transportation efficiency which promotes Kentucky's economy. A benefit/cost (B/C) ratio was derived from the total societal benefit estimated by TREDIS and the cost of corridor concepts described in Section 6.4.2. In TREDIS, the total societal benefit accounts for all user benefits (in travel time, expense, and safety), logistics benefits, and indirect benefits (e.g., air quality, water quality, noise impacts) in 2020 dollars. As Table 6.19 shows, the economic feasibility score (Low, Medium, High) was determined based on the anticipated B/C ratio of improvement concepts.

Table 6.19 – Tier 2 Economic Feasibility

ECONOMIC FEASIBILITY					
B/C Ratio	Score				
< 2	Low (L)				
2 - 5	Medium (M)				
> 5	High (H)				

Table 6.20 summarizes Tier 2 economic feasibility scores. In general, urban corridor segments in Louisville, Lexington, and northern Kentucky as well as KY 15 in eastern Kentucky received higher scores (higher B/C ratios), indicating that improvements on these corridors are more efficient in promoting the economy of Kentucky. Several segments have negative B/C ratios, because TREDIS estimates negative total societal benefits over the 15-year analysis period (2030-2045). Segment 31B has no B/C ratio because its cost is not available due to the reason described in Section 6.4.2.

Table 6.20 – Tier 2	2 Economic	Feasibility	Scoring
---------------------	------------	-------------	---------

Segment	Segment Name	From	То	ECONOMIC FEASIBILITY		
שו				B/C Ratio	Score	
4A	KY 4 (New Circle Road)	Richmond Rd (US 25/421)	Newtown Pike (KY 922)	2.6	М	
4B	KY 4 (New Circle Road)	Newtown Pike (KY 922)	Richmond Rd (US 25/421)	2.9	М	
5	Man O War Blvd	Versailles Rd (US 60) in Lexington	I-75 in Lexington	5.2	Н	
6A	US 60	I-64 in Louisville	KY 1848 in Simpsonville	9.8	Н	
6B	US 60	KY 1848 in Simpsonville	US 62 in Versailles	1.9	L	
6C	US 60	US 62 in Versailles	I-75 in Lexington	4.5	М	
9	KY 9 (AA Highway)	I-275	l-64 near Grayson	4.1	М	

Segment	egment Segment Name From		То	ECONC FEASIB	
U				B/C Ratio	Score
10	KY 100 / US 79	TN State Line	I-65 near Franklin	-1.0	L
12	KY 922	Broadway (US 68) in Lexington	I-64/I-75	1.2	L
15	KY 15	Campton	Whitesburg	6.1	н
18A	US 31W & KY 61	Columbia	I-65 in Elizabethtown	-0.8	L
18B	US 31W & KY 61	I-65 in Elizabethtown	I-265 in Louisville	13.0	Н
18C	US 31W & KY 61	Snyder Frwy (I-265) in Louisville	I-64 in Louisville	10.1	н
19	US 25 & US 119	I-75	WV State Line	2.3	М
23	US 23	OH State Line	US 119 near Pikeville	1.9	L
27A	US 27	Main St (US 421) in Lexington	US 27/US 68 Split in Paris	0.8	L
27B	US 27	US 27/US 68 Split in Paris	KY 9 (AA Highway)	5.1	н
27C	US 27	KY 9 (AA Highway)	OH State Line	3.7	М
28A	US 68	Man O War Blvd in Lexington	I-64/I-75	2.9	М
28B	US 68	I-64/I-75	OH State Line	1.0	L
30A	US 27	TN State Line	US 27 BYP (North of Nicholasville)	-6.2	L
30B	US 27	US 27 BYP (North of Nicholasville)	US 421 in Lexington	3.1	М
31A	US 31 E	Bluegrass Pkwy south of Bardstown	Snyder Frwy (I-265) in Louisville	12.1	н
31B	US 31 E	Snyder Frwy (I-265) in Louisville	Clark Bridge (IN State Line)	n/a	n/a
32	KY 11/KY 32/US 460	KY 9 (AA Highway) in Maysville	US 23 in Paintsville	2.2	М
33A	US 127	TN State Line	I-64 near Frankfort	1.2	L
33B	US 127	I-64 near Frankfort	I-71	2.6	М
35A	US 231	TN State Line	Natcher Pkwy (South of Bowling Green)	2.6	М
35B	US 231	Natcher Pkwy (South of Bowling Green)	US 68 in Bowling Green	3.7	М
36A	KY 536	US 42 in Union	KY 17 in Independence	34.4	Н
36B	KY 536	KY 17	US 27 near Alexandria	10.5	Н
38	US 431	US 60 in Owensboro	TN State Line	1.6	L
39	KY 100/US 31E/KY 90	I-65 Exit 6	US 27 near Somerset	3.3	М
40	US 641	TN State Line	US 60 in Marion	1.0	L
41A	US 421	Broadway (US 27) in Lexington	KY 341 (I-64 Exit 65) near Midway	4.4	М
41B	US 421	KY 341 (I-64 Exit 65)	IN State Line	1.9	L
42A	US 421	VA State Line	I-75 (Exit 97)	1.5	L
42B	US 421/KY 418	I-75 (Exit 104)	US 27 in Lexington	-2.6	L
44A	KY 44	I-65 in Shepherdsville	KY 1319 East of Mt. Washington	3.4	М
44B	KY 44	KY 1319 East of Mt. Washington	Taylorsville Rd (KY 55)	8.5	Н
46A	KY 245/US 150	I-65 in Clermont	Bluegrass Pkwy	10.1	н
46B	KY 245/US 150	Bluegrass Pkwy near Bardstown	I-75 at Mt. Vernon	2.5	М
50A	US 60	IL State Line	KY 425 BYP in Henderson	0.7	L
50B	US 60	KY 425 BYP in Henderson	Natcher Pkwy in Owensboro	4.6	М
50C	US 60	Natcher Pkwy in Owensboro	US 31 W near Radcliff	0.3	L

6.5.1 Tier 2 Quantitative Scores

The Tier 2 quantitative analysis results are shown below based on the performance criteria and scoring methodology described in Section 6.3. The scores from the various performance criteria have been combined into a single corridor segment score as shown in **Table 6.21**. Tier 2 corridor segments were sorted by the single quantitative score, in descending order, with the highest score on top. **Figure 6.2** illustrates the segment ranking based on the single quantitative score. **Table 6.22** lists the corridor segments in the same descending order of Tier 2 quantitative performance score, but also summarizes the intangible performance indicators to the right of each score.

Segment	Segment	Mobility Index	Reliability Bonus	Accessibility Index	Safety Index	Infrastructure Index	Economic Index	Multi- Infrastructure Bonus	Tieı (Quanti	r 2 tative)
	Name	20%	+5 points	20%	25%	20%	15%	+5 points	Score (0-110)	Rank
18B	US 31W & KY 61	18.8	4.0	20.0	20.0	17.2	15.0	3.0	98.0	1
6C	US 60	13.6	4.0	20.0	17.5	15.2	15.0	5.0	90.3	2
4B	KY 4 (New Circle Road)	14.4	5.0	8.4	20.0	20.0	10.7	5.0	83.5	3
41A	US 421	16.0	4.0	14.6	17.5	8.4	15.0	5.0	80.5	4
4A	KY 4 (New Circle Road)	20.0	3.0	7.6	17.5	16.4	10.7	3.0	78.2	5
36A	KY 536	20.0	4.0	14.6	15.0	6.4	13.4	3.0	76.4	6
5	Man O War Blvd	16.0	4.0	18.2	15.0	2.8	15.0	5.0	76.0	7
44A	KY 44	13.2	3.0	4.4	20.0	20.0	12.0	3.0	75.6	8
31A	US 31 E	17.6	3.0	12.8	12.5	8.8	15.0	3.0	72.7	9
31B	US 31 E	2.4	5.0	5.4	25.0	14.0	12.0	5.0	68.8	10
6B	US 60	5.6	3.0	18.2	12.5	16.4	7.7	5.0	68.4	11
50B	US 60	6.8	2.0	17.8	20.0	12.4	4.4	3.0	66.4	12
35B	US 231	9.2	4.0	8.8	20.0	7.6	10.4	5.0	65.0	13
18C	US 31W & KY 61	6.0	4.0	6.2	22.5	6.0	15.0	5.0	64.7	14
30A	US 27	10.0	2.0	12.4	20.0	9.6	7.7	3.0	64.7	15
42B	US 421/KY 418	9.6	5.0	10.6	25.0	7.6	1.4	5.0	64.2	16
27C	US 27	16.0	4.0	8.8	12.5	6.4	10.4	5.0	63.1	17
28A	US 68	8.4	5.0	11.6	20.0	1.2	10.7	5.0	61.9	18
44B	KY 44	3.6	0.0	8.4	15.0	15.2	13.7	3.0	58.9	19
30B	US 27	9.6	4.0	14.2	12.5	2.8	10.7	5.0	58.8	20
27A	US 27	3.6	3.0	12.0	20.0	8.4	6.3	5.0	58.3	21

Table 6.21 – Tier 2 Quantitative Scores & Ranks

Segment	Segment	Mobility Index	Mobility IndexReliability BonusAccessibility IndexSafety 	Economic Index	Multi- Infrastructure Bonus	Tieı (Quanti	r 2 tative)			
שו	Name	20%	+5 points	20%	25%	20%	15%	+5 points	Score (0-110)	Rank
6A	US 60	9.6	4.0	7.6	15.0	16.0	0.0	5.0	57.2	22
23	US 23	14.8	2.0	13.4	5.0	9.6	8.7	3.0	56.5	23
38	US 431	4.0	1.0	15.6	12.5	17.2	3.0	3.0	56.3	24
46B	KY 245/US 150	2.4	0.0	11.6	20.0	9.2	6.0	3.0	52.2	25
27B	US 27	11.2	2.0	0.0	12.5	10.8	10.7	3.0	50.2	26
35A	US 231	5.2	0.0	6.2	12.5	20.0	3.0	3.0	49.9	27
9	KY 9 (AA Highway)	15.2	3.0	10.6	2.5	4.0	10.4	3.0	48.7	28
39	KY 100/US 31E/KY 90	5.6	0.0	15.6	2.5	12.0	6.0	3.0	44.7	29
32	KY 11/KY 32/US 460	7.2	2.0	14.6	2.5	8.0	7.4	3.0	44.7	30
19	US 25 & US 119	10.8	1.0	11.6	5.0	9.2	6.0	1.0	44.6	31
50A	US 60	2.8	1.0	7.2	15.0	11.2	0.0	5.0	42.2	32
40	US 641	2.8	1.0	11.2	12.5	10.4	3.0	1.0	41.9	33
12	KY 922	9.6	5.0	11.6	5.0	2.8	1.4	5.0	40.4	34
41B	US 421	1.2	2.0	9.8	7.5	10.4	4.4	5.0	40.3	35
46A	KY 245/US 150	5.2	2.0	1.8	10.0	7.6	12.0	1.0	39.6	36
15	KY 15	5.6	1.0	10.6	5.0	6.8	8.7	1.0	38.7	37
33A	US 127	2.4	1.0	13.4	5.0	10.8	3.0	3.0	38.6	38
42A	US 421	0.0	1.0	10.2	5.0	9.2	6.0	5.0	36.4	39
36B	KY 536	0.0	1.0	0.0	15.0	7.6	9.0	3.0	35.6	40
33B	US 127	3.2	2.0	4.0	7.5	12.0	3.0	3.0	34.7	41
10	KY 100 / US 79	0.0	1.0	9.4	5.0	16.4	0.0	1.0	32.8	42
18A	US 31W & KY 61	1.6	0.0	7.2	2.5	16.0	1.7	1.0	30.0	43
28B	US 68	1.6	0.0	9.8	2.5	8.4	4.7	1.0	28.0	44
50C	US 60	2.4	0.0	9.0	5.0	2.8	1.7	3.0	23.9	45

Table 6.22 – Tier 2 Quantitative Scores, Ranks & Qualitative Indicators

		Tier 2 (Quantitative)		Tier 2 (Qualitative)			
Segment ID	Segment Name	Score	Rank	Project Delivery Timeline	B/C Ratio	D+R+U+C Cost (\$M)	
18B	US 31W & KY 61	98.0	1	0	13.0	346.5	
6C	US 60	90.3	2	L	4.5	448.9	
4B	KY 4 (Lexington BYP)	83.5	3	L	2.9	245.6	
41A	US 421	80.5	4	L	4.4	233.4	
4A	KY 4 (Lexington BYP)	78.2	5	L	2.6	381.7	
36A	KY 536	76.4	6	L	34.4	104.9	
5	Man O War Blvd	76.0	7	0	5.2	593.5	
44A	KY 44	75.6	8	L	3.4	258.7	
31A	US 31 E	72.7	9	L	12.1	236.6	
31B	US 31 E	68.8	10	L	n/a	n/a	
6B	US 60	68.4	11	Μ	1.9	258.9	
50B	US 60	66.4	12	М	4.6	27.6	
35B	US 231	65.0	13	L	3.7	91.4	
18C	US 31W & KY 61	64.7	14	Μ	10.1	188.9	
30A	US 27	64.7	15	L	-6.2	199.0	
42B	US 421/KY 418	64.2	16	L	-2.6	215.0	
27C	US 27	63.1	17	L	3.7	245.7	
28A	US 68	61.9	18	L	2.9	235.2	
44B	KY 44	58.9	19	L	8.5	93.6	
30B	US 27	58.8	20	L	3.1	278.4	
27A	US 27	58.3	21	Μ	0.8	87.6	
6A	US 60	57.2	22	L	9.8	278.9	
23	US 23	56.5	23	L	1.9	188.7	
38	US 431	56.3	24	М	1.6	29.9	
46B	KY 245/US 150	52.2	25	М	2.5	35.7	
27B	US 27	50.2	26	L	5.1	95.2	
35A	US 231	49.9	27	М	2.6	16.5	
9	KY 9 (AA Highway)	48.7	28	М	4.1	229.0	
39	KY 100/US 31E/KY 90	44.7	29	М	3.3	31.3	
32	KY 11/KY 32/US 460	44.7	30	L	2.2	92.0	
19	US 25 & US 119	44.6	31	L	2.3	79.9	
50A	US 60	42.2	32	М	0.7	92.0	
40	US 641	41.9	33	М	1.0	120.9	
12	KY 922	40.4	34	L	1.2	236.3	
41B	US 421	40.3	35	М	1.9	73.9	
46A	KY 245/US 150	39.6	36	Μ	10.1	59.7	
15	KY 15	38.7	37	L	6.1	35.8	
33A	US 127	38.6	38	Μ	1.2	138.8	
42A	US 421	36.4	39	L	1.5	119.2	
36B	KY 536	35.6	40	L	10.5	27.0	

Commont ID	Comment Nome	Tier 2 (Quantitative)		Tier 2 (Qualitative)			
Segment ID	Segment Name	Score	Rank	Project Delivery Timeline	B/C Ratio	D+R+U+C Cost (\$M)	
33B	US 127	34.7	41	М	2.6	23.7	
10	KY 100 / US 79	32.8	42	L	-1.0	50.5	
18A	US 31W & KY 61	30.0	43	L	-0.8	9.2	
28B	US 68	28.0	44	М	1.0	36.5	
50C	US 60	23.9	45	М	0.3	18.4	

6.5.2 Tier 2 Composite Scores and Corridor Selection for Visioning

The Tier 2 quantitative scores (see **Table 6.21** and **Figure 6.2**) show most of the top 20 segments are in the Louisville and Lexington areas. While these segments may be locations of great need, it is not feasible to expect all of them to be funded to completion during KYTC's planning horizon (2045) in this study.

To finalize the 20 segments chosen to be moved forward into the visioning process and balance regional and overall needs, a ballot was taken based on the Tier 2 analysis data to solicit Project Team and Planning Partners' input on how the 20 segments should be selected. The ballot was open for one week from December 15 through December 23, 2020. A total of 44 surveys were completed by stakeholders. The ballot confirmed many of the Tier 2 analysis results:

- 13 of the top 20 corridors in the ballot ranked among the top 20 based on the Tier 2 quantitative scores.
- 19 of the top 20 corridors in the ballot ranked among the top 30 based on Tier 2 quantitative scores.

Based on discussion within the Project Team, a composite scoring approach was used to aid in selecting the 20 visioning segments using all available data. **Table 6.23** shows the structure of the composite score. The composite score is calculated by multiplying the normalized rank of each factor among all 45 segments by assigned weight, resulting a summed value of 0 to 100.

COMPOSITE FACTORS	WEIGHT
Tier 2 Quantitative Score	50
Ballot Votes	30
Project Delivery Timeline	5
B/C Ratio	10
Cost	5
Sum	100

Table 6.23 – Structure of Composite Score

The composite scoring results were reviewed with KYTC Districts and MPOs to avoid duplicating effort or conflicting with active projects in the corridor selection process. This effort resulted in the following findings:

- 13 segments from the top 20 (composite score) would benefit from corridor visioning.
- 7 segments from the top 20 (composite score) would be redundant for corridor visioning based on previous or ongoing work.
- 7 segments among the "best of the rest" (composite score) would benefit from corridor visioning.

• The remaining 18 segments were not recommended for corridor visioning, due to lower composite scores, redundant effort, or other reasons.

Table 6.24 summarizes the corridor selection process. Tier 2 corridor segments were sorted by the single composite score, in descending order, with the highest score on top. The table also includes Tier 2 quantitative and qualitative scores, ranks, ballot survey votes, and identifies segments that were recommended for visioning. It is noted that a segment being selected for visioning does not affect its Tier 2 quantitative ranking or priority. **Figure 6.3** illustrates the corridor selection in graphical format.

Sogmont	Sogmont	Tieı (Quanti	r 2 tative)	Tier	2 (Quali	tative)	Ballot	Tie (Comp	r 2 osite)	Advance		
ID	Name	Score	Rank	Project Delivery Timeline	B/C Ratio	D+R+U+C Cost (\$M)	Votes	Score	Rank	to Visioning	Note	
18B	US 31W & KY 61	98.0	1	0	13.0	346.5	32	83.9	1	Y	Top 20, Visioning Beneficial	
6C	US 60	90.3	2	L	4.5	448.9	29	74.7	2		Top 20, Visioning Redundant	
4B	KY 4 (New Circle Road)	83.5	3	L	2.9	245.6	30	71.7	3	Y	Top 20, Visioning Beneficial	
36A	KY 536	76.4	6	L	34.4	104.9	22	70.0	4		Top 20, Visioning Redundant	
31A	US 31 E	72.7	9	L	12.1	236.6	27	66.1	5	Y	Top 20, Visioning Beneficial	
4A	KY 4 (New Circle Road)	78.2	5	L	2.6	381.7	27	66.1	6		Top 20, Visioning Redundant	
41A	US 421	80.5	4	L	4.4	233.4	20	61.3	7	Y	Top 20, Visioning Beneficial	
44A	KY 44	75.6	8	L	3.4	258.7	22	60.4	8	Y	Top 20, Visioning Beneficial	
5	Man O War Blvd	76.0	7	0	5.2	593.5	21	60.1	9	Y	Top 20, Visioning Beneficial	
50B	US 60	66.4	12	М	4.6	27.6	21	59.0	10	Y	Top 20, Visioning Beneficial	
35B	US 231	65.0	13	L	3.7	91.4	24	57.2	11	Y	Top 20, Visioning Beneficial	
30A	US 27	64.7	15	L	-6.2	199.0	23	54.8	12	Y	Top 20, Visioning Beneficial	
46B	KY 245/US 150	52.2	25	М	2.5	35.7	24	53.6	13		Top 20, Visioning Redundant	
31B	US 31 E	68.8	10	L	n/a	n/a	18	52.0	14	Y	Top 20, Visioning Beneficial	
18C	US 31W & KY 61	64.7	14	М	10.1	188.9	14	51.8	15		Top 20, Visioning Redundant	
6B	US 60	68.4	11	М	1.9	258.9	14	51.2	16	Y	Top 20, Visioning Beneficial	
23	US 23	56.5	23	L	1.9	188.7	22	50.3	17		Top 20, Visioning Redundant	

 Table 6.24 – Tier 2 Composite Scoring & Recommendations - Visioning Corridors

Commont	Comment	Tieı (Quanti	2 tative)	Tier	2 (Qualit	tative)	Dollat	Tie (Comp	r 2 osite)	Advance	
ID	Name	Score	Rank	Project Delivery Timeline	B/C Ratio	D+R+U+C Cost (\$M)	Votes	Score	Rank	to Visioning	Note
38	US 431	56.3	24	М	1.6	29.9	17	49.2	18	Y	Top 20, Visioning Beneficial
9	KY 9 (AA Highway)	48.7	28	М	4.1	229.0	21	48.4	19		Top 20, Visioning Redundant
39	KY 100/US 31E/KY 90	44.7	29	М	3.3	31.3	18	44.6	20	Y	Top 20, Visioning Beneficial
35A	US 231	49.9	27	М	2.6	16.5	14	44.6	21		Other Tier 2 Corridors
6A	US 60	57.2	22	L	9.8	278.9	12	43.4	22	Y	Other Tier 2 Corridors, Visioning Beneficial
30B	US 27	58.8	20	L	3.1	278.4	13	43.2	23		Other Tier 2 Corridors
27C	US 27	63.1	17	L	3.7	245.7	9	41.9	24		Other Tier 2 Corridors
46A	KY 245/US 150	39.6	36	М	10.1	59.7	16	41.4	25	Y	Other Tier 2 Corridors, Visioning Beneficial
32	KY 11/KY 32/US 460	44.7	30	L	2.2	92.0	18	40.8	26	Y	Other Tier 2 Corridors, Visioning Beneficial
44B	KY 44	58.9	19	L	8.5	93.6	7	39.5	27	Y	Other Tier 2 Corridors, Visioning Beneficial
28A	US 68	61.9	18	L	2.9	235.2	7	39.2	28	Y	Other Tier 2 Corridors, Visioning Beneficial
42B	US 421/KY 418	64.2	16	L	-2.6	215.0	6	38.6	29		Other Tier 2 Corridors
19	US 25 & US 119	44.6	31	L	2.3	79.9	14	37.1	30	Y	Other Tier 2 Corridors, Visioning Beneficial
27A	US 27	58.3	21	М	0.8	87.6	3	35.8	31		Other Tier 2 Corridors
27B	US 27	50.2	26	L	5.1	95.2	8	35.0	32	Y	Other Tier 2 Corridors, Visioning Beneficial
50A	US 60	42.2	32	М	0.7	92.0	7	31.3	33		Other Tier 2 Corridors
15	KY 15	38.7	37	L	6.1	35.8	9	31.2	34		Other Tier 2 Corridors
33B	US 127	34.7	41	М	2.6	23.7	6	28.5	35		Other Tier 2 Corridors
33A	US 127	38.6	38	М	1.2	138.8	6	28.5	36		Other Tier 2 Corridors
41B	US 421	40.3	35	М	1.9	73.9	4	28.0	37		Other Tier 2 Corridors
18A	US 31W & KY 61	30.0	43	L	-0.8	9.2	8	27.8	38		Other Tier 2 Corridors
36B	KY 536	35.6	40	L	10.5	27.0	5	27.6	39		Other Tier 2 Corridors
40	US 641	41.9	33	М	1.0	120.9	3	27.3	40		Other Tier 2 Corridors
42A	US 421	36.4	39	L	1.5	119.2	8	26.9	41		Other Tier 2 Corridors
12	KY 922	40.4	34	L	1.2	236.3	4	24.9	42		Other Tier 2 Corridors
50C	US 60	23.9	45	М	0.3	18.4	7	23.8	43		Other Tier 2 Corridors
10	KY 100 / US 79	32.8	42	L	-1.0	50.5	5	22.3	44		Other Tier 2 Corridors
28B	US 68	28.0	44	М	1.0	36.5	4	22.1	45		Other Tier 2 Corridors

Linking Kentucky

CHAPTER 7: CORRIDOR VISIONS

As part of the Statewide Corridor Plan (SWCP), corridor visions were developed for the 20 corridor segments identified by the Tier 2 analysis (see **Figure 7.1**). These visions identify intermediate (2030) and long-term (2045) transportation needs and practical improvement strategies. The Project Team established a common visioning evaluation matrix to ensure that the most important topics and issues along each corridor segment were evaluated consistently. The visioning matrix covers broad aspects of corridor performance of interest to KYTC, including an overview of corridor's basic information (name, mileage and terminus, highway district, etc.), traffic and growth, issues and concerns, other modes of transportation within and immediately adjacent to the corridor, improvement concepts, stakeholder inputs, and a preliminary scoping report (see **Appendix G** for scoping reports).

The development of corridor visions and related analyses relied heavily on existing tools and available data sources from KYTC. Additional data was also collected from open sources (e.g., Google maps, Kentucky Geography Network, etc.) to support and meet project needs. All analysis approaches were based on a consensus reached among the Project Team and were consistently applied to each visioning corridor segment.

This chapter describes data, tools and methodologies used for corridor analysis in developing corridor visions. Details of the 20 visioning corridors are illustrated in the GIS Online Tool (see **Appendix J**).

7.1 CORRIDOR OVERVIEW

The corridor overview includes a brief description, a key map showing corridor location, and the following basic information of each visioning corridor:

- Corridor Name and ID
- Mileage and Terminus
- Functional Classification
- National Highway System (Y/N)
- KYTC Highway District(s)
- County(s)
- Major City(s)
- MPO(s)
- Area Development Districts (ADDs)
- Tier 2 Score. The score is illustrated as an interactive stacked column chart by Tier 2 quantitative scores in the GIS Online Tool. The chart shows all 20 visioning corridors by Tier 2 ranks in a descending order and highlights the corridor of interest (see Figure 7.2).

The overview also outlines the following typical attributes of the existing corridor by sub-segment with logical termini. The GIS Online Tool includes interactive map layers showing lanes, shoulder, median and posted speed limit.

- Functional Classification
- Number of lanes and Lane Width
- Shoulder and Width
- Median Type and Width
- Proposed Speed Limit

7.2 TRAFFIC AND GROWTH

7.2.1 Traffic Flow

The SWCP corridors are relatively high-speed, high-volume arterial corridors that provide mobility within regions and across the entire state of Kentucky. Assessing existing condition and future trends is a means to identifying future transportation needs that continue to influence transportation decision-making. Existing traffic flow and future forecasts were evaluated for all Tier 2 corridors using data from the 5961 zone v8_KYSTMv18 (aka v8_ KYSTMv18). Based on a consensus among the Project Team, the length-weighted averages of daily total traffic and daily truck traffic were calculated for each corridor for 2015, 2030 and 2045. The averages are a meaningful measure of corridor-level traffic flow carried by each corridor segment. The corridor vision also specifies corridor sections that are part of National Highway Freight Network (NHFN).

7.2.2 Traffic Growth

Annual total and truck traffic growth rates were derived separately using 2015 and 2045 corridor-level traffic data. **Table 7.1** shows results of a quartile analysis of traffic growth for all 45 Tier 2 corridor segments. Note that truck traffic grows faster than total traffic, which is consistent with state and national trends. In addition, the Tier 2 corridors tend to have higher truck growth rates than the statewide overall average. This is because all Tier 2 corridors are major arterials carrying more truck traffic and are likely to grow faster than minor or local roadways.

	ANNUAL GROWTH RATES					
QUARTILE/PERCENTILE	DAILY TOTAL TRAFFIC	DAILY TRUCK TRAFFIC				
Minimum	-0.06%	0.75%				
1st Quartile (25th Percentile)	0.55%	1.20%				
Median (50th Percentile)	0.83%	1.36%				
Mean	0.84%	1.38%				
3rd Quartile (75th Percentile)	1.15%	1.58%				
Maximum	2.12%	2.15%				

The Project Team reviewed corridor-level annual growth rates and decided to use three categories (low, medium, and high) to generally classify corridor traffic growth patterns by using thresholds specified in **Table 7.2**. Note that the thresholds generally agree with the 25th and 75th percentiles of annual growth rates based on analysis of all 45 Tier 2 corridors instead of only 20 visioning corridors, providing a relatively large sample size. The low, medium and high categories are a relative measure among all Tier 2 corridors.

Table 7.2 -	- Traffic	Growth	Categories
-------------	-----------	--------	------------

TRAFFIC GROWTH	THRESHOLDS OF ANNUAL GROWTH RATES		
CATEGORY	DAILY TOTAL TRAFFIC	DAILY TRUCK TRAFFIC	
Low	< 0.55%	< 1.20%	
Medium	0.55% - 1.15%	1.20% - 1.50%	
High	> 1.15%	> 1.50%	

Figure 7.3 and **Figure 7.4** demonstrate traffic growth along 20 visioning corridors for daily total traffic and daily truck traffic respectively.

Linking Kentucky

Linking Kentucky

7.2.3 Land Use Growth

There is a clear link between land use development and transportation. Land use growth drives transportation needs and improvements and, vice versa, transportation improvements can spawn development.

The v8_KYSTMv18 data indicates that the state's population will grow from 4.4 million in 2015 to 5.0 million in 2045, an increase of 12.5 percent. Based on the net population growth rate, Kentucky's population would increase at a pace slower than the fastest growing areas of the country (e.g., the South and the West). Increased population can create congestion and capacity issues, especially in urban and suburban areas. The population of rural areas is expected to continue increasing at a low annual growth rate of 0.11 percent through 2045. In comparison, suburban (including towns) and urban populations are expected to increase at a greater annual growth rate of 0.6 percent and 0.56 percent, respectively, through the year 2045. This may lead to longer trip lengths, extending peak commuting times, between suburban and urban areas.

According to v8_KYSTMv18 data, total employment in Kentucky is expected to increase from 1.8 million in 2015 to 2.1 million in 2045. Suburban employment (including towns) is estimated to increase at an annual growth rate of 0.63 percent, while urban and rural employment are expected to increase at 0.53 percent and 0.39 percent, respectively. With a greater increase in suburban employment, it may be possible that employers could relocate closer to the suburban workforce, altering regional travel patterns and levels. In general, employment growth would likely increase trip lengths and generate more trips, resulting in longer work trips, increased traffic, and congestion, as has been the national trend for many years. As such, the existing transportation system would need to adapt to continuing demographic changes.

For each Tier 2 corridor, land use impact was based on anticipated population and employment growth near the corridors. This analysis focused on the direct influence of the local economy on study corridors. A 3-mile buffer around corridors was used for analysis, based on discussion within the Project Team. 2015 and 2045 v8_KYSTMv18 TAZ data was used to derive annual population and employment growth rates respectively, within the 3-mile buffer. **Table 7.3** shows population and employment growth statistics for all 45 Tier 2 corridor segments.

	ANNUAL GROWTH RATES		
QUARTILE/PERCENTILE	POPULATION	EMPLOYMENT	
Minimum	-0.94%	-0.97%	
1st Quartile (25th Percentile)	0.13%	0.25%	
Median (50th Percentile)	0.48%	0.67%	
Mean	0.51%	0.62%	
3rd Quartile (75th Percentile)	0.99%	1.08%	
Maximum	1.63%	1.61%	

Table 7	7.3 – Q ua	rtile Analys	i <mark>s of Ρορι</mark>	ulation and	Employment	Growth
---------	-------------------	--------------	--------------------------	-------------	------------	--------

The Project Team reviewed analysis results and decided to use three categories (low, medium, and high) to generally classify land use growth, using thresholds specified in **Table 7.4**. Like the traffic growth analysis, the thresholds of land use growth categories used the refined 25th and 75th percentiles of data from all 45 Tier 2 corridors. The low, medium and high categories provide a relative measure among all Tier 2 corridors.

•	• •		
LAND USE GROWTH	THRESHOLDS OF ANNUAL GROWTH RATES		
CATEGORY	POPULATION	EMPLOYMENT	
Low	< 0.15%	< 0.25%	
Medium	0.15% - 1.00%	0.25% - 1.00%	
High	> 1.00%	> 1.00%	

Table 7.4 – Population and Employment Growth Categories

7.3 ISSUES AND CONCERNS

7.3.1 Congestion

Traffic bottlenecks were identified for each visioning corridor. A traffic bottleneck is a localized section of highway that experiences reduced speeds and greater delays due to a recurring operational influence or a nonrecurring event, according to the definition of FHWA's Localized Bottleneck Reduction (LBR) Program. General characteristics of bottlenecks are:

- 1. Limited physical capacity
- 2. Poorly functioning traffic signals
- 3. Traffic incidents
- 4. Work zones
- 5. Bad weather
- 6. Special events

Only the first and second sources contribute to recurring congestion. They are measurable in design and function and are therefore candidates for remediation. The remaining sources of bottlenecks are nonrecurring and random. In addition, high traffic volumes approaching capacity, maintenance or short-term construction (e.g., work zone), incidents or weather, are typical causes for poor reliability that trigger high variability in operating speeds and travel times. KYTC's 2035 Long Range Statewide Transportation Plan (LRSTP) requires ensuring dependable, effective and efficient facilities. Therefore, it is important to reduce bottlenecks to improve the mobility and reliability of movements, leading to less congestion, fewer infrastructure repairs, and lower emissions.

The SWCP used the following criteria to identify potential bottlenecks for each visioning corridor and included them in an interactive map layer in the GIS Online Tool:

• Daily Volume/Capacity (V/C) Ratio. V/C ratio is one of the most frequently used indices for assessing roadway traffic congestion at the planning level. 2045 daily traffic volumes and roadway capacities were extracted from the v8_KYSTMv18, and the 2045 daily V/C ratio was calculated. Based on discussions within the Project Team, links with a V/C ratio of 0.6 or more were considered to be bottlenecks. As the v8_KYSTMv18 is a daily model and does not estimate peak-period/peak-hour traffic condition, a relatively low daily V/C ratio threshold such as 0.6 avoids overlooking bottlenecks that are congested during peak period or peak hour (high V/C ratio values), even if their overall daily V/C ratio is not high. The V/C ratio provides insight into future levels of congestion due to capacity constraints, after accounting for existing and programmed project improvements. Figure 7.5 shows potential bottlenecks on visioning corridors. These locations were candidates for more detailed traffic capacity analysis leading to SWCP improvement strategies.

Level of Travel Time Reliability (LOTTR). FHWA defines travel time reliability as consistency or dependability in travel times, as measured from day to day or across different times of day. Personal and business travelers value reliability because it allows them to make better use of their time. Measurement of travel time reliability on the interstate and non-interstate National Highway System (NHS) using the Level of Travel Time Reliability (LOTTR) is part of FHWA's final rulemaking to implement the Transportation Performance Management (TPM) framework established by the Moving Ahead for Progress in the 21st Century Act (MAP-21) and the Fixing America's Surface Transportation (FAST) Act. LOTTR is defined as the ratio of the longer travel times (80th percentile) to a "normal" travel time (50th percentile), using data from FHWA's National Performance Management Research Data Set (NPMRDS) or equivalent. Data are collected in 15-minute intervals during all time periods between 6am and 8pm. The reporting corridor segment is considered reliable when LOTTR is less than 1.50 for all time periods, otherwise unreliable. KYTC provided LOTTR values based on HERE's 2015-2017 speed data. The LOTTR values were attached to SWCP corridor network, so that all unreliable locations (LOTTR >= 1.5 for any time period) were also identified as potential bottlenecks. Figure 7.6 shows the unreliable locations on visioning corridors.

The level of congestion was further evaluated at potential bottlenecks described above for 2015, 2030 and 2045. The Project Team reached consensus on adopting the "Acceptable" and "Unacceptable" categories in the SWCP to indicate potential roadway deficiencies at the planning level and to ease the understanding and dissemination of the analysis results to stakeholders and the public. If the V/C ratio is less than 0.85 in urban areas or less than 0.7 in rural areas, the roadway is considered to be "Acceptable"; otherwise, it was considered "Unacceptable". An "Unacceptable" segment does not necessarily mean traffic operational failure; rather, it is an indicator of potential deficiencies that require attention in future planning activities and a more detailed engineering level capacity analysis may be warranted.

Linking Kentucky

Linking Kentucky

7.3.2 Safety

Safety is one of the most important factors to be considered in transportation planning. According to MAP-21 and FAST Act, a national goal is to achieve a significant reduction in traffic fatalities and serious injuries on all public roads. KYTC's current 2035 LRSTP has a goal to provide a safe and secure system.

KYTC provided 2014-2018 statewide safety data in a GIS format which contains critical rate factor (CRF), excess expected crashes (EEC), and level of service of safety (LOSS). Based on the concept of Safety Performance Functions (SPF), LOSS quantifies the magnitude of the safety problem using four categories (I, II, III, IV) with LOSS-I indicating low potential for crash reduction while LOSS-IV indicates high potential for crash reduction. The LOSS data was split into subcategories of KAB (Fatality (K), Disabling Injury (A), and Evident Injury (B)) crashes and CO (Possible Injury (C) and Property Damage Only (O)) crashes. The safety data was processed and attached to corresponding SWCP corridors for analysis.

Based on the discussion within the Project Team, a percentage of the corridor mileage that had a LOSS-IV was calculated for each visioning corridor. It provided a corridor-level assessment of the highest potential to decrease crashes. As the fatality (K), Disabling Injury (A), and Evident Injury (B) crashes are the worst outcomes from a crash and usually need more attention in regard to safety improvements, an interactive GIS layer of KAB LOSS data was also developed for all visioning corridors and included in the GIS Online Tool (see **Figure 7.7**).

Linking Kentucky

7.3.3 Infrastructure

The pavement analysis was performed using the Pavement Distress Index (PDI) data provided by KYTC. KYTC criteria was used to determine pavement conditions (see **Table 7.5**). Pavement conditions for all visioning corridors are included in an interactive layer of the GIS Online Tool and are also shown in **Figure 7.8**.

PAVEMENT CONDITION	PAVEMENT DISTRESS INDEX (PDI)
Good	0.00 - 0.35
Fair	0.36 – 0.65
Poor	0.66 – 0.99

Table 7.5 – KYTC Criteria on Pavement Conditions

KYTC provided a complete list of bridges and culverts throughout the state along with key attributes such as structure ID, National Bridge Inspection Standards (NBIS) classification, sufficiency rating, substructure rating, superstructure rating, deck rating, vertical/horizontal clearance, etc. The file contains latitude/longitude of each structure, so the bridges and culverts were geocoded and attached to each study corridor. Bridge conditions were determined by NBIS classification (poor, fair, good) and are included in an interactive layer of the GIS Online Tool. **Figure 7.9** shows all bridges associated with visioning corridors and their NBIS classifications.

All at-grade railroad crossing along the visioning corridors were identified, as they are usually the spots with more mobility and safety issues. Structures crossing over the corridors were also summarized, including structure ID, facility carried, under clearance, and horizontal clearance. The structure's under clearance could impact vehicles passing through, especially heavy trucks, while the horizontal clearance impacts the maximum number of lanes carried by the study corridor and could be a constraint if congestion exists and roadway widening is needed. All these features are included in interactive layers of the GIS Online Tool.

Linking Kentucky

7.3.4 Environmental Concerns

The Project Team utilized readily available GIS environmental data sources to identify potential red flag environmental issues for each visioning corridor. The purpose of this analysis was to assemble preliminary environmental information at high planning level to facilitate more detailed and specific corridor studies in the future to meet KYTC's needs. This work was preliminary and did not constitute a red flag survey.

Table 7.6 summarizes the red flag resources that were examined during the visioning analysis, based on consensus within the Project Team. The table also includes 15 major red flag items that the Project Team identified to review during the preceding Tier 2 corridor scoping efforts. The 15 major items were identified because they often have bigger consequences which could potentially add significant time and cost to a project. It was beneficial to review potential environmental impacts from these major items early in the development of improvement concepts.

CATEGORY	RED FLAG RESOURCES	MAJOR ITEMS INCLUDED IN TIER 2 SCOPING REPORT
	Floodplain	
	Streams	
	NWI Wetland Features	
Water Resources	Water Wells	
	Groundwater Wells	
	Wellhead Protection Areas	
	Springs (KGS)	
	Groundwater Springs	
	303(d) Listed Streams	
	305(b) Listed Streams	
	Special Waters ¹	✓
Threatened & Endangered Species Habitat	Forested Areas	✓
	NLEB Habitat Priority	✓
	IB Habitat Priority Area	✓
	Quarries	
	Karst (Sinkholes)	
	Permitted Mine Boundaries	
	Mined-Out Areas	

Table 7.6 – Red Flag Resources Analyzed in Corridor Vision

CATEGORY	RED FLAG RESOURCES	MAJOR ITEMS INCLUDED IN TIER 2 SCOPING REPORT
Land Use/Community Resources	Libraries	
	Schools	
	Kentucky Higher Education	
	Hospitals	
	FAA Airport Runways	\checkmark
	Local Parks	\checkmark
	Public Hunting Areas	✓
	Wildlife Management Areas	\checkmark
	State/National Parks	✓
	Kentucky Heritage Land Conservation Fund	✓
	Area Landmarks	\checkmark
	Point Landmarks	✓
	US Military Installations	
	National Register of Historic Places Location (Point)	✓
	National Register of Historic Places Location (Polygon) ²	✓
Coning and a min Data	Percent Minority	
Socioeconomic Data	Low Income Community	
Hazardous Materials	Oil and Gas Wells (KGS)	
	Kentucky UST List	
	Kentucky Hazardous Waste List	
	Superfunds	✓

¹ Special Waters are defined as Cold Water Aquatic Habitats, Outstanding State/National Resource Waters, Exceptional Waters, State Wild Rivers, and Federally Designated Wild/Scenic Rivers.

² The NRHP polygon files were downloaded from the National Park Service's online GIS database. This data has potential data accuracy issue.

For each visioning corridor, a brief narrative was provided to summarize the findings of potential environmental constraints based on the GIS environmental data. Maps were also created to illustrate red flag resources within a 1,000-foot buffer of the corridor. It is noted that some red flag resources may not be included in the map to avoid an overwhelmed content, however, they are generally described in the narrative summary. **Figure 7.10** shows an example map of environmental red flag resources.

7.4 OTHER MODES

It is KYTC's goal to include all appropriate modes of transportation within a fully-integrated system, according to KYTC's current 2035 LRSTP. To ensure that walkability and multi-modal access would be considered for incorporation into the long-term corridor vision, the Project Team assessed all existing bicycle, pedestrian, and transit facilities within and immediately adjacent to visioning corridors. The assessment was generally broad, focusing almost exclusively on the absence or presence of a facility dedicated to the corridor by mode. If there were facilities present, the assessment also noted whether the existing facility connected to the local and regional networks.

7.4.1 Transit

To begin the assessment of transit facilities, the Project Team requested baseline GIS files for transit routes and stops from the nine Metropolitan Planning Organizations (MPOs) and 15 Area Development Districts (ADDs). The data generally included shapefiles for transit routes and stops. Most MPOs and ADDs provided geospatial data for their respective boundaries; however, as generally expected with a data collection process of this scale, not all information was available, and some gaps within data still existed.

A review of existing transit facilities was then conducted within the visioning corridors. This generally involved a cross-comparison of the available GIS data with Google Earth to verify the availability of facilities within and along the corridor, as well as to understand the availability and connectivity with other adjacent facilities which may connect to the broader regional network. The following logic was generally applied to assess the level of transit connectivity (low, medium, and high) for each visioning corridor:

- Low Connectivity Corridor has no connections to either Amtrak or any regional/local transit services or is not within the boundary of a transit service provider.
- **Medium Connectivity** Corridor has connection to either Amtrak or regional/local transit services, but generally not both.
- **High Connectivity** Corridor has connections to both Amtrak and regional/local transit service and is generally within the boundary of a transit service provider.

A transit sketch GIS planning tool was also applied to visualize transit demands and supplies, assess transit connectivity, and identify potential gaps in the proximity of each visioning corridor. The process of transit demand estimation is described below:

Production: A transit propensity index was estimated at census block level by considering race, gender, income, and auto ownership. The factors and weights are based on Federal Transit Administration (FTA)'s Transit Cooperative Research Program (TCRP) Report 27 – Building Transit Ridership and Report 28 – Transit Markets of the Future.

Transit Propensity Index = 10*WDen + 18*MinDen + 51*Veh0 + 10*Age65 + 11*PvDen

Where:

WDen = number of women per acre;

MinDen = minority population per acre;

Veh0 = zero vehicle households per acre;

Age65 = number of persons 65 and older per acre;

PvDen – number of households with income below \$20K per acre.

In general, a higher transit propensity index indicates a higher likelihood of using transit for trip making.

- Attractions: Based on consensus within the Project Team, the following major activity centers were identified and overlaid in the map, because they are usually major destinations of transit trips.
 - Employment Center Zones. These were determined if total employment > 400, and density > 10 jobs per acre (for urban and second city) or density > 5 jobs per acre (for suburban, town, and rural), based on v8_KYSTMv18 2015 zonal data.
 - Hospitals and Trauma Centers. These are the same special generators used in Tier 1 and Tier 2 analysis.
 - College and Universities (main campus). These are the same special generators used in Tier 1 and Tier 2 analysis.
 - Primary Commercial Airports. These are the same modal hubs used in Tier 1 analysis.

For each visioning corridor, a GIS map was created to overlay the transit demand markets (production and attractions) with transit supplies (existing transit facilities). The GIS tool can be used to effectively assess the connectivity and accessibility of the transit service in the region and identify potential gaps, therefore it usually fits the needs of a high-level planning study like SWCP. **Figure 7.11** shows an example corridor with mapped transit propensity, transit activity centers, and existing transit facilities.

7.4.2 Bike and Pedestrian

KYTC provided GIS files for the statewide bike and pedestrian facilities. The data generally included shapefiles for sidewalks, crosswalks, bike lanes, shared bike lanes, separate bike path, multi-use path, etc. This dataset does not include detailed local bike/pedestrian infrastructure.

The review of existing bike/pedestrian facilities was similar to the process for transit analysis. The following logic was generally applied to assess the level of connectivity (low, medium, and high) of bike/pedestrian facilities along each visioning corridor:

- Low Connectivity Corridor has few existing facilities and/or few connections to existing facilities.
- **Medium Connectivity** Corridor has some existing facilities and/or several connections with existing facilities.
- High Connectivity Corridor has many existing facilities and/or good connections to existing facilities.

A 5-Dimension (5D) livability analysis tool was used to facilitate the smart-growth oriented planning activity and identifies locations that are suitable for walking and biking modes. Previous research efforts indicate a "5D" concept is relevant to reduced reliance on auto travel. The v8_KYSTMv18 was a primary data source for this analysis because it has most of the required data (e.g., population, employment, roadway network, facility type, posted speed limit, etc.). The five key factors were considered in the 5D concept.

- **Density.** The density variables are used to measure the intensity of activity within a certain geographic space. Areas with higher levels of density and intensity are likely to make vehicular travel more expensive (time and parking cost) and more conducive to transit or non-motorized travel. Typical variables used to measure this quantity of an area are:
 - Population density (d₁)
 - Employment density (d₂)
- **Diversity.** The diversity variable measures the degree to which land uses are segregated. Urban design elements which promote the mixing of residential and employment are known to contribute to shorter and potentially fewer vehicular trips. The diversity variable (d3) is expressed as: $d_3 = 1 |(d_1 d_2)/(d_1 + d_2)|$.
- **Design.** The design variables describe the degree to which the urban network is interconnected, grid-like, and more conducive or inviting to walking/biking. The 5D tool incorporates three design variables:
 - Walkability (d_4). It is defined as the percentage of streets within a zone that are walkable. Walkable links are typically a selection of low functional class, low speed, low volume roads. For the SWCP visioning analysis, walkable links include urban streets (HCMType = 5) with posted speed limit less than 35 mph.
 - Blockface (d₅). It is a geometric measure of the average blockface size within a zone. Average blockface is a good measure of how grid-like the street network is. A tight urban street grid pattern typically yields low blockface value, while a more open and less connected street pattern has much higher blockface values. The more connected the network, the more efficient walk or bike trips could be. This same arrangement has the opposite effect on vehicular travel by adding intersection delays, so it serves as a deterrent to auto travel. For a given zone, the blockface variable is expressed as

d_s=1-(Roadway Centerline Mileage)/(Number of Links).

- Street Density (d6). This is another geometric measure that is simply the centerline miles of streets within a given zone divided by the land area of the zone in square miles. The street density variable complements the other two design variables.
- **Destination.** The destination variables describe the level of regional vibrancy. Mixed land used patterns are frequently observed in prosperous areas where many trip purposes (e.g., work, shopping, or entertainment)

can usually be accomplished without auto trips. In the SWCP, destinations are measured using two variables:

- Number of service jobs within a 10-minute walk (about 1/6 mile) d_7
- Number of retail jobs within a 10-minute walk (about 1/6 mile) d_s
- **Distance to Transit.** The distance to transit variable (d_g) describes how easy to access transit service by walking from a zone. In the SWCP visioning analysis, a dummy variable of walk access to transit (0 or 1) was used if a zone is within a 0.5-mile buffer of existing transit routes. A 0.5-mile is the walk shed recommended by the *FTA Manual on Pedestrian and Bicycle Connections to Transit (Report No. 0111)*. While more accurate analysis of transit access can usually be achieved based on transit stops, the transit routes were used in this study because transit stop GIS files are not available in some areas throughout the state. These data should be supplemented in the future when missing transit stop data becomes available.

A comprehensive 5D livability score can be derived for a given zone based on the 5D variables described above. In the SWCP, the 5D livability score was calculated by the equation below:

5D Livability Score = $(d_1 + d_2) + 0.3*d_3 + (d_4 + 0.3*d_5 + d_6) + (d_7 + d_8) + 0.5*d_9$

Where,

d₁ = population density;

d₂ = employment density;

- d₃ = diversity variable;
- d₄ = walkability;
- d₅ = average blockface;
- $d_6 =$ street density;
- d₇ = number of service jobs within 10-minute walking distance;
- d₈ = number of retail jobs within 10-minute walking distance;
- d₉ = walk access to transit;

The 5D livability scores were then scaled for all v8_KYSTMv18 zones using the maximum absolute value. The more likely a zone follows principles of smart growth that advocate walking and biking, the higher its final score. Note that all 5D variables have a weight of 1, except for d_3 (diversity variable), d_5 (average blockface) and d_9 (walk access to transit) with adjusted lower weights. This is because v8_KYSTMv18 has a coarse zone structure and might not accurately represent the details of zonal diversity and blockfaces, especially in urban areas. The 0.5-mile buffer around transit routes is not as accurate a measure of access to transit service as a buffer around transit stops. Therefore, lower weights were used for these variables to minimize the possibility of getting misleading results.

This 5D livability analysis approach can be used to facilitate the scenario-based planning process to evaluate various strategies of smart growth and livability. For example, area size, population, and employment covered by smart growth zones in a region using an established score threshold can be compared between various scenarios in terms of land use development, roadway network design, availability of bike and pedestrian facilities, transit service, etc. As the 5D concept accounts for both production and attraction characteristics of non-auto trips, the scaled 5D livability score can also be overlayed with existing bike and pedestrian facilities to help identify potential gaps. **Figure 7.12** shows an example corridor with mapped transit propensity, transit activity centers, and existing transit facilities.

7.5 IMPROVEMENT CONCEPTS

7.5.1 Potential Improvements

The potential improvements rely heavily on the Tier 2 corridor scoping efforts, with slight adjustments made by the Project Team during the corridor visioning phase. The Project Team developed a list of general improvement categories and strategies to meet the needs of the SWCP at a high planning level (see **Table 7.7**). The improvement options noted in this report are not intended to be all-encompassing. Other potential improvements are possible, including innovative solutions that could be cost-effective and address the reasons for improvement. Further study may be needed as part of the project development process.

IMPROVEMENT CATEGORIES	IMPROVEMENTS STRATEGIES			
	New 4 Lane Expressway			
New Roadways	New Super 2 Highway			
	New 2 Lane Highway			
	4 Lane to 6 Lane - Rural			
Major Widening (Divided Road)	4 Lane to 6 Lane - Urban			
	2 Lane to 4 Lane - Rural			
	2 Lane to 4 Lane - Urban			
Minor Widening	2 Lane to 4 Lane - Rural			
(Undivided Road)	2 Lane to 4 Lane - Urban			
Arterial Upgrade to Parkway/	Upgrade with Pavement Reconstruction			
Expressway	Upgrade with Pavement Rehab			
	New Service Interchange - Rural			
Grade Separation/Interchange	New Service Interchange - Urban			
	Interchange Modification - Rural			
	Interchange Modification - Urban			
	Grade Separation Only			
Major Intersection	>= 4 lanes in both directions			
Improvement	< 4 lanes in both directions			
Major Structure	Bridge Replacement			
	Bridge Rehab			

Table 7.7 – Improvement Categories and Strategies

7.5.1.1 Bottleneck Improvements

Based on discussions within the Project Team, it made more sense to apply improvements on a location specific basis, instead of the entire length of the corridor. The improvement concepts were recommended for bottlenecks. They are expected to maintain an overall acceptable traffic condition through 2045 (V/C < 0.85 in urban areas and V/C < 0.7 in rural areas) and address safety issues at bottlenecks. Details of proposed improvement concepts, such as bottleneck location and terminus, improvement strategies, improved typical section and reason for improvement, were provided and included in an interactive layer of the GIS Online Tool. It is noted that a non-project specific approach was used in in developing improvement concepts. For example, if more than one improvement were proposed for a bottleneck by considering issues, needs and constraints in vicinity of the

location, they were all included in corridor visions without being prioritized. This approach allows for flexibility in strategies and opportunities over time that may better fit continuing changes in transportation demand, technology, and conditions. The proposed improvement concepts were coordinated with KYTC's on-going projects and were reviewed and approved by KYTC Division of Planning and Highway Districts. The GIS Online Tool also includes an interactive layer for the KYTC 2020 Highway Plan along visioning corridors as a reference.

7.5.1.2 Interchange and Intersection Improvements

Potential new interchanges and/or interchange modifications were recommended based on thorough review of existing and future traffic volumes, V/C ratios, LOTTR data, crash data, adjacent environmental constraints, available right-of-way (ROW), as well as discussions within the Project Team. A similar approach was used to develop spot improvement strategies at major intersections (i.e., crossroads have the functional class of collector or above) along the corridor. Common intersection improvements include adding turn lanes, channelization, innovative design and coordinated signal time, etc. More detailed engineering capacity analysis will be needed in future specific studies to meet KYTC's needs. Potential new interchanges, interchange modifications, and proposed major intersection modifications were summarized and included in separate interactive layers of the GIS Online Tool.

7.5.1.3 Bridge Improvements

Bridge improvement recommendations were based on ratings of substructure, superstructure and deck using a methodology developed by the Project Team, as shown in **Table 7.8**.

STRUCTURES	SUBSTRUCTURE RATING	SUPERSTRUCTURE RATING	DECK RATING	CULVERT RATING	RECOMMENDATIONS
Bridges	<=4	Any	Any	/	Replacement
	=5	Any	Any	/	Rehabilitation
	>=6	<=5	Any	/	Rehabilitation
	>=6	Any	<=5	/	Rehabilitation
	>=6	>=6	>=6	/	None ¹
Culverts	/	/	/	<=4	Replacement
	/	/	/	5 or 6	Rehabilitation
	/	/	/	>=7	None

Table 7.8 – Methodology for Structure Replacement/Rehab Recommendation

¹ If the bridge is on a corridor with a recommendation of widening, it will be widened (considered as rehabilitation) as necessary to accommodate the additional proposed lanes.

It is worthy to note that:

- If the bridge is in good condition but is within a bottleneck location with recommended widening, it will be widened as necessary to accommodate the additional proposed lanes and the cost of widening is assumed to be the same as bridge rehab for the planning-level cost estimation purpose.
- If the bridge needs replacement and is within a bottleneck location with recommended widening, it will be widened during the replacement to accommodate the additional proposed lanes and the cost of bridge replacement is used for the planning-level cost estimation purpose.
- Bridges for replacement and rehabilitation/widening along the visioning corridors were identified and included in separate interactive layers of the GIS Online Tool.

7.5.1.4 Phasing

According to proposed improvement concepts, preliminary phasing plans were recommended for each visioning corridor at a high planning level, by generally following the guidelines described below:

- Only spot improvements are proposed.
 - a) If there are only a few locations for improvement (e.g., no more than six intersections), it is recommended to improve them at the same time. This is because the study corridors are long, so dividing them into individual phases for individual spot improvements seemed to be unrealistically detailed.
 - b) If there are many intersections (e.g., more than six), and if the improvements are significant or in a complex urban setting, it would make sense to phase them geographically. However, if these are not large intersection improvements, i.e., signalizing intersections or adding right run lanes, more than six intersections could be grouped in the same phase.
- If all intersections proposed for improvements are located within the widening section, the intersection
 improvements will be constructed as part of and at the same time as the widening project. However, there
 might be a case where the widening is too expensive and not high enough priority such that it would not
 be built in a foreseeable future, then it would be recommended to improve the intersection in Phase 1 and
 widen the roadway in a future phase.
- Interchange modifications and spot improvements (multiple intersections) are proposed. If an urban interchange modification is required, a separate phase would be recommended because of the longer time required to develop the project. Rural interchange modifications have a similar timeline as major intersection improvements (ROW needed), so it might be appropriate to propose one phase for both if the interchanges and intersections are close together; otherwise, they could be phased separately.

7.5.2 Safety

In the SWCP, the safety improvements were recommended at locations with LOSS = IV. To effectively make safety improvement recommendations, the locations with a LOSS value of IV were grouped into two categories:

- **Category 1.** These are clusters in areas where the SWCP already recommends corridor improvements for mobility reasons. For this category, it is assumed any corridor improvement based on mobility needs will be constructed to current KYTC standards and will include the necessary safety improvements.
- **Category 2.** These are major clusters not located in areas previously recommended for corridor mobility improvements. This category is intended to identify corridor sections that may warrant improvement solely for safety, even though improvements might not be needed for mobility. These sections were grouped as needed if they are close to each other.

For categories 1 and 2, the clusters were further broken down by urban and rural designation (based on v8_ KYSTMv18 data) because urban and rural roadways tend to have unique typical crash causes and countermeasures. The corridor visions summarize locations, possible causes, and recommendations for locations with safety concerns identified in categories 1 and 2.

There might be isolated links with LOSS value of IV which are not included in corridor visions. Spot improvements could be warranted for those locations, but it is assumed these spot improvements do not rise to the level of a corridor improvement. Therefore, these locations were not addressed in this planning study.

7.5.3 ITS & CAV Opportunities

Intelligent Transportation Systems (ITS) and Connected and Autonomous Vehicles (CAV) are becoming a more common and important component of the infrastructure system, as ITS devices and CAVs can improve safety, mobility, and maintenance of the current roadway system. Each of the visioning corridors was evaluated for existing ITS devices and access to fiber, as well as the potential for ITS devices and CAV considerations. The *Kentucky Wired* fiber network was reviewed to assess the coverage of and/or connectivity with the SWCP corridors for the potential application of ITS or CAV technology.

In the SWCP, ITS was considered a solution in isolation to address an identified safety issue. All visioning corridors have opportunities to deploy the ITS technology, including arterial dynamic message signs (DMS), curve warning signs, intersection warning signs, and speed warnings, etc. CAV technology was considered feasible if there is significant transit service and coordinated traffic signals along the corridors. CAV was not recommended in rural areas, where there is no significant transit service, or where the corridor does not have a coordinated traffic signal system.

7.5.4 Cost

Preliminary costs of the proposed improvement concepts were estimated (in 2020 dollars) through the Tier 2 analysis. See the detailed methodology in **Section 6.4.2** and the complete cost estimation sheets in **Appendix H**.

7.5.5 Economic Feasibility

The economic feasibility analysis incorporates the following two components based on data generated in the Tier 2 analysis:

- **Project Delivery Timeline.** It is an indicator of developing the improvement concepts to market delivery. The delivery timeline was categorized by 5-10 years, 10-15 years, and > 15 years, based on the complexity of project. See detailed methodology in **Section 6.4.1**.
- Benefit/Cost (B/C) Ratio. It is an indicator of the effectiveness of improvement concepts to improve the transportation efficiency and promote Kentucky's economy. The B/C ratio was categorized by low (B/C < 2), medium (2< B/C <5), and high (B/C > 5). See detailed methodology in Section 6.4.3.

7.6 STAKEHOLDER INPUTS

The Project Team used an innovative map-based online survey tool to collect location-specific comments from approximately 1,400 stakeholders (including KYTC Central Office, Districts, MPOs, ADDs, elected local officials, etc.) regarding corridor issues, needs and improvements during the development of corridor visions. The on-line survey was powered by VeraVoice[®] which uses the emerging crowdsource outreach technology. The survey has the following attractive features:

- Allow users to leave a "pin" to identify a specific location where a concern/issue might exist.
- Collect comments (by customized categories), responses, and votes.
- Allow others to see and support comments submitted.
- Provide a mobile-friendly application.
- Use Google map as background for familiarity.
- Save comment's coordinates for other GIS map applications.
- Adopt a two-level managing structure to allow the Project Team's review/approval prior to posting comments.

The survey was open for stakeholders from January 19, 2021 to March 15, 2021. The survey successfully collected a total of 204 comments throughout the state, which cover all 12 Highway Districts and include 91 comments for visioning corridors, 75 comments for other Tier 2 corridors, and 38 comments for non-SWCP corridors. **Figure 7.13** shows all collected comments. The collected comments help identify important concerns and issues on study corridors. **Appendix I** shows details of the collected comments.

7.7 SCOPING REPORT

A scoping report (see **Appendix G**) was developed for each Tier 2 corridor at the planning level as part of the Tier 2 analysis effort. The major goal of the Tier 2 corridor scoping was to develop practical corridor improvement concepts based a preliminary review of each corridor's existing conditions, issues, and needs. The contents of the scoping report generally mirror the aspects of corridor visions but are less detailed in some topics than corridor visions. The Project Team decided to include the scoping reports in the corridor visions and in the GIS Online Tool. The GIS Online Tool also displays other Tier 2 corridors not selected for visioning and provides a link to the scoping reports.

