SPECIAL NOTE FOR MICRO-SURFACING

1. DESCRIPTION. This work consists of constructing a cold-laid, polymer-modified, emulsified asphalt pavement course to fill ruts or provide an intermediate or surface course for existing pavements. The paving mixture is composed of a polymer-modified emulsified asphalt, crushed aggregate, mineral filler, water, and possibly other additives. Follow the requirements outlined in ASTM D 6372, Standard Practice for Design, Testing, and Construction of Micro-Surfacing, with modifications as found in this note. Apply this material according to the lines, grades, and typical cross-sections in the plans or as established by the Engineer.

Unless otherwise noted, Section references herein are to the Department’s Standard Specifications for Road and Bridge Construction. All applicable portions of the Department’s Standard Specifications apply unless specifically modified herein.

2. MATERIALS AND EQUIPMENT.

2.1 Mineral Filler. Use Portland Cement, Type I, conforming to Section 801.

2.2 Aggregate. Provide 100-percent crushed aggregate conforming to Sections 804 and 805. Contrary to Subsection 403.03.03, provide polish-resistant aggregate in the asphalt mixture conforming to one of the following requirements:

Microsurfacing Type A
- 100 percent of total combined aggregate is Class A polish-resistant aggregate.

Microsurfacing Type B
- 100 percent of total combined aggregate is Class B or Class A polish-resistant aggregate.

Microsurfacing Type D
- No polish-resistant aggregate requirements

Contrary to ASTM D 6372, test sand equivalent according to AASHTO T 176, soundness according to Kentucky Method (KM) 64-610, and LA abrasion according to AASHTO T 96. Ensure all aggregates satisfy ASTM D 6372 for sand equivalent, soundness, and LA abrasion.

Do not use mineral aggregates that are inherently porous, such as blast-furnace slag, expanded shale, porous limestone, and lightweight aggregates, in this mixture.

2.3 Water. Conform to Section 803.

2.4 Emulsified Asphalt. The polymer-modified emulsion will be a CQS-1hP conforming to AASHTO M 316 and tested according to T59. Distill sample at 350 °F. In addition, ensure that the emulsified asphalt conforms to the following criteria:
Test Criteria
Ductility at 77 °F (AASHTO T 51) 40 cm (min)

Ensure the asphalt supplied can be found on the List of Approved Materials.

2.5 Equipment. All equipment necessary for the satisfactory performance of the work shall be on hand and approved before the work is permitted to begin. All equipment, tools, and machines used in the performance of this work shall be maintained in satisfactory working condition.

All trucks shall be covered immediately after loading with a cover of canvas or other suitable material. The cover shall lap down along the sides and rear of the truck bed a minimum of 6 in. and be secured by tie downs at a maximum of 5 ft. spacing along the sides and rear of the truck bed. All trucks must be equipped to meet the above requirements prior to commencing hauling operations.

2.6 Mixing Equipment. Produce the mixture in a self-propelled, front-feed, continuous-loading machine equipped with a conveyer-belt aggregate-delivery system and an interconnected, positive-displacement, water-jacketed gear pump to accurately proportion the aggregate and asphalt emulsion. Locate the mineral filler feed so the proper amount of mineral filler is dropped on the aggregate before discharge into the pug mill. Provide a spray bar to completely pre-wet the aggregate dropping down to the pug mill with additive and water before the introduction of the asphalt emulsion. Provide a twin-shaft, continuous-flow, multi-blade pug mill that is a minimum of 49 in. long. Ensure that the blade size and side clearances meet the equipment manufacturer’s recommendations. Introduce the emulsion within the first one-third of the mixer length to ensure proper mixing of all materials before exiting the pug mill.

Equip the machine with opposite-side driving stations to allow full control of the machine from either side. Equip the mixer with a remote, forward-speed control at the rear mixing platform so the rear operator can control the forward speed and level of mixture in the paving or rut box. Provide material control devices that are readily accessible and positioned so the amount of each material used can be determined at any time.

Equip the mixing machine with a water pressure system and nozzle-type spray bar to provide a water spray ahead of and outside the spreader box when required. Apply water at a rate that will dampen the surface but not create free-flowing water ahead of the spreader box.

The mixer shall be equipped with a computerized material monitoring system with integrated material control devices that are readily accessible and positioned so the amount of each material used can be determined at any time. The mixer shall be equipped with a back-up electronic materials counter that is capable of recording running count totals for each material being monitored. The mixer shall include an attached radar ground measuring device or comparable device. Each material control device shall be
calibrated prior to each mix application and at the discretion of the Engineer. The computer system shall have the capability to record, display, and print the following information:

- Individual sensor counts for emulsion, aggregate, cement, water and additive
- Aggregate, emulsion, and cement output in pounds per minute
- Ground travel distance
- Spread rate in pounds per square yard
- Percentages of emulsion, cement, water and additive
- Cumulative totals of aggregate, emulsion, cement, water and additive
- Scale factor for all materials

The computer system shall be functional at the beginning of work, and throughout the entire work operation.

2.7 Aggregate Equipment. In an effort to eliminate oversize materials in the finished mat, aggregate shall be screened directly into the trucks and weighed when removed from the stockpile and prior to delivery to the paver. The inspector shall view the screen for oversized aggregate and if it is found to have gaps, it shall be replaced or repaired before continuing to place the material.

2.8 Spreading Equipment. If a leveling or surface course is specified, apply the mixture uniformly by means of a conventional spreader box.

If a rut-fill course is specified, apply the mixture with a “V-shaped” rut-filling spreader box. Equip the rut-filling spreader box with a steel strike-off device.

Attach either type of spreader box to the mixer, and equip it with paddles mounted on an adjustable shaft to continually agitate and distribute the materials throughout the box. Ensure that the equipment provides sufficient turbulence to prevent the mix from setting in the box or causing excessive build-up or lumps. To prevent loss of the mixture from the box, attach flexible seals, front and rear, in contact with the road. Operate the spreading equipment in such a manner as to prevent the loss of the mixture on super-elevated curves.

For surface courses, attach a secondary strike-off device to the spreader. Use neoprene rubber drags to obtain the desired finish. Replace drags having excessive buildup. Do NOT use burlap drags.

2.9 Calibration Equipment. Supply all of the equipment, materials, and scales necessary to perform the calibration according to Section 3.5 of this note.

3. CONSTRUCTION.

3.1 Preparation and Proportioning of Mixture. Submit a complete mix design to the Division of Construction and to the Division of Materials, Asphalt Branch
and Aggregate Section. Mix design shall be prepared by an approved laboratory, to verify the compatibility of the aggregate, asphalt emulsion, mineral filler, and other additives. Perform the mix design with the same materials that will be used on the project.

Ensure the mix design has a residual asphalt content, by dry weight of aggregate, of 7.0 to 8.5 percent for leveling and surface courses and 6.5 to 8.0 percent for rut-filling mixes. Also ensure the mixture contains no reclaimed materials and a mineral filler content between 0.25 and 2.0 percent by dry weight of aggregate.

In addition to the mix design information required by KM 64-421, provide the following (all percentages are based on the dry weight of aggregate):

- minimum and maximum percentage of water; and
- percentage of mix-set additives, if required.

Provide test results from an accredited laboratory that conform to ASTM D 6372.

Submit the mix design and two full 5-gallon buckets of the aggregate blend for the mixture to the Division of Materials for verification according to Subsection 402.03 a minimum of four weeks prior to initial use for testing and approval.

When requested by the Engineer, the Contractor shall calculate the % asphalt content of the mixture from the equipment computer display readings. If no request is made by the Engineer, the Contractor shall calculate the % asphalt content of the mixture from the equipment computer display readings randomly, a minimum of 3 times a day. The quality control tolerances from the mix design is ± 0.5%.

3.2 Mixture Gradation. Conform to the Type II requirements from ASTM D 6372 for surface courses and Type III requirements from ASTM D 6372 for leveling and rut-fill courses.

3.3 Weather Limitations. In addition to the applicable requirements in ASTM D 6372, apply the mixture only when rain is not imminent, the existing pavement surface temperature is at least 50 °F, and the ambient temperature is at least 45 °F and rising. Do not place the material between November 1 and May 1.

3.4 Surface Preparation. Contrary to Section 406, apply a tack coat at a rate of 0.05 to 0.075 gal/yd².

3.5 Calibration. Before mix production, calibrate the mixing equipment in the presence of the Engineer. Generate documentation for the Engineer, including individual calibrations of each material at various settings. Perform a new calibration if there is any change in the mix design. Following calibration and adjustments for changes in the mix design, do not make any further calibration adjustments to the mixing equipment without the Engineer’s approval.
3.6 Application. Apply the paving mixture in a manner to fill minor surface irregularities and achieve a uniform surface without causing skips, lumps, or tears.

If a rut-fill course is specified, apply enough material to fill the wheel paths without excess crowning (overfilling). An excess crown is defined as 1/8 in. after 24 h of traffic compaction. Apply rut-fill courses in widths from 5 to 6 ft for each wheel path. Provide a smooth, neat seam where two rut-fill passes meet. Restore the design profile of the pavement cross-section. Feather the edges of the rut-fill course to minimize the use of excess material.

If a leveling course is specified, apply the paving mixture at a rate of $14 \pm 2 \text{ lb/yd}^2$. If a surface course is specified over a leveling or rut-fill course, apply the paving mixture at a rate of $18 \pm 2 \text{ lb/yd}^2$. If a surface course only is specified, apply the paving mixture at a rate of $24 \pm 2 \text{ lb/yd}^2$. For leveling and surface courses, provide a smooth, neat center seam with a maximum overlap of 2 in. where two passes meet. Immediately remove excess material from the ends of each run. Construct surface courses wide enough to cover the outside edges of rut-fill and leveling courses.

Use squeegees and lutes to spread the mixture in areas inaccessible to the spreader box and areas requiring hand-spreadiing. With the Engineer’s approval, adjust the mix-set additive to provide a slower setting time if hand-spreadiing is needed. Do not adjust the water content. If hand-spreadiing, pour the mixture in a small windrow along one edge of the surface to be covered, and spread it uniformly by a hand squeegee or lute.

Repair areas of the micro-surfacing that are damaged by traffic, rain, or other causes during construction of the project.

3.7 Acceptance and Verification.

3.7.1 Proportion and Spread Rate. Maintain continuous control of the emulsified asphalt-to-dry aggregate proportion to conform to the approved mix design within a tolerance of $\pm 2 \text{ gal/ton}$. Ensure the spread rate satisfies the specified quantity of aggregate per square yard on a dry-weight basis.

When requested by the Engineer, the Contractor shall calculate the yield of the course being placed from the equipment computer display readings. If no request is made by the Engineer, the Contractor shall calculate the yield of the course being placed from the equipment computer display readings randomly, a minimum of 3 times a day. The quality control tolerance from the specified application rate is $\pm 2 \text{ lbs/sy}$.

The Department will base acceptance of the emulsified asphalt-to-dry aggregate proportion and the spread rate on the Engineer’s summary of daily quantities. The Department will accept a day’s application of micro-surfacing provided the Engineer’s summary indicates conformance with the requirements for proportion and spread rate.
3.7.2 **Emulsified Asphalt.** Submit samples of the polymer-modified emulsion to the Division of Materials for testing at a frequency of one sample per day of production.

3.7.3 **Mixture Gradation.** Perform combined-gradation determinations on the aggregates used in the micro-surfacing at a frequency of one per day of production. The Department will allow the tested gradation to vary within the tolerances given in ASTM D 6372 provided the percent passing any sieve remains within the master gradation limits from ASTM D 6372.

The Department will perform combined-gradation determinations on the aggregates used in the micro-surfacing at a frequency of one per four days of production and compare those results with the contractor’s combined-gradation results according to Subsection 402.03.03.

3.8 **Documentation.** The Contractor shall maintain a daily report including the following information:

- Aggregate used, ton (dry)
- Micro-Surfacing emulsion used, ton
- Bituminous Materials for Tack Coat, ton
- Cement used, ton
- Water used in mixture, gallons
- Additive used in mixture, gallons

3.9 **Test Strip Construction.** Prior to production application, the Contractor shall place a test section 1,000 ft. in length and one lane wide to verify a quick traffic system is being used. The test strip shall be placed at the same general time of day as paving is to take place (night or day), and under similar ambient conditions. The test strip shall be able to carry normal traffic within 60 minutes. If normal traffic cannot be carried, the emulsion or mixture must be adjusted and another test strip will be required. Upon approval of the test strip, the Contractor can begin application. Payment will only be made for the first test strip.

4. **MEASUREMENT.** The Department will pay for surface and leveling micro-surfacing courses by the number of square yards, complete and accepted in place. The Department will pay for micro-surfacing rut-fill course by the number of tons of dry aggregate used, complete and accepted in place. The weight of the dry aggregate used will be based on the calibrated weight of aggregate provided by the paving machine.

The Department will base the width of the pavement course on the width shown on the plans or as directed by the Engineer. The Department will measure the length along the centerline of each roadway or ramp.

The Department will not measure the surface preparation or tack coat for payment and will consider them incidental to the micro-surfacing.
5. **PAYMENT.** The Department will consider the unit bid price per square yard to include all labor, materials, and equipment necessary to complete the work. The Department will make payment for the completed and accepted quantities according to the following:

<table>
<thead>
<tr>
<th>Test</th>
<th>Specification</th>
<th>100% Pay</th>
<th>90% Pay</th>
<th>80% Pay</th>
<th>50% Pay</th>
<th>0% Pay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscosity, 77 °F (SFS)</td>
<td>20 - 100</td>
<td>18 - 110</td>
<td>12 - 14</td>
<td>9 - 11</td>
<td>≤8</td>
<td></td>
</tr>
<tr>
<td>AASHTO T 59</td>
<td>40 - 90</td>
<td>37 - 98</td>
<td>99 - 108</td>
<td>109 - 120</td>
<td>121 - 130</td>
<td>≥ 131</td>
</tr>
<tr>
<td>Residue Penetration, 77 °F</td>
<td>34 - 36</td>
<td>31 - 33</td>
<td>28 - 30</td>
<td>≤ 27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AASHTO T 59</td>
<td>40 - 90</td>
<td>37 - 98</td>
<td>99 - 108</td>
<td>109 - 120</td>
<td>121 - 130</td>
<td>≥ 131</td>
</tr>
<tr>
<td>Softening Point, AASHTO T 53</td>
<td>≥ 135</td>
<td>≥ 130</td>
<td>127 - 134</td>
<td>128 - 129</td>
<td>126 - 127</td>
<td>≤ 125</td>
</tr>
<tr>
<td>Distillation Residue, % AASHTO T 59, 350°F</td>
<td>≥ 62.0</td>
<td>≥ 60.0</td>
<td>59.5</td>
<td>59.0</td>
<td>58.5</td>
<td>≤ 58.4</td>
</tr>
<tr>
<td>Sieve, % AASHTO T 59</td>
<td>≤ 0.1</td>
<td>≤ 0.3</td>
<td>0.31 – 0.45</td>
<td>0.46 – 0.60</td>
<td>0.61 – 0.75</td>
<td>≥ 0.76</td>
</tr>
<tr>
<td>Residue Elastic Recovery @ 50 °F, %</td>
<td>≥ 60.0</td>
<td>≥ 58.0</td>
<td>57.0</td>
<td>56.0</td>
<td>55.0</td>
<td>≤ 54.9</td>
</tr>
<tr>
<td>AASHTO T 301</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residue Ductility @ 77 °F, cm</td>
<td>≥ 40</td>
<td>≥ 38</td>
<td>37</td>
<td>36</td>
<td>35</td>
<td>≥ 34</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Pay Item</th>
<th>Pay Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>20814EC</td>
<td>Micro Surfacing-Surface Course</td>
<td>Square Yard</td>
</tr>
<tr>
<td>21652EN</td>
<td>Micro Surfacing-Leveling Course</td>
<td>Square Yard</td>
</tr>
<tr>
<td>24515EC</td>
<td>Micro Surfacing-Rut Fill Course</td>
<td>Ton</td>
</tr>
</tbody>
</table>

October 1, 2017