AIR POLLUTION AND ASTHMA NATIONAL STUDY

Southern Transportation and Air Quality Summit August 20-21, 2019

Haneen Khreis Ph.D. and Joe Zietsman Ph.D., P.E.

Texas A&M Transportation Institute, Center for Advancing Research in Transportation Emissions, Energy, and Health (CARTEEH)

https://www.carteeh.org/

CARTEEH – Tier 1 Center

Transportation Emissions and Health Spectrum

14 Pathways Between Transportation and Health

Environment International

journal homepage: www.elsevier.com/locate/envint

CALL OF ALL OF A

Open access data and paper.

Traffic related air pollution and the burden of childhood asthma in the contiguous United States in 2000 and 2010

Raed Alotaibi^{a,b,c}, Mathew Bechle^d, Julian D. Marshall^d, Tara Ramani^a, Josias Zietsman^a, Mark J. Nieuwenhuijsen^{e,f,g}, Haneen Khreis^{a,e,f,g,*}

^a Center for Advancing Research in Transportation Emissions, Energy, and Health (CARTEEH), Texas A&M Transportation Institute (TTI), TX, USA

^b Department of Family and Community Medicine, Imam Abdulrahman Bin Faisal University, Saudi Arabia

^c Texas A&M Health Science Center School of Public Health, TX, USA

^d Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA

e ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain

f Universitat Pompeu Fabra (UPF), Barcelona, Spain

⁸ CIBER Epidemiologia y Salud Publica (CIBERESP), Madrid, Spain

ARTICLE INFO

ABSTRACT

Handling Editor: Xavier Querol

Keywords: Traffic related air pollution Background: Asthma is one of the leading chronic airway diseases among children in the United States (US). Emerging evidence indicates that Traffic Related Air Pollution (TRAP), as opposed to ambient air pollution, leads to the onset of childbood asthma. We estimated the number of incident asthma cases among children attributable.

Asthma as a Major Health Concern

Asthma is the *reversible* or partially reversible *obstruction* of *airflow*

Globally

330+ million people with asthma **United States** 20 million **adults** and 6 million

20 million <u>adults</u> and 6 million <u>children</u>

Economic burden of asthma in the U.S. was \$81.9 billion in 2013

By United States-National Institute of Health: National Heart, Lung, Blood Institute - http://www.nhlbi.nih.gov/health/health-topics/topics/asthma/, Public Domain, https://commons.wikimedia.org/w/index.php?curid=24760677

Traffic Related Air Pollution (TRAP)

Estimated using surrogates

Buffer zone (distance to road and traffic)
 Chemical surrogates (NO₂, PM, BC, etc.)
 NO₂ is a good predictor of traffic

By User Minesweeper on en.wikipedia - Minesweeper, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1302402

Scope of the Study

48 states and D.C.
2000 & 2010
Census Block level
NO₂, PM_{2.5} and PM₁₀
Children under 18

Methods - Overview

Estimated the Burden of Disease using the following data

- 1. Concentration Response Functions (Literature)
- 2. Concentration Estimation (Regression Models)
- 3. Asthma Incidence Rate (Literature)
- 4. Population Exposed (Census Data)

Using standard burden of disease assessment methods

- Attributable number of asthma incident cases
- Percentage of asthma incident cases
- >Among Children (<18 years)</p>

1. Concentration Response Functions

Contents lists available at ScienceDirect

Environment International

journal homepage: www.elsevier.com/locate/envint

Review article

Exposure to traffic-related air pollution and risk of development of childhood asthma: A systematic review and meta-analysis

Haneen Khreis^{a,*}, Charlotte Kelly^{a,b}, James Tate^a, Roger Parslow^c, Karen Lucas^a, Mark Nieuwenhuijsen^{d,e,f}

- ^a Institute for Transport Studies, University of Leeds, Leeds, United Kingdom
- ^b Leeds Institute of Health Sciences, University of Leeds, Leeds, United Kingdom
- ^c Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
- ^d ISGlobal CREAL, C/Dr. Aiguader 88, 08003 Barcelona, Spain
- ^e Universitat Pompeu Fabra (UPF), C/Dr. Aiguader 88, 08003, Barcelona, Spain
- ^f CIBER Epidemiología y Salud Pública (CIBERESP), C/Monforte de Lemos 3-5, 28029 Madrid, Spain

1. Concentration Response Functions (continued)

Exposure to traffic-related air pollution and risk of development of childhood asthma: A systematic review and meta-analysis

CrossMark

Haneen Khreis^{a,*}, Charlotte Kelly^{a,b}, James Tate^a, Roger Parslow^c, Karen Lucas^a, Mark Nieuwenhuijsen^{d,e,f}

				Odds Ratio	Odds Ratio
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
Carlsten et al. 2010 - at 7 y.o.	0.2253	0.1448	0.6%	1.25 [0.94, 1.66]	
Clark et al. 2010 LUR - at mean age of 4 y.o.	0.0489	0.0171	9.5%	1.05 [1.02, 1.09]	
Dell et al. 2014 LUR - 5 to 9 y.o.	0.039	0.04	5.0%	1.04 [0.96, 1.12]	
Deng et al. 2016 - 3 to 6 y.o.	0.1374	0.0689	2.4%	1.15 [1.00, 1.31]	
Gehring et al. 2015 b - BAMSE birth to 16 y.o.	0.0397	0.0498	3.8%	1.04 [0.94, 1.15]	
Gehring et al. 2015 b - PIAMA birth to 14 y.o.	0.0665	0.0246	7.8%	1.07 [1.02, 1.12]	
Gehring et al. 2015b - GINI&LISA North birth to 15	-0.0679	0.1235	0.8%	0.93 [0.73, 1.19]	
Gehring et al. 2015b - GINI&LISA South birth to 15	-0.0252	0.0602	2.9%	0.98 [0.87, 1.10]	
Jerret et al. 2008 - 10 to 18 y.o.	0.0874	0.033	6.1%	1.09 [1.02, 1.16]	
Kim et al. 2016 - 6 to 7 y.o.	-0.0214	0.0219	8.4%	0.98 [0.94, 1.02]	
Krämer et al. 2009 - 4 to 6 y.o.	0.0698	0.069	2.3%	1.07 [0.94, 1.23]	
Liu et al. 2016 - 4 to 6 years old	0.0877	0.0215	8.5%	1.09 [1.05, 1.14]	-
MacIntyre et al. 2014 - CAPPS&SAGE only birth to 8	0.1111	0.1268	0.8%	1.12 [0.87, 1.43]	
McConnell et al. 2010 - 4th to 6th grade	0.0698	0.0281	7.1%	1.07 [1.01, 1.13]	
Mölter et al. 2014 b - MAAS only birth to 8 y.o.	0.574	0.2374	0.2%	1.78 [1.11, 2.83]	
Nishimura et al. 2013 - 8 to 21 y.o.	0.0632	0.0269	7.3%	1.07 [1.01, 1.12]	
Oftedal et al. 2009 - birth to 10 y.o.	-0.0359	0.0196	8.9%	0.96 [0.93, 1.00]	
Ranzi et al. 2014 - birth to 7 y.o.	0.0289	0.0701	2.3%	1.03 [0.90, 1.18]	
Shima et al. 2002 - 6 to 12 y.o.	0.1136	0.0534	3.5%	1.12 [1.01, 1.24]	
Tétreault et al. 2016 - birth to 12 y.o.	0.0153	0.0048	11.6%	1.02 [1.01, 1.03]	-
Total (95% CI)			100.0%	1.05 [1.02, 1.07]	◆
Heterogeneity: Tau ² = 0.00; Chi ² = 54.38, df = 19 (P < 0 Test for overall effect: Z = 3.76 (P = 0.0002)	0.0001); l² = 65%				0.5 0.7 1 1.5 2 Decreased risk Increased risk

Fig. 4. NO₂ random-effects meta-analyses. Individual and summary random-effects estimates for associations between NO₂ per 4 µg/m³ and asthma at any age. Abbreviations: BAMSE, Barn (children), Allergy, Milieu, Stockholm, an Epidemiology project; CAPPS, The Canadian Asthma Primary Prevention Study; GINI, German Infant study on the influence of Nutrition Intervention on allergy development; LISA, Life style Immune System Allergy; MAAS, The Manchester Asthma and Allergy Study; PIAMA, The Prevention and Incidence of Asthma and Mite Allergy; SAGE, The Study of Asthma, Genes and the Environment.

2. Concentration Estimation

National Spatiotemporal Exposure Surface for NO₂: Monthly Scaling of a Satellite-Derived Land-Use Regression, 2000–2010

Matthew J. Bechle,[†] Dylan B. Millet,^{†,‡} and Julian D. Marshall^{*,†}

[†]Department of Civil, Environmental, and Geo- Engineering and [‡]Department of Soil, Water, and Climate, University of Minnesota, Minneapolis, Minnesota 55455, United States

Annual average concentrations (ug/m³)

- **EPA** air quality monitor readings
- ≻Satellite data
- GIS (impervious surfaces, elevation, major roads, residential roads, and distance to coast)
- Centroid of each census blocks
- > Highly predictive of spatial variability ($R^2 = 0.82$)

3. Asthma Incidence Rate

EPIDEMIOLOGY

Asthma Incidence among Children and Adults: Findings from the Behavioral Risk Factor Surveillance System Asthma Call-back Survey—United States, 2006–2008

RACHEL A. WINER, B.A.,* XIAOTING QIN, M.S., THERESA HARRINGTON, M.D., M.P.H., JEANNE MOORMAN, M.S., AND HATICE ZAHRAN, M.D., M.P.H.

Air Pollution and Respiratory Health Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, Chamblee, GA, USA.

>Asthma Call Back Survey

Period 2006-2008

12.5 per 1,000 at-risk children
 Not all states included

4. Population Exposed

Census data

National Historical Geographic Information System (NHGIS)

- Population count (including children)
- Urban/Rural areas
- Median household income

4. Population Exposed (continued)

- 5+ million populated census blocks
- ≻70+ million children
- ≻(80%) live in Urban areas

Census Data						
	2000	2010	Change (%)			
Geographic characteristics						
Total number of census blocks	8,164,718	11,007,989	35%			
Total census blocks included	5,280,214 (65%)	6,182,882 (56%)	17%			
Total census blocks within urban areas	2,970,347 (36%)	3,590,278 (33%)	21%			
Demographic characteristics						
Total population	279,583,437	306,675,006	10%			
Total population of children (birth - 18)	71,807,328 (26%)	73,690,271 (24%)	3%			
Mean (range) number of children in census blocks	14 (0-4,713)	12 (0-2,214)	-12%			
Population of children by living location						
Urban	56,504,832 (79%)	59,927,088 (81%)	6%			
Rural	15,302,496 (21%)	13,763,183 (19%)	-10%			

Results

Childhood Asthma Incident Cases due to TRAP

Attributable number of cases and percentage of all cases						
	A	C	% of al ca	l asthma ases	Change (%)	
	2000	2010	2000	2010	AC	% of all cases
NO ₂	<u>209,100</u>	<u>142,000</u>	<u>27%</u>	<u>18%</u>	<u>-32%</u>	<u>-33%</u>
PM _{2.5}	247,100	190,200	31%	24%	-23%	-24%
PM ₁₀	331,200	286,500	42%	36%	-13%	-14%

Percentage of childhood asthma incident cases due to pollutant by year

Number and Percentage of cases (NO₂)

- > <u>209,100</u> → <u>142,000</u> (Attributable Cases)
- \succ <u>27%</u> \rightarrow <u>18%</u> (of all asthma cases)

Urban vs Rural

Percentage of all asthma cases (NO₂)

- > 30% vs 15% (Urban vs Rural 2000)
- 20% vs 10% (Urban vs Rural 2010)

Attributable number of cases and percentage of all cases							
AC			% of all	Change			
				cases			
	2000 2010		2000	2010	AC		
<u>NO₂</u>							
<u>Urban</u>	<u>184,500</u>	<u>127,500</u>	<u>30%</u>	<u>20%</u>	<u>-31%</u>		
<u>Rural</u>	<u>24,600</u>	<u>14,500</u>	<u>15%</u>	<u>10%</u>	<u>-41%</u>		
PM _{2.5}							
Urban	200,100	158,200	32%	24%	-21%		
Rural	47,000	32,000	28%	22%	-32%		
PM ₁₀							
Urban	270,100	240,800	44%	37%	-11%		
Rural	61,100	45,700	36%	31%	-25%		

CARTEEH

DataTEEH

Datahub for Transportation, Emissions, Energy, & Health

Center for Advancing Research in Transportation Emissions, Energy, and Health A USDOT University Transportation Center

Discussion – Key Findings

Up to <u>142,000</u> of childhood asthma cases attributable to TRAP in 2010

- \geq **18%** of all asthma cases attributable to NO₂
- Urban areas > Rural areas
- >2010 < 2000 burden, due 4 air pollution levels
- Future analyses is focusing on:
 - Exploring impact of median household income
 - Using state-specific rather than national asthma incidence rates
 - Comparing year 2020 with 2010 and 2000

2nd CARTEEH Symposium

