

Report Number: KTC-26-08

DOI: https://doi.org/10.13023/ktc.rr.2026.08

Kentucky Transportation Center
College of Engineering, University of Kentucky, Lexington, Kentucky

in cooperation with Kentucky Transportation Cabinet Commonwealth of Kentucky

The Kentucky Transportation Center is committed to a policy of providing equal opportunities for al persons in recruitment, appointment, promotion, payment, training, and other employment and education practices without regard for economic, or social status and will not discriminate on the basis of race, color, ethnic origin, national origin, creed, religion, political belief, sex, sexual orientation, marital status or age.

Kentucky Transportation Center College of Engineering, University of Kentucky, Lexington, Kentucky

> in cooperation with Kentucky Transportation Cabinet Commonwealth of Kentucky

© 2025 University of Kentucky, Kentucky Transportation Center Information may no tbe used, reproduced, or republished without KTC's written consent.

Research Report

KTC-26-08

2025 Safety Belt Usage Survey in Kentucky

Erin Lammers-Staats, P.E. Research Engineer

Derek S. Young, Ph.D., PSTAT
Dr. Bing and Mrs. Rachel Zhang Endowed Professor of Statistics

Kenneth R. Agent, P.E. Research Engineer

Kentucky Transportation Center College of Engineering University of Kentucky Lexington, Kentucky

In Cooperation With Kentucky Transportation Cabinet Commonwealth of Kentucky

The contents of this report reflect the views of the authors, who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the University of Kentucky, the Kentucky Transportation Center, the Kentucky Transportation Cabinet, the United States Department of Transportation, or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation. The inclusion of manufacturer names or trade names is for identification purposes and should not be considered an endorsement.

A special th	nanks to KTC's student data o	collectors:	
Natalie Bruening, Landon Bruner,	Connor Carpenter, Tristan G	Griffith, and Naphason Phothon	g

Table of Contents

Chapter 1 Introduction and Background	1
Chapter 2 Survey Methodology	2
2.1 Selection of Counties and Number of Sites in Each County	2
2.2 Assign Sites by Highway Type	4
2.3 Selection of Data Collection Sites	6
2.4 Data Collection Procedure	7
2.5 Usage Rate Calculations	8
2.6 Nonresponsive Judgement	10
2.7 Imputation	10
2.8 Standard Error Calculation	10
Chapter 3 Results	12
3.1 2025 Statewide Survey	12
3.2 Safety Belt Trends	17
3.3 Mini Survey	19
Chapter 4 Conclusions and Recommendations	20
Appendix A Data Collection Sites	21
Appendix B Data Collection Site Map	28
Appendix C Data Collection Form	30
Appendix D Summary of Data (By Site)	32
Appendix E Summary of Data (With Sample Weights)	
Appendix F Mini Survey Data	
Appendix G R Code for County and Site Selection	45

List of Figures

Figure 2.1 Map of Selected Counties in Kentucky	. 3
Figure 3.1 Trends in Seatbelt Usage from 1984-2025	18
Figure 3.2 Safety Belt Usage Rates according to the Full Survey and the Mini Survey	19

List of Tables

Table 2.1 Selected Counties	3
Table 2.2 Number of Sites in Each County by Road Class	5
Table 3.1 Usage Rate for Front-Seat Occupants (By Road Class)	12
Table 3.2 Usage Rate for Front-Seat Occupants (By Road Class and Vehicle Type)	13
Table 3.3 Usage Rate for Front-Seat Occupants (By County)	14
Table 3.4 Usage Rate for Front-Seat Occupants (By County and Vehicle Type)	15
Table 3.5 Trend in Statewide Safety Belt Usage Rates (Percent Wearing Seatbelts)	17

Chapter 1 Introduction and Background

The use of safety belts is a proven means of reducing injuries to motor vehicle occupants involved in traffic crashes. Promoting and supporting safety belt usage is a top priority for transportation safety officials across the country. For years, there have been various methods used in efforts to increase safety belt usage. Past efforts have included public information campaigns, local and statewide legislation, and enforcement of the legislation.

To evaluate the effectiveness of these efforts, statewide observational surveys are conducted. The first observational surveys were conducted in Kentucky in 1982 in tandem with a law that was passed by the 1982 Kentucky General Assembly that mandated a "restraint system" for children 40 inches or less in height. Annual surveys have been conducted ever since. In the first several years of the survey, seatbelt usage increased quickly, from four percent in 1982 to 42 percent in 1993. In 1994, Kentucky included mandatory seatbelt usage as a secondary enforcement law, meaning that law enforcement officials may penalize a vehicle occupant for not wearing a seatbelt if the driver is already being penalized for a separate infraction. In 2006, the seatbelt law became mandatory via primary enforcement, in which law enforcement officials may conduct traffic stops and write citations for lack of seatbelt usage without other infractions. Primary enforcement also coincided with a continuing increase in seatbelt usage. Examples of the increasing rates are 60 percent in 2000, 72 percent in 2007, and 86 percent in 2014. Usage rates have leveled off in more recent years, staying between 86 and 90 percent for the past decade. Still, collecting and understanding the safety belt data is a critical part of pursuing progress within the realm of transportation safety.

Historically, this survey has included child safety seat presence, motorcycle helmet usage, and bicycle helmet usage as well as safety belt usage. Due to a variety of reasons, including relatively steady rates and difficulty collecting data, those aspects have since been removed from the study.

This study involved collecting and evaluating data from across the state to establish the safety belt usage rate in Kentucky for 2025. The effort supports the National Highway Traffic Safety Administration (NHTSA) seat belt safety initiatives. The survey began immediately after completion of the annual "Click It or Ticket" campaigns, lasted for ten weeks, and involved collecting data at 150 sites across 15 counties. Data from the individual sites were weighted and summarized into a statewide percentage. The resulting usage rate is presented in a variety of ways, considering attributes such as roadway functional classification, county, motor vehicle type, and amount of traffic. Kentucky's rate from 2025 is valuable knowledge but becomes more useful when compared to those determined from previous surveys, which are included in the report. The 2025 survey and subsequent report represent continued documentation of the effect associated with safety belt legislation, related education campaigns, and attitude of the general public.

Chapter 2 Survey Methodology

New survey sites were selected in 2023, as is required every five years. The survey design follows what has been done in recent years and is in accordance with NHTSA's Federal Register, Vol. 76, No. 63, Subpart B. The approach is considered a complex multistage sampling design. This chapter details the full process, from selecting counties to identifying data collection sites.

2.1 Selection of Counties and Number of Sites in Each County

- The number of highway fatalities was summarized for each of Kentucky's 120 counties for the five-year period of 2016 through 2020. The source of the data was NHTSA's Fatality Analysis Reporting System (FARS), which provides yearly crash summaries. The occupant fatality totals were sorted, and those counties with fatality rates in the lowest 15th percentile were excluded from consideration. The result was a sample of 75 counties that were considered as eligible survey counties.
- While the number of data collection sites has varied in the past, all survey methodologies have resulted in a standard error of approximately one percent. Since 2013, the survey has comprised 150 sites in 15 counties. This is roughly 20 percent of the eligible counties.
- To ensure a geographically representative sample of counties across Kentucky, the selection methodology involved randomly selecting a county in each of the 12 Transportation Cabinet highway districts. The districts have similar numbers of counties and provide a good distribution across the state. Three of the districts include the major urban areas in the state. Two counties were selected in each of these three urban districts, which resulted in the selection of a total of 15 counties.
- The only exception to the random selection was the automatic selection of Jefferson and Fayette Counties (in two of the urban districts). This was done because these counties (which contain Louisville and Lexington) have much higher vehicle miles traveled than any other county. Any meaningful statewide sample must include these counties because they are the largest urban centers in Kentucky.
- The objective was to identify 150 data collection sites in the 15 selected counties. Based on the results from past data collection, this number of sites would easily meet the 2.5 percentage point standard error criterion. Additional data would be collected if the standard error exceeded 2.5 percent.
- Past experience has shown that the number of vehicles observed varies dramatically by the site (depending on the average daily traffic [ADT] at the site). It is expected that there will be at least 50 observations made at every site. The total statewide sample size should be over 50,000.
- The number of sites selected in each county was based on the vehicle miles traveled (VMT) in each county. In past survey designs, it was stated that the number of sites in each county was "roughly proportional" to its VMT and clusters were formed based on "intuitive cutoff points". For this survey design, further statistical rigor was introduced at this step: a k-means cluster analysis was performed on the county VMTs. This selects the optimal number of groupings. In this case, five clusters were identified. A cluster can include one or several counties.
- Using a linear Diophantine equation, each cluster is assigned a number of data collection sites. Solutions were constrained to multiples of three, and ensured that the total number of sites in the state was 150.

- Counties with lower VMT have fewer assigned data collection sites than counties with higher VMT. The number of sites in a county varies from six to 24.
- Table 2.1 lists the counties selected. The numbers of fatalities and VMT are given for each county. The five clusters of counties are delineated, and the number of sites in each county is noted.

Table 2.1 Selected Counties

County	Highway District	VMT (x1000)	VMT Cluster	Number of Sites
Pendleton	6	105774	1	6
Wolfe	10	107970	1	6
McCreary	8	159942	1	6
Harlan	11	198372	1	6
Larue	4	212646	1	6
Greenup	9	298290	1	6
Jessamine	7	388692	2	9
Floyd	12	402234	2	9
Marshall	1	500688	2	9
Franklin	5	525576	2	9
Barren	3	604266	2	9
Christian	2	1009062	3	12
Kenton	6	1431792	3	12
Fayette	7	2845284	4	21
Jefferson	5	6866526	5	24

• The following map shows the location of the districts and counties across the state. These counties will be used from 2023 through 2027, in accordance with NHTSA requirements. This map includes the mini-survey locations as well (see Section 3.3 for more information.)

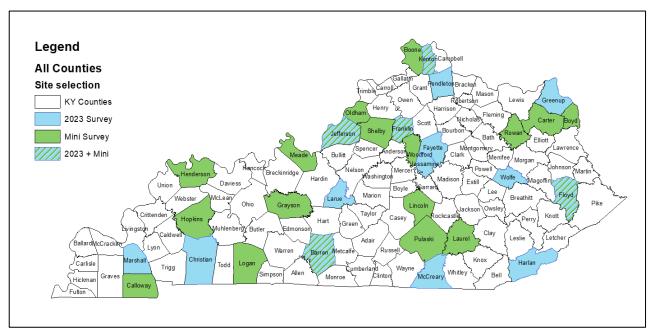


Figure 2.1 Map of Selected Counties in Kentucky

2.2 Assign Sites by Highway Type

- After the counties and the total numbers of data collection sites in each county were determined, the next step was to assign the number of sites by highway type. Sites within a county were selected using a complex stratified random sampling, treating the counties as the stratum and road class as the stratification unit.
- The following three roadway types (road class stratum) were used:
 - 1. limited access; primary
 - 2. arterials; secondary
 - 3. local; tertiary
- Using the primary/secondary/tertiary classification system to stratify the roads within each county, the appropriate number of segments were selected within each group for the selected counties.
- Within a county, the candidate sites were subset into (at most) three functional classes: "primary", "secondary",
 and "tertiary". Adjustments are made if a functional class did not have any roads in the county. (In six of the 15
 selected counties, there were no roads in the "limited access" category so no primary road segments were
 included.)
- The number of sites was then divided up proportional to the total VMT for a roadway type relative to the overall county VMT. After rounding to the closest integer, if the sum of the number of sites did not equal the number of sites stated in the table, one site could be added or subtracted accordingly.
- R was employed for the county and site selection process. The R code is provided in Appendix G.
- Using the criteria as noted, the following data (Table 2.2) presents the number of sites by county and highway type. Of the 150 sites, there are 46 sites on limited-access roadways, 66 sites on arterials, and 38 sites on tertiary roads.

Table 2.2 Number of Sites in Each County by Road Class

Stratum: County	Total Number of Sites Allocated	County VMT (x1000)	Stratification Unit: Road Class	Population (DVMT)	Sample Count
Barren	9	604266	Primary	500346	3
			Secondary	433439	3
			Tertiary	357983	3
Christian	12	1009062	Primary	1319052	6
			Secondary	823310	4
			Tertiary	327696	2
Fayette	21	2845284	Primary	2941893	9
			Secondary	3052968	9
			Tertiary	809307	3
Floyd	9	402234	Primary	0	0
			Secondary	678149	6
			Tertiary	362911	3
Franklin	9	525576	Primary	577855	4
			Secondary	686795	4
			Tertiary	122045	1
Greenup	6	298290	Primary	0	0
			Secondary	538447	5
			Tertiary	171954	1
Harlan	6	198372	Primary	0	0
		Secondary	347930	4	
			Tertiary	195996	2
Jefferson	24	6866526	Primary	9444963	13
		Secondary	6862556	9	
			Tertiary	1422504	2
Jessamine	9	388692	Primary	0	0
			Secondary	683020	7
			Tertiary	188980	2
Kenton	12	1431792	Primary	2260467	7
			Secondary	907075	3
			Tertiary	550094	2
Larue	6	212646	Primary	161769	2
			Secondary	205444	3
			Tertiary	81110	1
Marshall	9	500688	Primary	648000	4
			Secondary	355044	3
			Tertiary	251450	2
McCreary	6	159942	Primary	0	0
•			Secondary	182092	4
			Tertiary	114095	2
Pendleton	6	105774	Primary	0	0
			Secondary	144036	4
			Tertiary	82068	2
Wolfe	6	107970	Primary	116825	2
-	_		Secondary	62979	2
			Tertiary	62209	2

2.3 Selection of Data Collection Sites

- After the counties and number of sites (by roadway type) in each county were selected, the next portion of the
 methodology involved: a) randomly selecting roadway segments in each roadway type and b) selecting specific
 sites within each segment.
- The road segment database employed KYTC's "All Roads" network file. The Kentucky All Roads file includes all public roads and is updated weekly. Within the dataset, some allowed exclusions were made, namely rural local roads, nonpublic roads, and the like. Using ArcGIS, the All Roads file was combined with Functional Classification data and Traffic Counts data. For each segment, Daily Vehicle Miles Traveled (DVMT) was used as the Measure of Size (MOS).
- Using the primary/secondary/tertiary classification system to stratify the roads within each county, the appropriate number of segments were selected within each group for the selected counties. Appendix B provides a map of site locations by highway type.
- The segment length (in terms of VMT) was factored into the selection process, with longer sections having a higher probability of selection than shorter sections.
- Within a functional class, the sampling weights for the road segments are determined by dividing each road segment's DVMT by the total DVMT for that functional class within that county. Then road segments were selected by sampling without replacement according to these sampling weights.
- The probability of selection (POS) was the probability of selecting a site from a functional class multiplied by the sampling weight used when drawing sites from within a county.
- Within the selected segment, observation points were identified. The segments were inspected either remotely, using online imagery, or through a site visit. Site selection ensured that the observers could obtain data safely and effectively. Often, this meant positioning the observer(s) at an intersection or overpass so they have an unobstructed view of traffic while not being too close to it.
- If applicable, the number of approaches (by direction of travel) and lanes on the approaches on the specified road were identified at each site. The approach and lane used to collect data were randomly selected.
- Appendix A (Table A1) contains a list of the 150 data collection sites. The county and road name or number are
 given along with a reference to locate the observation site. The highway where the data is to be collected is
 identified. Each site's VMT and the county VMT are given. The probability of selection for each site is provided.
- For each roadway type within a county, one additional segment was selected to serve as the "Alternate." These
 alternates were utilized if no appropriate data collection observation point could be found within the original
 segment or if an identified observation site was unavailable for a substantial period of time (i.e., construction
 work). The list of available alternates is provided in Table A2 of Appendix A.
- In the 2023 survey, five alternates were used. To remain consistent, those five alternate sites were used again for this year's data collection and will continue to be used through 2027.

2.4 Data Collection Procedure

- Sites were clustered together for observation to maximize efficiency (and minimize time and travel costs). Sites
 in relatively close proximity to one another were designated data collection clusters. However, if there were
 multiple sites along the same road, care was taken to put them in different clusters to allow for a range in data
 observation days/times. Each cluster was assigned a random day for data collection. Within the cluster, data
 collectors could choose the order of sites to optimize their travel route that day.
- Data were collected for one hour at each site with either one or two data collectors (depending on the number of directions of travel included). One hour was required if the data were gathered by one data collector in one direction of travel, whereas one half hour was needed if there were two data collectors in separate directions of travel. There is a reasonable assumption that, for sites where one observer is used, the observed vehicles in one direction on a specific route in one hour will equal the number of vehicles on both directions on that route in a half hour. Sites requiring only one observer are divided roadways, low-volume roads, or T-intersections. On roads with higher traffic volumes, an equal distribution of traffic flow in each direction cannot be assumed; therefore, two observers were used, with one observing each direction. The use of a variable observation period (as described) does not affect the probability of selection.
- Data collection was scheduled to occur between June 2 and August 8. Data collection guidelines stated that data
 would be collected between 8 am and 6 pm on weekdays. The schedule included rush hour and non-rush hour
 observations. Start times were staggered to ensure the surveys captured a representative number of sites for
 each day of the week and time of day.
- Data were collected through direct observation. Appendix C contains the form used to collect and record data. Data were collected using paper forms. The form allows data collectors to record information such as the site number and the date and time of data collection. For drivers and front seat passengers, the categories are:
 - 1. Safety belt used (shoulder belt is in front of shoulder),
 - 2. Safety belt not used (shoulder belt not in front of shoulder), and
 - 3. Unknown (cannot be determined if belt is used).
- The ratio of the total number of recorded unknown values of belt use to the total number of drivers and passengers observed must not exceed 10 percent. Additional data were collected if the nonresponse threshold was surpassed.
- The following vehicle types (both in-state and out-of-state vehicles) were included in the data collection:
 - 1. Passenger car (PC)
 - 2. Pickup (PU)
 - 3. Van
 - 4. Sport utility vehicle (SUV)
- Before starting data collection, data collectors were provided training on the data collection procedure. The classroom training included:
 - 1. An overview of the survey and project background
 - 2. Data clusters and scheduling observations
 - 3. How to collect data through direct observation and use of the data form
 - 4. Data input for analysis

After the classroom portion of the training, the data collectors conducted trial surveys at locations representative of the three roadway types included in the survey. The project manager was present during these trial surveys to provide guidance. The trial survey results were evaluated to ensure that the data collectors provided consistent and accurate data compared to each other and compared to the project manager.

- Drivers received no indication that the data collectors were conducting a safety belt survey. At intersections,
 data were collected for vehicles either stopped or moving slowly enough to observe. At overpasses on limited
 access highways, an observation position was chosen to allow for an unobstructed view of the vehicle's front
 seat.
- For high volume locations, randomized selection was achieved by recording data for the next vehicle in view
 after recording the previous data. At low volume locations, data for the driver and outboard front seat passenger
 were obtained for all vehicles so there was no need for a random selection.
- A quality control monitor conducted random visits to collect data at ten of the data collection sites. There were
 five data collectors and one quality control monitor. The objective was that data were compared for at least two
 sites for each data collector.

2.5 Usage Rate Calculations

The following paragraphs summarize the calculation used to estimate the statewide seat belt usage rate. Seat belt usage rates were calculated using formulas based on the proportion of the state's total vehicle miles traveled (VMT) represented by the site. The seat belt usage rate calculations followed a four-step process.

• First, estimated rates were calculated for each of the road strata within each county. Observed usage rates for all sites within each stratum-county combination were combined through simple averaging, as shown in the following formula (1). (Since the sites' original probability of being included in the sample was proportional to their VMT, averaging their usage rates makes use of that sampling probability to reflect their different VMTs).

$$p_{i(j)k} = \sum_{l=1}^{n_{i(j)k}} p_{i(j)kl} / n_{i(j)k}$$
 (Eq.1)

where i(j) = county i within category j (category 1 = one randomly selected county, category 2 = the two districts in which one county was random and one county was forced, and category 3 = two randomly selected counties); k = road functional class stratum; l = site within stratum and county; $n_{i(j)k}$ = number of sites within the stratum-county combination; and $p_{i(j)kl}$ = the observed seat belt use rate at site i(j)kl = $B_{i(j)kl}/O_{i(j)kl}$ (where $B_{i(j)kl}$ = total number of belted occupants (drivers and outboard front-seat passengers) observed at the site and $O_{i(j)kl}$ = total number of occupants (excluding unknown usage) whose belt use was observed at the site).

• Second, a county-by-county seat belt use rate, $p_{i(j)}$, was obtained by combining county-stratum seat belt use rates across strata within counties. These were weighted by the class's relative contribution to total county VMT:

$$p_{i(j)} = \frac{\sum_{k} VMT_{i(j)k} p_{i(j)k}}{\sum_{k} VMT_{i(j)k}}$$
 (Eq. 2)

where $VMT_{i(j)k}$ = VMT of all roads in stratum k in county i(j), and $p_{i(j)k}$ = seat belt use rate for stratum k in county i(j).

• In the third step, category-weighted seat belt use rates were obtained by combining and weighting the rates from the sampled counties in each category by their VMT values and probabilities of being selected:

$$p_{j} = \frac{\sum_{i} VMT_{i(j)} W_{i(j)} p_{i(j)}}{\sum_{k} VMT_{i(j)} W_{i(j)}}$$
 (Eq. 3)

where $VMT_{i(j)}$ = total VMT for county i in category j and $W_{i(j)}$ = the inverse of the probability of the county's selection: where j is one of the three following categories:

One county randomly selected from district (j = 1)

Highway Districts 1,2,3,4,8,9,10,11, and 12

$$W_{i(1)} = \frac{\sum_{L=1}^{x_m} VMT_{L(1)}}{VMT_{i(1)}}$$
 (Eq. 4)

where m = county i's district, x_m = the number of counties in District m, L is the Lth county in District m, VMT_{L(1)} = the VMT in county L, VMT_{i(1)} = the VMT in county i.

One county randomly selected from district and one county certainly selected (j = 2)

Highway Districts 5 and 7

$$W_{i(2)} = \frac{\sum_{L=1}^{y_m} VMT_{L(2)}}{VMT_{i(2)}}$$
 (Eq. 5)

where m = county i's district, y_m = the number of counties in district m excluding the certain county, L is the Lth county in district m, VMT_{L(2)} = the VMT in county L, VMT_{i(2)} = the VMT in county i.

Or for certainty counties:

$$W_{i(2)} = 1$$

Two counties randomly selected from district (j = 3)

Highway District 6 only

$$W_{i(3)} = \frac{\sum_{L=1}^{11} VMT_{L(3)}}{2 \times VMT_{i(3)}}$$
 (Eq. 6)

where L is the Lth county in District 6, VMT_{L(3)} = the VMT in county L, VMT_{i(3)} = the VMT in county i.

Finally, the statewide belt use proportion was calculated by combining the category proportions weighted by their proportion of statewide VMT:

$$p = \frac{\sum_{j=1}^{3} VMT_{j} p_{j}}{\sum_{j=1}^{3} VMT_{j}}$$
 (Eq. 7)

The result is a combination of the individual site seat belt usage rates weighted to reflect each site's importance in the total state VMT.

Estimates of subgroups of occupants, such as drivers or passengers and vehicle type (passenger car, pickup, etc.) were calculated using the same procedure.

2.6 Nonresponsive Judgement

Based on data collection protocol and past experience, including the provision for using alternate observation
sites, road segments with non-zero eligible volume and zero observations conducted should not occur.
Nevertheless, if eligible vehicles passed an eligible site or an alternate eligible site during the observation time,
but no usable data were collected for some reason, this site would be considered a non-responding site. The
weight for a non-responding site was distributed over other sites in the same road type in the same primary
sampling unit (PSU).

Let:

$$\pi_{gchi} = \pi_{gc}\pi_{hi|gc}$$

be the road segment selection probability, and

$$w_{gchi} = \frac{1}{\pi_{gchi}}$$

be the road segment weight.

The non-responding site nonresponse adjustment factor:

$$f_{gch} = \frac{\sum_{all\ i} w_{gchi}}{\sum_{responding\ i} w_{gchi}}$$

would be multiplied to all weights of non-missing road segments in the same road type of the same county, and the missing road segments would be dropped from the analysis file. However, if there were no vehicles passing the site during the selected observation time (60 minutes) this was treated as an empty block at this site. Accordingly, the site would not be considered as a non-responding site and would not require non-response adjustment.

2.7 Imputation

• No imputation was done on missing data.

2.8 Standard Error Calculation

• The standard error of the overall seat belt use rate was calculated using the following procedure. Standard error of estimate values was estimated through a delete-1 jackknife approach, based on the general formula:

$$\hat{\sigma}_{\hat{p}} = \left[\frac{n-1}{n} \sum_{(i)=1}^{n} (\hat{p}_{(i)} - \hat{p})^2\right]^{1/2}$$
 (Eq. 8)

where $\hat{\sigma}_{\hat{p}}$ = standard deviation (standard error) of the estimated statewide seat belt use proportion \hat{p} (equivalent to p in the notation of formulas 1-3; n = the number of sites (i.e., 150); and $\hat{p}_{(i)}$ = the estimated statewide belt use proportion with site i excluded from the calculation.

The relative error rate, i.e., $\hat{\sigma}_{\hat{p}}/\hat{p}$, was also calculated, as well as the approximate 95% confidence interval, i.e., $\hat{p} \pm 1.96\hat{\sigma}_{\hat{p}}$. These values were reported for the overall statewide seatbelt usage rate.

Chapter 3 Results

3.1 2025 Statewide Survey

- Table 3.1 summarizes usage rates for all front seat occupants (drivers and passengers) for the various types of highways and road classifications. The overall statewide usage rate in 2025, using the data collected at 150 sites and the described weighting procedure, was 88.52 percent.
- The true overall safety belt usage rate in Kentucky for 2025 is between 87.05 percent and 89.98 percent, with 95 percent confidence. This includes a standard error of 0.749 percent, which yields a margin of error of 1.47 percent.
- The sample size of all front seat occupants was 90,809.
- This year's data reflects a 0.72 percent increase compared to 87.8 percent last year.
- The statewide rate for drivers was 88.4 percent while the rate for front seat passenger was 88.8 percent. Compared to 2024, drivers' usage increased by 0.7 percent, while passengers' usage rate increased by 0.5 percent.
- Rates varied depending on road classification. The average usage rate was 93.3 percent on limited access (primary) roads, 88.2 percent on arterial (secondary) roads, and 81.0 percent on local (tertiary) roads.

Table 3.1 Usage Rate for Front-Seat Occupants (By Road Class)

_			·	
	OCCUPANT TYPE			
ROAD CLASSIFICATION	Drivers	Passengers	All Occupants	
Limited Access	93.3	93.4	93.3	
Arterials	88.0	89.5	88.2	
Locals	80.9	79.1	81.0	
Locais	80.9	79.1	81.0	
All Roads	88.4	88.8	88.5	

- Appendices D and E provide summaries of the data collected (by site). For each site, the usage rate and sample size are given for all front seat occupants, drivers, and front seat passengers. The relative error and confidence interval are given for the "all front seat occupants" category. The percent unknown is given for each site. Also included are the site type (original or alternate), date observed, and site sample weight (inverse of probability of selection).
- There was a wide range of usage rates among the survey sites. The three lowest usage rates were 37.5 percent
 and 66.0 percent at rural local roads in Floyd County, and 65.5 percent at a local road in Pendleton County. The
 three highest usage rates were 96.09 percent on I-275 in Kenton County, 96.08 percent on I-75 in Kenton County,
 and 95.8 percent on I-64 in Franklin County.
- There were 71 sites that had a usage rate of 90 percent or more. Meanwhile, there were 24 sites that had a usage rate less than 80 percent.

- The average unknown rate among all 150 sites was 0.7 percent. The highest unknown rate at any one site was
 6.3 percent at a tertiary road in Franklin County.
- A substantial difference in usage rate (for all front seat occupants) was noted when vehicle type and road class
 were considered (see Table 3.2). The rate varied by vehicle type— from a low of 72.3 percent for pickup trucks
 on local roads to a high of 94.6 percent for SUVs on limited access roads.
- Examining all vehicle usage rates according to road class revealed that rates ranged from 81.0 percent on local roads to 93.3 percent on limited access highways.
- Passenger cars, pickups, and SUVs followed the usual trend of exhibiting the lowest usage rate on local roads and the highest rate on limited access highways. Conversely, for vans, the highest usage rate was seen on local roads.
- For each road classification, the lowest usage rate was for pickups. Pickups exhibit the greatest range of usage rates depending on road classification, from 72.3 percent usage on local roads to 90.9 percent usage on limited access roads.

Table 3.2 Usage Rate for Front-Seat Occupants (By Road Class and Vehicle Type)

_	•	, ,			•
	VEHICLE TYPE				
ROAD CLASSIFICATION	Passenger Car	Pickup	Van	SUV	All Vehicles
Limited Access	92.6	90.9	92.0	94.6	93.3
Arterials	87.2	80.7	88.8	91.8	88.2
Locals	81.7	72.3	85.0	84.0	81.0
All Roads	87.9	82.8	88.8	91.4	88.5

- Table 3.3 summarizes usage rate by county. The rate varied from a high of 93.5 percent in Kenton County to a low of 76.9 percent in Floyd County.
- The rate exceeded 90 percent in four counties: Fayette, Franklin, Jessamine and Kenton.
- The rate was less than 80 percent in four counties: Floyd, Harlan, McCreary, and Pendleton.

Table 3.3 Usage Rate for Front-Seat Occupants (By County)

OCCUPANT TYP			<u> </u>	
COUNTY	Drivers		All Occupants	
Barren	85.3	88.9	86.2	
Christian	88.9	89.3	88.9	
Fayette	92.7	92.4	92.7	
Floyd	76.7	77.6	76.9	
Franklin	91.0	92.7	91.1	
Greenup	84.1	84.5	84.2	
Harlan	78.1	82.0	78.7	
Jefferson	89.6	89.4	89.7	
Jessamine	90.0	90.8	90.2	
Kenton	93.3	94.9	93.5	
Larue	84.6	85.3	84.8	
Marshall	89.0	90.9	89.2	
McCreary	78.8	79.9	79.1	
Pendleton	79.7	80.2	79.9	
Wolfe	84.1	83.4	84.2	
All Counties	88.4	88.8	88.5	

- Usage rates by county and vehicle type are presented in Table 3.4. These rates ranged from a high of 94.7 percent for passenger cars in Kenton County to a low of 65.7 percent for pickup trucks in Harlan County.
- Historically, SUVs have the highest usage rate and pickup trucks have the lowest usage rate. This is reflected in this year's survey as well: 91.4 percent of SUV occupants wore a safety belt and 82.8 percent of pickup truck occupants wore a safety belt.
- The percentage of van occupants using seatbelts continues to trend upwards. In five counties, van occupants exhibited the highest usage rate among all vehicle types.
- The usage rate for pickup trucks was less than 80 percent in eight counties, compared to nine such counties in last year's survey. Three counties had pickup usage rates below 70 percent; they were Floyd County (68.6 percent), Harlan County (65.7 percent), and McCreary County (69.8 percent.)

Table 3.4 Usage Rate for Front-Seat Occupants (By County and Vehicle Type)

	VEHICLE TYPE				
COUNTY	Passenger Car	Pickup	Van	SUV	All Vehicles
Barren	85.5	77.2	92.5	92.8	86.2
Christian	88.8	83.9	90.1	91.4	88.9
Fayette	92.4	87.8	91.6	94.3	92.7
Floyd	73.8	68.6	92.9	84.9	76.9
Franklin	88.8	88.2	92.8	93.5	91.1
Greenup	84.2	77.4	93.0	86.7	84.2
Harlan	82.1	65.7	67.6	85.9	78.7
Jefferson	88.6	84.7	87.8	91.7	89.7
Jessamine	87.4	83.9	92.5	93.5	90.2
Kenton	94.7	88.9	94.2	94.1	93.5
Larue	83.6	78.0	94.0	91.0	84.8
Marshall	88.8	84.6	94.6	91.9	89.2
McCreary	81.0	69.8	73.4	87.1	79.1
Pendleton	80.8	72.1	81.3	86.3	79.9
Wolfe	86.5	77.1	94.0	87.1	84.2
All	87.9	82.8	88.8	91.4	88.5

- The current survey counties will be used from 2023 through 2027. Over the five years, it can be useful to track the usage rates of individual counties. Table 3.5 shows the overall usage rate in each county in 2023, 2024, and 2025.
- It is interesting to note that individual counties do not necessarily reflect the statewide usage rate trends. This table will continue to expand in the next few years, offering more insight about specific communities.

Table 3.5 Usage Rate by County (By Year)

	YEAR		
COUNTY	2023	2024	2025
Barren	87.4	88.2	86.2
Christian	89.3	84.5	88.9
Fayette	93.5	90.8	92.7
Floyd	79.0	70.7	76.9
Franklin	93.5	90.8	91.1
Greenup	80.4	87.9	84.2
Harlan	80.4	76.7	78.7
Jefferson	90.5	89.8	89.7
Jessamine	88.8	88.3	90.2
Kenton	93.0	90.4	93.5
Larue	87.8	83.4	84.8
Marshall	90.5	88.7	89.2
McCreary	81.4	81.8	79.1
Pendleton	86.1	83.3	79.9
Wolfe	84.1	77.5	84.2
All Counties	90.4	07.0	88.5
All Counties	89.4	87.8	88.5

3.2 Safety Belt Trends

While the data collection procedure has changed several times and redesigns occur every five years to ensure a fair sample, it is still valuable to compare the 2025 usage rate to past years. As shown in Table 3.5, statewide rates have dramatically increased from four percent in 1982 to just under 90 percent in 2018. Generally, Kentucky's usage rate has hovered between 85 and 90 percent for the past decade.

Table 3.5 Trend in Statewide Safety Belt Usage Rates (Percent Wearing Seatbelts)

YEAR	All Front Seat	Drivers	Children*
1982	Occupants **	4	15
1983	**	6	24
1984	**	7	30
1985	9	9	29
1986	13	13	30
1988	20	21	48
1989	25	26	49
1990	33	32	57
1991	39	39	57
1992	40	41	62
1993	42	42	61
1994	58	58	72
1995	54	54	66
1996	55	55	79
1997	54	54	82
1998	54	54	80
1999	59	59	89
2000	60	60	87
2001	62	62	89
2002	62	62	93
2003	66	65	95
2003	66	66	96
2005	67	67	94
2006	67	68	94
2007	72	72	98
2008	73	74	98
2009	80	80	99
2010	80	81	96
2011	82	83	97
2012	84	84	98
2013	85	85	**
2014	86	87	**
2015	87	87	**
2016	87	87	**
2017	87	87	**
2018	90	90	**
2019	90	90	**
2020	90	90	**
2021	90	90	**
2022	87	86	**
2023	89	89	**
2024	88	88	**
2025	89	88	**

^{*}Children under 4 years of age using either safety seat or safety belt. Children seated in front or rear seat. **Data not obtained.

• Figure 3.1 presents the preceding data in graph format. As illustrated, the increase in usage rates has slowed and remains just under 90 percent.

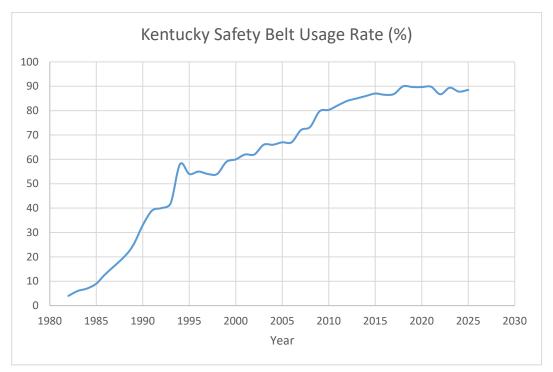


Figure 3.1 Trends in Seatbelt Usage (1984 – 2025)

3.3 Mini Survey

- Survey locations have often changed due to modifications of the data collection procedure and survey redesigns. In order to provide a consistent baseline by which to evaluate the data, mini-surveys have been performed in tandem with the main one. For the past several years, mini-surveys have collected data at 21 sites (selected from the 200 sites for the survey first used prior to the change in sites made in 2009). The 21 sites represented seven road functional classifications and three regions of the state.
- This mini-survey was conducted in 2025 to enable a comparison of identical sites over an extended number of years.
- The usage rate at the mini-survey locations in 2025 was 89.1 percent. This is a 2.6 percent increase from 86.5 percent in 2024. This shows consistency with the official statewide survey results, though more extreme than the regular survey results.
- Compared to last year's mini-survey, usage rates increased at fourteen locations, stayed the same at one location, and decreased at six locations.
- Figure 3.2 shows the trends in safety belt usage across the regular survey and mini-survey since it began in 2009.
- Appendix F contains the results for the mini-survey sites for the last eleven years since 2014.

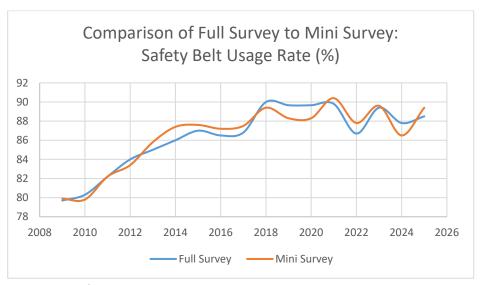


Figure 3.2 Safety Belt Usage Rates according to the Full Survey and the Mini Survey

Chapter 4 Conclusions and Recommendations

- The data show that the level of safety belt usage in 2025 (88.52 percent) increased by 0.72 percent from 2024 (87.80 percent).
- The highest usage rate since the surveys began was 89.99 percent in 2018, but the surveys illustrate a gradual flattening of the curve or "regression toward the mean."
- A change in approach may be needed if a continued rise in seatbelt usage is the state's objective. Such changes may be focused on stronger enforcement of safety belt laws and/or increased education in targeted areas.
- Safety belt usage varies by county and vehicle type. Focusing on this variability indicates locations where more emphasis would be beneficial.
- Data shows that the lowest usage rates are for pickups. The exemption for safety belt use for occupants of farm vehicles should be changed. Education campaigns focused on pickup drivers in rural areas should be considered.
- Modifying the driver point system so that a driver receives points when they are cited for failure to use a safety belt should be considered. This could aid enforcement.
- Consideration should be given to increasing the dollar amount drivers are fined when cited for failure to wear a safety belt.

Appendix A Data Collection Sites

Table A1 Data Collection Sites

Site	District	County	Road Class	Road Surveyed	Reference	Segment VMT	County Eligible VMT	Probability of Selection
1	3	Barren	primary	I-65	Mammoth Cave Rd	146471.787	500346.058	0.219555722
2	3	Barren	primary	CUMBERLAND PARKWAY	Beckton Rd	37374.273	500346.058	0.056022635
3	3	Barren	primary	CUMBERLAND PARKWAY	Veterans Outer Loop	18494.163	500346.058	0.027722058
4	3	Barren	secondary	HAPPY VALLEY RD	Paddock Way	783.246	433439.32	0.001355287
5	3	Barren	secondary	HAPPY VALLEY RD	Buena Vista Estates	749.558	433439.32	0.001296995
6	3	Barren	secondary	N JACKSON HWY	Horton Ridge Rd	5233.371	433439.32	0.009055543
7	3	Barren	tertiary	GLENVIEW DR	Adairland Ct	702.16	357982.584	0.001471077
8	3	Barren	tertiary	PARK CITY BON AYR RD	Mayhew Rd	643.08	357982.584	0.0013473
9	3	Barren	tertiary	LOUISVILLE RD	Mammoth Cave Ave	183.414	357982.584	0.000384266
10	2	Christian	primary	I-169	Grapevine Rd	31173.084	1319052.364	0.017724704
11	2	Christian	primary	I-24	Newstead Rd	59984.506	1319052.364	0.034106591
12	2	Christian	primary	I-24	Cox Mill Rd	119400.928	1319052.364	0.067890175
13	2	Christian	primary	I-24	Millers Mill Rd	80486.924	1319052.364	0.045764061
14	2	Christian	primary	I-24	Pembroke Oak Grove Rd	14909.175	1319052.364	0.008477208
15	2	Christian	primary	I-24	Carter Rd	113754.78	1319052.364	0.064679832
16	2	Christian	secondary	COUNTRY CLUB LN	Forbes Dr	150.84	823309.554	9.16059E-05
17	2	Christian	secondary	PEMBROKE RD	Duffy St	3401.2	823309.554	0.002065566
18	2	Christian	secondary	FORT CAMPBELL BLVD	Hopkinsville Towne Center	1443	823309.554	0.000876341
19	2	Christian	secondary	CADIZ RD	Green Hill Memorial Gardens	2412.816	823309.554	0.001465315
20	2	Christian	tertiary	GLASS AVE	North Elm St	490.25	327696.214	0.000374013
21	2	Christian	tertiary	CROFTON-FRUIT HILL RD	Macedonia Loop	256.452	327696.214	0.000195648
22	7	Fayette	primary	I-64	North Cleveland Rd	215612.45	2941892.627	0.659613486
23	7	Fayette	primary	I-64	Haley Rd	70969.248	2941892.627	0.217113033
24	7	Fayette	primary	I-75	Old Richmond Rd	61019.715	2941892.627	0.186674874
25	7	Fayette	primary	I-75	US-25	15295.784	2941892.627	0.046793705
26	7	Fayette	primary	I-75	Athens Walnut Hill Rd	307393.844	2941892.627	0.940396183
27	7	Fayette	primary	I-75	Todds Rd	205546.1	2941892.627	0.628817953
28	7	Fayette	primary	I-75	Bryan Station Rd	142037.632	2941892.627	0.434529349
29	7	Fayette	primary	I-75	Georgetown Rd	86351.232	2941892.627	0.264170446
30	7	Fayette	primary	W NEW CIRCLE RD	Old Frankfort Pike	85279.6	2941892.627	0.260892051

Site	District	County	Road Class	Road Surveyed	Reference	Segment VMT	County Eligible VMT	Probability of Selection
31	7	Fayette	secondary	MAN O WAR BLVD	Buckhorn Dr	5304	3052967.619	0.015635934
32	7	Fayette	secondary	E NEW CIRCLE RD	Winchester Rd	11615.892	3052967.619	0.034243084
33	7	Fayette	secondary	NICHOLASVILLE RD	Marketplace Dr	5121.2	3052967.619	0.015097048
34	7	Fayette	secondary	NICHOLASVILLE RD	Arcadia Park	3763.8	3052967.619	0.011095499
35	7	Fayette	secondary	NICHOLASVILLE RD	Cooper Dr/Waller Ave	1698.3	3052967.619	0.005006506
36	7	Fayette	secondary	PARIS PIKE	La Troienne Way	1970.072	3052967.619	0.005807676
37	7	Fayette	secondary	VERSAILLES RD	Old Versailles Rd	14364.218	3052967.619	0.042345016
38	7	Fayette	secondary	WINCHESTER RD	Executive Dr	2566.8	3052967.619	0.007566802
39	7	Fayette	secondary	W MAIN ST	Clyde St	3062.043	3052967.619	0.009026754
40	7	Fayette	tertiary	CHINOE RD	Alumni Dr	925.708	809306.895	0.003431484
41	7	Fayette	tertiary	OLD HIGBEE MILL RD	Clemens Dr	852.048	809306.895	0.003158436
42	7	Fayette	tertiary	RUSSELL CAVE RD	Iron Works Pike	1681.01	809306.895	0.006231295
43	12	Floyd	secondary	KY-80	Maple St	4209.427	678149.371	0.00931084
44	12	Floyd	secondary	KY-80	Reynolds Ln/River Bottom Rd	1929.068	678149.371	0.00426691
45	12	Floyd	secondary	KY-80	Old Hunter Branch Rd	1867.502	678149.371	0.004130732
46	12	Floyd	secondary	US-23	Harold Church of Christ	4414.12	678149.371	0.009763601
47	12	Floyd	secondary	US-23	Rose Dr	16196.07	678149.371	0.035824121
48	12	Floyd	secondary	US-23	University Dr	4763.55	678149.371	0.010536506
49	12	Floyd	tertiary	KY-306	Lighthouse Temple Church	375.816	362910.699	0.00077667
50	12	Floyd	tertiary	KY-404	Blue River Rd	435.812	362910.699	0.00090066
51	12	Floyd	tertiary	KY-550	Old Schoolhouse Rd	805.94	362910.699	0.001665575
52	5	Franklin	primary	I-64	Hickory Ridge Rd	14144.343	577854.878	0.019581862
53	5	Franklin	primary	I-64	US-127	127148.528	577854.878	0.176028318
54	5	Franklin	primary	I-64	Hanly Ln	104512.056	577854.878	0.144689693
55	5	Franklin	primary	I-64	Duckers Rd	93474.018	577854.878	0.129408295
56	5	Franklin	secondary	EAST WEST CONNECTOR RD	Collins Ln	4953.138	686794.973	0.005769568
57	5	Franklin	secondary	EAST WEST CONNECTOR RD	Galbraith Rd	13984.722	686794.973	0.016289836
58	5	Franklin	secondary	US-127 S	Leonardwood Dr/Westridge Dr	3587	686794.973	0.004178248
59	5	Franklin	secondary	GEORGETOWN RD	Woodlake Rd	2677.128	686794.973	0.003118401
60	5	Franklin	tertiary	EVERGREEN RD	Bridgeport Christian Church	1009.47	122045.0838	0.001654258
61	9	Greenup	secondary	KY-10	East Tygarts Rd	682.52	538446.9686	0.001584464

Site	District	County	Road Class	Road Surveyed	Reference	Segment VMT	County Eligible VMT	Probability of Selection
62	9	Greenup	secondary	US-23	Ashland Dr	5489.634	538446.9686	0.012744138
63	9	Greenup	secondary	US-23	Chinns Brg	5728.89	538446.9686	0.013299569
64	9	Greenup	secondary	US-23	Grays Branch Rd	4078.62	538446.9686	0.009468481
65	9	Greenup	secondary	US-23	Antique Loop	2431.542	538446.9686	0.005644804
66	9	Greenup	tertiary	COUNTRY CLUB DR	Princess Dr	830.705	171954.4796	0.00120774
67	11	Harlan	secondary	KY-160	Red Barn Mini Market	752.402	347930.145	0.001236955
68	11	Harlan	secondary	US-119 S	Carpet Mart	6854.25	347930.145	0.011268443
69	11	Harlan	secondary	US-119 N	KY-522/Ross Dr	1226.67	347930.145	0.002016655
70	11	Harlan	secondary	US-119 N	Lakey Branch Rd	2957.084	347930.145	0.00486147
71	11	Harlan	tertiary	KY-38	Dartmont Rd	1199.156	195996.001	0.001749825
72	11	Harlan	tertiary	KY-215	Hubbard Ln	188.305	195996.001	0.000274777
73	5	Jefferson	primary	I-64	Breckenridge Ln	89372.76	9444962.556	0.123012227
74	5	Jefferson	primary	I-64	Blankenbaker Parkway	23070.8	9444962.556	0.031754536
75	5	Jefferson	primary	I-64	S. English Station Rd	104576.4	9444962.556	0.143938443
76	5	Jefferson	primary	I-65	KY-1065	87704.66	9444962.556	0.120716263
77	5	Jefferson	primary	I-65	Arthur St/E Lee St	36701.826	9444962.556	0.050516213
78	5	Jefferson	primary	I-65	E Magnolia Ave entrance ramp	44520.53	9444962.556	0.061277838
79	5	Jefferson	primary	I-71	Lime Kiln Ln	92151.954	9444962.556	0.126837496
80	5	Jefferson	primary	I-264	Brownsboro Rd	36279.225	9444962.556	0.049934547
81	5	Jefferson	primary	I-265	Smyrna Parkway	98944.674	9444962.556	0.136186963
82	5	Jefferson	primary	I-265	Pennsylvania Run Rd	89360.04	9444962.556	0.122994719
83	5	Jefferson	primary	I-265	Wolf Pen Branch Rd	13497.165	9444962.556	0.018577432
84	5	Jefferson	primary	I-265	Old Henry Rd	20356.38	9444962.556	0.028018421
85	5	Jefferson	primary	I-265	Greyling Dr	103294.08	9444962.556	0.142173464
86	5	Jefferson	secondary	TAYLORSVILLE RD	Stone Lakes Dr	1599.99	6862555.918	0.00209833
87	5	Jefferson	secondary	TAYLORSVILLE RD	Jeffersontown Christian Church	5623.538	6862555.918	0.007375072
88	5	Jefferson	secondary	WESTPORT RD	Murphy Ln	5685.594	6862555.918	0.007456456
89	5	Jefferson	secondary	S HURSTBOURNE PKWY	Watterson Trail	6452.856	6862555.918	0.008462693
90	5	Jefferson	secondary	BRECKENRIDGE LN	Dutchmans Ln	8282.91	6862555.918	0.010862744
91	5	Jefferson	secondary	SHEPHERDSVILLE RD	Rangeland Rd	10714.756	6862555.918	0.014052025
92	5	Jefferson	secondary	DIXIE HWY	Crums Ln	7701.76	6862555.918	0.010100587

Site	District	County	Road Class	Road Surveyed	Reference	Segment VMT	County Eligible VMT	Probability of Selection
93	5	Jefferson	secondary	WINKLER AVE	S Third St	878.815	6862555.918	0.001152535
94	5	Jefferson	secondary	EASTERN PKWY	Ellsworth Ave	1926.48	6862555.918	0.002526511
95	5	Jefferson	tertiary	NELSON MILLER PKY	Park View Court	542.087	1422503.821	0.000762159
96	5	Jefferson	tertiary	GOLDSMITH LN	Belmont Rd	569.669	1422503.821	0.000800938
97	7	Jessamine	secondary	WILMORE RD	April Highway	4128.574	683019.502	0.004696648
98	7	Jessamine	secondary	US-27	S Main St	6604.328	683019.502	0.007513055
99	7	Jessamine	secondary	US-27	Etter Dr	7564.377	683019.502	0.008605202
100	7	Jessamine	secondary	US-27	Arts Rental Equipment	10407.106	683019.502	0.011839078
101	7	Jessamine	secondary	LEXINGTON RD	Kohls Dr/Commerce Dr	3826.6	683019.502	0.004353123
102	7	Jessamine	secondary	N MAIN ST	Village Parkway	5916.152	683019.502	0.006730189
103	7	Jessamine	secondary	HARRODSBURG RD	Almahurst Ln/Stonegate Dr	2272.14	683019.502	0.002584777
104	7	Jessamine	tertiary	LINDEN LN	S Third St	68.15	188979.9918	8.00577E-05
105	7	Jessamine	tertiary	ASHGROVE RD	Spurlock Ln	916.12	188979.9918	0.001076191
106	6	Kenton	primary	I-75	Eads Rd	167762.672	2260467.297	0.172997322
107	6	Kenton	primary	I-75	Buttermilk Pike	15403.248	2260467.297	0.015883871
108	6	Kenton	primary	I-75	Dixie Highway	104621.125	2260467.297	0.107885588
109	6	Kenton	primary	I-75	Kyles Ln	42320.425	2260467.297	0.043640937
110	6	Kenton	primary	I-275	KY-3076	109962.039	2260467.297	0.113393152
111	6	Kenton	primary	I-275	Taylor Mill Rd	53627.312	2260467.297	0.055300629
112	6	Kenton	primary	I-275	Turkey Foot Rd	24393.81	2260467.297	0.025154963
113	6	Kenton	secondary	MADISON PIKE	Roselawn Court	3313.284	907075.2461	0.003649059
114	6	Kenton	secondary	MADISON PIKE	McCullum Pike	6816.514	907075.2461	0.007507313
115	6	Kenton	secondary	TURKEYFOOT RD	Spring Valley Dr	3810.614	907075.2461	0.004196789
116	6	Kenton	tertiary	RIVER RD	Welcome to City of Bromley sign	12653.783	550093.8887	0.015319966
117	6	Kenton	tertiary	DIXIE HWY	Bracht-Piner Rd	702.96	550093.8887	0.000851075
118	4	Larue	primary	I-65	Uptown Talley Rd	34396.383	54956.846	0.062587986
120	4	Larue	secondary	NEW JACKSON HWY	Thomas Ln	224.546	205443.751	0.000327894
121	4	Larue	secondary	NEW JACKSON HWY	Charlie Ragland Rd	3274.194	205443.751	0.004781154
122	4	Larue	secondary	LINCOLN FARM RD	Earl Jones Rd	2035.405	205443.751	0.002972208
123	4	Larue	tertiary	SONORA RD	Siberia Rd	897.768	81109.594	0.001106858
124	1	Marshall	primary	I-24	Mt Moriah Rd	144189.76	648000	0.178012049

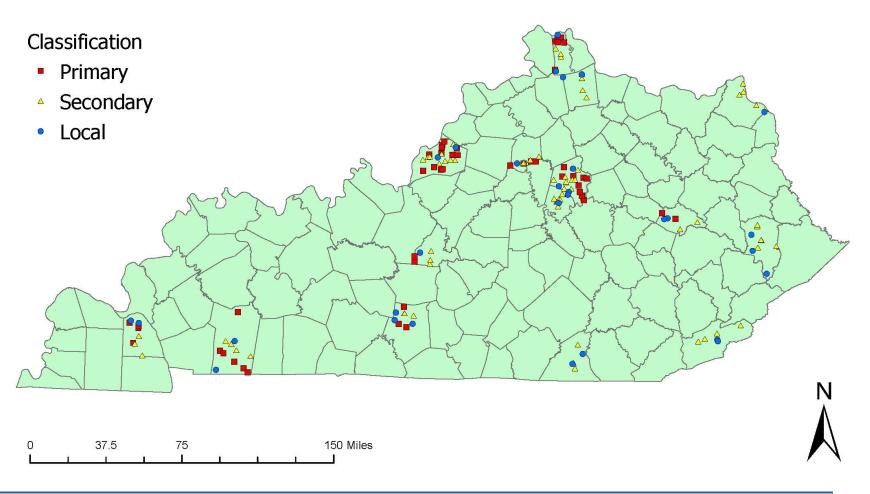

Site	District	County	Road Class	Road Surveyed	Reference	Segment VMT	County Eligible VMT	Probability of Selection
125	1	Marshall	primary	I-69	Jackson School Rd	26973.51851	648000	0.03330064
126	1	Marshall	primary	I-69	Palma Rd	32602.40653	648000	0.040249885
127	1	Marshall	primary	I-69	Lakeview Church Rd	16308.25701	648000	0.020133651
128	1	Marshall	secondary	US-641 S	Lee Brick & Block	3512.886	355043.943	0.005936537
129	1	Marshall	secondary	US-641 N	Marco St	1362.771	355043.943	0.00230299
130	1	Marshall	secondary	US-641 S	Mayfield Highway	3633.519	355043.943	0.006140399
131	1	Marshall	tertiary	OAK PARK BLVD	I-24	7771.610512	251449.6127	0.012362891
132	1	Marshall	tertiary	US-62	Holly Hills Ln/Eaves Ln	877.66	251449.6127	0.00139616
133	8	McCreary	secondary	CUMBERLAND FALLS RD	Pleasant Knob Church Rd	487.86	182092.435	0.001789698
134	8	McCreary	secondary	US-27	McCreary Reservoir	11533.104	182092.435	0.042308806
135	8	McCreary	secondary	US-27	Williamsburg St	2317.7	182092.435	0.008502405
136	8	McCreary	secondary	US-27	Cora Cooper Rd	2126.207	182092.435	0.007799919
137	8	McCreary	tertiary	KY-92	Pleasant Run Church Rd	491.732	114095.356	0.001439484
138	8	McCreary	tertiary	KY-1651	Old Bailey Rd	439.74	114095.356	0.001287284
139	6	Pendleton	secondary	US-27	Old 3L Highway	2869.44	144035.592	0.026535761
140	6	Pendleton	secondary	US-27	KY-330	194.856	144035.592	0.001801973
141	6	Pendleton	secondary	US-27	Charles Dr	2492.276	144035.592	0.023047856
142	6	Pendleton	secondary	US-27	Lock Rd	2102.386	144035.592	0.019442265
143	6	Pendleton	tertiary	KY-177	US-27	1451.99	82068.18308	0.011783194
144	6	Pendleton	tertiary	KY-491	Carters Chapel Rd	1392.752	82068.18308	0.011302466
145	10	Wolfe	primary	BTC MOUNTAIN PKWY	KY-15	8628.609	116824.579	0.029543814
146	10	Wolfe	primary	BTC MOUNTAIN PKWY	KY-746	12280.488	116824.579	0.042047617
147	10	Wolfe	secondary	KY-15	Hunting Fork Rd	5658.408	62978.809	0.035938488
148	10	Wolfe	secondary	KY-11	Bob Adams Rd	491.732	62978.809	0.001439484
149	10	Wolfe	tertiary	KY-715	Big Andy Ridge Rd	737.721	62209.36704	0.008075260
150	10	Wolfe	tertiary	KY-715	Tar Ridge Rd	1381.728	62209.36704	0.008884373

Table A2 Alternate Data Collection Sites

C:t-	Court	Dood Class	Observation Location
Site	County	Road Class	Observation Location
151	Barren	primary	I-65 @ N Toohey Ridge Road
152	Barren	secondary	Scottsville Road @ Liquor Lodge
153	Barren	tertiary	N Race St @ Clements Ave
154	Christian	primary	Pennyrile Pkwy @ Grapevine Road
155	Christian	secondary	Fort Campbell Blvd @ Legion Dr/Segler Dr
156	Christian	tertiary	Crofton-Fruit Hill Road @ Macedonia Loop
157	Fayette	primary	W New Circle Rd @ Georgetown Rd
158	Fayette	secondary	Cooper Dr @ University Dr
159	Fayette	tertiary	Chone Dr @ Alumni Dr
160	Floyd	secondary	US-23 @ service road just North of Stonewall Road
161	Floyd	tertiary	KY-122 @ 20026 KY-122
162	Franklin	primary	I-64 @ Duckers Road
163	Franklin	secondary	Lawerenceburg Rd @ Louisville Road
164	Franklin	tertiary	Cedar Road @ Hamilton Ln
165	Greenup	secondary	Industrial Parkway @ East Park Dr
166	Greenup	tertiary	KY-01 @ Hopewell Rd/Martin Rd
167	Harlan	secondary	US Highway 421 @ Chevrolet Camp Road
168	Harlan	tertiary	KY-215 @ Britton Creek Road
169	Jefferson	primary	I-65 @ Hindman Richardson connector
170	Jefferson	secondary	Bardstown Road @ Wrocklage Ave
171	Jefferson	tertiary	Cooper Chapel Road @ McNeely Lake Park North Entrance
172	Jessamine	secondary	Lexington Road @ Baker Ln/Groggins Ferry Road
173	Jessamine	tertiary	Union Mill Rd @ Service Road just past Johnson Road
174	Kenton	primary	I-275 @ Johns Hill Road
175	Kenton	secondary	Turkeyfoot Road @ Bethany Lutheran Church
176	Kenton	tertiary	Richardson Rd @ Fairway Park Apartments
177	Larue	secondary	Lincoln Parkway @ Commerce Parkway
178	Larue	tertiary	Sonora Road @ Tanner Road
179	Marshall	primary	I-24 @ KY-95
180	Marshall	secondary	US-641 S @ South Marshall Elementary School Road
181	Marshall	tertiary	Symdonia Highway @ New Harmony Road
182	McCreary	secondary	US-27 @ County Park Road
183	McCreary	tertiary	KY-92 @ Pleasant Run Church Rd
184	Pendleton	secondary	US-27 @ Wright Road/Menzie Bottoms Road
185	Pendleton	tertiary	KY-8 @ Ivor Road
186	Wolfe	primary	Bert T Combs Mountain Parkway @ Quillen Chapel Road
187	Wolfe	secondary	KY-11 @ Bob Adams Road
188	Wolfe	tertiary	KY-715 @ Big Andy Ridge Road

Appendix B Data Collection Site Map

Kentucky Seatbelt Data Collection Sites by Roadway Classification

Appendix C Data Collection Form

SAFETY BELT DATA COLLECTION FORM

Date:	Starting Time:	Ending Time:	Int #:	
Location:			Sheet #:	
Observer:	Comment:			
	DI	RIVER USAGE		
Vehicle	Safet	y Belt	None	Unknown
PC				
PU				
VAN				
suv				
	FRONT-SEAT OCCUPAN	NT USAGE (OVER 3 YEAF	RS OF AGE)	
Vehicle	Safet	y Belt	None	Unknown
PC				
PU				
VAN				
suv				
Yes: Total:			•	•

Percent usage:

Appendix D Summary of Data (By Site)

Table D1 Summary of Data

		ALL FRO	ONT SEAT OC	CUPANTS	, , , , , , , , , , , , , , , , , , ,	CATEGORY				
						DR	IVERS		IT SEAT ENGERS	
Site	Sample	Percent	Relative	Margin	Percent	Sample	Percent	Sample	Percent	
	Size	Usage	Error (%)	of Error*	Unknown	Size	Usage	Size	Usage	
1	839	93.8	0.9	1.6	0.8	565	93.5	274	94.5	
2	384	90.4	1.7	3.0	1.5	289	90.3	95	90.5	
3	320	90.9	1.8	3.1	0.3	260	90.4	60	93.3	
4	279	88.9	2.1	3.7	1.4	229	87.8	50	94.0	
5	298	81.5	2.8	4.4	0.0	243	80.2	55	87.3	
6	207	85.0	2.9	4.9	1.4	170	83.5	37	91.9	
7	78	76.9	6.2	9.4	0.0	63	79.4	15	66.7	
8	51	84.3	6.0	10.0	0.0	36	80.6	15	93.3	
9	109	78.0	5.1	7.8	0.0	74	75.7	35	82.9	
10	380	86.6	2.0	3.4	0.5	285	86.0	95	88.4	
11	638	91.8	1.2	2.1	0.8	459	91.7	179	92.2	
12	533	89.1	1.5	2.6	0.6	400	89.8	133	87.2	
13	800	95.4	0.8	1.5	0.2	671	95.2	129	96.1	
14	1061	94.8	0.7	1.3	0.7	771	94.4	290	95.9	
15	992	91.9	0.9	1.7	0.0	795	91.8	197	92.4	
16	376	83.8	2.3	3.7	3.3	329	83.0	47	89.4	
17	81	81.5	5.3	8.5	0.0	61	85.2	20	70.0	
18	344	88.4	2.0	3.4	2.8	285	87.0	59	94.9	
19	261	95.0	1.4	2.6	1.5	216	95.8	45	91.1	
20	144	75.0	4.8	7.1	1.4	122	74.6	22	77.3	
21	403	89.1	1.7	3.0	0.5	311	87.5	92	94.6	
22	886	92.4	1.0	1.7	0.8	637	91.7	249	94.4	
23	928	94.2	0.8	1.5	0.1	701	93.9	227	95.2	
24	1342	95.5	0.6	1.1	0.0	1047	95.3	295	95.9	
25	1419	94.9	0.6	1.1	0.0	1107	95.1	312	93.9	
26	1127	95.6	0.6	1.2	0.1	891	95.6	236	95.3	
27	1072	94.0	0.8	1.4	0.0	881	93.9	191	94.8	
28	1295	92.2	0.8	1.5	0.8	1011	92.7	284	90.5	
29	1360	95.4	0.6	1.1	0.4	1090	95.0	270	96.7	
30	1344	93.5	0.7	1.3	0.3	1122	93.3	222	94.6	
31	864	92.4	1.0	1.8	0.3	764	92.8	100	89.0	
32	712	90.9	1.2	2.1	0.8	593	90.4	119	93.3	
33	1218	93.3	0.8	1.4	0.0	1089	93.8	129	88.4	
34	812	95.4	0.8	1.4	0.0	697	95.4	115	95.7	
35	826	94.2	0.9	1.6	0.0	712	94.1	114	94.7	
36	381	92.9	1.4	2.6	1.3	308	92.9	73	93.2	
37	945	95.3	0.7	1.3	0.2	874	95.4	71	94.4	
38	816	91.7	1.1	1.9	0.0	769	91.8	47	89.4	
39	482	86.9	1.8	3.0	2.4	408	86.3	74	90.5	
40	273	88.3	2.2	3.8	0.0	248	88.7	25	84.0	
41	278	92.8	1.7	3.0	0.4	219	92.2	59	94.9	
42	157	83.4	3.6	5.8	0.0	133	84.2	24	79.2	

43 295 82.0 2.7 4.4 3.9 242 81.4 53 84.9 44 326 88.3 2.0 3.5 1.5 264 88.3 62 88.7 45 318 89.0 2.0 3.4 1.9 252 87.7 66 93.9 90.9 46 578 84.8 1.8 2.9 0.9 522 85.6 56 76.8 47 465 89.7 1.6 2.8 0.9 375 89.9 90 88.9 48 466 89.3 1.6 2.8 1.1 369 89.9 97 90.7 49 51 37.3 18.2 13.3 1.9 42 33.3 9 55.6 50 50 70.0 9.3 12.7 2.0 42 71.4 8 62.5 51 15 66.6 10.2 13.1 0.0 40 67.5			ALL FRO	ONT SEAT OC	CUPANTS		CATEGORY				
Sample Size Percent Size Relative Size Margin Forcer (%) Percent Forcer Sample Size Percent Size Sample Size Percent Size Sample Size Percent Size Sample Size Percent Size Size Sample Size Percent Size 466								NVEDC			
Size Usage Error (%) of Error* Unknown Size Usage Size Usage 43 295 82.0 2.7 4.4 3.9 242 81.4 53 84.9 44 326 88.3 2.0 3.5 1.5 264 88.3 62 88.7 45 318 89.0 2.0 3.4 1.9 252 85.6 56 76.8 46 578 84.8 1.8 2.9 0.9 375 89.9 90 88.9 47 465 89.7 1.6 2.8 1.1 369 88.9 97 90.7 48 466 89.3 1.6 2.8 1.1 369 88.9 97 90.7 49 51 37.3 18.2 13.3 1.9 42 71.4 8 62.5 51 50 66.0 10.2 13.1 0.0 40 67.5 10	Sito	Sample	Porcont	Polativo	Margin	Porcont					
44 326 88.3 2.0 3.5 1.5 264 88.3 62 88.7 45 318 89.0 2.0 3.4 1.9 252 87.7 66 93.9 3.6 66.76.8 76.8 48.8 1.8 2.9 0.9 522 88.9 97 90.7 88.9 97 90.7 88.9 97 90.7 90.7 48 48 466 89.3 1.6 2.8 1.1 369 88.9 97 90.6 90.5 90.7 90.8 90.2 90.1	Site	-			_					Usage	
45 318 89.0 2.0 3.4 1.9 252 87.7 66 93.9 46 578 84.8 1.8 2.9 0.9 522 85.6 56 76.8 47 465 89.7 1.6 2.8 0.9 375 89.9 90 88.9 48 466 89.3 1.6 2.8 1.1 369 88.9 97 90.7 49 51 37.3 18.2 13.3 1.9 42 33.3 9 55.6 50 50 70.0 9.3 12.7 2.0 42 71.4 8 62.5 51 50 66.0 10.2 13.1 0.0 40 67.5 10 60.0 52 1050 92.5 0.9 1.6 0.6 789 93.0 261 90.8 53 1058 94.5 0.7 1.3 0.0 746 95.2 215	43	295	82.0	2.7	4.4	3.9	242	81.4	53	84.9	
46 578 84.8 1.8 2.9 0.9 522 85.6 56 76.8 47 465 89.7 1.6 2.8 0.9 375 89.9 90 88.9 48 466 89.3 1.6 2.8 0.9 375 89.9 90 88.9 49 51 37.3 18.2 13.3 1.9 42 33.3 9 55.6 50 50 70.0 9.3 12.7 2.0 42 71.4 8 62.5 51 50 66.0 10.2 13.1 0.0 40 67.5 10 60.0 52 1050 92.5 0.9 1.6 0.6 789 93.0 261 90.8 53 1058 94.5 0.7 1.4 0.0 807 94.8 251 93.6 54 1194 94.1 0.7 1.3 0.1 971 93.8 223	44	326	88.3	2.0	3.5	1.5	264	88.3	62	88.7	
47 465 89.7 1.6 2.8 0.9 375 89.9 90 88.9 48 466 89.3 1.6 2.8 1.1 369 88.9 97 90.7 49 51 37.3 18.2 13.3 19 42 33.3 9 55.6 50 50 70.0 9.3 12.7 2.0 42 71.4 8 62.5 51 50 66.0 10.2 13.1 0.0 40 67.5 10 60.0 52 1050 92.5 0.9 1.6 0.6 789 93.0 261 90.8 53 1058 94.5 0.7 1.4 0.0 807 94.8 251 93.6 54 1194 94.1 0.7 1.3 0.1 971 93.8 223 95.1 55 961 95.8 0.7 1.3 0.1 971 93.8 223	45	318	89.0	2.0	3.4	1.9	252	87.7	66	93.9	
48 466 89.3 1.6 2.8 1.1 369 88.9 97 90.7 49 51 37.3 18.2 13.3 1.9 42 33.3 9 55.6 50 50 70.0 9.3 12.7 2.0 42 37.4 8 62.5 51 50 66.0 10.2 13.1 0.0 40 67.5 10 60.0 52 1050 92.5 0.9 1.6 0.6 789 93.0 261 90.8 53 1058 94.5 0.7 1.4 0.0 807 94.8 251 93.6 54 1194 94.1 0.7 1.3 0.0 746 95.2 215 93.8 55 961 95.8 0.7 1.3 0.0 746 95.2 215 98.1 56 476 93.9 1.2 2.1 0.2 411 99.9 93.9	46	578	84.8	1.8	2.9	0.9	522	85.6	56	76.8	
49 51 37.3 18.2 13.3 1.9 42 33.3 9 55.6 50 50 70.0 9.3 12.7 2.0 42 71.4 8 62.5 51 50 66.0 10.2 13.1 0.0 40 67.5 10 60.0 52 1050 92.5 0.9 1.6 0.6 789 93.0 261 90.8 53 1058 94.5 0.7 1.4 0.0 807 94.8 251 93.6 54 1194 94.1 0.7 1.3 0.0 746 95.2 215 98.1 55 961 95.8 0.7 1.3 0.0 746 95.2 215 98.1 56 476 93.9 1.2 2.1 0.2 411 93.9 65 93.8 57 440 91.1 1.5 2.7 1.1 410 90.7 30	47	465	89.7	1.6	2.8	0.9	375	89.9	90	88.9	
50 50 70.0 9.3 12.7 2.0 42 71.4 8 62.5 51 50 66.0 10.2 13.1 0.0 40 67.5 10 60.0 52 1050 92.5 0.9 1.6 0.6 789 93.0 261 90.8 53 1058 94.5 0.7 1.4 0.0 807 94.8 251 93.6 54 1194 94.1 0.7 1.3 0.1 971 93.8 223 95.1 55 961 95.8 0.7 1.3 0.0 746 95.2 215 98.1 56 476 93.9 1.2 2.1 0.2 411 90.7 30 96.7 58 775 92.4 1.0 1.9 0.6 676 92.2 99 93.9 1.2 85.7 60 59 81.4 6.2 9.9 6.3 52	48	466	89.3	1.6	2.8	1.1	369	88.9	97	90.7	
51 50 66.0 10.2 13.1 0.0 40 67.5 10 60.0 52 1050 92.5 0.9 1.6 0.6 789 93.0 261 90.8 53 1058 94.5 0.7 1.4 0.0 807 94.8 251 93.6 54 1194 94.1 0.7 1.3 0.1 971 93.8 223 95.1 55 961 95.8 0.7 1.3 0.0 746 95.2 215 98.1 56 476 93.9 1.2 2.1 0.2 411 93.9 65 93.8 57 440 91.1 1.5 2.7 1.1 410 90.7 30 96.7 58 775 92.4 1.0 1.9 0.6 676 92.2 99 93.9 59 110 83.6 4.2 6.9 0.0 96 83.3 14	49	51	37.3	18.2	13.3	1.9	42	33.3	9	55.6	
52 1050 92.5 0.9 1.6 0.6 789 93.0 261 90.8 53 1058 94.5 0.7 1.4 0.0 807 94.8 251 93.6 54 1194 94.1 0.7 1.3 0.0 746 95.2 215 98.1 55 961 95.8 0.7 1.3 0.0 746 95.2 215 98.1 56 476 93.9 1.2 2.1 0.2 411 93.9 65 93.8 57 440 91.1 1.5 2.7 1.1 410 90.7 30 96.7 58 775 92.4 1.0 1.9 0.6 676 92.2 99 93.9 59 110 83.6 4.2 6.9 0.0 96 83.3 14 85.7 61 97 76.3 5.7 8.5 2.0 81 76.5 16	50	50	70.0	9.3	12.7	2.0	42	71.4	8	62.5	
53 1058 94.5 0.7 1.4 0.0 807 94.8 251 93.6 54 1194 94.1 0.7 1.3 0.1 971 93.8 223 95.1 55 961 95.8 0.7 1.3 0.0 746 95.2 215 98.1 56 476 93.9 1.2 2.1 0.2 411 93.9 65 93.8 57 440 91.1 1.5 2.7 1.1 410 90.7 30 96.7 58 775 92.4 1.0 1.9 0.6 676 92.2 99 93.9 59 110 83.6 4.2 6.9 0.0 96 83.3 14 85.7 61 97 76.3 5.7 8.5 2.0 81 76.5 16 75.0 62 594 92.1 1.2 2.2 0.7 498 92.0 96	51	50	66.0	10.2	13.1	0.0	40	67.5	10	60.0	
54 1194 94.1 0.7 1.3 0.1 971 93.8 223 95.1 55 961 95.8 0.7 1.3 0.0 746 95.2 215 98.1 56 476 93.9 1.2 2.1 0.2 411 93.9 65 93.8 57 440 91.1 1.5 2.7 1.1 410 90.7 30 96.7 58 775 92.4 1.0 1.9 0.6 676 92.2 99 93.9 59 110 83.6 4.2 6.9 0.0 96 83.3 14 85.7 60 59 81.4 6.2 9.9 6.3 52 80.8 7 85.7 61 97 76.3 5.7 8.5 2.0 81 76.5 16 75.0 62 594 92.1 1.2 2.2 0.7 498 92.0 96 <	52	1050	92.5	0.9	1.6	0.6	789	93.0	261	90.8	
55 961 95.8 0.7 1.3 0.0 746 95.2 215 98.1 56 476 93.9 1.2 2.1 0.2 411 93.9 65 93.8 57 440 91.1 1.5 2.7 1.1 410 90.7 30 96.7 58 775 92.4 1.0 1.9 0.6 676 92.2 99 93.9 59 110 83.6 4.2 6.9 0.0 96 83.3 14 85.7 60 59 81.4 6.2 9.9 6.3 52 80.8 7 85.7 61 97 76.3 5.7 8.5 2.0 81 76.5 16 75.0 62 594 92.1 1.2 2.2 0.7 498 92.0 96 92.7 63 444 82.7 2.2 3.5 1.3 367 83.1 77 <th< td=""><td>53</td><td>1058</td><td>94.5</td><td>0.7</td><td>1.4</td><td>0.0</td><td>807</td><td>94.8</td><td>251</td><td>93.6</td></th<>	53	1058	94.5	0.7	1.4	0.0	807	94.8	251	93.6	
56 476 93.9 1.2 2.1 0.2 411 93.9 65 93.8 57 440 91.1 1.5 2.7 1.1 410 90.7 30 96.7 58 775 92.4 1.0 1.9 0.6 676 92.2 99 93.9 59 110 83.6 4.2 6.9 0.0 96 83.3 14 85.7 60 59 81.4 6.2 9.9 6.3 52 80.8 7 85.7 61 97 76.3 5.7 8.5 2.0 81 76.5 16 75.0 62 594 92.1 1.2 2.2 0.7 498 92.0 96 92.7 63 444 82.7 2.2 3.5 1.3 367 83.1 77 80.5 64 221 78.3 3.5 5.4 2.2 195 76.9 26	54	1194	94.1	0.7	1.3	0.1	971	93.8	223	95.1	
57 440 91.1 1.5 2.7 1.1 410 90.7 30 96.7 58 775 92.4 1.0 1.9 0.6 676 92.2 99 93.9 59 110 83.6 4.2 6.9 0.0 96 83.3 14 85.7 60 59 81.4 6.2 9.9 6.3 52 80.8 7 85.7 61 97 76.3 5.7 8.5 2.0 81 76.5 16 75.0 62 594 92.1 1.2 2.2 0.7 498 92.0 96 92.7 63 444 82.7 2.2 3.5 1.3 367 83.1 77 80.5 64 221 78.3 3.5 5.4 2.2 195 76.9 26 88.5 65 169 78.1 4.1 6.2 2.3 151 79.5 18	55	961	95.8	0.7	1.3	0.0	746	95.2	215	98.1	
58 775 92.4 1.0 1.9 0.6 676 92.2 99 93.9 59 110 83.6 4.2 6.9 0.0 96 83.3 14 85.7 60 59 81.4 6.2 9.9 6.3 52 80.8 7 85.7 61 97 76.3 5.7 8.5 2.0 81 76.5 16 75.0 62 594 92.1 1.2 2.2 0.7 498 92.0 96 92.7 63 444 82.7 2.2 3.5 1.3 367 83.1 77 80.5 64 221 78.3 3.5 5.4 2.2 195 76.9 26 88.5 65 169 78.1 4.1 6.2 2.3 151 79.5 18 66.7 66 205 92.7 2.0 3.6 0.0 175 92.0 30	56	476	93.9	1.2	2.1	0.2	411	93.9	65	93.8	
59 110 83.6 4.2 6.9 0.0 96 83.3 14 85.7 60 59 81.4 6.2 9.9 6.3 52 80.8 7 85.7 61 97 76.3 5.7 8.5 2.0 81 76.5 16 75.0 62 594 92.1 1.2 2.2 0.7 498 92.0 96 92.7 63 444 82.7 2.2 3.5 1.3 367 83.1 77 80.5 64 221 78.3 3.5 5.4 2.2 195 76.9 26 88.5 65 169 78.1 4.1 6.2 2.3 151 79.5 18 66.7 66 205 92.7 2.0 3.6 0.0 175 92.0 30 96.7 67 173 69.4 5.1 6.9 0.6 135 70.4 38	57	440	91.1	1.5	2.7	1.1	410	90.7	30	96.7	
60 59 81.4 6.2 9.9 6.3 52 80.8 7 85.7 61 97 76.3 5.7 8.5 2.0 81 76.5 16 75.0 62 594 92.1 1.2 2.2 0.7 498 92.0 96 92.7 63 444 82.7 2.2 3.5 1.3 367 83.1 77 80.5 64 221 78.3 3.5 5.4 2.2 195 76.9 26 88.5 65 169 78.1 4.1 6.2 2.3 151 79.5 18 66.7 66 205 92.7 2.0 3.6 0.0 175 92.0 30 96.7 67 173 69.4 5.1 6.9 0.6 135 70.4 38 65.8 68 164 84.1 3.4 5.6 1.2 150 83.3 14 <th< td=""><td>58</td><td>775</td><td>92.4</td><td>1.0</td><td>1.9</td><td>0.6</td><td>676</td><td>92.2</td><td>99</td><td>93.9</td></th<>	58	775	92.4	1.0	1.9	0.6	676	92.2	99	93.9	
61 97 76.3 5.7 8.5 2.0 81 76.5 16 75.0 62 594 92.1 1.2 2.2 0.7 498 92.0 96 92.7 63 444 82.7 2.2 3.5 1.3 367 83.1 77 80.5 64 221 78.3 3.5 5.4 2.2 195 76.9 26 88.5 65 169 78.1 4.1 6.2 2.3 151 79.5 18 66.7 66 205 92.7 2.0 3.6 0.0 175 92.0 30 96.7 67 173 69.4 5.1 6.9 0.6 135 70.4 38 65.8 68 164 84.1 3.4 5.6 1.2 150 83.3 14 92.9 69 235 81.7 3.1 4.9 1.3 181 80.7 54	59	110	83.6	4.2	6.9	0.0	96	83.3	14	85.7	
62 594 92.1 1.2 2.2 0.7 498 92.0 96 92.7 63 444 82.7 2.2 3.5 1.3 367 83.1 77 80.5 64 221 78.3 3.5 5.4 2.2 195 76.9 26 88.5 65 169 78.1 4.1 6.2 2.3 151 79.5 18 66.7 66 205 92.7 2.0 3.6 0.0 175 92.0 30 96.7 67 173 69.4 5.1 6.9 0.6 135 70.4 38 65.8 68 164 84.1 3.4 5.6 1.2 150 83.3 14 92.9 69 235 81.7 3.1 4.9 1.3 181 80.7 54 85.2 70 74 86.5 4.6 7.8 3.9 70 85.7 4 <	60	59	81.4	6.2	9.9	6.3	52	80.8	7	85.7	
63 444 82.7 2.2 3.5 1.3 367 83.1 77 80.5 64 221 78.3 3.5 5.4 2.2 195 76.9 26 88.5 65 169 78.1 4.1 6.2 2.3 151 79.5 18 66.7 66 205 92.7 2.0 3.6 0.0 175 92.0 30 96.7 67 173 69.4 5.1 6.9 0.6 135 70.4 38 65.8 68 164 84.1 3.4 5.6 1.2 150 83.3 14 92.9 69 235 81.7 3.1 4.9 1.3 181 80.7 54 85.2 70 74 86.5 4.6 7.8 3.9 70 85.7 4 100.0 71 60 75.0 7.5 11.0 0.0 38 73.7 12 <	61	97	76.3	5.7	8.5	2.0	81	76.5	16	75.0	
64 221 78.3 3.5 5.4 2.2 195 76.9 26 88.5 65 169 78.1 4.1 6.2 2.3 151 79.5 18 66.7 66 205 92.7 2.0 3.6 0.0 175 92.0 30 96.7 67 173 69.4 5.1 6.9 0.6 135 70.4 38 65.8 68 164 84.1 3.4 5.6 1.2 150 83.3 14 92.9 69 235 81.7 3.1 4.9 1.3 181 80.7 54 85.2 70 74 86.5 4.6 7.8 3.9 70 85.7 4 100.0 71 60 75.0 7.5 11.0 0.0 38 73.7 12 83.3 73 1757 93.3 0.6 1.2 0.1 1552 93.6 205	62	594	92.1	1.2	2.2	0.7	498	92.0	96	92.7	
65 169 78.1 4.1 6.2 2.3 151 79.5 18 66.7 66 205 92.7 2.0 3.6 0.0 175 92.0 30 96.7 67 173 69.4 5.1 6.9 0.6 135 70.4 38 65.8 68 164 84.1 3.4 5.6 1.2 150 83.3 14 92.9 69 235 81.7 3.1 4.9 1.3 181 80.7 54 85.2 70 74 86.5 4.6 7.8 3.9 70 85.7 4 100.0 71 60 75.0 7.5 11.0 0.0 54 75.9 6 66.7 72 50 76.0 7.9 11.8 0.0 38 73.7 12 83.3 73 1757 93.3 0.6 1.2 0.1 1552 93.6 205	63	444	82.7	2.2	3.5	1.3	367	83.1	77	80.5	
66 205 92.7 2.0 3.6 0.0 175 92.0 30 96.7 67 173 69.4 5.1 6.9 0.6 135 70.4 38 65.8 68 164 84.1 3.4 5.6 1.2 150 83.3 14 92.9 69 235 81.7 3.1 4.9 1.3 181 80.7 54 85.2 70 74 86.5 4.6 7.8 3.9 70 85.7 4 100.0 71 60 75.0 7.5 11.0 0.0 54 75.9 6 66.7 72 50 76.0 7.9 11.8 0.0 38 73.7 12 83.3 73 1757 93.3 0.6 1.2 0.1 1552 93.6 205 91.7 74 1516 95.1 0.6 1.1 0.0 1243 94.7 273	64	221	78.3	3.5	5.4	2.2	195	76.9	26	88.5	
67 173 69.4 5.1 6.9 0.6 135 70.4 38 65.8 68 164 84.1 3.4 5.6 1.2 150 83.3 14 92.9 69 235 81.7 3.1 4.9 1.3 181 80.7 54 85.2 70 74 86.5 4.6 7.8 3.9 70 85.7 4 100.0 71 60 75.0 7.5 11.0 0.0 54 75.9 6 66.7 72 50 76.0 7.9 11.8 0.0 38 73.7 12 83.3 73 1757 93.3 0.6 1.2 0.1 1552 93.6 205 91.7 74 1516 95.1 0.6 1.1 0.0 1243 94.7 273 97.1 75 1317 95.3 0.6 1.1 0.1 1057 95.1 260	65	169	78.1	4.1	6.2	2.3	151	79.5	18	66.7	
68 164 84.1 3.4 5.6 1.2 150 83.3 14 92.9 69 235 81.7 3.1 4.9 1.3 181 80.7 54 85.2 70 74 86.5 4.6 7.8 3.9 70 85.7 4 100.0 71 60 75.0 7.5 11.0 0.0 54 75.9 6 66.7 72 50 76.0 7.9 11.8 0.0 38 73.7 12 83.3 73 1757 93.3 0.6 1.2 0.1 1552 93.6 205 91.7 74 1516 95.1 0.6 1.1 0.0 1243 94.7 273 97.1 75 1317 95.3 0.6 1.1 0.1 1057 95.1 260 96.2 76 1879 94.8 0.5 1.0 0.3 1498 95.1 381	66	205	92.7	2.0	3.6	0.0	175	92.0	30	96.7	
69 235 81.7 3.1 4.9 1.3 181 80.7 54 85.2 70 74 86.5 4.6 7.8 3.9 70 85.7 4 100.0 71 60 75.0 7.5 11.0 0.0 54 75.9 6 66.7 72 50 76.0 7.9 11.8 0.0 38 73.7 12 83.3 73 1757 93.3 0.6 1.2 0.1 1552 93.6 205 91.7 74 1516 95.1 0.6 1.1 0.0 1243 94.7 273 97.1 75 1317 95.3 0.6 1.1 0.1 1057 95.1 260 96.2 76 1879 94.8 0.5 1.0 0.3 1498 95.1 381 93.7 77 1536 94.6 0.6 1.1 0.0 1443 95.0 93 <td>67</td> <td>173</td> <td>69.4</td> <td>5.1</td> <td>6.9</td> <td>0.6</td> <td>135</td> <td>70.4</td> <td>38</td> <td>65.8</td>	67	173	69.4	5.1	6.9	0.6	135	70.4	38	65.8	
70 74 86.5 4.6 7.8 3.9 70 85.7 4 100.0 71 60 75.0 7.5 11.0 0.0 54 75.9 6 66.7 72 50 76.0 7.9 11.8 0.0 38 73.7 12 83.3 73 1757 93.3 0.6 1.2 0.1 1552 93.6 205 91.7 74 1516 95.1 0.6 1.1 0.0 1243 94.7 273 97.1 75 1317 95.3 0.6 1.1 0.1 1057 95.1 260 96.2 76 1879 94.8 0.5 1.0 0.3 1498 95.1 381 93.7 77 1536 94.6 0.6 1.1 0.0 1443 95.0 93 88.2 78 441 78.2 2.5 3.9 0.0 394 77.9 47 <td>68</td> <td>164</td> <td>84.1</td> <td>3.4</td> <td>5.6</td> <td>1.2</td> <td>150</td> <td>83.3</td> <td>14</td> <td>92.9</td>	68	164	84.1	3.4	5.6	1.2	150	83.3	14	92.9	
71 60 75.0 7.5 11.0 0.0 54 75.9 6 66.7 72 50 76.0 7.9 11.8 0.0 38 73.7 12 83.3 73 1757 93.3 0.6 1.2 0.1 1552 93.6 205 91.7 74 1516 95.1 0.6 1.1 0.0 1243 94.7 273 97.1 75 1317 95.3 0.6 1.1 0.1 1057 95.1 260 96.2 76 1879 94.8 0.5 1.0 0.3 1498 95.1 381 93.7 77 1536 94.6 0.6 1.1 0.0 1443 95.0 93 88.2 78 441 78.2 2.5 3.9 0.0 394 77.9 47 80.9 79 1322 93.7 0.7 1.3 0.2 1123 93.7 1	69	235	81.7	3.1	4.9	1.3	181	80.7	54	85.2	
72 50 76.0 7.9 11.8 0.0 38 73.7 12 83.3 73 1757 93.3 0.6 1.2 0.1 1552 93.6 205 91.7 74 1516 95.1 0.6 1.1 0.0 1243 94.7 273 97.1 75 1317 95.3 0.6 1.1 0.1 1057 95.1 260 96.2 76 1879 94.8 0.5 1.0 0.3 1498 95.1 381 93.7 77 1536 94.6 0.6 1.1 0.0 1443 95.0 93 88.2 78 441 78.2 2.5 3.9 0.0 394 77.9 47 80.9 79 1322 93.7 0.7 1.3 0.2 1123 93.7 199 94.0 80 1082 95.1 0.7 1.3 0.3 928 94.9 <	70	74	86.5	4.6	7.8	3.9	70	85.7	4	100.0	
73 1757 93.3 0.6 1.2 0.1 1552 93.6 205 91.7 74 1516 95.1 0.6 1.1 0.0 1243 94.7 273 97.1 75 1317 95.3 0.6 1.1 0.1 1057 95.1 260 96.2 76 1879 94.8 0.5 1.0 0.3 1498 95.1 381 93.7 77 1536 94.6 0.6 1.1 0.0 1443 95.0 93 88.2 78 441 78.2 2.5 3.9 0.0 394 77.9 47 80.9 79 1322 93.7 0.7 1.3 0.2 1123 93.7 199 94.0 80 1082 95.1 0.7 1.3 0.3 928 94.9 154 96.1 81 1817 94.7 0.6 1.0 0.2 1553 94.8	71	60	75.0	7.5	11.0	0.0	54	75.9	6	66.7	
74 1516 95.1 0.6 1.1 0.0 1243 94.7 273 97.1 75 1317 95.3 0.6 1.1 0.1 1057 95.1 260 96.2 76 1879 94.8 0.5 1.0 0.3 1498 95.1 381 93.7 77 1536 94.6 0.6 1.1 0.0 1443 95.0 93 88.2 78 441 78.2 2.5 3.9 0.0 394 77.9 47 80.9 79 1322 93.7 0.7 1.3 0.2 1123 93.7 199 94.0 80 1082 95.1 0.7 1.3 0.3 928 94.9 154 96.1 81 1817 94.7 0.6 1.0 0.2 1553 94.8 264 94.3 82 1531 94.1 0.6 1.2 0.0 1353 94.1	72	50	76.0	7.9	11.8	0.0	38	73.7	12	83.3	
75 1317 95.3 0.6 1.1 0.1 1057 95.1 260 96.2 76 1879 94.8 0.5 1.0 0.3 1498 95.1 381 93.7 77 1536 94.6 0.6 1.1 0.0 1443 95.0 93 88.2 78 441 78.2 2.5 3.9 0.0 394 77.9 47 80.9 79 1322 93.7 0.7 1.3 0.2 1123 93.7 199 94.0 80 1082 95.1 0.7 1.3 0.3 928 94.9 154 96.1 81 1817 94.7 0.6 1.0 0.2 1553 94.8 264 94.3 82 1531 94.1 0.6 1.2 0.0 1353 94.1 178 93.8 83 1107 94.9 0.7 1.3 0.0 935 94.8	73	1757	93.3	0.6	1.2	0.1	1552	93.6	205	91.7	
76 1879 94.8 0.5 1.0 0.3 1498 95.1 381 93.7 77 1536 94.6 0.6 1.1 0.0 1443 95.0 93 88.2 78 441 78.2 2.5 3.9 0.0 394 77.9 47 80.9 79 1322 93.7 0.7 1.3 0.2 1123 93.7 199 94.0 80 1082 95.1 0.7 1.3 0.3 928 94.9 154 96.1 81 1817 94.7 0.6 1.0 0.2 1553 94.8 264 94.3 82 1531 94.1 0.6 1.2 0.0 1353 94.1 178 93.8 83 1107 94.9 0.7 1.3 0.0 935 94.8 172 95.3	74	1516	95.1	0.6	1.1	0.0	1243	94.7	273	97.1	
77 1536 94.6 0.6 1.1 0.0 1443 95.0 93 88.2 78 441 78.2 2.5 3.9 0.0 394 77.9 47 80.9 79 1322 93.7 0.7 1.3 0.2 1123 93.7 199 94.0 80 1082 95.1 0.7 1.3 0.3 928 94.9 154 96.1 81 1817 94.7 0.6 1.0 0.2 1553 94.8 264 94.3 82 1531 94.1 0.6 1.2 0.0 1353 94.1 178 93.8 83 1107 94.9 0.7 1.3 0.0 935 94.8 172 95.3	75	1317	95.3	0.6	1.1	0.1	1057	95.1	260	96.2	
78 441 78.2 2.5 3.9 0.0 394 77.9 47 80.9 79 1322 93.7 0.7 1.3 0.2 1123 93.7 199 94.0 80 1082 95.1 0.7 1.3 0.3 928 94.9 154 96.1 81 1817 94.7 0.6 1.0 0.2 1553 94.8 264 94.3 82 1531 94.1 0.6 1.2 0.0 1353 94.1 178 93.8 83 1107 94.9 0.7 1.3 0.0 935 94.8 172 95.3	76	1879	94.8	0.5	1.0	0.3	1498	95.1	381	93.7	
79 1322 93.7 0.7 1.3 0.2 1123 93.7 199 94.0 80 1082 95.1 0.7 1.3 0.3 928 94.9 154 96.1 81 1817 94.7 0.6 1.0 0.2 1553 94.8 264 94.3 82 1531 94.1 0.6 1.2 0.0 1353 94.1 178 93.8 83 1107 94.9 0.7 1.3 0.0 935 94.8 172 95.3	77	1536	94.6	0.6	1.1	0.0	1443	95.0	93	88.2	
80 1082 95.1 0.7 1.3 0.3 928 94.9 154 96.1 81 1817 94.7 0.6 1.0 0.2 1553 94.8 264 94.3 82 1531 94.1 0.6 1.2 0.0 1353 94.1 178 93.8 83 1107 94.9 0.7 1.3 0.0 935 94.8 172 95.3	78	441	78.2	2.5	3.9	0.0	394	77.9	47	80.9	
81 1817 94.7 0.6 1.0 0.2 1553 94.8 264 94.3 82 1531 94.1 0.6 1.2 0.0 1353 94.1 178 93.8 83 1107 94.9 0.7 1.3 0.0 935 94.8 172 95.3	79	1322	93.7	0.7	1.3	0.2	1123	93.7	199	94.0	
82 1531 94.1 0.6 1.2 0.0 1353 94.1 178 93.8 83 1107 94.9 0.7 1.3 0.0 935 94.8 172 95.3	80	1082	95.1	0.7	1.3	0.3	928	94.9	154	96.1	
83 1107 94.9 0.7 1.3 0.0 935 94.8 172 95.3	81	1817	94.7	0.6	1.0	0.2	1553	94.8	264	94.3	
	82	1531	94.1	0.6	1.2	0.0	1353	94.1	178	93.8	
84 1059 95.1 0.7 1.3 0.3 879 95.0 180 95.6	83	1107	94.9	0.7	1.3	0.0	935	94.8	172	95.3	
	84	1059	95.1	0.7	1.3	0.3	879	95.0	180	95.6	

		ALL FRO	NT SEAT OC	CUPANTS		CATEGORY				
								FRON	IT SEAT	
							RIVERS		ENGERS	
Site	Sample	Percent	Relative	Margin	Percent	Sample	Percent	Sample	Percent	
	Size	Usage	Error (%)	of Error*	Unknown	Size	Usage	Size	Usage	
85	973	90.2	1.1	1.9	0.2	806	90.6	167	88.6	
86	547	93.4	1.1	2.1	0.5	472	93.2	75	94.7	
87	1098	90.2	1.0	1.8	0.4	999	90.0	99	91.9	
88	567	91.2	1.3	2.3	0.5	504	91.1	63	92.1	
89	791	91.4	1.1	2.0	0.1	716	91.8	75	88.0	
90	1496	95.7	0.5	1.0	0.3	1352	95.9	144	94.4	
91	597	88.9	1.4	2.5	0.0	534	88.8	63	90.5	
92	642	80.1	2.0	3.1	1.5	582	79.9	60	81.7	
93	416	71.2	3.1	4.4	1.7	368	69.6	48	83.3	
94	425	83.5	2.2	3.5	1.2	366	82.8	59	88.1	
95	159	86.2	3.2	5.4	4.8	148	87.8	11	63.6	
96	176	71.6	4.7	6.7	1.1	151	71.5	25	72.0	
97	308	85.7	2.3	3.9	1.3	270	85.6	38	86.8	
98	482	92.7	1.3	2.3	0.0	428	92.8	54	92.6	
99	644	89.8	1.3	2.3	0.8	552	89.9	92	89.1	
100	776	92.1	1.0	1.9	0.3	694	91.8	82	95.1	
101	919	93.7	0.9	1.6	0.0	871	93.9	48	89.6	
102	540	90.7	1.4	2.4	0.4	488	91.2	52	86.5	
103	422	94.8	1.1	2.1	0.7	375	94.4	47	97.9	
104	61	82.0	6.0	9.6	0.0	54	81.5	7	85.7	
105	77	89.6	3.9	6.8	0.0	62	88.7	15	93.3	
106	1588	94.2	0.6	1.1	0.0	1290	93.9	298	95.6	
107	1862	96.1	0.5	0.9	0.1	1735	95.8	127	100.0	
108	1998	94.8	0.5	1.0	0.0	1643	95.2	355	93.2	
109	1798	95.6	0.5	0.9	0.0	1646	95.6	152	96.1	
110	1612	96.1	0.5	0.9	0.0	1293	95.9	319	96.9	
111	1445	95.5	0.6	1.1	0.1	1241	95.7	204	94.1	
112	1312	95.5	0.6	1.1	0.2	1196	95.3	116	97.4	
113	339	90.9	1.7	3.1	0.6	291	91.4	48	87.5	
114	380	91.6	1.6	2.8	0.0	323	90.7	57	96.5	
115	631	93.8	1.0	1.9	0.5	549	94.2	82	91.5	
116	50	88.0	5.2	9.0	0.0	46	87.0	4	100.0	
117	183	88.0	2.7	4.7	2.1	143	87.4	40	90.0	
118	1246	95.5	0.6	1.2	0.4	879	95.6	367	95.4	
119	883	93.7	0.9	1.6	0.0	638	93.4	245	94.3	
120	105	82.9	4.4	7.2	0.0	83	83.1	22	81.8	
121	101	74.3	5.9	8.5	0.0	74	73.0	27	77.8	
122	278	89.6	2.0	3.6	1.8	233	88.4	45	95.6	
123	50	72.0	8.8	12.4	0.0	44	72.7	6	66.7	
124	875	94.2	0.8	1.6	0.5	634	93.8	241	95.0	
125	227	89.4	2.3	4.0	0.0	174	89.7	53	88.7	
126	610	88.5	1.5	2.5	0.0	454	88.8	156	87.8	
127	592	92.4	1.2	2.1	0.5	455	92.5	137	92.0	

		ALL FRO	NT SEAT OC	CUPANTS			CAT	EGORY	
						DR	IVERS		T SEAT INGERS
Site	Sample	Percent	Relative	Margin	Percent	Sample	Percent	Sample	Percent
	Size	Usage	Error (%)	of Error*	Unknown	Size	Usage	Size	Usage
128	303	87.5	2.2	3.7	0.7	277	87.0	26	92.3
129	429	86.9	1.9	3.2	1.2	365	85.8	64	93.8
130	349	85.4	2.2	3.7	0.0	292	84.2	57	91.2
131	276	89.9	2.0	3.6	1.1	225	89.3	51	92.2
132	189	86.2	2.9	4.9	2.1	161	86.3	28	85.7
133	65	75.4	7.1	10.5	0.0	44	75.0	21	76.2
134	685	77.7	2.0	3.1	0.1	568	77.3	117	79.5
135	414	86.5	1.9	3.3	1.7	326	85.9	88	88.6
136	562	81.3	2.0	3.2	0.0	431 82.4		131	77.9
137	94	76.6	5.7	8.6	1.1	72	75.0	22	81.8
138	140	77.9	4.5	6.9	2.1	107	78.5	33	75.8
139	98	79.6	5.1	8.0	2.0	78	76.9	20	90.0
140	220	84.1	2.9	4.8	0.0	185	84.3	35	82.9
141	171	85.4	3.2	5.3	0.6	141	83.7	30	93.3
142	195	83.6	3.2	5.2	0.5	166	84.9	29	75.9
143	234	82.9	3.0	4.8	2.5	198	84.3	36	75.0
144	58	65.5	9.5	12.2	0.0	46	65.2	12	66.7
145	355	89.0	1.9	3.3	0.3	245	91.0	110	84.5
146	171	86.5	3.0	5.1	1.2	121	86.0	50	88.0
147	150	86.0	3.3	5.6	1.3	132	87.9	18	72.2
148	141	80.9	4.1	6.5	0.7	115	79.1	26	88.5
149	66	75.8	7.0	10.3	1.5	55	76.4	11	72.7
150	97	80.4	5.0	7.9	1.0	68	76.5	29	89.7

^{*}Percent (using .95 probability)

Table E1 Summary of Data (With Sample Weights)

Site ID	Site Type	Date Observed	Site Sample Weight	Number of Drivers	Number of Front Passengers	Number of Occupants Belted	Number of Occupants Unbelted	Number of Occupants with Unknown Belt Use	
1	Original	6/5/2025	4.555	572	274	787	52	7	
2	Original	6/5/2025	17.850	295	95	347	37	6	
3	Original	6/16/2025	36.072	261	60	291	29	1	
4	Original	6/16/2025	737.851	233	50	248	31	4	
5	Original	7/28/2025	771.013	243	55	243	55	0	
6	Original	6/16/2025	110.430	173	37	176	31	3	
7	Original	8/5/2025	679.774	63	15	60	18	0	
8	Original	8/5/2025	742.225	36	15	43	8	0	
9	Original	6/5/2025	2602.365	74	35	85	24	0	
10	Original	7/21/2025	56.418	287	95	329	51	2	
11	Original	6/25/2025	29.320	464	179	586	52	5	
12	Original	7/16/2025	14.730	403	133	475	58	3	
13	Original	7/2/2025	21.851	673	129	763	37	2	
14	Original	6/11/2025	117.963	778	290	1006	55	7	
15	Original	7/7/2025	15.461	795	197	912	80	0	
16	Original	7/16/2025	10916.329	342	47	315	61	13	
17	Original	7/7/2025	484.129	61	20	66	15	0	
18	Original	6/11/2025	1141.108	295	59	304	40	10	
19	Original	6/25/2025	682.447	220	45	248	13	4	
20	Original	7/21/2025	2673.707	124	22	108	36	2	
21	Alternate	8/4/2025	5111.229	313	92	359	44	2	
22	Original	7/15/2025	1.516	644	249	819	67	7	
23	Original	6/10/2025	4.606	702	227	874	54	1	
24	Original	7/8/2025	5.357	1047	295	1281	61	0	
25	Original	7/1/2025	21.370	1107	312	1346	73	0	
26	Original	6/10/2025	1.063	892	236	1077	50	1	
27	Original	7/1/2025	1.590	881	191	1008	64	0	
28	Original	7/15/2025	2.301	1021	284	1194	101	10	
29	Original	6/6/2025	3.785	1096	270	1297	63	6	
30	Original	6/6/2025	3.833	1126	222	1257	87	4	

Site ID	Site Type	Date Observed	Site Sample Weight	Number of Drivers	Number of Front Passengers	Number of Occupants Belted	Number of Occupants Unbelted	Number of Occupants with Unknown Belt Use
31	Original	7/1/2025	63.955	767	100	798	66	3
32	Original	6/10/2025	29.203	599	119	647	65	6
33	Original	7/1/2025	66.238	1089	129	1136	82	0
34	Original	6/6/2025	90.127	697	115	775	37	0
35	Original	7/8/2025	199.740	712	114	778	48	0
36	Original	7/15/2025	172.186	313	73	354	27	5
37	Original	6/6/2025	23.616	876	71	901	44	2
38	Original	7/30/2025	132.156	769	47	748	68	0
39	Original	6/6/2025	110.782	420	74	419	63	12
40	Alternate	7/8/2025	291.419	248	25	241	32	0
41	Original	6/6/2025	316.612	220	59	258	20	1
42	Original	7/8/2025	160.480	133	24	131	26	0
43	Original	6/17/2025	107.402	254	53	242	53	12
44	Original	7/10/2025	234.362	269	62	288	38	5
45	Original	6/9/2025	242.088	258	66	283	35	6
46	Original	7/22/2025	102.421	527	56	490	88	5
47	Original	7/10/2025	27.914	379	90	417	48	4
48	Original	6/9/2025	94.908	374	97	416	50	5
49	Original	6/17/2025	1287.547	43	9	19	32	1
50	Original	7/1/2025	1110.297	43	8	35	15	1
51	Original	7/1/2025	600.393	40	10	33	17	0
52	Original	6/18/2025	51.068	795	261	971	79	6
53	Original	6/13/2025	5.681	807	251	1000	58	0
54	Original	7/15/2025	6.911	972	223	1123	71	1
55	Original	6/13/2025	7.727	746	215	921	40	0
56	Original	6/18/2025	173.323	412	65	447	29	1
57	Original	7/15/2025	61.388	415	30	401	39	5
58	Original	7/24/2025	239.335	681	99	716	59	5
59	Original	6/13/2025	320.677	96	14	92	18	0
60	Original	6/18/2025	604.501	56	7	48	11	4
61	Original	6/18/2025	631.128	83	16	74	23	2
	_							

Site ID	Site Type	Date Observed	Site Sample Weight	Number of Drivers	Number of Front Passengers	Number of Occupants Belted	Number of Occupants Unbelted	Number of Occupants with Unknown Belt Use
62	Original	6/5/2025	78.467	502	96	547	47	4
63	Original	7/23/2025	75.190	373	77	367	77	6
64	Original	8/5/2025	105.614	200	26	173	48	5
65	Original	6/18/2025	177.154	155	18	132	37	4
66	Original	6/5/2025	827.993	175	30	190	15	0
67	Original	8/6/2025	808.437	136	38	120	53	1
68	Original	6/9/2025	88.743	152	14	138	26	2
69	Original	7/21/2025	495.871	184	54	192	43	3
70	Original	6/9/2025	205.699	73	4	64	10	3
71	Original	8/6/2025	571.486	54	6	45	15	0
72	Original	7/9/2025	3639.312	38	12	38	12	0
73	Original	6/26/2025	8.129	1554	205	1640	117	2
74	Original	7/14/2025	31.492	1243	273	1442	74	0
75	Original	7/14/2025	6.947	1058	260	1255	62	1
76	Original	6/23/2025	8.284	1503	381	1781	98	5
77	Original	7/11/2025	19.796	1443	93	1453	83	0
78	Original	6/12/2025	16.319	394	47	345	96	0
79	Original	6/16/2025	7.884	1126	199	1239	83	3
80	Original	6/16/2025	20.026	931	154	1029	53	3
81	Original	7/3/2025	7.343	1556	264	1721	96	3
82	Original	7/23/2025	8.130	1353	178	1440	91	0
83	Original	7/14/2025	53.829	935	172	1050	57	0
84	Original	6/16/2025	35.691	882	180	1007	52	3
85	Original	6/23/2025	7.034	808	167	878	95	2
86	Original	6/16/2025	476.569	475	75	511	36	3
87	Original	8/4/2025	135.592	1003	99	990	108	4
88	Original	6/16/2025	134.112	507	63	517	50	3
89	Original	6/26/2025	118.166	717	75	723	68	1
90	Original	6/26/2025	92.058	1356	144	1432	64	4
91	Original	7/23/2025	71.164	534	63	531	66	0
92	Original	7/3/2025	99.004	592	60	514	128	10

Site ID	Site Type	Date Observed	Site Sample Weight	Number of Drivers	Number of Front Passengers	Number of Occupants Belted	Number of Occupants Unbelted	Number of Occupants with Unknown Belt Use
93	Original	7/11/2025	867.653	375	48	296	120	7
94	Original	7/3/2025	395.803	371	59	355	70	5
95	Original	6/12/2025	1312.062	156	11	137	22	8
96	Original	7/11/2025	1248.535	153	25	126	50	2
97	Original	7/8/2025	212.918	274	38	264	44	4
98	Original	6/4/2025	133.102	428	54	447	35	0
99	Original	7/8/2025	116.209	557	92	578	66	5
100	Original	6/4/2025	84.466	695	83	715	61	2
101	Original	6/4/2025	229.720	871	48	861	58	0
102	Original	6/4/2025	148.584	490	52	490	50	2
103	Original	7/8/2025	386.881	378	47	400	22	3
104	Original	7/11/2025	12490.994	54	7	50	11	0
105	Original	7/11/2025	929.203	62	15	69	8	0
106	Original	8/7/2025	5.780	1290	298	1496	92	0
107	Original	6/23/2025	62.957	1736	127	1789	73	1
108	Original	6/13/2025	9.269	1643	355	1895	103	0
109	Original	6/23/2025	22.914	1646	152	1719	79	0
110	Original	6/13/2025	8.819	1293	319	1549	63	0
111	Alternate	6/13/2025	18.083	1242	204	1380	65	1
112	Original	6/23/2025	39.754	1198	116	1253	59	2
113	Original	6/23/2025	274.043	293	48	308	31	2
114	Original	6/12/2025	133.203	323	57	348	32	0
115	Original	6/13/2025	238.277	552	82	592	39	3
116	Original	7/22/2025	65.274	46	4	44	6	0
117	Original	6/12/2025	1174.984	147	40	161	22	4
118	Original	6/20/2025	15.978	884	367	1190	56	5
119	Original	6/10/2025	10.000	638	245	827	56	0
120	Original	6/10/2025	3049.765	83	22	87	18	0
121	Original	6/20/2025	209.155	74	27	75	26	0
122	Original	6/10/2025	336.450	238	45	249	29	5
123	Original	6/20/2025	903.458	44	6	36	14	0

Site ID	Site Type	Date Observed	Site Sample Weight	Number of Drivers	Number of Front Passengers	Number of Occupants Belted	Number of Occupants Unbelted	Number of Occupants with Unknown Belt Use
124	Original	7/16/2025	5.618	638	241	824	51	4
125	Original	7/9/2025	30.029	174	53	203	24	0
126	Original	7/9/2025	24.845	454	156	540	70	0
127	Original	7/16/2025	49.668	458	137	547	45	3
128	Original	7/2/2025	168.448	279	26	265	38	2
129	Original	7/2/2025	434.218	370	64	373	56	5
130	Original	7/9/2025	162.856	292	57	298	51	0
131	Original	7/7/2025	80.887	228	51	248	28	3
132	Original	7/7/2025	716.250	165	28	163	26	4
133	Original	7/14/2025	558.753	44	21	49	16	0
134	Original	7/29/2025	23.636	569	117	532	153	1
135	Original	6/4/2025	117.614	333	88	358	56	7
136	Original	7/3/2025	128.206	431	131	457	105	0
137	Alternate	7/14/2025	694.693	73	22	72	22	1
138	Original	6/4/2025	776.829	110	33	109	31	3
139	Original	6/27/2025	37.685	80	20	78	20	2
140	Original	6/20/2025	554.947	185	35	185	35	0
141	Original	6/27/2025	43.388	142	30	146	25	1
142	Original	6/20/2025	51.434	167	29	163	32	1
143	Original	6/20/2025	84.867	204	36	194	40	6
144	Original	6/17/2025	88.476	46	12	38	20	0
145	Original	6/11/2025	33.848	246	110	316	39	1
146	Original	6/11/2025	23.783	123	50	148	23	2
147	Original	6/11/2025	27.825	134	18	129	21	2
148	Alternate	7/9/2025	694.693	116	26	114	27	1
149	Alternate	6/11/2025	123.835	56	11	50	16	1
150	Original	6/24/2025	112.557	69	29	78	19	1
			Totals	75746	15063	83073	7357	379

Appendix F Mini Survey Data

Table F1 Data from Mini Survey

Country	Tourn	Intersection Description	2014	2015	2016	2017	2018	2019	2021	2022	2023	2024	2025
County	Town	Intersection Description	2014			_							
Barren	Cave City	I-65 at Exit 53	89	91	90	88	96	91	96	95	95	90	94
Meade	Muldraugh	US 31W at KY 1638	88	89	88	88	91	88	90	86	90	88	93
Grayson	Leitchfield	KY 259 at US 62	85	85	79	85	85	87	85	82	85	79	84
Logan	Russellville	US 68 at US 79	83	82	86	83	83	87	88	77	81	82	84
Hopkins	Madisonville	Pennyrile Pkwy at Exit 44	91	91	95	91	93	91	94	87	90	90	92
Henderson	Henderson	Us 41A at 5th St.	85	88	80	88	90	90	90	87	89	86	91
Calloway	Murray	KY 1637 at 16th	85	88	88	85	90	89	91	91	92	86	89
Shelby	Simpsonville	I-64 at Exit 28	93	95	94	93	97	93	95	92	95	89	94
Woodford	Versailles	US 60 at US 62	93	89	93	88	94	90	87	91	92	96	93
Oldham	La Grange	KY 146 at KY 329B	90	92	92	94	91	91	94	92	90	91	90
Franklin	Frankfort	KY 2820 at US 127	87	79	73	84	74	83	86	86	90	88	83
Kenton	Crescent Springs	I-75 at Exit 186	92	92	93	93	95	89	94	94	96	90	95
Jefferson	Louisville	US 31W at KY 841	87	87	84	88	86	86	86	82	82	80	79
Boone	Walton	US 42 at US 25	87	88	91	88	88	89	94	92	91	91	91
Boyd	Ashland	I-64 at Exit 185	90	91	85	88	91	91	87	89	91	89	86
Lincoln	Stanford	US 27 at US 150	86	82	87	82	88	86	87	83	85	81	87
Carter	Grayson	US 60 at KY 7	81	81	80	83	84	87	88	85	89	84	88
Floyd	Drift	KY 680 at KY 122	71	68	63	66	66	74	85	76	81	73	78
Rowan	Morehead	I-64 at Exit 137	89	89	83	92	95	90	93	87	89	86	90
Laurel	Corbin	US 25E at US 25	81	85	82	83	83	92	92	85	85	83	89
Pulaski	ulaski Somerset KY 80 at KY 2296			85	88	84	90	84	89	84	88	74	77
Statewide Us	itatewide Usage			87.6	87.2	87.5	89.4	88.3	90.4	87.8	89.6	86.5	89.1

Appendix G R Code for County and Site Selection	

```
library(factoextra)
library(nilde)
library(tigris)
library(ggplot2)
setwd("/Users/derekyoung/Documents/Safety Belt Survey/FY22 Report/FY22 Updated (Revised)/")
VMT <- read.table("VMT 16 20.txt",header=T)
VMT <- VMT[order(VMT$Total,decreasing=T),]
VMT[,"VMT20"] <- VMT$DailyVMT*366
VMT[,"cumper"] <- cumsum(VMT$Total)/sum(VMT$Total)
cutoff <- min(which(VMT$cumper>=0.85))
Stage1 <- VMT[1:cutoff,]
Stage2 <- lapply(1:12, function(i) Stage1[which(Stage1$District==i),1])
names(Stage2) <- 1:12
Stage2[[5]] <- Stage2[[5]][-which(Stage2[[5]]=="Jefferson")]
Stage2[[7]] <- Stage2[[7]][-which(Stage2[[7]]=="Fayette")]
sample.23 <- c("Jefferson", "Fayette", unlist(sapply(1:12, function(i) sample(Stage2[[i]], size=ifelse(i==6,2,1)))))
Stage3 <- Stage1[VMT$County%in%sample.23,]
Stage3 <- Stage3[order(Stage3$VMT20),]
#3-5 Clusters looks appropriate
fviz_nbclust(data.frame(Stage3$VMT20), kmeans, method = "wss",k.max=8)
fviz_nbclust(data.frame(Stage3$VMT20), kmeans, method = "gap",nboot=500,k.max=8)
VMT cluster <- kmeans(Stage3$VMT20,centers=5,iter.max=100,nstart=200)$cluster
levs <- unique(VMT_cluster)
VMT_class <- unlist(sapply(1:length(levs),function(i) rep(i,length(which(VMT_cluster==levs[i])))))
Stage3[,"VMT_class"] <- VMT_class
site.selection <- as.numeric(table(VMT_class))
de.out <- nlde(a=site.selection,n=150)
de.out.cand <- de.out$solutions[,which(apply(de.out$solutions==0,2,sum)==0)]*site.selection
#150 sites divided by 5 clusters means we should have roughly 20-30 sites per cluster
de.out.cand <- de.out.cand[,which(apply(de.out.cand,2,min)>=20)]
de.out.cand <- de.out.cand[,sapply(1:ncol(de.out.cand), function(i) all(mod(de.out.cand[,i],3)==0))]
#We can then look for a solution where the number of sites per county increases with the cluster
site.cand <- t(de.out.cand/site.selection)
site.inc.ind <- sapply(1:nrow(site.cand),function(i) all(sort(site.cand[i,])==site.cand[i,]))
site.cand <- site.cand[site.inc.ind,]
site.cand <- site.cand[sapply(1:nrow(site.cand), function(i) all(mod(site.cand[i,],3)==0)),]
#Solution 297600 looks good
number.sites <- data.frame(de.out.cand/site.selection)[,"sol.297600"]
Stage3[,"no.sites"] <- rep(number.sites,site.selection)
#County selection map
ky <- counties(state = "KY")
ind <- ky$NAME%in%Stage3$County
col.fill <- rep("white",120)
col.fill[ind] <- "red"
ggplot() + geom_sf(data = ky, color="black", fill=col.fill, size=0.25) +
ggtitle("County Selection Map")
```

```
#Site selection process
setwd("/Users/derekyoung/Documents/Safety Belt Survey/FY22 Report/Road Segments (Revised)/")
file.loc <- "FINAL Road Segments 2023 counties Second Submittal.xlsx"
Barren <- read_excel(file.loc, sheet = "Barren")
Christian <- read_excel(file.loc, sheet = "Christian")
Fayette <- read excel(file.loc, sheet = "Fayette")
Floyd <- read excel(file.loc, sheet = "Floyd")
Franklin <- read_excel(file.loc, sheet = "Franklin")
Greenup <- read_excel(file.loc, sheet = "Greenup")
Harlan <- read excel(file.loc, sheet = "Harlan")
Jefferson <- read_excel(file.loc, sheet = "Jefferson")
Jessamine <- read_excel(file.loc, sheet = "Jessamine")</pre>
Kenton <- read excel(file.loc, sheet = "Kenton")</pre>
Larue <- read_excel(file.loc, sheet = "Larue")
Marshall <- read_excel(file.loc, sheet = "Marshall")
McCreary <- read excel(file.loc, sheet = "McCreary")
Pendleton <- read_excel(file.loc, sheet = "Pendleton")
Wolfe <- read_excel(file.loc, sheet = "Wolfe")
#Function to apply to each county
roadsel.fn <- function(county,sites){
county <- data.frame(county)
 total.VMT <- sum(county$DVMT)
 county$ROAD_CLASS <- as.factor(county$ROAD_CLASS)</pre>
road.levels <- levels(county$ROAD CLASS)
county <- lapply(1:length(road.levels), function(i) county[county$ROAD_CLASS == road.levels[i],])</pre>
names(county) <- road.levels
 road.levels.VMT <- sapply(1:length(county), function(i) sum(county[[i]]$DVMT))
 road.level.POS <- road.levels.VMT/total.VMT
 sites.class <- round(sites*road.level.POS)
 if(sum(sites.class)>sites) sites.class[which.max(sites.class)] <- sites.class[which.max(sites.class)]-1
if(sum(sites.class)<sites) sites.class[which.min(sites.class)] <- sites.class[which.min(sites.class)]+1
 POS <- vector("list",length(county))
 for(i in 1:length(POS)){
 POS[[i]] <- county[[i]]$DVMT/sum(county[[i]]$DVMT)
  county[[i]] <- cbind(county[[i]],POS=POS[[i]]*sites.class[i])</pre>
 roadsel <- lapply(1:length(county),function(i) county[[i]][sample(1:nrow(county[[i]]),replace=FALSE,size=sites.class[i],prob=POS[[i]]),])
 all.roadsel <- NULL
 for(i in 1:length(roadsel)) all.roadsel <- rbind(all.roadsel,roadsel[[i]])
all.roadsel
}
#Actual selection, followed by outputting it to Excel
set.seed(1)
Barren_Road <- roadsel.fn(Barren,sites=9)</pre>
Christian Road <- roadsel.fn(Christian, sites=12)
Fayette_Road <- roadsel.fn(Fayette,sites=21)
Floyd_Road <- roadsel.fn(Floyd,sites=9)
Franklin Road <- roadsel.fn(Franklin,sites=9)
Greenup_Road <- roadsel.fn(Greenup,sites=6)
Harlan_Road <- roadsel.fn(Harlan,sites=6)
Jefferson_Road <- roadsel.fn(Jefferson,sites=24)
Jessamine_Road <- roadsel.fn(Jessamine,sites=9)</pre>
Kenton_Road <- roadsel.fn(Kenton,sites=12)</pre>
Larue Road <- roadsel.fn(Larue, sites=6)
```

out <- rbind(Barren_Road, Christian_Road, Fayette_Road, Floyd_Road, Franklin_Road, Greenup_Road, Harlan_Road, Jefferson_Road, Jessamine_Road, Kenton_Road, Larue_Road, Marshall_Road, McCreary_Road, Pendleton_Road, Wolfe_Road) write_xlsx(out,"Road_Selections.xlsx")

Marshall_Road <- roadsel.fn(Marshall,sites=9)
McCreary_Road <- roadsel.fn(McCreary,sites=6)
Pendleton_Road <- roadsel.fn(Pendleton,sites=6)
Wolfe Road <- roadsel.fn(Wolfe,sites=6)