

What, Why, and How

KYTC Planning Symposium

Stephen De Witte, P.E.

Frankfort, Kentucky | May 6, 2025

Vision

Striving to be national leaders in transportation who provide transportation infrastructure and services for the 21st century that deliver new economic opportunities for all Kentuckians.

Mission

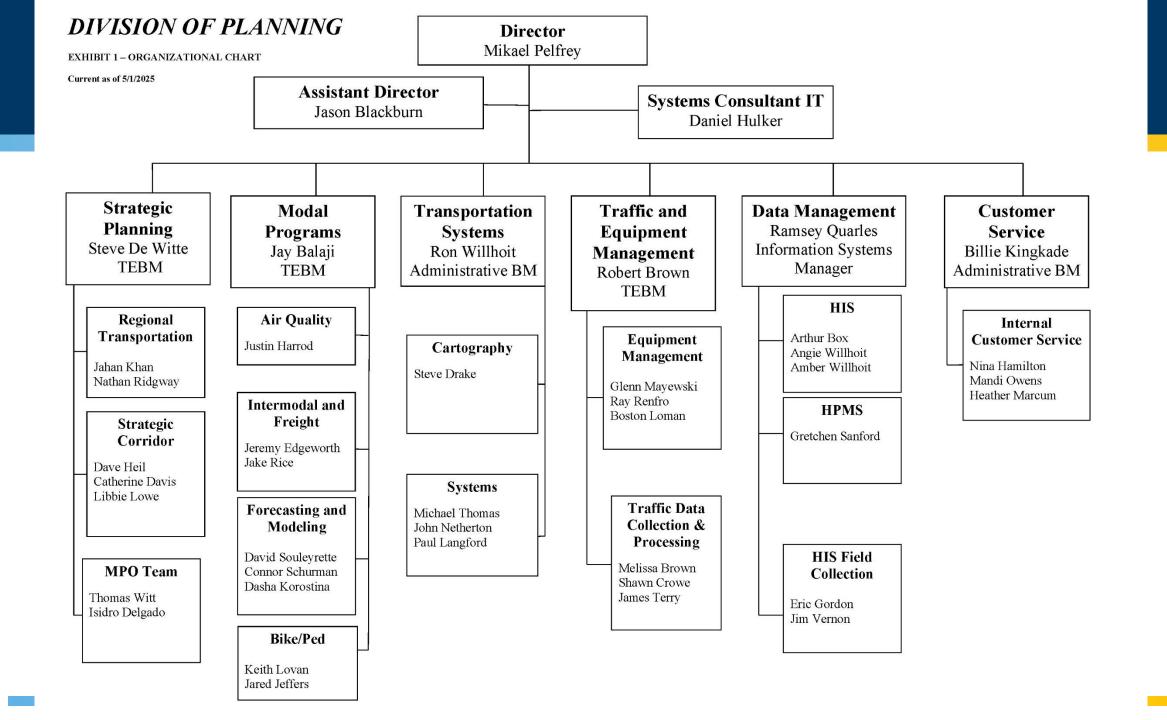
To provide a safe, efficient, environmentally sound and fiscally responsible transportation system that delivers economic opportunity and enhances the quality of life in Kentucky.

Agenda

- Opening Remarks
- Division of Planning Overview
- What, Why, and How
 - Break at 10:15
- Staff Q&A

Opening Remarks

Strategic Highway Safety Plan



Division of Planning Overview

Planning Study Liaisons

- Catherine Davis: D1, D6, D9, D11
- Dave Heil: D4, D5, D8, D12
- Libbie Lowe: D2, D3, D10
- Steve De Witte: D7

• Always looking to grow!

Work Program

COMMONWEALTH OF KENTUCKY TRANSPORTATION CABINET DEPARTMENT OF HIGHWAYS DIVISION OF PLANNING

FY 2025 STATEWIDE PLANNING AND RESEARCH (SPR) WORK PROGRAM - SUBPART A SP 0020 (042)

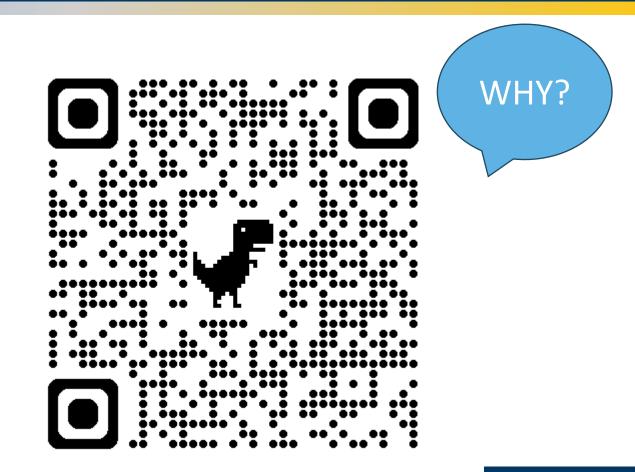
JUNE 16, 2024, THROUGH JUNE 15, 2025

PART I PLANNING

PREPARED IN COOPERATION WITH U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION

Work Program

COMMONWEALTH OF KENTUCKY TRANSPORTATION CABINET DEPARTMENT OF HIGHWAYS DIVISION OF PLANNING


FY 2025 STATEWIDE PLANNING AND RESEARCH (SPR) WORK PROGRAM - SUBPART A SP 0020 (042)

JUNE 16, 2024, THROUGH JUNE 15, 2025

PART I PLANNING

PREPARED IN COOPERATION WITH U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION

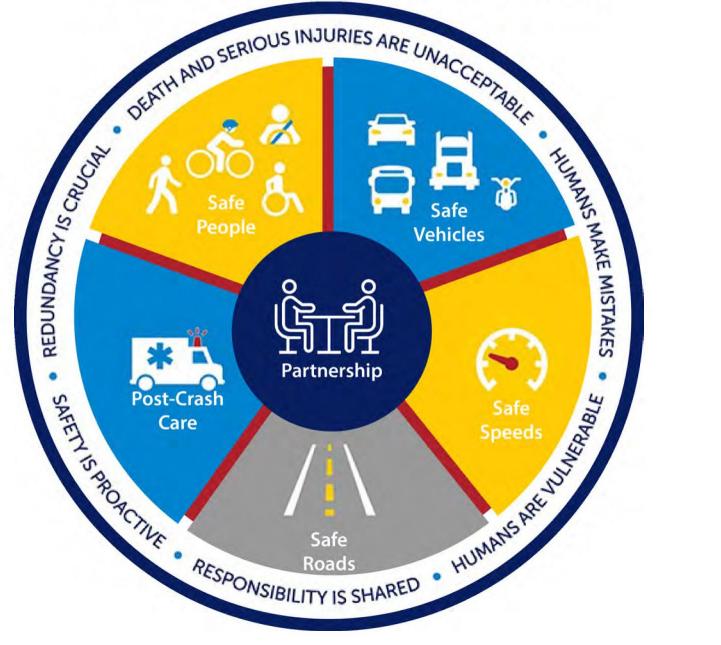
1

FY 2024 Accomplishments Report

16 completed studies, totaling approx.
\$4.65 million

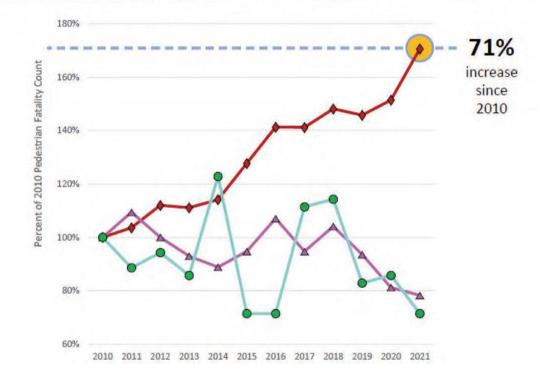
• 26 ongoing studies, totaling approx.
\$7.55 million

Planning Study Resource Page



Roadway Safety Assessments & Safe System Approach

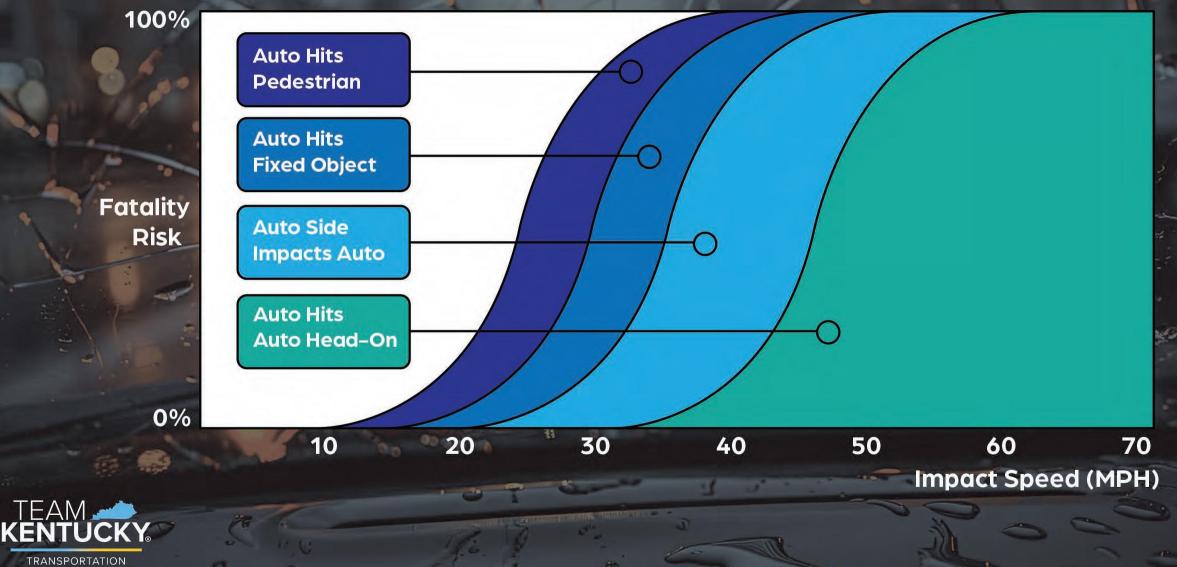
WHAT IS THE SAFE SYSTEM APPROACH?


AUSTRALASIA

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

U.S. Department of Transportation Federal Highway Administration

Office of International Programs



Data Source: ITF and FARS

a

SAFE SPEEDS: FATALITY RISK

CABINET

SAFER ROADS: AVOIDING CRASHES

SEPARATING USERS

MINIMIZING CONFLICT POINTS

Roundabout

INCREASING ATTENTIVENESS/ AWARENESS

SAFER ROADS: MINIMIZING CRASH SEVERITY

CHANGING THE CROSS-SECTION

To continue straight the top of the 'T', pe through the intersec

INNOVATIVE INTERSECTION DESIGN

OTHER DESIGN STRATEGIES TO LOWER SPEEDS

HOW IS THIS DIFFERENT?

TRADITIONAL

SAFE SYSTEM

Prevents crashes

Improve human behaviour

Control speeding

Individuals are responsible

React based on crash history

Designed for human mistakes/limitations

Prevents deaths & serious injuries

Reduce system kinetic energy

Share Responsibility

Proactively identify & address risks

KYTC INITIATIVES

Implementation of Complete Streets

Intersection Control Evaluation (ICE)

Consideration of the Roadway Context

Work Zone Traffic Management Plan Training

KYTC INITIATIVES

Standard Drawing Updates

Safety Performance Evaluation Program

Planning Implementation Priorities

- Broader Application of KYTC ICE Process
- Buffered Bike Lanes High Speed Roadway
- Designing for Target Speed
- Geometric Design Guidance Context Applications
- Implementation of RSAs in Project Development
- Project Prioritization Consideration of Context

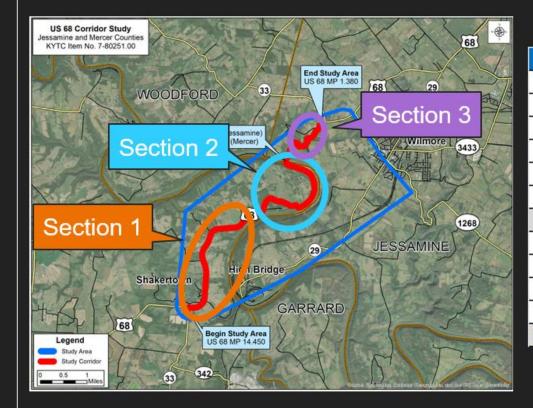
Roadway Safety Assessment (RSA) Implementation

- Piloting on 3 planning studies
- Took a different look than we originally thought
- Using data-informed processes from FHWA and AustRoads

Alignment Framev	work – Final Scoring Matrix			
Project Location:	0	1		
Category	Vulnerable Road Users (VRU)	VRU Score	Motor Vehicles	Motor Vehicles Score
Exposure Score:	Vulnerable Road Users Subtotal	0	Motor Vehicles Subtotal	0
Likelihood Score:	Vulnerable Road Users Subtotal	Select Location Type	Motor Vehicles Subtotal	Select Location Type
Severity Score:	Vulnerable Road Users Subtotal	0	Motor Vehicles Subtotal	0
Mode Subtotal:	Vulnerable Road Users	0	Motor Vehicles	0
Total Score:				
0				

	Run-off- road	Head-on	Intersection	Other	Pedestrian	Cyclist	Motorcyclist
Exposure	/4	/4	/4	/4	/4	/4	/4
Likelihood	/4	/4	/4	/4	/4	/4	/4
Severity	/4	/4	/4	/4	/4	/4	/4
Product	/64	/64	/64	/64	/64	/64	/64

HSIP Road Safety Assessment


Exposure – The number of road users
Likelihood – The probability that a crash occurs
Severity – The probability that a fatality or severe injury will occur

HSIP Road Safety Assessment

	County	BMP	EMP	Length
Section 1	Mercer	14.45	17.5	3.05
Section 2	Mercer	17.5	20.058	2.558
Section 3	Jessamine	0	1.38	1.38

Lower score = more closely aligned with Safe System principles

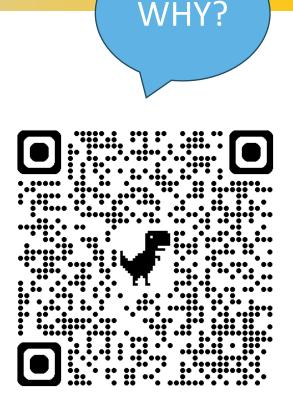
Scoring from 0 – 8,000 for each section & 0 – 24,000 Total

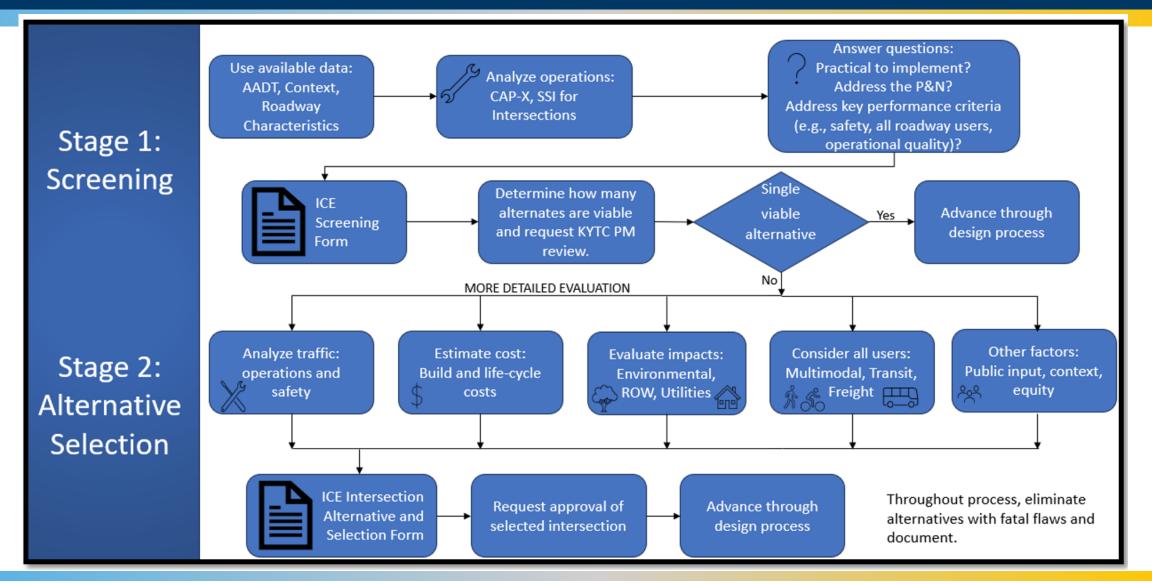
Concept	No-Build	Concept 1	Concept 2	Concept 3	Concept 4
Length (mi.)	6.988	7.36	6.16	1.37	5.61
Cost	\$0	\$137,500,000	\$142,000,000	\$20,900,000	\$5,600,000
Cost per mi.	\$0	\$18,682,000	\$23,052,000	\$15,255,000	\$998,000
SS Score (Section 1)	1,276	948	946	1,276	992
SS Score (Section 2)	1,998	712	844	1,466	1,454
SS Score (Section 3)	2,050	848	1,004	2,050	2,050
SS Score (Total)	5,324	2,508	2,794	4,792	4,496
% Reduction	0.0%	52.9%	47.5%	10.0%	15.6%
Normalized Score	0.222	0.105	0.116	0.2	0.187
SS Alignment Index	0.778	0.896	0.884	0.8	0.813
Cost per point reduced		\$48,828	\$56,126	\$39,286	\$6,763
Cost per mi. per % Reduction		\$353,000	\$485,000	\$1,526,000	\$64,000

 \bigcirc

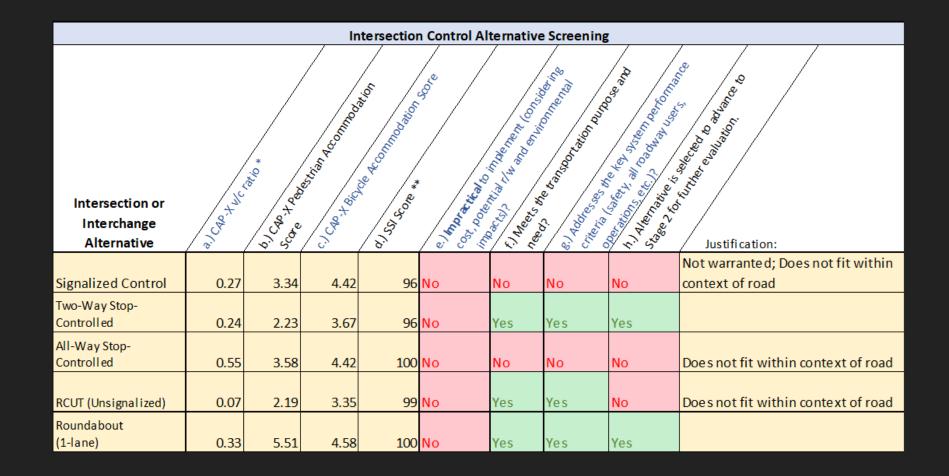
Intersection Control Evaluation (ICE)

KYTC ICE Guidance


- Conducted on all intersections (including newly created) on a project on state-maintained system, unless:
 - No substantial changes (e.g. mill and fill project)
 - <u>ALL</u> of the following:
 - EEC KAB < 0 and EEC CO < 0
 - No notable crash patterns
 - Minor road AADT < 400
 - No known operational issues
- Stage I Screening in Planning


KYTC ICE Guidance

- Conducted on all intersections (including newly created) on a project on state-maintained system, unless:
 - No substantial changes (e.g. mill and fill project)
 - <u>ALL</u> of the following:
 - EEC KAB < 0 and EEC CO < 0
 - No notable crash patterns
 - Minor road AADT < 400
 - No known operational issues
- Stage I Screening in Planning



ICE Process

Intersection Control Evaluation (ICE)

US 68 at KY 33 (Jessamine County)

 \bigcirc

Project Sheets/Funding Pots

Project Sheets

- Begun exclusively for SUAs
- District Planners found useful
- Now used for most concepts

Concept A

Widen US 25 to a three-lane section with one travel lane in each direction, two-way left-turn lane, sidewalk, and shared-use path. Implement access management throughout the corridor, including consolidating entrances and defining access points with appropriate spacing.

In the last five years, a total of 112 crashes occurred in this segment of US 25, with 15 of those crashes resulting in a suspected serious injury or fatality. In addition, the corridor lacks facilities to accommodate bicyclists and

45% estimated reduction in future

Separation from the travel lane for vulnerable road users and potential

Environmental Concerns: Wood Creek and tributaries, wetlands, tree removal (bat habitat), UST/HazMat

Low-to-medium potential right-of-way and utility impacts are anticipated depending on drainage alternate.

Modified Swale	Curb and Gutter
D \$940,000	D \$1.4 Million
R \$2.1 Million	R \$2.1 Million
U \$2.7 Million	U \$2.7 Million
C \$9.4 Million	C \$14 Million

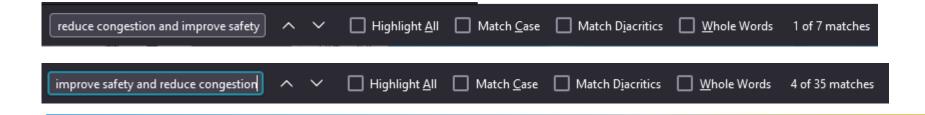
CABINET

Funding Pots

Planning Study Name	Function	Name	Description	Opportunities for Ancillary Improvements	Approximate Annual Budget	KYTC Oversight	Contact
			Roadway and roadside maintenance. CDEs				
			have some flexibility on how FE01 funds are				
FE01 (District)			used but payroll, material, and equipment	Limited due to budget constraints. Potential for			
			costs essentially limit these funds to	changes to striping or control of access using low-			
FE01 (CO)	FE01	Maintenance	maintaining existing conditions.	cost measures. Improving shoulders.	\$400M	Division of Maintenance	CDE/Josh Rogers
			Covers projects to repair existing structures.				
			Projects may be let through Construction	Limited. Some upgrades may be included to meet			
FE02	FE02	Bridge Maintenance	Procurement or as a Master Agreement.	new standards.	\$30-\$50M	Division of Maintenance	Dora Alexander
			Central Office and District budgets used				
FE04 (District)			primarily to cover electrical maintenance				
			(signals, signal systems, lighting, etc.) and			Division of Traffic	
FE04 (CO)	FE04	Traffic Operations	traffic engineering analysis and oversight.	Improvements to signal system timing.	\$48M	Operations	
FE04 (CO)	FEU4				Ş48IVI	Operations	
				Extensive - if a specific or ZVARIOUS project is			
				available. However, ZVARIOUS funds are typically			
			Limited to projects in Six-Year Highway Plan,	administered through a program of prioritized needs.			
			but ZVARIOUS projects are available for	Additional work beyond the scope of the project or		Division of Program	
SPP	FD04	Statewide Construction Funds	specified purposes.	program intent should be limited.	\$1B+	Management*	Ron Rigney/SHE

Funding Pots

WHY?


Planning Study Name	Function	Name	Description	Opportunities for Ancillary Improvements	Approximate Annual Budget	KYTC Oversight	Contact
			Roadway and roadside maintenance. CDEs				
1			have some flexibility on how FE01 funds are				
FE01 (District)			used but payroll, material, and equipment	Limited due to budget constraints. Potential for			
			costs essentially limit these funds to	changes to striping or control of access using low-			
FE01 (CO)	FE01	Maintenance	maintaining existing conditions.		\$400M	Division of Maintenance	CDE/Josh Rogers
			Covers projects to repair existing structures.				
1			Projects may be let through Construction	Limited. Some upgrades may be included to meet			
FE02	FE02	Bridge Maintenance	Procurement or as a Master Agreement.	new standards.	\$30-\$50M	Division of Maintenance	Dora Alexander
			Central Office and District budgets used				
FE04 (District)			primarily to cover electrical maintenance				
			(signals, signal systems, lighting, etc.) and			Division of Traffic	
FE04 (CO)	FE04	Traffic Operations	traffic engineering analysis and oversight.	Improvements to signal system timing.	\$48M	Operations	
	+	<u> </u>		Extensive - if a specific or ZVARIOUS project is	+		+
				available. However, ZVARIOUS funds are typically			
			Limited to projects in Six-Year Highway Plan,	administered through a program of prioritized needs.			
			but ZVARIOUS projects are available for	Additional work beyond the scope of the project or		Division of Program	
SPP	FD04	Statewide Construction Funds	specified purposes.	program intent should be limited.	\$1B+	Management*	Ron Rigney/SHE

Thinking About Capacity

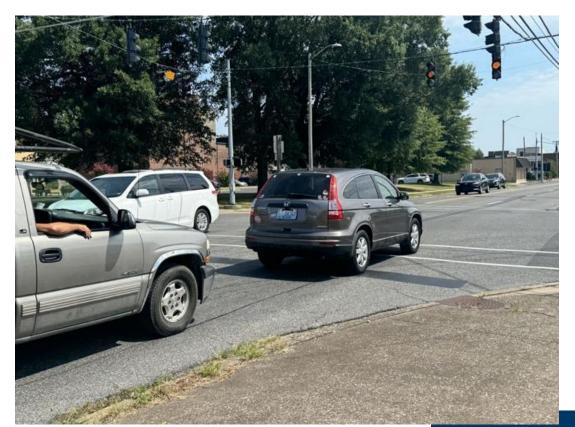
Why is Capacity important?

Need	# of Enacted SYP Mentions			AND ENHANCE MO	TION, IMPROVE SAFETY BILITY ON KY 146 IN	
Safety	1049				Y 1817 (NEW CUT ROAD) 3 (MP 7.42). (2024CCN)	
Capacity	118					
Mobility	360				IMPROVE CONGESTION, ACCESS AND MOBILITY AT THE KY 693/KY 1488 INTERSECTION BY CONSTRUCTING A TRAFFIC SIGNAL (MP 3.384 KY 693)	
Congestion	421		Capacity?			
Traffic Flow	28				(2024CCN)	
Speed	11					
Geometry/Geometrics	380			IMPROVE CAPACITY	AND ACCESS ON KY	
*some double counting due to multiple phases				2906 FROM US 460 1 (2022CCR) (2024CCF		

Thinking About Capacity in a New Way

- Intersection Capacity Problem
- Stopped Vehicle Problem

Throughput Capacity Problem



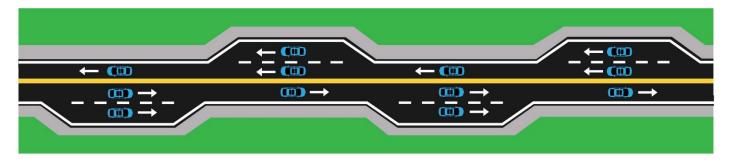
WHY?

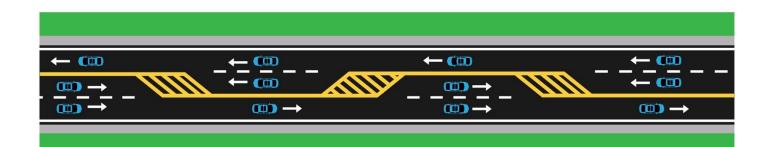
Intersection Capacity Problem

• ICE

- Intersection Reconfiguration / Restriping
- Signal Timing
- Turn Lanes

Stopped/Slow Vehicle Problem


- TWLTL
- Minor (Shoulder) Widening
- Truck Climbing Lanes



Throughput Capacity Problem

• 2+1

Major Widening

Production Hours/Process

Production Hours

Advertised Studies

- Inside the Portal (usually)
- SME < 500 hours directly (PM/Liaison)
 - Forecasting/Modeling
 - Environmental
 - Geotech
 - PM/Liaison puts in Portal

Statewide Studies

- Outside the Portal (Excel)
- SME < 500 hours directly
 - Forecasting/Modeling
 - Environmental
 - Geotech
 - CC PM/Liaison

CABINET

Production Hours

Advertised Studies

- Inside the Portal (usually)
- SME < 500 hours directly (PM/Liaison)
 - Forecasting/Modeling
 - Environmental
 - Geotech
 - PM/Liaison puts in Portal

Statewide Studies

- Outside the Portal (Excel)
- SME < 500 hours directly
 - Forecasting/Modeling
 - Environmental
 - Geotech
 - CC PM/Liaison

Production Hour Process

Standard Tasks

- In Portal and Excel
- Updated to include ICE and RSA tasks
- Will have copies on Guidance Page and available on request

1 - Cor	ridor Study				
1.1	Project Management				
Task #	ltem	Unit	Quantity	Hours/Unit	Production Hours
1.1.1	Project Management	Mo.			0
1.1.2	Purpose & Need/Project Goals	LS			0
				Sub-total	0
1.2	Evaluate Existing Conditions				
No.	Item	Unit	Quantity	Hours/Unit	Production Hours
1.2.1	Base Mapping	LS			0
1.2.2	Roadway Systems & Characteristics	EA			0
1.2.3	Field Reviews & Supplementary Data Collection				0
1.2.4	Identification and Review of Other Transportation Projects and Reports				0
1.2.5	Crash Analysis - Mapping				0
1.2.6	Crash Analysis - Trend Analysis	LS			0
1.2.7	Crash Analysis - CDAT	LS			0
1.2.8	Miscellaneous Task	LS			0
				Sub-total	0
1.3	Forecasts and Model inputs				
No.	ltem	Unit	Quantity	Hours/Unit	Production Hours
1.3.1	Counts (Class, Turning, Base Origin/Destination matrix, etc)	EA			0
1.3.2	Existing Traffic - Miovision Count setup/tear down	EA			0
1.3.3	Existing Traffic - Peak Drone imagery capture	LS			0
1.3.4	Travel Time Runs (AM & PM peak)	EA			0
1.3.5	Comparative Travel Time Data	LS			0
1.3.6	Establish growth rates (using sketch planning or models)	LS LS			0
1.3.7	Develop future volumes, SE data, & origin/destination matrices				0
1.3.8	Document Forecast inputs, assumptions & results as an Appendix				0
1.3.9	Review Updates to Travel Demand Model	LS			0
1.3.10	Document model updates	LS			0
1 2 1 1	Missellappous Task	10			0

Standard Tasks

- In Portal and Excel
- Updated to include ICE and RSA tasks
- Will have copies on Guidance Page and available on request

1 - Cor	ridor Study				
1.1	Project Management				
Task #	ltem	Unit	Quantity	Hours/Unit	Production Hours
1.1.1	Project Management	Mo.			0
1.1.2	Purpose & Need/Project Goals	LS			0
				Sub-total	0
1.2	Evaluate Existing Conditions				
No.	Item	Unit	Quantity	Hours/Unit	Production Hours
1.2.1	Base Mapping	LS			0
1.2.2	Roadway Systems & Characteristics	EA			0
1.2.3	Field Reviews & Supplementary Data Collection	LS			0
1.2.4	Identification and Review of Other Transportation Projects and Reports	LS			0
1.2.5	Crash Analysis - Mapping	LS			0
1.2.6	Crash Analysis - Trend Analysis	LS			0
1.2.7	Crash Analysis - CDAT	LS			0
1.2.8	Miscellaneous Task	LS			0
				Sub-total	0
1.3	Forecasts and Model inputs				
No.	ltem	Unit	Quantity	Hours/Unit	Production Hours
1.3.1	Counts (Class, Turning, Base Origin/Destination matrix, etc)	EA			0
1.3.2	Existing Traffic - Miovision Count setup/tear down	EA			0
1.3.3	Existing Traffic - Peak Drone imagery capture	LS			0
1.3.4	Travel Time Runs (AM & PM peak)	EA LS			0
1.3.5	Comparative Travel Time Data				0
1.3.6	Establish growth rates (using sketch planning or models)	LS			0
1.3.7	Develop future volumes, SE data, & origin/destination matrices	LS			0
1.3.8	Document Forecast inputs, assumptions & results as an Appendix	LS			0
1.3.9	Review Updates to Travel Demand Model	LS			0
1.3.10	Document model updates	LS			0
1 2 1 1	Miscellaneous Task	19			0

WHY?

Cost Estimates

Cost Estimates

Project Development Phase	Project Maturity (% project definition completed)	Project Estimate Designations	Purpose of the Estimate	Estimating Methodology	Estimate Range	
Planning	0 to 5%	Project Identification Estimate	Conceptual Estimating Screening & Feasibility. Estimate Potential Funds Needed (20-year plan)	Parametric	-50% to +200%	Project Cost Planning
	3% to 15%	Conceptual Project Estimate	Conceptual Estimating Prioritize Needs for Long Range Plans (10-year plan)	Historical Bid-Based with some Parametric	-40% to +100%	lanning
Scoping	10% to 30%	Preliminary Line and Grade Estimate	Scope Estimating Establish a Baseline Cost for Project and Program Projects (SYP and STIP)	Historical Bid- Based or Cost-Based	-30% to +50%	

Project Identification Estimates

Project Maturity	Estimating Methodology	Estimate Range	Level of Effort
0 to 5%	Parametric	-50% to +200%	Low

Examples: SWCP/SWIPP "YUM Center" Initial CHAF Estimate

Sources of Risk: Lack of Project Definition Contingency Gigantic

	А	В	C	F	G	н	I.	
1								
2		Improvements Categories	Unit Cost		D6 D8 D1	LO Average		
3		New Roadways	oniccost	D	R	U	с	
4		New Urban Freeway (4 Lane, Divided)	Per Mile	\$1,920,000	\$4,650,000	\$1,630,000	\$16,670,000	
5		New Rural Freeway (4 Lane, Divided)	Per Mile	\$1,340,000	\$1,650,000	\$700,000	\$12,340,000	
6		New 4 Lane Expressway	Per Mile	\$1,240,000	\$1,490,000	\$700,000	\$11,000,000	
7		New Super 2 Highway	Per Mile	\$890,000	\$1,310,000	\$600,000	\$7,340,000	
8		New 2 Lane Highway	Per Mile	\$760,000	\$1,110,000	\$560,000	\$5,840,000	
9		Widening (Major)		ş700,000	\$1,110,000	\$300,000	\$3,840,000	\vdash
10		Freeway, Added Lanes (in median) with Functional Overlay	Per Mile	\$1,440,000	\$110,000	\$210,000	\$6,800,000	
11		4 Lane to 6 Lane Divided - Rural	Per Mile	\$1,170,000	\$1,100,000	\$470,000	\$8,840,000	\vdash
12		4 Lane to 6 Lane Divided - Urban	Per Mile	\$1,600,000	\$3,740,000	\$1,270,000	\$14,070,000	\vdash
13		2 Lane to 4 Lane Divided - Rural	Per Mile	\$1,040,000	\$1,100,000	\$470,000	\$8,840,000	\vdash
14		2 Lane to 4 Lane Divided - Italia	Per Mile	\$1,600,000	\$3,740,000	\$1,270,000	\$14,070,000	\vdash
15		Widening (Minor)	Perivine	\$1,000,000	\$3,740,000	\$1,270,000	\$14,070,000	\vdash
16		2 Lane to 4 Lane Undivided - Rural	Per Mile	¢070.000	\$880.000	¢240.000	¢6,500,000	\vdash
17		2 Lane to 4 Lane Undivided - Kurai	Per Mile Per Mile	\$970,000	\$880,000	\$340,000	\$6,500,000 \$10,740,000	\vdash
18		Upgrade	Periville	\$1,500,000	\$3,270,000	\$1,040,000	\$10,740,000	\vdash
19		Expressway Upgrade to Freeway with Pavement Reconstruction	Per Mile	\$1,600,000	\$2,350,000	\$1,150,000	\$9,500,000	\vdash
20		Arterial Upgrade to Parkway/Expressway with Pavement Reconstruction	Per Mile	\$1,250,000	\$1,850,000	\$800,000	\$8,000,000	
21		Grade Separation / New Interchange Access		91,200,000	91,000,000	9000,000	90,000,000	
22		New System Interchange	Per Interchange	\$5,000,000	\$15,000,000	\$4,000,000	\$50,000,000	
23		New Service Interchange - Rural	Per Interchange	\$1,390,000	\$1,670,000	\$590,000	\$12,000,000	
24		New Service Interchange - Urban	Per Interchange	\$2,000,000	\$4,290,000	\$1,500,000	\$15,840,000	
25		Interchange Modification	Per Interchange	\$1,710,000	\$1,210,000	\$1,130,000	\$12,790,000	
26		Grade Separation Only (Under or Overpass)	Per Grade Separation	\$480,000	\$600,000	\$310,000	\$3,920,000	
27		Major Intersection Improvement						
28		>= 4 lanes in both directions	Per Intersection	\$350,000	\$970,000	\$390,000	\$2,640,000	
29		< 4 lanes in both directions	Per Intersection	\$250,000	\$610,000	\$230,000	\$1,570,000	
20								

TRANSPORTATION CABINET

Conceptual Project Estimates

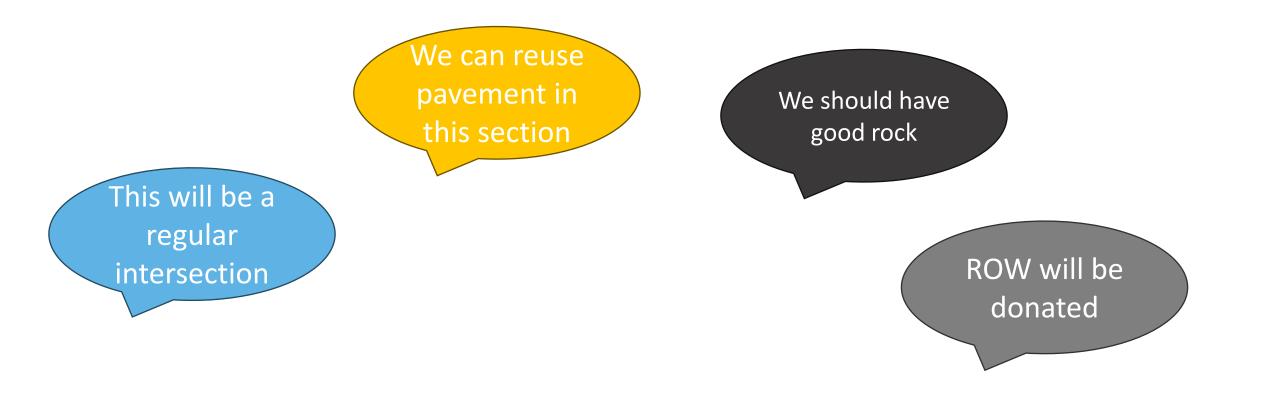
Project Maturity	Estimating Methodology	Estimate Range	Level of Effort
3% to 15%	Historical Bid-Based with some Parametric	-40% to +100%	Medium

<u>Bid-Based</u> Excavation/Embankment Asphalt Base/Surface DGA Concrete Curb & Cutter Sidewalk Parametric Structures Mob/Demob MOT Contingency Depends on Complexity

Cost Estimate								
Concept 3B	40							
Assumes two 12' lanes with 8' paved shoulders	40	LF						
Total Length	6,408	LF						
Pavement Costs								
Total Length	6,408							
2 Lanes		LF				Total Leng	th	
Area						6,408		
	15,665	SY						
Cost	\$140							
Shoulder Pavement								
Total Length	6,408							
4' wide		LF						
	51,268							
	5,696	SY						
Cost	\$140							
				\$2,990,619	Total Paving			
Miscellaneous Items	Qty.	Units	\$ per Unit					
Clearing & Grubbing	1.2	mi.	\$250,000	\$303,431				
Excavation	397,861	CY	\$25	\$9,946,532	\$8,195,043.07			
Pavement Striping	6,408	LF	\$5	\$32,042				
Signs	1.2	mi.	\$250,000	\$303,431				
Misc. drainage, erosion control, etc.			50% paving	\$1,495,310				
Maintenance of Traffic		LS		\$500,000				
			Subtotal	\$15,571,366				
		Conti	ngency (30%)	\$4,671,410				
			lization (3%)	\$467,141				
			zation (1.5%)	\$233,570				
TOTAL CO	NSTRUCT			\$20,900,000				

Conceptual Project Estimates

Project Maturity	Estimating Methodology	Estimate Range	Level of Effort
3% to 15%	Historical Bid-Based with some Parametric	-40% to +100%	Medium


Examples: Most Planning Studies

Sources of Risk:

Known Unknowns Environmental ROW/Utilities Geotech Structures Drainage <u>Unknown Unknowns</u> Inflation of bid items Availability of Materials Labor Cost

Get Off the 'Rosy' Path

Ok to assume absolutely nothing is going to go as you think!

Building an Estimate

Bid Items

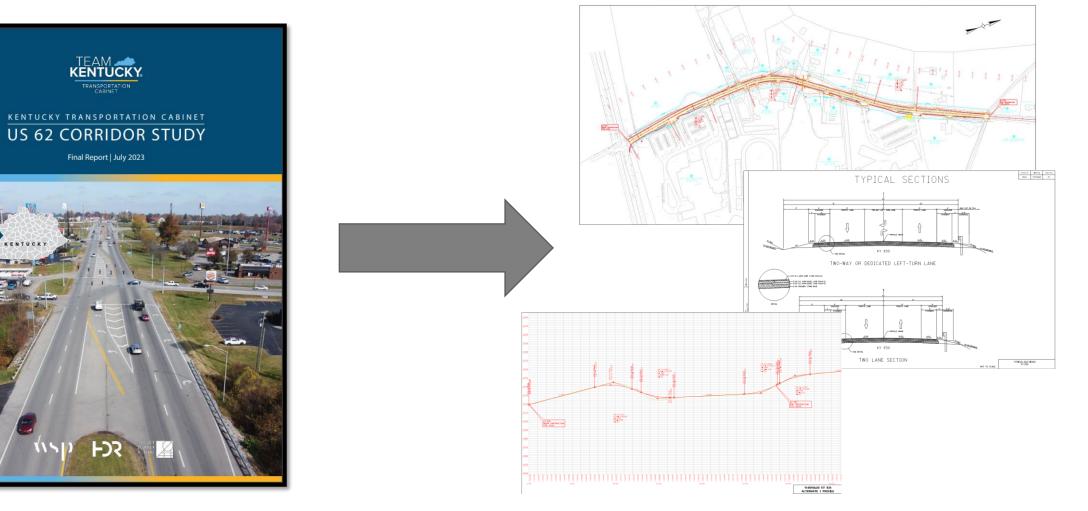
• Pavement

• Excavation

• Curb/Gutter/Sidewalk

• Other Phases

- Drainage/MOT/Mobilization
- Miscellaneous


Contingencies

• Remember all those risks? Account for them

Preliminary Line & Grade Estimate

Turn This:

Into This:

Preliminary Line & Grade Estimate

Project Maturity	Estimating Methodology	Estimate Range	Level of Effort
10% to 30%	Historical Bid-Based or Cost-Based	-30% to +50%	High

Examples: Fully scoped projects ("Design" projects)

Sources of Risk:

ROW/Utilities Lighting

Time Contingency

• Also called a "management contingency."

 How do we account for "we just started this planning study today – and that means – best case – 6 years until construction."

• Things change over that many years, not just material cost!

Time Contingency Example

 If we started a Planning study today, we're well into the next biennium for Design

• **+10%**

- Design and Environmental will take 2 years
 +20%
- Right-of-Way and Utilities will take 2 years
 +20%
- Total: +50%

Project Development Phase	Project Maturity (% project definition completed)	Project Estimate Designations	Purpose of the Estimate	Estimating Methodology	Estimate Range	
Planning	0 to 5%	Project Identification Estimate	Conceptual Estimating Screening & Feasibility. Estimate Potential Funds Needed (20-year plan)	Parametric	-50% to +200%	Project Cost Planning
	3% to 15%	Conceptual Project Estimate	Conceptual Estimating Prioritize Needs for Long Range Plans (10-year plan)	Historical Bid-Based with some Parametric	-40% to +100%	lanning
Scoping	10% to 30%	Preliminary Line and Grade Estimate	Scope Estimating Establish a Baseline Cost for Project and Program Projects (SYP and STIP)	Historical Bid- Based or Cost-Based	-30% to +50%	

TRANSPORTATION CABINET

Bid Items

- Pavement
- Excavation
- Curb/Gutter/Sidewalk

 $^{\circ}$

Contingencies

• See all those risks? Account for them

Escalation
• Time Risk

Document all of This

Revision:						
6/1/2021 - Current - Stuart Kearr	ns - <mark>\$</mark> 24,980,000	~				
Created Date: 06/01/2021			Created By: Stuar	rt Kearns		
mprovement Assumption:			Estimate Source:	:		
Construct Road in New Location	~		Requires Furthe	er Study 🗸		
Secondary Improvement Assump	ption:					
Bike/Ped Facility	~					
Eligible Funding: NH, STPF, STP2	0	Default Year: 2030				
Fund Source	Stage	Estimate	Fiscal Year Estimated	Escalated	Prop Year	Duration (Months)
P NH V	UNK 🗸	0	2022 🗸	0	~	

2022 💙

2022 💙

2022 🗸

9,800,000

600,000

12,700,000

9,800,000

600,000

12,700,000

2022 🗸

2022 🗸

2022 🗸

Total Escalated: \$ 24,980,000

NH 🖌

NH 🖌

NH 🖌

UNK

UNK

UNK

 \mathbf{v}

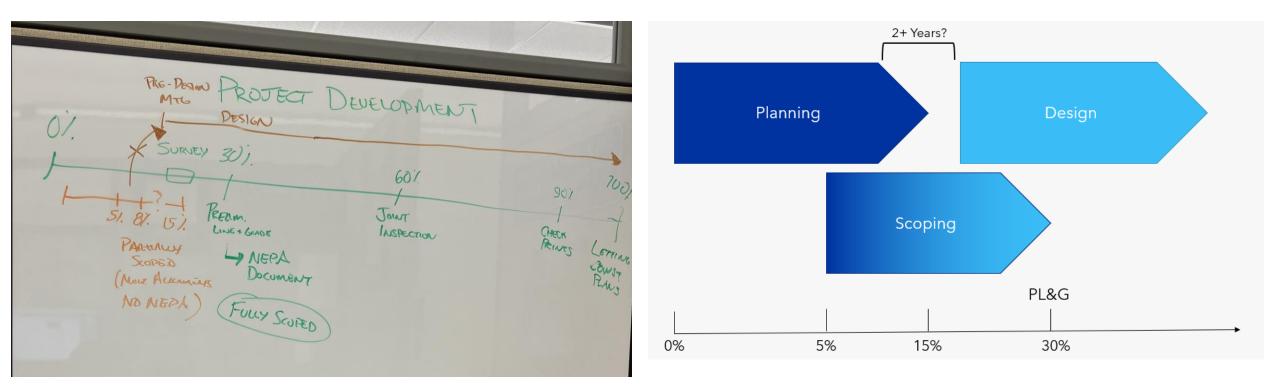
 \sim

~

*Estimate Remarks:

R

U


С

Planning level estimate for cost per Hamburg I-75 Crossing Feasibility Study. 5/26/21 Adjusted Prop year to 2022

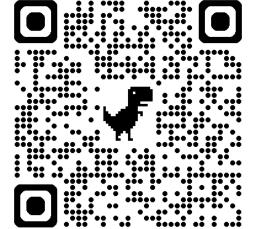
Staff Involvement Through PL&G

Staff Involvement Through PL&G

Staff Involvement Through PL&G

- Planning (District & Central Office) to stay involved until "Scoping" is complete at PL&G
 - Understanding Planning's thought process to meet Purpose & Need
 - Various points where "handoff" occurs
- Better estimates = better for everybody

• Shared responsibility on invites – let invitees say 'No.'



Liability Neutral Language

Liability Neutral Language

 In tort law, the standard of care that must be taken by an individual, agency, or business is determined by the generally accepted practices of the industry.

JULY 2020

NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM

Guidelines for Drafting Liability Neutral Transportation Engineering Documents and Communications Strategies

This digest was prepared under NCHRP Project 20-06, "Legal Problems Arising Out of Highway Programs," for which the Transportation Research Board (TRB) is the agency coordinating the research. Under Topic 24-03, Terri Parker, Parker Corporate Enterprises, Nixa, MO, prepared this digest. The opinions and conclusions expressed or implied in this digest are those of the researchers who performed the research and are not necessarily those of the Transportation Research Board; the National Academies of Sciences, Engineering, and Medicine; or the program sponsors. The responsible program officer is Gwen Chisholm Smith.

Background

State highway departments and transportation agencies have a continuing need to keep abreast of operating practices and legal elements of specific problems in highway law. The NCHRP Legal Research Digest and the Selected Studies in Transportation Law (SSTL) series are intended to keep departments up-to-date on laws that will affect their operations.

Foreword

In the legal system, transportation engineering documents drafted by the transportation industry include manuals, studies, research documents, memoranda, and email. These documents are frequently used by litigants and courts as evidence bearing on the standard of care or duties for transportation agencies sued for alleged negligence in operation of transportation facilities. The documents often use language and phrases such as "hazardous" and "high risk" that have pejorative meanings in the legal system as opposed to more neutral and objective language. Non-neutral language can increase the potential for transportation agencies to be determined to be liable for damages.

This digest presents legal language style and a drafting guide. The digest also addresses how to avoid concepts and language that can have legal implications by promoting clear, direct, objective, and fact-based expression.

This digest may be used as a practical resource for developers and reviewers of engineering documents, researchers, practitioners, and those who implement safety projects.

The National Academies of SCIENCES • ENGINEERING • MEDICINE

TRANSPORTATION RESEARCH BOARD Copyright National Academy of Sciences. All rights reserved

Unintended Liability or Responsibility

 Transportation Agencies are frequently sued over perceived negligence, and the language in internal and public-facing documents can become central to these claims

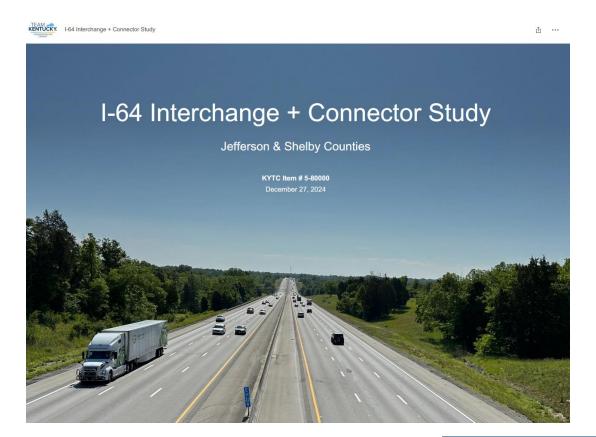
Better	Insufficient
Clearly	Is Needed
Concern	Mandatory
Danger/Dangerous	Obstacle
Deficient	Poor
Edge/Shoulder Drop Off	Problem
Ensure	Require
Essential	Risk/Risky
Excessive	Shall
Hazard	Should
Hot Spot	Тгар
Imperative	Unsafe
Inadequate	

CABINE⁻

Liability Neutral Language

- Choose each word carefully
- Match Field Conditions with Language in Guidance
- Avoid Surplus Language

Application of engineering judgement	Guideline
As soon as practicable	Мау
Can	Normal
Candidates for shielding	Potentially contributing factors
Consider	Roadside "feature" or "condition" or "object" or "device" rather than "hazard" or "risk"
Criteria/factors that may be considered	Strategy
Could	Toolbox
Difference in elevation rather than edge or shoulder drop off	When/Where feasible
Factors that can contribute to the probablitiy	



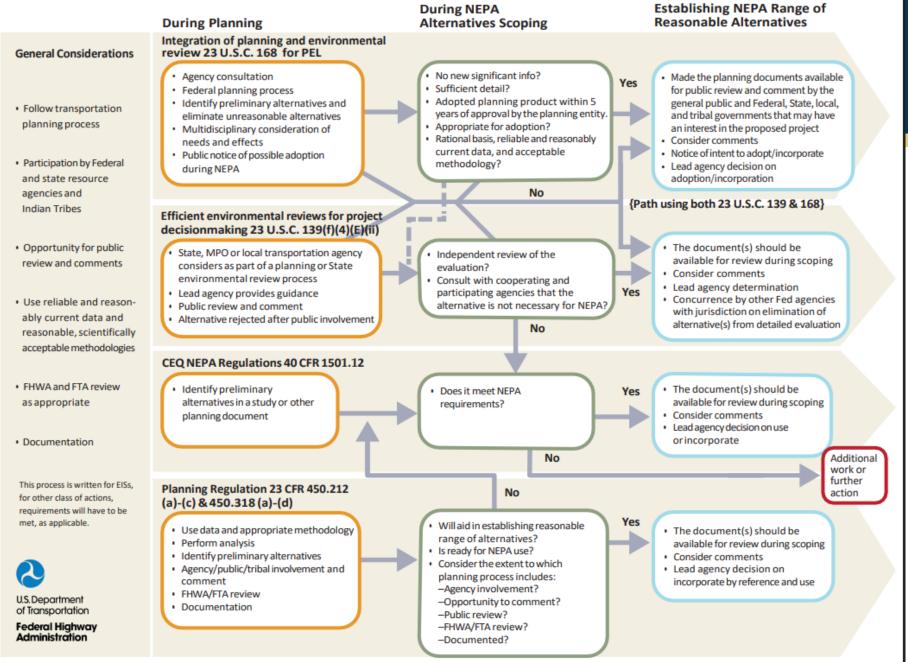
Hosted StoryMaps & Project Continuity

Hosted StoryMaps and Project Continuity

 Consultants encouraged to work within KYTC ESRI Workspace to ensure StoryMap data can endure following study completion

Contact CO liaison, they will contact Will Holmes

Planning Environmental Linkage (PEL)


Why PEL?

- Exactly what it sounds like, linking Planning and Environmental
- Preserve the option to use planning products and decisions in the environmental review process
- "NEPA Clock" doesn't start for EAs and EISs

WHY?

*Except for the statutes and regulations cited, the contents of this document do not have the force and effect of law and are not meant to bind the public in any way. The document is intended only to provide clarity to the public regarding existing requirements under the law or agency policies. General considerations are not necessarily required by the statute or regulations; however, FHWA encourages these for all PEL approaches.

*The Council on Environmental Quality (CEQ) has proposed to modify certain aspects of its 2020 NEPA regulations found at 40 CFR parts 1500-1508 using a phased approach. See 86 FR 55757, 55759 (Oct 7, 2021). If CEQ issues a final rule that amends any provisions of the CEQ regulations cited in this document, FHWA will update the citations in this document and make any other necessary changes.

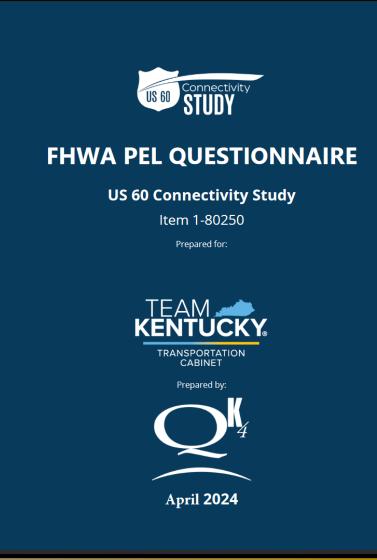
TEAM **KENTUCKY** TRANSPORTATION CABINET

Planning/Environmental Linkage (PEL)

FHWA PEL QUESTIONNAIRE

I-64 Interchange + Connector Study

Item 5-80000



- PELs and traditional KYTC studies have many of the same items, just with more...intention
 - Existing Conditions
 - Land Use & Current/Future Traffic
 - Goals & Objectives
 - Draft Purpose & Need
 - Stage I ICE
 - Enviro. Red Flag & Geotech Overview
 - CR Lit Review & Arch. Overview
 - Socioeconomic Study
 - Initial and Refined Concepts

Planning/Environmental Linkage

- Additional Items by doing a PEL:
 - Survey (if needed, sometimes use LiDAR)
 - Agency Coordination
 - Refined Concepts -> Alternatives
 - Stage II ICE
 - Alternative Screening & Dismissal
 - Phase I Environmental Site Assessment
 - Socioeconomic Analysis
 - Ecological Report
 - Mitigation Measures
 - Anticipated NEPA Document Definition

Federal Changes & Updates

Federal Personnel Updates

• Keith Damron -> HMB

John Ballantyne -> Retired

Nick Vail -> Louisville Metro

Socioec Studies

 Any mention of Environmental Justice (stemming from Executive order 12898) must be removed, including in Socioeconomic Studies Barren River Area Development District

Smiths Grove Planning Study Warren County

> Socioeconomic Report FINAL September 2022

Prepared for Kentucky Transportation Cabinet (KYTC) – Division of Planning

This document was prepared in cooperation with the Kentucky Transportation Cabinet.

Prepared by Barren River Area Development District

TRANSPORTATION CABINET

Socioec Studies

- KYTC/ADDs will continue to produce SE Studies by summarizing race/color/national origin (Title VI) as well as elderly, disability status, poverty level, and LEP (without reference to EJ) using traditional data sources.
- Will ensure project teams can plan for appropriate public involvement and engagement opportunities.

Barren River Area Development District

Smiths Grove Planning Study Warren County

> Socioeconomic Report FINAL September 2022

Prepared for Kentucky Transportation Cabinet (KYTC) – Division of Planning

This document was prepared in cooperation with the Kentucky Transportation Cabinet.

Prepared by Barren River Area Development District

TRANSPORTATION CABINET

Language/Process Changes

- Do not use the following terms moving forward:
 - Environmental Justice (EJ)
 - Racial equity
 - Climate Change
 - Energy Impacts
 - Greenhouse Gas Emissions
 - Justice 40
- Add to your QA/QC process

Language/Process Changes

- Do not use the following terms moving forward:
 - Environmental Justice (EJ)
 - Racial equity
 - Climate Change
 - Energy Impacts
 - Greenhouse Gas Emissions
 - Justice 40
- Add to your QA/QC process

Planning Study Format & Layout

Planning Study Layout & Format

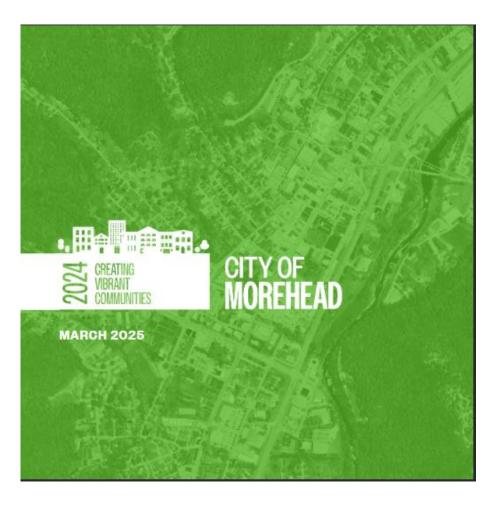
- Two Types of Executive Summaries
 - Two-pager for Leadership & Legislature
 - Longer (< 10 pages) for District
- Project Sheets Easy to Find and Digest
- Appendix
 - Crash History (no MFN)
 - Cost Estimate Spreadsheets
 - Stage I ICE Screening

Upcoming Advertisements & Other Studies

Upcoming Advertisements (subject to change)

- MAY: 11-80300 US 119 Bell County
 - Keenan Jones, Catherine Davis
- JUNE: 3-80300 LN 9008 Barren County PEL
 - Brett Duncan, Kenny Carrico
- JUNE: Roadside Barrier Study
 - Steve De Witte, Chad Shive
 - Webinar held 4/25; No Individual Meetings
- JUNE: 5-80201 US 127 Franklin County

• Steve De Witte, TBD



Upcoming Advertisements (subject to change)

- JULY: 5-80210 KY 146 Oldham County
 - Steve De Witte, TBD
- JULY: 12-5020 D12 Rockfall Study
 - Nathan Ridgway, Charlie Dale
- OCTOBER: 8-80202 KY 300 Lincoln County Rockfall
 - TBD
- 1 or more additional studies in D5, elsewhere

Creating Vibrant Communities

- Pilot of 4 technical assistance reports wrapping up
- Jtown, Glendale, Etown, Morehead
- Lessons Learned
- Potential Future

How can we make your job easier?

Items to avoid in the planning process (communication flaws, nomenclature)

KA/KAB/KABCO/K-ABC-O Preference for Crash Analysis?

Trends in work type & volume, evolution of transportation planning industry. Digital formats/StoryMaps (less physical printed)?

Increasing number of slots for SW Planning in 2026?

Cross Training between HSIP and Planning to get studies more aligned?

Contact

Stephen De Witte, P.E.

Stephen.DeWitte@ky.gov

502-782-5056