

FHWA Initiatives Addressing Energy and Emissions Analysis

Southern Transportation Air Quality Summit August 21, 2019

John Davies Sustainable Transportation and Resilience Team FHWA Office of Planning, Environment, and Realty JohnG.Davies@dot.gov

Overview

- What is unique about energy and CO2 analysis?
- A few relevant projects supported by FHWA and its partners...
 - Infrastructure Carbon Estimator (ICE)
 - Strategic policy analysis tools (EERPAT and VisionEval)
 - Addressing institutional capacity (NCHRP 25-25 56)

Reflects the impact of:

- Federal fuel economy standards (light-duty and medium/ heavy-duty)
- State ZEV standards
- Market-driven changes in vehicle efficiency
- Change in travel activity

DISRUPTIVE TECHNOLOGIES COULD HAVE A SIGNIFICANT IMPACT BEYOND BASELINE CONDITIONS AND POLICIES

"Bookend" Forecast of the Energy and CO2 Impacts of Connected and Automated Vehicles

Current Energy Consumption Levels

tmost of Energy

+200%

-60%

Source: U.S. Department of Energy, Smart Mobility Program

Factors that could *increase* energy consumption and associated emissions

- Reduced travel costs
- Increased VMT
- Zero-occupancy vehicles
- Access for New User Groups
- Faster driving speeds
- Increased freight movement
- Increased vehicle features

Factors that could *decrease* energy consumption and associated emissions

- Platooning, drafting and eco-driving
- Congestion management
- Emerging mobility service models
- Improved crash avoidance
- · Zero-emission vehicles and power train efficiencies
- Less hunting for parking
- Vehicle right-sizing

Lifecycle Energy / CO2 Considerations are also important in understanding impacts

On-road energy

• Vehicle operating energy consumption and emissions

Upstream fuel cycle

- Extracting petroleum, mining for electricity, growing and harvesting biofuel plants, transport, refining, and distribution
- Disposal of products

Infrastructure

- Upstream energy and fuel used in raw material extraction & production of construction materials
- Energy and fuel used by construction vehicles
- Fuel used by maintenance vehicles

Vehicle Cycle

- Raw material extraction, processing, transport; manufacture; assembly, distribution
- Maintenance
- Disposal of vehicles

Infrastructure Carbon Estimator (ICE)

- Simple tool for estimating the energy consumption and CO2 emissions from
 - building and maintaining transportation infrastructure,
 - Implementing sustainable pavements and construction practices
- Being used by NYSDOT, WSDOT and MNDOT to estimate energy and CO2 impacts in NEPA.
- Available at www.fhwa.dot.gov/environment/sustainability/ energy/ tools/carbon_estimator/index.cfm

Infrastructure Types Covered by the Tool

Roadways and parking facilities

Bridges

Construction Resurfacing Rehabilitation Routine Maintenance

Bicycle and pedestrian facilities

Public transportation

Construction and Maintenance Activities Covered by the Tool

Materials

Raw materials extraction

Construction Equipment

Raw materials transport

Raw materials production

Chemical reactions-materials production

Direct Energy & Emissions

Transport of materials to site **Routine Maintenance**

ito Construction or inc

Construction equipment

Vegetation management

Snow removal

Sweeping, striping, litter, bridge deck repair

Roadway Projects								
		Roa	Roadway Rehabilitation					
Facility type	New Roadway (lane miles)	Construct Additional Lane (lane miles)	Re- Alignment (lane miles)	Lane Widening (lane miles)	Shoulder Improvement (centerline miles)	Re- construct Pavement (lane miles)	Resurface Pavement (Iane miles)	
Rural Interstates	0	0	0	0	50	0	10	
Rural Principal Arterials	5	0	0	10	0	0	30	
Rural Minor Arterials	0	0	20	0	0	0	0	
Rural Collectors	0	0	0	20	0	0	0	
Urban Interstates / Expressways	0	0	0	0	40	20	30	
Urban Principal Arterials	0	0	0	0	0	0	10	
Urban Minor Arterials / Collectors	0	0	0	0	0	0	0	

U.S. Department of Transportation Federal Highway Administration

2

Strategy	Baseline deployment	Planned deployment	Maximum potential deployment	Applied to			
In-place roadway recycling							
Cold In-place recycling	0%	0%	99%	Asphalt and fuel use by construction equipment in roadway resurfacing and BRT conversions			
Full depth reclamation	0%	0%	99%	Base stone and fuel use by construction equipment in roadway reconstruction and BRT conversions			
Warm-mix asphalt							
Warm-mix asphalt	45%	90%	100%	Asphalt use in all projects			
Recycled and reclaimed materials							
Use recycled asphalt pavement as a substitute for virgin asphalt aggregate	0%	0%	25%	Asphalt use in all projects			
Use recycled asphalt pavement as a substitute for virgin asphalt bitumen	0%	0%	40%	Asphalt use in all projects			
Use industrial byproducts as substitutes for Portland cement	0%	0%	33%	Concrete use in all projects			
Use recycled concrete aggregate as a substitute for base stone	0%	0%	100%	Base stone use in all projects			
Preventive maintenance							
Preventive maintenance	0%	0%	100%	Materials and construction fuel use in roadway resurfacing and reconstruction projects			

U.S. Department of Tifafisportation Federal Highway Administration

Energy and CO2 Estimates

		Annualized er	nergy use (mmBT)	Us), per year o	ver 20 years					
	Unmitigated									
	Roadway - new construction	Roadway- rehabilitation	Roadway - total	Bridges	Rail, bus, bicycle, ped.	Total				
Upstream Energy Materials	89,975	152,838	242,813	24,643	178,067	445,523				
Direct Energy Construction Equipment Routine Maintenance	33,942	27,079	60,021	10,747	61,606	132,374 158,585				
Total	123,917	179,917	302,834	35,390	239,673	736,482				
		Annual 🔜 emissions (MT CO2e), per year over 20 years								
	Unmitigated									
	Roadway - new construction	Roadway- rehabilitation	Roadway - total	Bridges	Rail, bus, bicycle, ped.	Total				
Upstream Emissions Materials	5,626	9,276	14,902	2,065	12,507	29,474				
Direct Emissions										
Construction Equipment	2,402	1,975	4,377	784	4,491	9,652				
Routine Maintenance						11,564				
Total	8,028	11,251	19,279	2,849	16,998	50,690				

U.S. Department of Transportation Federal Highway Administration

2

ICE 2.0

- Pooled fund effort led by the Minnesota DOT, with participation from California, Colorado, Iowa, New York, Texas, Washington. FHWA is also supporting the project.
- What to expect:
 - New roadway elements
 - New research on infrastructure energy and embodied CO2e embodied emissions
 - Improvements to tool interface
 - Ability to estimate on-road operating energy / CO2 based on simple estimates of vehicle miles traveled and travel speed
 - Project expected to be completed in late 2019

Strategic Planning Models – Differences from Conventional Travel Demand Models

Conventional Travel Demand Models (4-step and Activity-Based)

- Originally developed to evaluate transportation capacity (especially roads and capital-intensive transit projects)
- Detailed representation of the transportation system
- Very useful for evaluating incremental changes to a transportation system and related policies

Strategic Planning Models

- Detailed representation of households and factors influencing behavior (similar to activity-based)
- Simplified representation of transportation system
- Easier to develop and calibrate (but less precise)
- More flexible, and can address a broader policy space more easily
- Run quickly, and can be used to evaluate dozens of policy combinations

Graphics courtesy of Brian Gregor, Oregon System Analytics

U.S. Department of Transportation Federal Highway Administration

Strategic Planning Models

- The Energy and Emissions Reduction Policy Analysis Tool
 - Based on the GreenSTEP model created by the Oregon Department of Transportation.
 - Enhanced to address well-to-pump energy and emissions and better represent freight flows and related strategies
 - FHWA is planning to pilot test the new freight component of EERPAT
 - Models have been developed in WA, UT, CO, VT MA, and MD
- VisionEval is a pooled fund effort intended to improve the GreenSTEP family of models

Thank you.

johng.davies@dot.gov

(202) 366-6039