Auxiliary Turn Lanes

Adam Kirk
Kentucky Transportation Center
INTRODUCTION

- SPR Project: Criteria for the Design and Justification of Auxiliary Turn lanes

- Purpose
 - Provide consistent and clear left and right turn-lane warrants
 - Develop standards for their design
 - Alternative turn lane designs (“blister” or “bump-out”)
 - Positive offset of left-turn lanes
 - Warrants and standards for two-way left-turn lanes (TWLTL)
Background

Left Turn Lane Warrants

- KYTC Design Policy
 - Median openings on divided roadways
 - All non-stopping approaches of rural arterials and collectors
 - All other approaches where required on the basis of capacity, safety, and operational analysis
Background

Left Turn Lane Warrants

- KYTC Permit Policy
 - Median openings on divided roadways
 - All other approaches based on highway Research Record 211
Background

Turn Lane Length

- KYTC Design Policy
 - Storage Length: 1.5 to 2 times average number of arrivals per cycle
 - Deceleration Length: Common practice is to accept a moderate amount of deceleration within the through lanes...
Agenda

- Turn Lane Design
 - Approach Taper
 - Turn Lane Length
- Alternative Designs
- Positive Offset of Left-Turn Lanes
- Two-Way Left-Turn Lanes
LEFT-TURN LANE WARRANTS

- Signalized Intersections
 - All arterials and collectors must have left-turn lanes
 - All other roadways; left-turn lanes only when required by capacity analysis
LEFT-TURN LANE WARRANTS

- Stop Controlled Approaches
 - Left-turn lanes shall be provided at median openings on divided roadways
 - Left-turn lanes only when required by capacity analysis
 - Left-turn lanes should be considered as a safety countermeasure, e.g. where sight distance of approaching traffic is limited.
LEFT-TURN LANE WARRANTS

- Uncontrolled Approaches
 - Left-turn lanes shall be provided at median openings on divided roadways
 - Left-turn lanes shall be provided if traffic volumes at the intersection meet the thresholds identified in Figures 1 and 2.
 - Left-turn lanes should be considered as a safety countermeasure, e.g. where sight distance of approaching traffic is limited.
LEFT-TURN LANE WARRANTS

- 2 Graphs
 - measure probability of stopped vehicle blocking lane
 - ≤ 45 MPH ($P = 0.02$)
 - >45 MPH ($P = 0.01$)
LEFT-TURN LANE WARRANTS

- **Inputs**
 - $L = \text{Percent Left-Turns}$
 - Advancing Volume = Through + Left + Right-Turn Traffic
 - Opposing Volume = Through + Left + Right-Turn Opposing Traffic
LEFT-TURN LANE WARRANTS

$L = \text{Percent Left-Turns} = \frac{32}{32+372+40} = 0.07$

Advancing Traffic
$= 32 + 372 + 40 = 444$

Opposing Traffic
$= 40 + 500 + 71 = 611$
LEFT-TURN LANE WARRANTS

The diagram illustrates the relationship between advancing volume and opposing volume for determining the need for a left turn lane. The graph includes various lines indicating different levels of left-turn volume (L) as a percentage. The area shaded in dark gray represents scenarios where a left turn lane is not required, while the area in light gray indicates where a left turn lane is required. The point (444,611) is marked, indicating a specific volume pair that requires a left turn lane.
LEFT-TURN LANE WARRANTS

Heavy Vehicles = 6%

L = Percent Left-Turns

\[L = \frac{32 (32+372+40)}{32+372+40} = 0.07 \]

Advancing Traffic

\[= 32 + 372 + 40 = 444 \]

\[= 455 \]

Opposing Traffic

\[= 40 + 500 + 71 = 611 \]
LEFT-TURN LANE WARRANTS

- Heavy Vehicle Adjustment Factor
 \[v'_A = v_A [1 + P_{HV}(E_{HV})] \]
 - \(v'_A \) = Adjusted advancing traffic volume
 - \(v_A \) = Unadjusted advancing traffic volume
 - \(P_{HV} \) = Percent heavy vehicles
 - \(E_{HV} \) = Passenger car equivalency factor
 - \(= 0.00035 \ (v_O) \) (two-lane facilities)
 - \(= 0.0007 \ (v_O) \) (four and six-lane facilities)
 - \(v_O \) = Opposing traffic volume
LEFT-TURN LANE WARRANTS

- Heavy Vehicle Adjustment Factor
 - \(v_A = \) Unadjusted advancing traffic volume = 444 vph
 - \(P_{HV} = \) Percent Heavy Vehicles = 0.06
 - \(v_O = \) opposing traffic volume = 611 vph
 - \(E_{HV} = \) Passenger Car Equivalency Factor
 - \(= 0.0007 \cdot v_O \) (four and six-lane facilities)
 - \(= 0.0007 \cdot 611 = 0.428 \)

- Solving for \(v_A' \):
 - \(v_A' = v_A \cdot [1 + P_{HV} \cdot E_{HV}] \)
 - \(v_A' = 444 \cdot [1 + 0.06 \cdot 0.428] \)
 - \(v_A' = 455 \) vph
LEFT-TURN LANE DESIGN

- Departure Taper (L_D)
- Approach Taper (L_A)
- Bay Taper
- Deceleration Length
- Storage Length
- TURN LANE LENGTH
- W_D
- W_A
LEFT-TURN LANE DESIGN

- 3 primary components
 - Approach Taper
 - Bay Taper
 - Turn Lane Length
 - Deceleration Length
 - Storage Length
LEFT-TURN LANE DESIGN

- Approach Taper

 - ≥ 45 MPH $L = W \times S$
 - < 45 MPH, $L = \frac{WS^2}{60}$

- Where:

 $L = \text{Taper length in feet}$

 $W = \text{Width of roadway offset for taper in feet}$

 $S = \text{Speed in miles per hour (MPH)}$
LEFT-TURN LANE DESIGN

- Bay Taper
 - $\geq 45 \text{ MPH} \ L = 100 \ \text{ft}$
 - $< 45 \text{ MPH}, \ L = 50 \ \text{ft}$
LEFT-TURN LANE DESIGN

- Turn Lane Length
 - Deceleration Length
 - Storage Length
LEFT-TURN LANE DESIGN

- Turn Lane Length

Table 1: Auxiliary Turn Lane Length by Turn Type and Intersection Control

<table>
<thead>
<tr>
<th>Approach Control</th>
<th>Turn Type</th>
<th>Turn Lane Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncontrolled</td>
<td>Left-Turn</td>
<td>Greater of Method 1(^A) or Method 2(^A)</td>
</tr>
<tr>
<td>Stop Controlled</td>
<td>Left-Turn</td>
<td>Storage + Bay Taper</td>
</tr>
<tr>
<td>Signal Control(^B)</td>
<td>Left-Turn</td>
<td>Greater of Method 1 or Method 2</td>
</tr>
</tbody>
</table>

Notes:

A. See Table 2 below.

B. At signalized intersections the length of turn lanes should be extended so that it is not blocked by the queue of adjacent through traffic.
LEFT-TURN LANE DESIGN

- Turn Lane Length

<table>
<thead>
<tr>
<th>Speed (MPH)</th>
<th>Method 1: Deceleration Only</th>
<th>Method 2: Moderate Deceleration + Storage</th>
<th>Method 3: Full Deceleration + Storage (Rural Arterial ≥45 mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>125 ft</td>
<td>Storage + Bay + Taper</td>
<td>N/A</td>
</tr>
<tr>
<td>25</td>
<td>125 ft</td>
<td>Storage + Bay + Taper</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>125 ft</td>
<td>Storage + Bay + Taper</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>125 ft</td>
<td>Storage + Bay + Taper</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>170 ft</td>
<td>70 ft + Storage</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>220 ft</td>
<td>115 ft + Storage</td>
<td>340 ft + Storage</td>
</tr>
<tr>
<td>50</td>
<td>275 ft</td>
<td>170 ft + Storage</td>
<td>410 ft + Storage</td>
</tr>
<tr>
<td>55</td>
<td>340 ft</td>
<td>220 ft + Storage</td>
<td>485 ft + Storage</td>
</tr>
<tr>
<td>60</td>
<td>410 ft</td>
<td>275 ft + Storage</td>
<td>565 ft + Storage</td>
</tr>
<tr>
<td>65</td>
<td>485 ft</td>
<td>340 ft + Storage</td>
<td>645 ft + Storage</td>
</tr>
</tbody>
</table>

B: At signalized intersections the length of turn lanes should be extended so that it is not blocked by the queue of adjacent through traffic.
LEFT-TURN LANE DESIGN

- Storage Length (Signal and Stop Control)
 - Stop Control Cycle Length = 60 (sec)
 - 2 x Average Arrival per Cycle
LEFT-TURN LANE DESIGN

- Storage Length (Uncontrolled Approach)
 - 2 Graphs (≤ 45 mph; > 45mph)
LEFT-TURN LANE DESIGN

- Storage Length (Uncontrolled Approach)
 - 75 ft
RIGHT-TURN LANE WARRANTS

- Signalized Intersection:
 - Right-turn lanes shall be provided if traffic volumes at the intersection meet the thresholds identified in Figure 3.
 - May also be considered to reduce the frequency of rear end crashes at intersections with a high volume of right-turns.

- Stop Controlled Approaches:
 - Right-turn lanes only when required by capacity analysis
RIGHT-TURN LANE WARRANTS

- Uncontrolled Approaches
 - Right-turn lanes shall be provided if traffic volumes at the intersection meet the thresholds identified in Figure 3.
 - Right-turn lanes should be considered as a safety countermeasure, e.g. where sight distance of approaching traffic is limited.
RIGHT-TURN LANE WARRANTS

1 Graph measures probability of turning vehicle blocking lane

- \(\leq 45 \text{ MPH} \) (\(P = 0.02 \))
- \(> 45 \text{ MPH} \) (\(P = 0.01 \))
RIGHT-TURN LANE WARRANTS

- Inputs
 - Percent Right-Turns
 - Advancing Volume = Through + Left + Right-Turn Traffic

NO HEAVY VEHICLE ADJUSTMENT FACTOR
RIGHT-TURN LANE WARRANTS

Advancing Traffic = 40 + 500 + 71 = 611

Percent Right Turns = 40 / 611 = 0.07
RIGHT-TURN LANE WARRANTS

- Right-turn lane warranted when:
 - Advancing traffic < 45 mph
 - Percent right turns ≥ 0.07

- Right-turn lane not warranted when:
 - Advancing traffic > 45 mph

Graph showing the relationship between percent right turns and advancing traffic for determining right-turn lane warrants.
RIGHT-TURN LANE DESIGN

- Bay Taper
- Deceleration Length
- Storage Length
- TURN LANE LENGTH
RIGHT-TURN LANE DESIGN

- 2 primary components
 - Bay Taper
 - Turn Lane Length
 - Deceleration Length
 - Storage Length
RIGHT-TURN LANE DESIGN

- Bay Taper
 - ≥ 45 MPH L = 100 ft
 - < 45 MPH, L = 50 ft
RIGHT-TURN LANE DESIGN

- Turn Lane Length
 - Deceleration Length
 - Storage Length
RIGHT-TURN LANE DESIGN

Turn Lane Length

Table 1: Auxiliary Turn Lane Length by Turn Type and Intersection Control

<table>
<thead>
<tr>
<th>Approach Control</th>
<th>Turn Type</th>
<th>Turn Lane Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncontrolled</td>
<td>Right-Turn</td>
<td>Method 1<sup>A</sup></td>
</tr>
<tr>
<td>Stop Controlled</td>
<td>Right-Turn</td>
<td>Storage + Bay taper</td>
</tr>
<tr>
<td>Signal Control<sup>B</sup></td>
<td>Right-Turn</td>
<td>Greater of Method 1<sup>A</sup> or Method 2<sup>A</sup></td>
</tr>
</tbody>
</table>

Notes:
A: See Table 2 below.
B: At signalized intersections the length of turn lanes should be extended so that it is not blocked by the queue of adjacent through traffic.

Table 2: Turn Lane Length by Speed

<table>
<thead>
<tr>
<th>Speed (MPH)</th>
<th>Method 1: Deceleration Only</th>
<th>Method 2: Moderate Deceleration + Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>100 ft</td>
<td>Storage + Bay Taper</td>
</tr>
<tr>
<td>25</td>
<td>100 ft</td>
<td>Storage + Bay Taper</td>
</tr>
<tr>
<td>30</td>
<td>100 ft</td>
<td>Storage + Bay Taper</td>
</tr>
<tr>
<td>35</td>
<td>100 ft</td>
<td>Storage + Bay Taper</td>
</tr>
<tr>
<td>40</td>
<td>170 ft</td>
<td>70 ft + Storage</td>
</tr>
<tr>
<td>45</td>
<td>220 ft</td>
<td>115 ft + Storage</td>
</tr>
<tr>
<td>50</td>
<td>275 ft</td>
<td>170 ft + Storage</td>
</tr>
<tr>
<td>55</td>
<td>340 ft</td>
<td>220 ft + Storage</td>
</tr>
<tr>
<td>60</td>
<td>410 ft</td>
<td>275 ft + Storage</td>
</tr>
<tr>
<td>65</td>
<td>485 ft</td>
<td>340 ft + Storage</td>
</tr>
</tbody>
</table>
RIGHT-TURN LANE DESIGN

- Storage Length (Signal and Stop Control)
 - Stop Control Cycle Length = 60 (sec)
 - 2 x Average Arrival per Cycle
ALTERNATIVE DESIGNS

Guidance for Reduction of the turn lane length is recommended only when site constraints make it impractical to provide a full length turn lane. Reduced turn lane length should not be used for the sole purpose of reducing construction costs.
POSITIVE OFFSET

<table>
<thead>
<tr>
<th>Design Speed (MPH)</th>
<th>Intersection Sight Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Passenger Car ($t_n = 5.5$)</td>
</tr>
<tr>
<td>25</td>
<td>205</td>
</tr>
<tr>
<td>35</td>
<td>285</td>
</tr>
<tr>
<td>45</td>
<td>365</td>
</tr>
<tr>
<td>55</td>
<td>445</td>
</tr>
<tr>
<td>65</td>
<td>525</td>
</tr>
<tr>
<td>75</td>
<td>605</td>
</tr>
</tbody>
</table>
TWO-WAY LEFT-TURN LANE

- Used to mitigate delay to through traffic resulting from the cumulative impact of consecutive access points
TWO-WAY LEFT-TURN LANE

- Operating speeds \(\leq 45 \text{ MPH} \)
- ADT \(\leq 17,000 \) (Two-Lane)

 ADT \(\leq 24,000 \) (Multi-Lane)
- Access \(\geq 10 \) access points per mile.
- Minimum TWLTL Length 425 foot typical section
- Maximum Access Density \(\leq 85 \) access points per mile.
QUESTIONS

- Adam Kirk
- Kentucky Transportation Center
- 859.257.7310
- akirk@engr.uky.edu