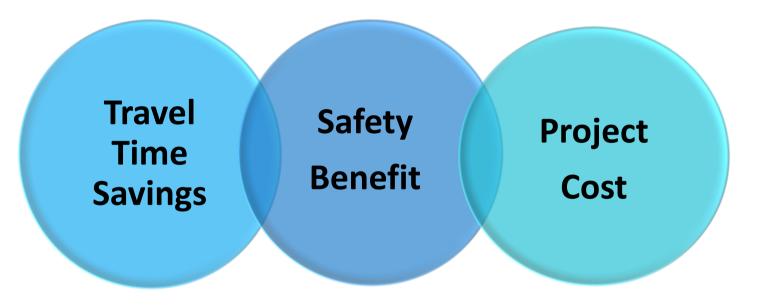


STRATEGIC HIGHWAY INVESTMENT FORMULA FOR TOMORROW

BENEFIT COST FORMULA:


SAFETY BENEFIT & PROJECT COST

Formula Components

Ē

Look to evaluate the expected benefits in dollars of travel time savings and safety benefits against the project costs.

Component Highlights

- Based on KY Statewide Traffic Modeling methods.
- The non-modeling travel time savings are based on Highway Capacity Manual (HCM) interactive formula.
- B_{TTS} = Travel Time Savings Benefit \$ = Travel Time Savings * sum of delay costs by vehicle type

Travel

Time

Savings

- Based on North Carolina analysis methods.
- Is an estimate of the percent reduction in crashes expected for an Improvement Type.
- $B_{SAF} = Safety Benefit ($) = SBF (N_{KAB} * C_{KAB} + N_{CO} * C_{CO})$

- The SHIFT development must rely on the currently available estimated project costs.
- C_{PROJ} = Cost for R, U and C

Benefit / Cost Score		
Formulas		
Statewide: 20% Reg		gional: 15%
Statewide Score = 20% * (Benefit / Cost) Measure (BCM) :		
Regional Score = 15% * (Benefit / Cost) Measure (BCM) :		
FORMULA: $B_{CM} = (B_{TTS} + B_{SAF}) / C_{PROJ}$ [Scaled]		
Description	Summary Method	Data Source
C _{PROJ} : Family Project Cost (Phases R, U & C)	Summary	SYP CHAF
B_{SAF}: Safety Benefit Factor	Safety Benefit Factor of Specific Improvement Type	Crash Database CHAF

Formula Tweaks: Project Cost?

- Project Cost
 - We will continue to capture total project cost (R,U,C phases) for the 2020 B/C formula.
 - Monitor the impact the improvements on the TTS and Safety criteria.

What we Considered

Project Cost

The need to capture design costs.

- □ How to boost a project when other agencies provide a match.
- The challenges to address those projects that have previous funding authorized.
- □ The use of information gathered from the research KTC on the Project Estimating for D, R/W, U, & C?

SHIFT 2018 Formula

$$\mathbf{B}_{\mathsf{SAF}} = \mathbf{SBF}_{\mathsf{PROJ}} * (\mathbf{N}_{\mathsf{KAB}} * \mathbf{C}_{\mathsf{KAB}} + \mathbf{N}_{\mathsf{CO}} * \mathbf{C}_{\mathsf{CO}})$$

Where,

B_{SAF} = Safety Benefit in \$

SBF_{PROJ} = Safety Benefit Factor for the Project Type

N_{KAB} = Number of fatal, severe, and minor injury crashes

C_{KAB} = Average cost of fatal, severe, and minor injury crashes

N_{co} = Number of possible injury and property damage only crashes

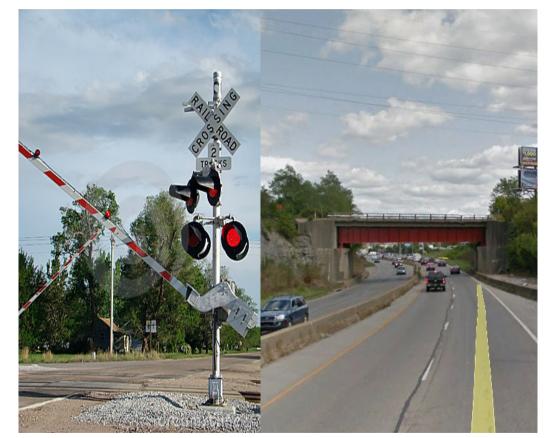
C_{co} = Average cost of possible injury and property damage only crashes

SHIFT 2020 Formula

$$\mathbf{B}_{\mathsf{SAF}} = \mathbf{SBF}_{\mathsf{PROJ}} * (\mathbf{N}_{\mathsf{KAB}} * \mathbf{C}_{\mathsf{KAB}} + \mathbf{N}_{\mathsf{CO}} * \mathbf{C}_{\mathsf{CO}})$$

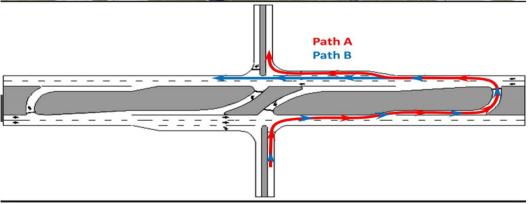
Where,

B_{SAF} = Safety Benefit in \$


SBF_{PROJ} = Incorporate Planning level CMFs (newly developed list by VHB)

- N_{KAB} = Number of fatal, severe, and minor injury crashes
- C_{KAB} = Average cost of fatal, severe, and minor injury crashes
- N_{co} = Number of possible injury and property damage only crashes
- C_{co} = Average cost of possible injury and property damage only crashes

SHIFT 2020 Formula Update


- New SBF estimates will be more reflective of Crash Reduction
- In some cases the 2018 SBFs were overestimating Safety Benefit
 - e.g. Improvement Type 2 lane to 4 lane divided –Rural, used an SBF of 55, the CMF for KY is 0.64 which converts to an SBF of 36.
- In some cases the 2018 SBFs were underestimating Safety Benefit
 - e.g. Improvement Type Install Two-Way Left Turn Lane used an SBF of 20, the CMF for KY is 0.72 which converts to an SBF of 28.
- Propose to add 3-4 new improvement types to cover variance in SBF estimates
- Update project type definitions

- Create a new Improvement type: Improve Railroad Crossing
 - This will separate basic railroad projects from grade separation railroad projects
 - Improve Railroad Crossing will have an SBF of 55
 - Grade Separation of Highway/Railroad Crossing will keep previous SBF of 90

- Create a new Improvement type: Innovative Intersections
 - Projects looking to employ an Innovative intersection such as a roundabout or J Turn
 - Innovative Intersections have lower CMFs (i.e. Higher SBFs) than basic intersection improvements such as turn lane additions.



- Create a new Improvement type: Innovative Interchange
 - Projects looking to employ an Innovative interchange such as a Diverging Diamond or SPUI
 - Innovative Interchanges have lower CMFs (i.e. Higher SBFs) than basic interchange improvements such as lengthening acceleration/deceleration ramps.

- Create a new Improvement type: Bike and Pedestrian Facilities
 - In 2018 Shift the only applicable improvement type was called Other Improvement Types, which had an SBF of 0.
 - New Bike/Ped SBF = 13
 - Will help bike and pedestrian related projects that previously received no safety benefit score.

Other Thoughts

- Try to incorporate logic checks into data entry Examples:
 - If project is grade separation of railroad but project costs is \$100,000... This cost is not reflect of such a project
 - If project type is grade separation but length is 2 miles... this length is not reflective of such a project
- Can the project description be checked against the improvement type?
 - If innovative intersection is chosen as improvement type but the project description does not contain the terms: innovative, roundabout, j turn, RCUT, MUT, Green T, quadrant, jug handle, etc... could we flag this for follow up?

Team Members

Travel Time Savings

- Scott Thomson
- Thomas Witt
- Daniel Hulker
- Jay Balaji
- Justin Harrod
- Jonathan Reynolds

- Mike Vaughn
- Nathan Ridgway
- David Durman

- Anthony Norman
- Stephen De Witte

- Travis Jones
- Lindsay Carter
- Maridely Loyselle