MObile Source Emission Reduction Strategies (MOSERS)

Madhusudhan Venugopal, P.E.

STAQS – Louisville, KY

August 21th, 2019

Overview

Project Team

MOSERS Background

Hand calculations

- Simple equations
- Require assumptions
- Less time and data needed

Models

- More accurate
- Complex and data intensive
- Require skills such as software programs

MOSERS Background – Current Official Version

MOSERS First Edition 2003

- Review agencies needed consistency
- Uniformity in emission reduction strategies

MOSERS Second Edition 2007

- Modifications to the equations as recommended by users
- Added new strategies

MOSERS Update - Motivation

MOSERS - Modules

- Background Document
- NAAQS, SIP, Conformity, etc.

- Strategies
- Emissions Calculation Equations

- Excel Workbook
- Activity and Emissions Calculation

Module 3 –Introduction

Spreadsheet tool

User experience

Strategy & worksheet Menus

Web Integration

Module 3 –Inputs

Main Menu

Save Report as PDF

Project Information

Open Strategy Documentation

Input Values Range

Default Values Range

Module 3 - Activity Calculation

Calculated Data range

• Interim data used for calculation of the Activity Output. No input is required in this range.

Activity Output data range

• Calculated data used for future emission calculations.

Consistency with the Module 2 Formulas

	Calculated Data	Variable	Value	Units
	Off-Peak Hour Ridership Factor	F _{OP}	0.0155	
Didambia	Estimated Transit Ridership during Peak Hours	Rp	6,782	person
Ridership	Estimated Transit Ridership during Off-Peak Hours	R _{OP}	2,618	person
	Estimated Typical Day Transit Ridership	R	9,400	person
Transit Trins	Transit Trips during Peak Hours (Two-way)	VT _{BUS,P}	12	trips / day
Transit Trips	Transit Trips during Off-Peak Hours (Two-way)	VT _{BUS,OP}	24	trips / day
Transit VMT	Daily Transit VMT	VMT _{BUS}	360 vehicle mile	
Trin Cummon	Reduction in Number of Auto Vehicle Trips during Peak Hours	VT _{R,P}	2,681	trips
Trip Summary	Reduction in Number of Auto Vehicle Trips during Off-Peak Hours	$VT_{R,OP}$	1,035	trips
VMT Summary	Reduction in Number of Daily Auto VMT	VMT _R	33,447	vehicle mile

	Activity Output	Variable	Value	Units
Trip Summary	Reduction in Number of Daily Auto Vehicle Trips	VT_R	3,716	trips
	Increased Number of Daily Transit Vehicle Trips	VTBUS	36	trips
VMT Summary	Reduction in Number of Auto VMT during Peak Hours	$VMT_{R,P}$	24,133	vehicle mile
	Reduction in Number of Auto VMT during Off-Peak Hours	$VMT_{R,OP}$	9,314	vehicle mile
	Increased Number of Transit VMT during Peak Hours	VMT _{BUS,P}	120	vehicle mile
	Increased Number of Transit VMT during Off-Peak Hours	VMT _{BUS,OP}	240	vehicle mile
Speed Summary	Average Transit Speed along the Corridor in Peak Hours	V _{BUS,P}	35	mph
	Average Auto Speed along the Corridor in Peak Hours	V _{AUTO,P}	35	mph
	Average Transit Speed along the Corridor in Off-Peak Hours	VBUS,OP	45	mph
	Average Auto Speed along the Corridor in Off-Peak Hours	V _{AUTO,OP}	55	mph

Module 3 – Emission Rates

Texas ERLT for Seven Regions

Strategy-Specific Rates (Bike peds, Signals, etc.)

Rates by metropolitan area, year, road type, road description, and speed

		—						
AREA	YEAR	Vehicle Type	CO	NOX	VOC	CO2	PM10	
Austin	2014	Longhaul Truck	89.6	195.4	47.2	9120.9	3.9	
Austin	2015	Longhaul Truck	89.5	193.7	44.0	9108.4	3.3	
Austin	2016	Longhaul Truck	89.5	192.4	41.4	9097.7	2.8	
Austin	2017	Longhaul Truck	89.5	191.8	40.1	9087.7	2.6	
Austin	2018	Longhaul Truck	89.5	191.2	39.0	9079.0	2.4	
Austin	2019	Longhaul Truck	89.5	190.6	37.9	9073.3	2.2	
Austin	2020	Longhaul Truck	89.4	189.6	36.3	9069.1	1.9	
Austin	2021	Longhaul Truck	89.3	188.7	34.4	9062.7	1.6	
Austin	2022	Longhaul Truck	89.3	187.8	33.1	9060.5	1.3	
Austin	2023	Longhaul Truck	89.3	187.1	32.2	9057.3	1.1	
Austin	2024	Longhaul Truck	89.3	186.7	31.5	9056.8	1.0	
Austin	2025	Longhaul Truck	89.2	186.2	30.9	9056.0	0.9	
Austin	2026	Longhaul Truck	89.2	185.7	30.1	9054.6	0.7	
Austin	2027	Longhaul Truck	89.2	185.4	29.6	9054.3	0.6	

Area - Austin

Road Type - Rural Restricted Access

Module 3 – Emission Calculation

- 1. Daily Emission Reductions
- 2.Emission Factors
- 3.Emission Calculations

Module 3 –Reporting

Module 3 – Access and Support

Website - https://txaqportal.org/

Key Points

Stakeholders Participation Key for Successful Implementation

Available Data at the User level

Compatibility - Excel Version Used

Initially Target Most Used Strategies

Strategy and Emission Factor Matrix

MOSERS Tool Demonstration

Questions and Comments

Contact Information

Madhusudhan Venugopal, P.E.

Associate Research Scientist
Transportation Modeling Program
Texas A&M Transportation Institute
Email: M-Venugopal@tti.tamu.edu
Office: (972) 994-2213

Reza Farzaneh, Phd. P.E.

Associate Research Engineer
Program Manager, Air Quality
Texas A&M Transportation Institute
Email: R-Farzaneh@tti.tamu.edu
Office: (512) 407-1118