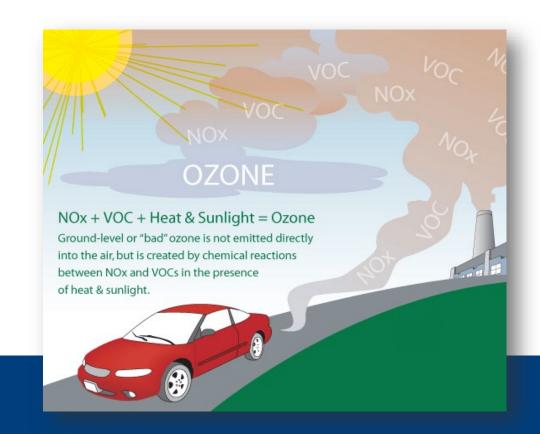
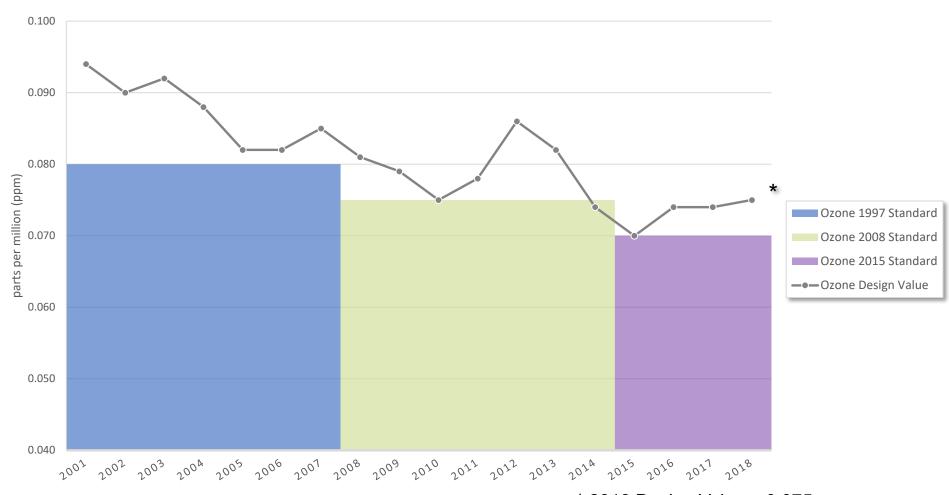


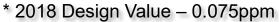
Ozone (O_3)

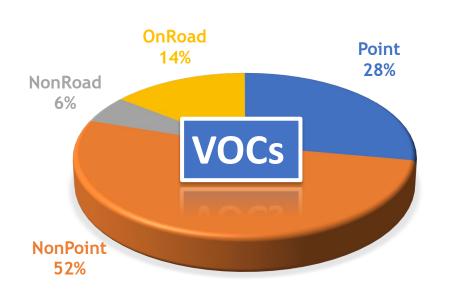

Created via a chemical reaction:

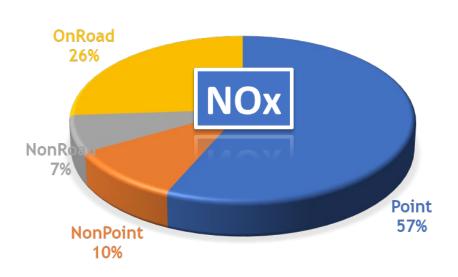
 $NOx + VOCs + Sunlight = O_3$

Louisville's Ozone season:


March-October


- Health effects:
 - Shortness of breath
 - Inflame airways
 - Aggravate lung disease
 - Increase frequency of asthma attacks


Louisville's Ozone History



What are the sources of ozone precursor emissions in Louisville?

Louisville Air Toxics

1940s

WWII rubber manufacturing

"Rubbertown"

<u>2005</u>

Strategic **Toxics Air** Reduction (STAR)

Program

2017

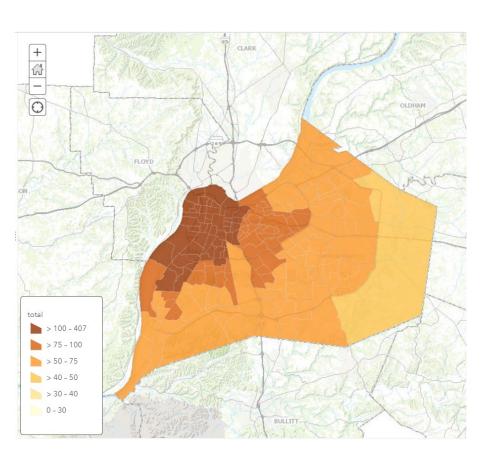
APCD installed auto-GC

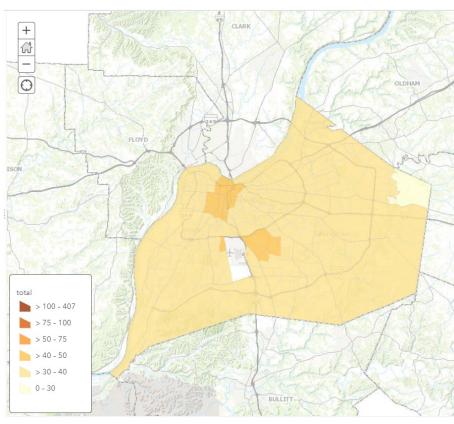
2000-2001

West Louisville **Air Toxics** Study (WLATS)

2005-2013

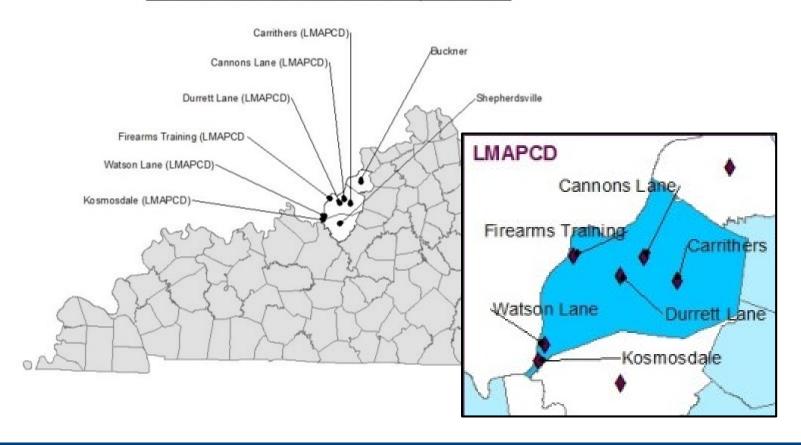
University of Louisville **EPA TO-15** air toxics monitoring


Total Air Toxics 2005 - 2017


Jefferson County, KY Sources	2005 Total Air Releases in Pounds	2017 Total Air Releases in Pounds	% Change
Electric Generating Utilities (EGUs)	4,703,167	851,342	-82% Decrease
Non-EGUs	3,443,604	1,309,085	-62% Decrease
Total Source: <u>EPA Toxics Release Inver</u>	8,146,770 ntory	2,160,427	-73% Decrease

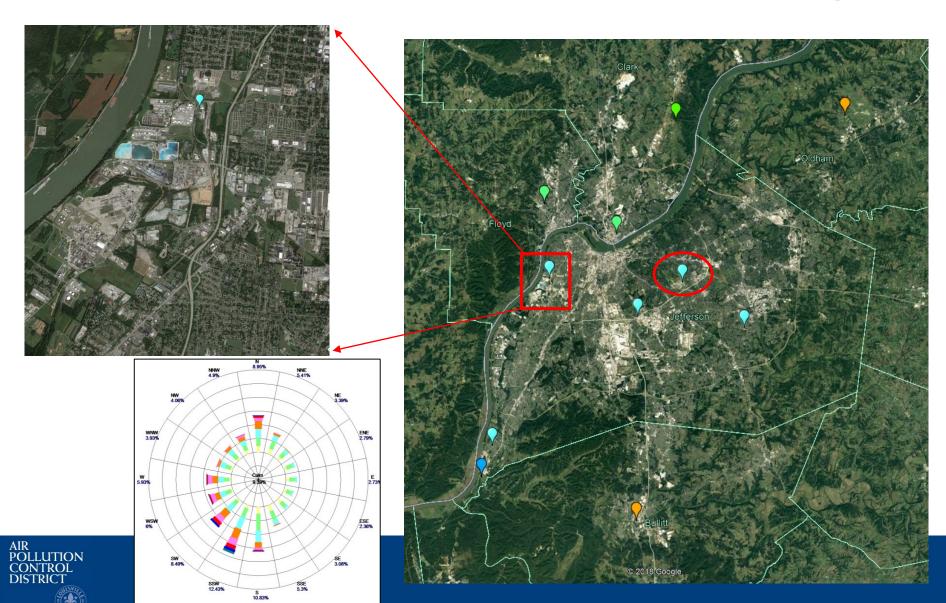
Progress to Date

2005 v 2014 National Air Toxics Assessment – Total



Monitoring for Jefferson County, KY

Louisville/Jefferson County, KY-IN


NCore Multipollutant Monitoring Network

- Trace Level Carbon Monoxide
- Trace Level Sulfur Dioxide
- Oxides of Nitrogen (NOx)
- Total Oxides of Nitrogen (NOy)
- Ozone
- PM2.5 Mass and Speciation
- PM2.5 Carbon Speciation
- PM10 PM2.5 (PMCoarse)
- Meteorological
- RadNet

Air Toxics / PAMS Monitoring

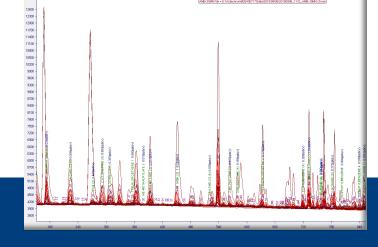
Air Toxics / PAMS Monitoring

Traditional Method

- Manual collection using canisters
- Samples typically collected once every 6 or 12 days
- Samples shipped to lab for analysis
- Samples represents 24-hr period

Modern Method

- Automated Gas Chromatography
 - Two Auto GCs Dual FIDs
- Samples collected every hour
- Samples analyzed in near real time
- Raw data available within the hour
- While temporal resolution is improved, additional challenges exist

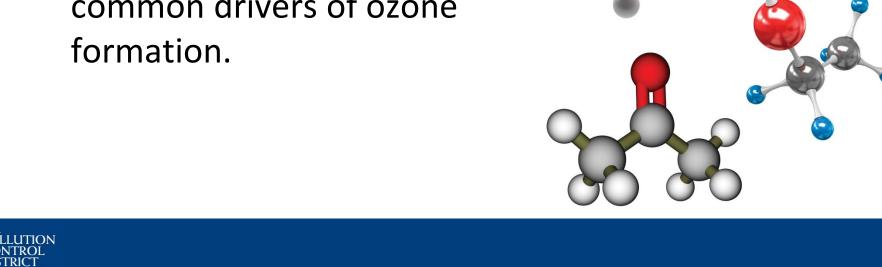


Air Toxics / PAMS Monitoring

- Auto GC technology is complex and produces large amounts of data
- APCD is the 2nd AQ agency in the country to operate Chromatotec Auto GC
- Continuous refinement of methodologies expected

 APCD staff have worked extensively with manufacturer and participated in national workgroup calls to improve/

refine method



What will be monitored?

 Compounds include Toxic Air Contaminants that were found to exceed health risk goals in previous air monitoring studies.

VOCs known to be common drivers of ozone formation.

Firearms Training Air Monitoring Site Air Toxics:

CAS No.	Compound	TAC No.
107-13-1	Acrylonitrile	1
71-43-2	Benzene	1
75-25-2	Bromoform	1
106-99-0	1,3 Butadiene	1
56-23-5	Carbon tetrachloride	1
67-66-3	Chloroform	1
106-46-7	1,4 Dichlorobenzene	1
75-09-2	Methylene chloride (Dichloromethane)	1

CAS No.	Compound	TAC No.
127-18-4	Perchloroethylene (Tetrachloroethylene)	1
79-01-6	Trichloroethylene	1
75-01-4	Vinyl Chloride	1
108-88-3	Toluene	1
100-41-4	Ethylbenzene	2
108-10-1	Methyl isobutyl ketone (4-Methyl- 2-pentanone)	4
100-42-5	Styrene	4
80-62-6	Methyl methacrylate	4
140-88-5	Ehtyl acrylate	4

Photochemical Assessment Monitoring Station:

PAMS Target Parameters

The data collected at the PAMS sites include measurements of O_3 , NO_3 , a target list of VOCs including several carbonyls as well as surface and upper air meteorology. Most PAMS sites measure 56 target hydrocarbons on either a hourly or 3-hour basis during the O_3 season. The Type 2 sites also collect data on 3 carbonyl compounds (formaldehyde, acetaldehyde, and acetone) every three hours during the O_3 monitoring period. Included in the monitored VOC species are ten compounds classified as hazardous air pollutants (iAPs). All stations must measure O_3 , NO_3 , and surface meteorological parameters on an hourly basis. Below are the parameters monitored at the surface PAMS sites.

Ozone, nitrogen oxides, VOC su	ıms	Surface Meteorological	
Ozone	44201	Temperature	62101
		Wind Speed	61101/3
Nitric Acid	42601	Wind Direction	61102/4
Nitrogen Dioxide	42602	Relative Humidity	62201
Oxides of Nitrogen	42603	Solar Radiation	63301
		uv Radiation	63302/4
Total NMOC	43102	Barometric Pressure	64101
Sum of Targeted HCs	43000	Precipitation	65102
Hydrocarbons (HCs) - listed in e	lution sequence		
Ethylene	43203	2,3-dimethylpentane	43291
Acetylene	43206	3-methylhexane	43249
Ethane	43202	2,2,4-trimethylpentane	43250
Propylene	43205	n-Heptane	43232
Propane	43204	Methylcyclohexane	43261
Isobutane	43214	2,3,4-trimethylpentane	43252
1-Butene	43280	Toluene	45202
n-Butane	43212	2-methylheptane	43960
t-2-Butene	43216	3-methylheptane	43253
c-2-Butene	43217	n-Octane	43233
Isopentane	43221	Ethylbenzene	45203
1-Pentene	43224	m&p-Xylenes	45109
n-Pentane	43220	Styrene	45220
Isoprene	43243	o-Xylene	45204
t-2-pentene	43226	n-Nonane	43235
c-2-pentene	43227	Isopropylbenzene	45210
2,2-Dimethylbutane	43244	n-Propylbenzene	45209
Cyclopentane	43242	m-Ethyltoluene	45212
2,3-dimethylbutane	43284	p-Ethyltoluene	45213
2-methylpentane	43285	1,3,5-Trimethylbenzene	45207
3-Methylpentane	43230	o-Ethyltoluene	45211
2-Methyl-1-Pentene	43246	1,2,4-trimethylbenzene	45208
n-hexane	43231	n-Decane	43238
Methylcyclopentane	43262	1,2,3-trimethylbenzene	45225
2,4-dimethylpentane	43247	m-Diethylbenzene	45218
Benzene	45201	p-Diethylbenzene	45219
Cyclohexane	43248	n-Undecane	43954
2-methylhexane	43263		
Carbonyls			
Formaldehyde	43502		
Acetone	43551		

43503

PAMS

- Volatile Organic Compounds
- Carbonyls
- Direct NO₂
- Cloud Height (Ceiliometer)
- Additional Meteorology

Acetaldehyde

Firearms Training Air Monitoring Site: Air Toxics

Monitoring objectives include:

- Generating near real time, quality-assured data
- Providing air pollution data to the community in a timely way
- Supporting academic and scientific research
- Improving access to data via APCD's website and U.S. EPA's Air Quality System (AQS) database

Firearms Training Air Monitoring and NCORE Sites: Ozone Precursors

Monitoring objectives include:

- Developing a better understanding of photochemically reactive precursors in the area of maximum emissions
- Assessing relative contribution of emissions observed at Firearms Training with observations from federally required PAMS monitoring at APCD's Cannons Lane NCore Air Monitoring Site
- Evaluating ambient trends of speciated VOCs and meteorological conditions

Ozone Formation Study

Goal	Outcomes
 Refine understanding for the regional drivers of ozone formation to make strategic policy decisions 	 Comprehensive inventory of compounds contributing to the formation of ozone Refined understanding of Ozone sensitivity to NOx/VOC reductions Scale of relative reactivities of VOCs in the ambient air of Jefferson County

Multi-Pollutant Risk-Based AQ Management Strategy Project

Goal(s) **Outcomes** Evaluate and prioritize control strategies Prioritized emission to reduce ozone and come into attainment reduction strategies Quantified health outcome with NAAQS Explore co-benefits of ozone reduction improvements and associated benefits strategies to air toxics and fine particulate emissions Stakeholder input Use BenMAP to quantify the anticipated health benefits of air quality improvements

Questions?

Louisville Metro Air Pollution Control District

701 W. Ormsby Ave.

Ste. 303

Louisville, Ky. 40203

(502) 574-6000 www.louisvilleky.gov/APCD

