

CALL NO. <u>105</u> CONTRACT ID. <u>255382</u> <u>HOPKINS COUNTY</u> FED/STATE PROJECT NUMBER <u>STP BRZ 9030 (500)</u> DESCRIPTION <u>KY 138</u> WORK TYPE <u>BRIDGE REPLACEMENT</u> PRIMARY COMPLETION DATE <u>7/1/2027</u>

LETTING DATE: July 24,2025

Sealed Bids will be received electronically through the Bid Express bidding service until 10:00 AM EASTERN DAYLIGHT TIME July 24,2025. Bids will be publicly announced at 10:00 AM EASTERN DAYLIGHT TIME.

PLANS AVAILABLE FOR THIS PROJECT.

DBE CERTIFICATION REQUIRED - 2%

REQUIRED BID PROPOSAL GUARANTY: Not less than 5% of the total bid.

TABLE OF CONTENTS

PART I SCOPE OF WORK

- PROJECT(S), COMPLETION DATE(S), & LIQUIDATED DAMAGES
- CONTRACT NOTES
- FEDERAL CONTRACT NOTES
- ASPHALT MIXTURE
- DGA BASE
- DGA BASE FOR SHOULDERS
- INCIDENTAL SURFACING
- FUEL AND ASPHALT PAY ADJUSTMENT
- COMPACTION OPTION B
- SPECIAL NOTE(S) APPLICABLE TO PROJECT
- LIQUIDATED DAMAGES
- TREE REMOVAL
- NON-TRACKING TACK COAT
- ELECTRONIC DELIVERY MANAGEMENT SYSTEM (E-TICKETING) ASPHALT
- ELECTRONIC DELIVERY MANAGEMENT SYSTEM (E-TICKETING) AGGREGATE
- RECYCLED ASPHALT PAVEMENT (RAP) STOCKPILE MANAGEMENT
- DOUBLE ASPHALT SEAL COAT
- BRIDGE DEMOLITION, RENOVATION AND ASBESTOS ABATEMENT
- ASBESTOS ABATEMENT REPORT
- RIGHT OF WAY CERTIFICATION
- UTILITY IMPACT & RAIL CERTIFICATION NOTES
- DEPT OF ARMY NATIONWIDE PERMIT
- COMMUNICATING ALL PROMISES
- GEOTECHNICAL NOTES
- GUARDRAIL DELIVERY VERIFICATION SHEET

PART II SPECIFICATIONS AND STANDARD DRAWINGS

- STANDARD AND SUPPLEMENTAL SPECIFICATIONS
- [SN-11] PORTABLE CHANGEABLE MESSAGE SIGNS
- [SP-69] EMBANKMENT AT BRIDGE END BENT STRUCTURES

PART III EMPLOYMENT, WAGE AND RECORD REQUIREMENTS

- FEDERAL-AID CONSTRUCTION CONTRACTS FHWA 1273
- NONDISCRIMINATION OF EMPLOYEES
- EXECUTIVE BRANCH CODE OF ETHICS
- PROJECT WAGE RATES LOCALITY 1 / FEDERAL
- PART IV BID ITEMS

PART I

SCOPE OF WORK

ADMINISTRATIVE DISTRICT - 02

CONTRACT ID - 255382

STP BRZ 9030 (500)

COUNTY - HOPKINS

PCN - BR05401382500 STP BRZ 9030 (500)

KY 138 (MP 8.422) ADDRESS DEFICIENCIES OF KY 138 OVER POND RIVER (054B00009N) (MP 8.491), A DISTANCE OF 0.03 MILES.BRIDGE REPLACEMENT SYP NO. 02-10024.00. GEOGRAPHIC COORDINATES LATITUDE 37:18:36.00 LONGITUDE 87:30:16.00 ADT 1,841

COMPLETION DATE(S):

COMPLETED BY 07/01/2027

APPLIES TO ENTIRE CONTRACT

CONTRACT NOTES

INSURANCE

Refer to Kentucky Standard Specifications for Road and Bridge Construction, current edition.

PROPOSAL ADDENDA

All addenda to this proposal must be applied when calculating bid and certified in the bid packet submitted to the Kentucky Department of Highways. Failure to use the correct and most recent addenda may result in the bid being rejected.

BID SUBMITTAL

Bidder must use the Department's electronic bidding software. The Bidder must download the bid file located on the Bid Express website (www.bidx.com) to prepare a bid packet for submission to the Department. The bidder must submit electronically using Bid Express.

JOINT VENTURE BIDDING

Joint venture bidding is permissible. All companies in the joint venture must be prequalified in one of the work types in the Qualifications for Bidders for the project. The bidders must get a vendor ID for the joint venture from the Division of Construction Procurement and register the joint venture as a bidder on the project. Also, the joint venture must obtain a digital ID from Bid Express to submit a bid. A joint bid bond of 5% may be submitted for both companies or each company may submit a separate bond of 5%.

UNDERGROUND FACILITY DAMAGE PROTECTION

The contractor shall make every effort to protect underground facilities from damage as prescribed in the Underground Facility Damage Protection Act of 1994, Kentucky Revised Statute KRS 367.4901 to 367.4917. It is the contractor's responsibility to determine and take steps necessary to be in compliance with federal and state damage prevention directives. When prescribed in said directives, the contractor shall submit Excavation Locate Requests to the Kentucky Contact Center (KY811) via web ticket entry. The submission of this request does not relieve the contractor from the responsibility of contacting non-member facility owners, whom shall be contacted through their individual Protection Notification Center. Non-compliance with these directives can result in the enforcement of penalties.

REGISTRATION WITH THE SECRETARY OF STATE BY A FOREIGN ENTITY

Pursuant to KRS 176.085(1)(b), an agency, department, office, or political subdivision of the Commonwealth of Kentucky shall not award a state contract to a person that is a foreign entity required by <u>KRS 14A.9-010</u> to obtain a certificate of authority to transact business in the Commonwealth ("certificate") from the Secretary of State under <u>KRS 14A.9-030</u> unless the person produces the certificate within fourteen (14) days of the bid or proposal opening. If the

foreign entity is not required to obtain a certificate as provided in <u>KRS 14A.9-010</u>, the foreign entity should identify the applicable exception. Foreign entity is defined within <u>KRS 14A.1-070</u>.

For all foreign entities required to obtain a certificate of authority to transact business in the Commonwealth, if a copy of the certificate is not received by the contracting agency within the time frame identified above, the foreign entity's solicitation response shall be deemed non-responsive or the awarded contract shall be cancelled.

Businesses can register with the Secretary of State at <u>https://secure.kentucky.gov/sos/ftbr/welcome.aspx</u>.

SPECIAL NOTE FOR PROJECT QUESTIONS DURING ADVERTISEMENT

Questions about projects during the advertisement should be submitted in writing to the Division of Construction Procurement. This may be done by email to <u>kytc.projectquestions@ky.gov</u>. The Department will attempt to answer all submitted questions. The Department reserves the right not to answer if the question is not pertinent or does not aid in clarifying the project intent.

The deadline for posting answers will be 3:00 pm Eastern Daylight Time, the day preceding the Letting. Questions may be submitted until this deadline with the understanding that the later a question is submitted, the less likely an answer will be able to be provided.

The questions and answers will be posted for each Letting under the heading "Questions & Answers" on the Construction Procurement website (<u>www.transportation.ky.gov/construction-procurement</u>). The answers provided shall be considered part of this Special Note and, in case of a discrepancy, will govern over all other bidding documents.

HARDWOOD REMOVAL RESTRICTIONS

The US Department of Agriculture has imposed a quarantine in Kentucky and several surrounding states, to prevent the spread of an invasive insect, the emerald ash borer. Hardwood cut in conjunction with the project may not be removed from the state. Chipping or burning on site is the preferred method of disposal.

INSTRUCTIONS FOR EXCESS MATERIAL SITES AND BORROW SITES

Identification of excess material sites and borrow sites shall be the responsibility of the Contractor. The Contractor shall be responsible for compliance with all applicable state and federal laws and may wish to consult with the US Fish and Wildlife Service to seek protection under Section 10 of the Endangered Species Act for these activities.

ACCESS TO RECORDS

The state agency certifies that it is in compliance with the provisions of KRS 45A.150, "Access to contractor's books, documents, papers, records, or other evidence directly pertinent to the contract." The Contractor, as defined in KRS 45A.030, agrees that the contracting agency, the

Finance and Administration Cabinet, the Auditor of Public Accounts, and the Legislative Research Commission, or their duly authorized representatives, shall have access to any books, documents, papers, records, or other evidence, which are directly pertinent to this agreement for the purpose of financial audit or program review. The Contractor also recognizes that any books, documents, papers, records, or other evidence, received during a financial audit or program review shall be subject to the Kentucky Open Records Act, KRS 61.870 to 61.884. Records and other prequalification information confidentially disclosed as part of the bid process shall not be deemed as directly pertinent to the agreement and shall be exempt from disclosure as provided in KRS 61.878(1)(c).

BOYCOTT PROVISIONS

If applicable, the contractor represents that, pursuant to <u>KRS 45A.607</u>, they are not currently engaged in, and will not for the duration of the contract engage in, the boycott of a person or an entity based in or doing business with a jurisdiction with which Kentucky can enjoy open trade. **Note:** The term Boycott does not include actions taken for bona fide business or economic reasons, or actions specifically required by federal or state law.

If applicable, the contractor verifies that, pursuant to KRS 41.480, they do not engage in, and will not for the duration of the contract engage in, in energy company boycotts as defined by KRS 41.472.

LOBBYING PROHIBITIONS

The contractor represents that they, and any subcontractor performing work under the contract, have not violated the agency restrictions contained in <u>KRS 11A.236</u> during the previous ten (10) years, and pledges to abide by the restrictions set forth in such statute for the duration of the contract awarded.

The contractor further represents that, pursuant to <u>KRS 45A.328</u>, they have not procured an original, subsequent, or similar contract while employing an executive agency lobbyist who was convicted of a crime related to the original, subsequent, or similar contract within five (5) years of the conviction of the lobbyist.

Revised: 1/1/2025

05/05/2025

SPECIAL NOTE – BUY AMERICA REQUIREMENTS AND BUILD AMERICA, BUY AMERICA (BABA) ACT

Follow the "Buy America" provisions as required by 23 U.S.C. § 313 and 23 C.F.R. § 635.410. Except as expressly provided herein all manufacturing processes of steel or iron materials including but not limited to structural steel, guardrail materials, corrugated steel, culvert pipe, structural plate, prestressing strands, and steel reinforcing bars shall occur in the United States of America, including the application of:

- Coating,
- Galvanizing,
- Painting, and
- Other coating that protects or enhances the value of steel or iron products.

The following are exempt, unless processed or refined to include substantial amounts of steel or iron material, and may be used regardless of source in the domestic manufacturing process for steel or iron material:

- Pig iron,
- Processed, pelletized, and reduced iron ore material, or
- Processed alloys.

The Contractor shall submit a certification stating that all manufacturing processes involved with the production of steel or iron materials occurred in the United States.

Produce, mill, fabricate, and manufacture in the United States of America all aluminum components of bridges, tunnels, and large sign support systems, for which either shop fabrication, shop inspection, or certified mill test reports are required as the basis of acceptance by the Department.

Use foreign materials only under the following conditions:

- 1) When the materials are not permanently incorporated into the project; or
- 2) When the delivered cost of such materials used does not exceed 0.1 percent

of the total Contract amount or \$2,500.00, whichever is greater.

The Contractor shall submit to the Engineer the origin and value of any foreign material used.

2.0 – BUILD AMERICA, BUY AMERICA (BABA)

Contractor shall comply with the Federal Highway Administration (FHWA) Buy America Requirement in 23 C.F.R. § 635.410 and all relevant provisions of the Build America, Buy America Act (BABA), contained within the Infrastructure Investment and Jobs Act, Pub. L. No. 117-58, §§ 70901-52 enacted November 15, 2021. The BABA requires iron, steel, manufactured products, and construction materials used in infrastructure projects funded by federal financial assistance to be produced in the United States. Comply with 2 C.F.R § 184.

BABA permits FHWA participation in the Contract only if domestic steel and iron will be used on the Project. To be considered domestic, all steel and iron used, and all products manufactured from steel and iron must be produced in the United States and all manufacturing processes, including application of a coating, for these materials must occur in the United States. Coating includes all processes that protect or enhance the value of the material to which the coating is applied. This requirement does not preclude a minimal use of foreign steel and iron materials, provided the cost of such materials does not exceed 0.1% of the total contract amount under the Contract or \$2,500.00 whichever is greater.

BABA permits FHWA participation in the Contract only if all "construction materials" as defined in the Act are made in the United States. The Buy America preference applies to the following construction materials incorporated into infrastructure projects: non-ferrous metals; plastic and polymer-based products (including polyvinylchloride, composite building materials, and polymers used in fiber optic cables); glass (including optic glass); Fiber optic cable; optical fiber; lumber; engineered wood; and drywall. Contractor will be SPECIAL NOTE – BUY AMERICA REQUIREMENTS AND BUILD AMERICA, BUY AMERICA (BABA) ACT

required to use construction materials produced in the United States on this Project. The Contractor shall submit a certification stating that all construction materials are certified to be BABA compliant.

3.0 FINAL RULE – FHWA'S BUY AMERICA REGULATION TO TERMINATE GENERAL APPLICABILITY WAIVER FOR MANUFACTURED PRODUCTS

- March 17, 2025 (effective date): For all Federal-aid projects obligated on or after March 15, 2025, all iron or steel products, as defined in § 635.410(c)(1)(iii), must comply with FHWA's Buy America requirements for steel and iron in § 635.410(b). In addition, for all Federal-aid projects obligated on or after March 15, 2025, per § 635.410(c)(2), articles, materials, and supplies should be classified as an iron or steel product, a manufactured product, or another product as specified by law or in 2 CFR part 184 (such other products specified by law or in 2 CFR part 184 (such other products specified by law or in 2 CFR part 184 include "excluded materials" and "construction materials"); an article, material, or supply must not be considered to fall into multiple categories.
- October 1, 2025: The final assembly requirement will become effective for Federal-aid projects obligated on or after October 1, 2025. This means that, for manufactured product to be Buy America compliant, for Federal-aid projects obligated on or after October 1, 2025, final assembly of the manufactured product must occur in the United States.
- October 1, 2026: The 55 percent requirement will become effective for Federal-aid projects obligated on or after October 1, 2026. This means that, for manufactured product to be Buy America-compliant, for Federal-aid projects obligated on or after October 1, 2026, all manufactured products permanently incorporated into the project must both be manufactured in the United States (satisfy the final assembly requirement) and have the cost of the components of the manufactured product that are mined, produced, or manufactured in the United States be greater than 55 percent of the total cost of all components of the manufactured product (satisfy the 55 percent requirement).

4.0 – ADDITIONAL REQUIREMENTS

The Contractor has completed and submitted, or shall complete and submit, to the Cabinet a Buy America/ Build America, Buy America Certificate prior to the Cabinet issuing the notice to proceed, in the format below. After submittal, the Contractor is bound by its original certification.

A false certification is a criminal act in violation of 18 U.S.C. § 1001. The Contractor has the burden of proof to establish that it's in compliance.

At the Contractor's request, the Cabinet may, but is not obligated to, seek a waiver of Buy America requirements if grounds for the waiver exist under 23 C.F.R. § 635.410(c) or will comply with the applicable Buy America requirements if a waiver of those requirements is not available or not pursued by the Cabinet.

Please refer to the Federal Highway Administration's Buy America webpage for more information.

<u>Buy America - Construction Program Guide - Contract Administration - Construction - Federal Highway</u> <u>Administration (dot.gov)</u> SPECIAL NOTE – BUY AMERICA REQUIREMENTS AND BUILD AMERICA, BUY AMERICA (BABA) ACT

05/05/2025

BUY AMERICA / BUILD AMERICA, BUY AMERICA (ACT) MATERIALS CERTIFICATE OF COMPLIANCE

The Contractor hereby certifies that it will comply with all relevant provisions of the Build America, Buy America Act, contained within the Infrastructure Investment and Jobs Act, Pub. L. NO. 117-58, §§ 70901-52, the requirements of 23 U.S.C. § 313, 23 C.F.R. § 635.410 and 2 C.F.R § 184.

Date Submitted:

Contractor:_____

Signature:_____

Printed Name:_____

Title:_____

NOTE: THIS CERTIFICATION IS IN ADDITION TO ANY AND ALL REQUIREMENTS OUTLINED IN THE CURRENT EDITION OF THE STANDARD SPECIFICATIONS FOR ROAD AND BRIDGE CONSTRUCTION AND/OR SPECIAL NOTES CONTAINED IN THE PROJECT PROPOSAL.

FEDERAL CONTRACT NOTES

The Kentucky Department of Highways, in accordance with the Regulations of the United States Department of Transportation 23 CFR 635.112 (h), hereby notifies all bidders that failure by a bidder to comply with all applicable sections of the current Kentucky Standard Specifications, including, but not limited to the following, may result in a bid not being considered responsive and thus not eligible to be considered for award:

102.02 Current Rating102.13 Irregular Bid Proposals102.09 Proposal Guaranty

102.08 Preparation and Delivery of Proposals

102.14 Disqualification of Bidders

CIVIL RIGHTS ACT OF 1964

The Kentucky Transportation Cabinet, Department of Highways, in accordance with the provisions of Title VI of the Civil Rights Act of 1964 (78 Stat. 252, 42 U.S.C. §§ 2000d to 2000d-4) and the Regulations, hereby notifies all bidders that it will affirmatively ensure that any contract entered into pursuant to this advertisement, disadvantaged business enterprises will be afforded full and fair opportunity to submit bids in response to this invitation and will not be discriminated against on the grounds of race, color, national origin, sex, age (over 40), religion, sexual orientation, gender identity, veteran status, disability, income- level, or Limited English Proficiency (LEP)in consideration for an award.

NOTICE TO ALL BIDDERS

To report bid rigging activities call: 1-800-424-9071.

The U.S. Department of Transportation (DOT) operates the above toll-free "hotline" Monday through Friday, 8:00 a.m. to 5:00 p.m. eastern time. Anyone with knowledge of possible bid rigging, bidder collusion, or other fraudulent activities should use the "hotline" to report such activities.

The "hotline" is part of the DOT's continuing effort to identify and investigate highway construction contract fraud and abuse and is operated under the direction of the DOT Inspector General. All information will be treated confidentially and caller anonymity will be respected.

SECOND TIER SUBCONTRACTS

Second tier subcontracts are acceptable per Section 108.01 of the Standard Specifications for Road and Bridge Construction. S u b - Contractors fulfilling a disadvantaged business enterprise goal on a project may enter into a 2^{nd} tier subcontract with a Non-DBE Subcontractor. However, in this instance, none of the work subcontracted to the Non-DBE Contractor will count toward fulfilling the established Disadvantaged Goal for the project.

DISADVANTAGED BUSINESS ENTERPRISE PROGRAM

It is the policy of the Kentucky Transportation Cabinet ("the Cabinet") that Disadvantaged Business Enterprises ("DBE") shall have the opportunity to participate in the performance of highway construction projects financed in whole or in part by Federal Funds in order to create a level playing field for all businesses who wish to contract with the Cabinet. To that end, the Cabinet will comply with the regulations found in 49 CFR Part 26, and the definitions and requirements contained therein shall be adopted as if set out verbatim herein.

The Cabinet, contractors, subcontractors, and sub-recipients shall not discriminate on the basis of race, color, national origin, or sex in the performance of work performed pursuant to Cabinet contracts. The contractor shall carry out applicable requirements of 49 CFR 26 in the award and administration of federally assisted highway construction projects. The contractor will include this provision in all its subcontracts and supply agreements pertaining to contracts with the Cabinet.

Failure by the contractor to carry out these requirements is a material breach of its contract with the Cabinet, which may result in the termination of the contract or such other remedy as the Cabinet deems necessary.

DBE GOAL

The Disadvantaged Business Enterprise (DBE) goal established for this contract, as listed on the front page of the proposal, is the percentage of the total value of the contract.

The contractor shall exercise all necessary and reasonable steps to ensure that Disadvantaged Business Enterprises participate in a least the percent of the contract as set forth above as goals for this contract.

OBLIGATION OF CONTRACTORS

Each contractor prequalified to perform work on Cabinet projects shall designate and make known to the Cabinet a liaison officer who is assigned the responsibility of effectively administering and promoting an active program for utilization of DBEs.

If a formal goal has not been designated for the contract, all contractors are encouraged to consider DBEs for subcontract work as well as for the supply of material and services needed to perform this work.

Contractors are encouraged to use the services of banks owned and controlled by minorities and women.

CERTIFICATION OF CONTRACT GOAL

Contractors shall include the following certification in bids for projects for which a DBE goal has been established. BIDS SUBMITTED WHICH DO NOT INCLUDE CERTIFICATION OF DBE PARTICIPATION WILL NOT BE ACCEPTED. These bids <u>will not</u> be considered for award by the Cabinet and they will be returned to the bidder.

"The bidder certifies that it has secured participation by Disadvantaged Business Enterprises ("DBE") in the amount of ______ percent of the total value of this contract and that the DBE participation is in compliance with the requirements of 49 CFR 26 and the policies of the Kentucky Transportation Cabinet pertaining to the DBE Program."

<u>The certification statement is located in the electronic bid file. All contractors must certify their DBE participation on that page. DBEs utilized in achieving the DBE goal must be certified and prequalified for the work items at the time the bid is submitted.</u>

DBE PARTICIPATION PLAN

Lowest responsive bidders must submit the *DBE Plan/ Subcontractor Request*, form TC 14-35 DBE, within 5 days of the letting. This is necessary before the Awards Committee will review and make a recommendation. The project will not be considered for award prior to submission and approval of the apparent low bidder's DBE Plan/Subcontractor Request.

The DBE Participation Plan shall include the following:

- 1. Name and address of DBE Subcontractor(s) and/or supplier(s) intended to be used in the proposed project;
- 2. Description of the work each is to perform including the work item, unit, quantity, unit price and total amount of the work to be performed by the individual DBE. The Proposal Line Number, Category Number, and the Project Line Number can be found in the "material listing" on the Construction Procurement website under the specific letting;
- 3. The dollar value of each proposed DBE subcontract and the percentage of total project contract value this represents. DBE participation may be counted as follows;
 - a) If DBE suppliers and manufactures assume actual and contractual responsibility, the dollar value of materials to be furnished will be counted toward the goal as follows:
 - The entire expenditure paid to a DBE manufacturer;
 - 60 percent of expenditures to DBE suppliers that are not manufacturers provided the supplier is a regular dealer in the product involved. A regular dealer must be engaged in, as its principal business and in its own name, the sale of products to the public, maintain an inventory and own and operate distribution equipment; and
 - The amount of fees or commissions charged by the DBE firms for a bona fide service, such as professional, technical, consultant, or managerial services and assistance in the procurement of essential personnel, facilities, equipment, materials, supplies, delivery of materials and supplies or for furnishing bonds, or insurance, providing such fees or commissions are determined to be reasonable and customary.
 - b) The dollar value of services provided by DBEs such as quality control testing, equipment repair and maintenance, engineering, staking, etc.;

- c) The dollar value of joint ventures. DBE credit for joint ventures will be limited to the dollar amount of the work actually performed by the DBE in the joint venture;
- 4. Written and signed documentation of the bidder's commitment to use a DBE contractor whose participation is being utilized to meet the DBE goal; and
- 5. Written and signed confirmation from the DBE that it is participating in the contract as provided in the prime contractor's commitment.

AFTER PROJECT AWARD AND BEFORE NOTICE TO PROCEED/WORK ORDER IS ISSUED (SEE SECTION 103.06, STANDARD SPECIFICATIONS FOR ROAD AND BRIDGE CONSTRUCTION

Prime Contractors awarded a federally funded project with a DBE Goal greater than zero will be required to submit a fully executed DBE Subcontract, along with the attached FHWA 1273 and Certificate of Liability Insurance for each DBE Firm submitted as part of the previously approved DBE Utilization Plan (TC 14-35). A signed quote or purchase order shall be attached when the DBE subcontractor is a material supplier or broker.

The Certificate of Liability Insurance submitted must meet the requirements outlined in Section 107.18 of the Standard Specifications for Road and Bridge Construction.

Changes to <u>APPROVED</u> DBE Participation Plans must be approved by the Office for Civil Rights & Small Business Development. The Cabinet may consider extenuating circumstances including, but not limited to, changes in the nature or scope of the project, the inability or unwillingness of a DBE to perform the work in accordance with the bid, and/or other circumstances beyond the control of the prime contractor.

CONSIDERATION OF GOOD FAITH EFFORTS REQUESTS

If the DBE participation submitted in the bid by the apparent lowest responsive bidder does not meet or exceed the DBE contract goal, the apparent lowest responsive bidder must submit a Good Faith Effort Package to satisfy the Cabinet that sufficient good faith efforts were made to meet the contract goals prior to submission of the bid. Efforts to increase the goal after bid submission will not be considered in justifying the good faith effort, unless the contractor can show that the proposed DBE was solicited prior to the letting date. DBEs utilized in achieving the DBE goal must be certified and prequalified for the work items at the time the bid is submitted. One complete set (hard copy along with an electronic copy) of this information must be received in the Division of Contract Procurement no later than 12:00 noon of the tenth calendar day after receipt of notification that they are the apparent low bidder.

Where the information submitted includes repetitious solicitation letters it will be acceptable to submit a sample representative letter along with a distribution list of the firms solicited. Documentation of DBE quotations shall be a part of the good faith effort submittal as necessary to demonstrate compliance with the factors listed below which the Cabinet considers in judging good faith efforts. This documentation may include written subcontractors' quotations, telephone log notations of verbal quotations, or other types of quotation documentation.

The Good Faith Effort Package shall include, but may not be limited to information showing evidence of the following:

- 1. Whether the bidder attended any pre-bid meetings that were scheduled by the Cabinet to inform DBEs of subcontracting opportunities;
- 2. Whether the bidder provided solicitations through all reasonable and available means;
- 3. Whether the bidder provided written notice to all DBEs listed in the DBE directory at the time of the letting who are prequalified in the areas of work that the bidder will be subcontracting;
- 4. Whether the bidder followed up initial solicitations of interest by contacting DBEs to determine with certainly whether they were interested. If a reasonable amount of DBEs within the targeted districts do not provide an intent to quote or no DBEs are prequalified in the subcontracted areas, the bidder must notify the Disadvantaged Enterprise Business Liaison Officer (DEBLO) in the Office for Civil Rights and Small Business Development to give notification of the bidder's inability to get DBE quotes;
- 5. Whether the bidder selected portions of the work to be performed by DBEs in order to increase the likelihood of meeting the contract goals. This includes, where appropriate, breaking out contract work items into economically feasible units to facilitate DBE participation, even when the prime contractor might otherwise perform these work items with its own forces;
- 6. Whether the bidder provided interested DBEs with adequate and timely information about the plans, specifications, and requirements of the contract;
- 7. Whether the bidder negotiated in good faith with interested DBEs not rejecting them as unqualified without sound reasons based on a thorough investigation of their capabilities. Any rejection should be so noted in writing with a description as to why an agreement could not be reached;
- 8. Whether quotations were received from interested DBE firms but were rejected as unacceptable without sound reasons why the quotations were considered unacceptable. The fact that the DBE firm's quotation for the work is not the lowest quotation received will not in itself be considered as a sound reason for rejecting the quotation as unacceptable. The fact that the bidder has the ability and/or desire to perform the contract work with its own forces will not be considered a sound reason for rejecting a DBE quote. Nothing in this provision shall be construed to require the bidder to accept unreasonable quotes in order to satisfy DBE goals;
- 9. Whether the bidder specifically negotiated with subcontractors to assume part of the responsibility to meet the contract DBE goal when the work to be subcontracted includes potential DBE participation;
- 10. Whether the bidder made any efforts and/or offered assistance to interested DBEs in obtaining the necessary equipment, supplies, materials, insurance and/or bonding to satisfy the work requirements of the bid proposal; and
- 11. Any other evidence that the bidder submits which may show that the bidder has made reasonable good faith efforts to include DBE participation.

FAILURE TO MEET GOOD FAITH REQUIREMENT

Where the apparent lowest responsive bidder fails to submit sufficient participation by DBE firms to meet the contract goal and upon a determination by the Good Faith Committee based upon the information submitted that the apparent lowest responsive bidder failed to make sufficient reasonable efforts to meet the contract goal, the bidder will be offered the opportunity to meet in person for administrative reconsideration. The bidder will be notified of the Committee's decision within 24 hours of its decision. The bidder will have 24 hours to request reconsideration of the Committee's decision. The reconsideration meeting will be held within two days of the receipt of a request by the bidder for reconsideration.

The request for reconsideration will be heard by the Office of the Secretary. The bidder will have the opportunity to present written documentation or argument concerning the issue of whether it met the goal or made an adequate good faith effort. The bidder will receive a written decision on the reconsideration explaining the basis for the finding that the bidder did or did not meet the goal or made adequate Good Faith efforts to do so.

The result of the reconsideration process is not administratively appealable to the Cabinet or to the United States Department of Transportation.

The Cabinet reserves the right to award the contract to the next lowest responsive bidder or to rebid the contract in the event that the contract is not awarded to the low bidder as the result of a failure to meet the good faith requirement.

SANCTIONS FOR FAILURE TO MEET DBE REQUIREMENTS OF THE PROJECT

Failure by the prime contractor to fulfill the DBE requirements of a project under contract or to demonstrate good faith efforts to meet the goal constitutes a breach of contract. When this occurs, the Cabinet will hold the prime contractor accountable, as would be the case with all other contract provisions. Therefore, the contractor's failure to carry out the DBE contract requirements shall constitute a breach of contract and as such the Cabinet reserves the right to exercise all administrative remedies at its disposal including, but not limited to the following:

- Suspension of Prequalification;
- Disallow credit toward the DBE goal;
- Withholding progress payments;
- Withholding payment to the prime in an amount equal to the unmet portion of the contract goal; and/or
- Termination of the contract.

PROMPT PAYMENT

The prime contractor will be required to pay the DBE and Non-DBE Subcontractors within seven (7) working days after he or she has received payment from the Kentucky Transportation Cabinet for work performed or materials furnished.

CONTRACTOR REPORTING

All contractors must keep detailed records and provide reports to the Cabinet on their progress in meeting the DBE requirement on any highway contract. These records may include, but shall not be limited to payroll, lease agreements, cancelled payroll checks, executed subcontracting agreements, etc. Prime contractors will be required to complete and submit a <u>signed and notarized</u> Affidavit of Subcontractor Payment (<u>TC 18-7</u>) and copies of checks for any monies paid to each DBE subcontractor or supplier utilized to meet a DBE goal. These documents must be completed and signed within 7 days of being paid by the Cabinet.

Payment information that needs to be reported includes date the payment is sent to the DBE, check number, Contract ID, amount of payment and the check date. Before Final Payment is made on this contract, the Prime Contractor will certify that all payments were made to the DBE subcontractor and/or DBE suppliers.

****** **IMPORTANT** ******

Please mail the original, signed and completed TC (18-7) Affidavit of Subcontractor Payment form and all copies of checks for payments listed above to the following address:

Office for Civil Rights and Small Business Development 6th Floor West 200 Mero Street Frankfort, KY 40622

The prime contractor should notify the KYTC Office for Civil Rights and Small Business Development seven (7) days prior to DBE contractors commencing work on the project. The contact in this office is Mr. Tony Youssefi. Mr. Youssefi's current contact information is email address – tyousseffi@ky.gov and the telephone number is (502) 564-3601.

DEFAULT OR DECERTIFICATION OF THE DBE

If the DBE subcontractor or supplier is decertified or defaults in the performance of its work, and the overall goal cannot be credited for the uncompleted work, the prime contractor may utilize a substitute DBE or elect to fulfill the DBE goal with another DBE on a different work item. If after exerting good faith effort in accordance with the Cabinet's Good Faith Effort policies and procedures, the prime contractor is unable to replace the DBE, then the unmet portion of the goal may be waived at the discretion of the Cabinet.

PROHIBITION ON TELECOMMUNICATIONS EQUIPMENT OR SERVICES

In accordance with the FY 2019 National Defense Authorization Act (NDAA), 2 CFR 200.216, and 2 CFR 200.471, Federal agencies are prohibited, after August 13, 2020, from obligating or expending financial assistance to obtain certain telecommunications and video surveillance services and equipment from specific producers. As a result of these regulations, contractors and subcontractors are prohibited, on projects with federal funding participation, from providing telecommunication or video surveillance equipment, services, or systems produced by:

- Huawei Technologies Company or ZTE Corporation (or any subsidiary or affiliate of such entities)
- Hytera Communications Corporation, Hangzhou Hikvision Digital Technology Company, or Dahua Technology Company (or any subsidiary or affiliate of such entities)

LEGAL REQUIREMENTS AND RESPONSIBILITY TO THE PUBLIC – CARGO PREFERENCE ACT (CPA). (REV 12-17-15) (1-16)

SECTION 7 is expanded by the following new Article:

102.10 Cargo Preference Act – Use of United States-flag vessels.

Pursuant to Title 46CFR Part 381, the Contractor agrees

• To utilize privately owned United States-flag commercial vessels to ship at least 50 percent of the gross tonnage (computed separately for dry bulk carriers, dry cargo liners, and tankers) involved, whenever shipping any equipment, material, or commodities pursuant to this contract, to the extent such vessels are available at fair and reasonable rates for United States-flag commercial vessels.

• To furnish within 20 days following the date of loading for shipments originating within the United States or within 30 working days following the date of loading for shipments originating outside the United States, a legible copy of a rated, 'on-board' commercial ocean bill-of-lading in English for each shipment of cargo described in paragraph 1 of this section to both the Contracting Officer (through the prime contractor in the case of subcontractor bills-of-lading) and to the Division of National Cargo, Office of Market Development, Maritime Administration, Washington, DC 20590.

• To insert the substance of the provisions of this clause in all subcontracts issued pursuant to this contract.

ASPHALT MIXTURE

Unless otherwise noted, the Department estimates the rate of application for all asphalt mixtures to be 110 lbs/sy per inch of depth.

DGA BASE

Unless otherwise noted, the Department estimates the rate of application for DGA Base to be 115 lbs/sy per inch of depth.

DGA BASE FOR SHOULDERS

Unless otherwise noted, the Department estimates the rate of application for DGA Base for Shoulders to be 115 lbs/sy per inch of depth. The Department will not measure necessary grading and/or shaping of existing shoulders prior to placing of DGA Base, but shall be incidental to the Contract unit price per ton for DGA Base.

Accept payment at the Contract unit price per ton as full compensation for all labor, materials, equipment, and incidentals for grading and/or shaping of existing shoulders and furnishing, placing, and compacting the DGA Base.

INCIDENTAL SURFACING

The Department has included in the quantities of asphalt mixtures established in the proposal estimated quantities required for resurfacing or surfacing mailbox turnouts, farm field entrances, residential and commercial entrances, curve widening, ramp gores and tapers, and road and street approaches, as applicable. Pave these areas to the limits as shown on Standard Drawing RPM-110-06 or as directed by the Engineer. In the event signal detectors are present in the intersecting streets or roads, pave the crossroads to the right of way limit or back of the signal detector, whichever is the farthest back of the mainline. Surface or resurface these areas as directed by the Engineer. The Department will not measure placing and compacting for separate payment but shall be incidental to the Contract unit price for the asphalt mixtures.

FUEL AND ASPHALT PAY ADJUSTMENT

The Department has included the Contract items Asphalt Adjustment and Fuel Adjustment for possible future payments at an established Contract unit price of \$1.00. The Department will calculate actual adjustment quantities after work is completed. If existing Contract amount is insufficient to pay all items on the contract with the adjustments, the Department will establish additional monies with a change order.

OPTION B

Be advised that the Department will control and accept compaction of asphalt mixtures furnished on this project under OPTION B in accordance with Sections 402 and 403.

SPECIAL NOTE FOR TRAFFIC CONTROL ON BRIDGE REPAIR CONTRACTS

I. TRAFFIC CONTROL GENERAL

Except as provided herein, traffic shall be maintained in accordance with the current standard specifications, section 112. The contractor will be responsible for developing and implementing the maintenance of traffic details with guidance through standard drawings and the MUTCD current editions. The developed traffic control plan must be approved by the Engineer prior to implementation. The contractor is expected to provide at a minimum the items listed in this note, however this note does not relieve the contractor of other items that may be necessary to comply with current standards.

Contrary to section 106.01, traffic control devices used on this project may be new or used in new condition, at the beginning of the work and maintained in like new condition until completion of the work.

The contractor must notify the engineer and public information officer at least 14 calendar days prior to the beginning work. Please see the Special Note for Liquidated Damages for additional information.

For projects where full closure of the roadway has been specified in the contract closure signs, detour signs, and bi-directional lane closure signs should be placed no sooner than two weeks prior to the closing of the bridge (when applicable) or placing lane closures.

Wayfinding detour signs should be placed a maximum of 2 miles apart unless specified by the engineer. Signs shall be covered or removed within 24 hours of opening the bridge to traffic.

II. PROJECT PHASING & CONSTRUCTION PROCEDURES

Project phasing shall be as directed by the plans, special notes, and the approved Traffic Control Plan prepared by the contractor. Maintain traffic over the bridge as long as possible. Once work on the structure begins that impacts traffic, ensure work progresses to minimize the effected time to the public. All materials that must be made specific for the project should be ordered and made prior to closure of the bridge or implementation of bi-directional lane closures so that delivery does not delay progress of the work, unless approved by the Engineer.

For projects which require an on-site diversion to be constructed to maintain traffic, the traffic control plan and project schedule prepared by the contractor shall include provisions such that traffic is not switched to the diversion until all materials that must be made specific for the project are ordered and made so that use of the diversion is minimized, unless approved by the Engineer.

III. PAVEMENT DROP-OFF

Less than two inches - no protection required. Warning signs should be placed in advance and throughout the drop-off area.

Two to four inches - plastic drums, vertical panels or barricades every 100 feet on tangent sections for speeds of 50 mph or greater. Cones may be used in place of plastic drums, panels, and barricades during daylight hours. For tangent sections with speeds less than 50 mph and curves devices should be placed every 50 feet. Spacing of devices on tapered sections should be in accordance with the manual on uniform traffic control devices, current edition.

Greater than four inches - positive separation or wedge with 3:1 or flatter slope needed. If there is five feet or more distance between the edge of the pavement and the drop-off, then drums, panel, or barricades may be used. If the drop-off is greater than 12 inches, positive separation is strongly encouraged. If concrete barriers are used, special reflective devices or steady burn lights should be used for overnight installations.

For temporary conditions, drop-offs greater than four inches may be protected with plastic drums, vertical panels or barricades for short distances during daylight hours while work is being done in the drop-off area.

IV. DETOUR AND ON-SITE DIVERSIONS

For projects which allow a full closure of the bridge, or if necessary to detour trucks, the traffic control plan proposed by the contractor shall include a signed detour route for the road closure. The traffic control plan along with the proposed detour plan will be delivered to the engineer 7 days prior to the pre-construction meeting. The proposed detour route shall meet the following requirements:

- Detour routes must remain at minimum on the same classification of roadway (i.e. AA, AAA, state, county, etc.) Unless written approval is obtained through the owner of the facility.
- 2) The contractor must coordinate with other projects along the detour route to avoid ongoing construction projects along those routes.
- 3) It may be determined that two detour routes would be needed if the first selected route cannot accommodate truck traffic. If this occurs, the contractor is expected to sign both detours per the standard drawings and MUTCD. Additional clarification signage between the detours may be needed at points where they diverge.
- 4) For projects that involve the use of bi-directional lane closures and the temporary lane width per the plans or as proposed by the contractor is less than 10 feet, the contractor shall be required to provide a signed detour for oversized vehicles.

The traffic control plan must be submitted and approved to allow for coordination of the KYTC District public information officer with the closure notification. The public must be notified of the proposed detour route when they are notified of the closure, 2 weeks before closure. All

time and expenses necessary for the development of the detour plan(s) will be incidental to the lump sum bid item "Maintain and Control Traffic".

For projects with an on-site diversion included in the construction, the preparation of traffic control plans for a detour and implementation of a detour will not be required, unless specified in the plans.

IV. PAYMENT

Unless otherwise noted in this Special Note and contract documents, payment for Maintenance and Control of Traffic during construction shall be in accordance with Section 112 of the Kentucky Transportation Cabinet, Department of Highways Standard Specifications for Road and Bridge Construction, (latest edition).

SPECIAL NOTE FOR CONCRETE SEALING

These Notes or designated portions thereof, apply where so indicated on the plans, proposals or bidding instruction.

I. **DESCRIPTION.** Perform all work in accordance with the Department's current Standard Specifications, and applicable Supplemental Specifications, the attached sketches, and these Notes. Section references are to the Standard Specifications.

This work consists of:

- 1. Furnish all labor, materials, tools, equipment, and incidental items necessary to complete the work.
- 2. Provide safe access to the bridge, in accordance with Section 107.01.01, for the Engineer to sound possible repair areas and for workers to complete the construction.
- 3. Repair cracks as applicable in accordance with the Special Note for Epoxy Injection Crack Repair.
- 4. Repair delaminated or spalled areas as applicable in accordance with the Special Note for Concrete Patching.
- 5. Apply Ordinary Surface Finish
- 6. Prepare the surfaces to receive sealing.
- 7. Apply concrete sealing.
- 8. Maintain & control traffic.
- 9. Any other work as specified as part of this contract.

II. MATERIALS.

- **A. Sealer.** Use a sealer from the KYTC list of approved materials.
- **B. Coverage Rate:** Follow all manufacturers recommendations for coverage rates except the application rate must not exceed the square footage coverage rate per gallon of sealer as given in the chart below. If the manufacturer recommends a coverage rate greater than given in the table below, apply sealer at the rate given in the table below for the chosen sealers silane percentage.

% Silane	Coverage rate						
	(ft ² /gallon)						
100	300						
40	120						
20	60						

III. CONSTRUCTION.

A. **Perform Concrete Repairs.** Repair concrete surface in accordance with the Special Note for Epoxy Injection Crack Repair and/or the Special Note for Concrete Patching Repair if included in the contract documents.

- В. **Curing Compound.** Contrary to Section 609.03.12 of the specifications, curing compound is not to be used on the deck due to potentially causing issues with the concrete sealer. During the deck pour, finishing, and tining operations the Class AA concrete shall be kept continuously moist with the use of a mister until burlap or curing blankets are applied to the surface. At no point should water be pooling or running off the surface or the surface of the concrete be allowed to become dry. After the burlap or curing blankets are installed, cure in accordance with the specifications. Include all costs in the unit price bid for Class AA concrete. Failure to properly cure the concrete in accordance with this note and the specifications may result in weakened or cracked concrete. If the concrete is weakened or cracked due to improper curing, the contractor will be responsible for providing alternates to fix the issues to the Engineer for review and the contractor will be solely responsible for all costs to do so, up to complete replacement. Do not begin any construction on fixing any issues without approval of the Engineer.
- C. Apply Ordinary Surface Finish. In addition to new concrete, areas receiving epoxy injection, concrete patching, and other surface imperfections, including areas of minor cracking, should receive Ordinary Surface Finish in accordance with Section 601.03.18 of the Standard Specifications. Existing structural items not newly placed, patched, or repaired may be exempt from Ordinary Surface Finish. Use mortar of the same cement and fine aggregate as the concrete patching, or as directed by the Engineer. Payment will be incidental to Concrete Sealing. Finish surface of bridge decks in accordance with Section 609 of the Standard Specifications.

D. Areas to Receive Concrete Sealing:

- 1. Every exposed surface above a point 6" below ground or fill line of abutments, wing walls, end bent and pier caps, pedestals, back walls, columns, and exposed footings.
- 2. All exposed surfaces of concrete deck, barrier walls, parapets, curbs, and plinths.
- 3. Prestressed Concrete I-Girders, Concrete Beams, and Spread Prestressed Concrete Box Beams: The underneath surfaces of slab overhangs outside of exterior concrete girders and to the exterior side and bottom of exterior concrete girders and beams.
- 4. Adjacent Prestressed Concrete Composite Box Beams: Full length of the exterior face of all exterior beams from the top of the box beam to 1'-0" underneath the beams.
- 5. Prestressed Non-Composite Box Beams: All faces of all beams, excluding surfaces to be covered with a waterproofing membrane. Take care to ensure that the grout pockets are not sealed.
- 6. If the contract documents include the Special Note for Concrete Coating, do not apply concrete sealer to the areas where Concrete Coating is specified.

- **E. Contract Time.** Concrete Sealing may need to be installed after contract time has elapsed in a separate mobilization and after the Engineer has declared the project otherwise complete. Liquidated damages shall not be charged provided Concrete Sealing is complete within 60 days after the last concrete pour on the structure. When the Contractor has not completed Concrete Sealing within the time frame allotted, Liquidated Damages shall be charged at 25 percent of the original contract daily charge from the expiration of the time allowed until the Contractor completes the work except the Department will not deduct liquated damages when weather limitations prohibit the Contractor from performing the work.
- F. Cleaning the Concrete Surfaces to be sealed. Dry clean the concrete to remove all loose debris. Remove all visible hydrocarbons from the surface with detergent approved by the manufacturer of the deck sealant. Pressure wash all surfaces to be sealed at 2000 to 3000 psi. Install pressure gauges at each wand to verify pressure. Use 30° fan tip or as recommended by the manufacturer of the sealant. Hold pressure washing wand a minimum of 45° from the surfaces with a maximum stand-off distance of 12 inches.
- G. Sealing the Concrete. Allow new concrete to cure a minimum 28 days prior to application of sealer. Monitor weather conditions prior to sealer application. Refer to manufacturer's recommendations for proper ambient conditions. Do not apply sealer if precipitation is anticipated within the time stated by the manufacturer. Allow the concrete to dry 24 hours (after washing or rain event) before sealer application. The bridge deck can be reopened to traffic while drying. Sealer must be applied within 48 hours of washing or the concrete must be rewashed. Divide the concrete into predefined areas of specific square footage to aid in determining usage. Comply with manufacturer's usage recommendation. Using a lowpressure pump, apply sealer and spread evenly with broom or squeegee; do not allow pooling to remain. When each predefined area is complete, measure the amount of sealer used to verify proper usage. After sealing, follow manufacturer's recommended cure time before opening to traffic. On vertical surfaces, apply the sealer in a flooding application from the bottom up, so the material runs down 6 to 8 inches below the spray pattern.
- **H. Inspection:** Monitor all aspects of the project to assure compliance to this specification. Observe and document general conditions during the entirety of the project. Verify that each phase of work has been satisfactorily completed prior to beginning the next phase. Phases are described as follows:
 - 1. Dry cleaning to remove loose debris, verify and document:
 - a. All debris has been removed and disposed of properly.
 - 2. Removal of hydrocarbons, verify and document:
 - a. The manufacturer's recommended detergent is used for removal.
 - b. Hydrocarbons have been satisfactorily removed.

SPECIAL NOTE

For Avoiding Stream Impacts from Lead Paint

Owing to the presence of lead paint on the bridge, the following measures must be taken:

- During preparation for either the rehab or removal of the bridge, construction debris is to be collected and prevented from dropping into the stream as much as practicable.
- The contractor shall develop a Debris Management Plan that outlines procedures for debris collection and prevention from dropping.
- Possible measures could include:
 - Use demolition techniques that minimize the generation of debris, such as cutting rather than breaking concrete.
 - Install temporary barriers such as nets, tarps, or fabric beneath and around the work area to catch falling debris. If the bridge or sections of it are to be dropped, these would be removed prior to dropping the bridge.
 - $\circ~$ Set up collection platforms or scaffolding with debris catching systems under the work area.
 - Use vacuum systems or other suction devices to collect smaller particles.
 - Use floating booms or silt curtains in the stream to capture any debris that might escape the initial containment effort.
- All hazardous waste materials will be managed and disposed of in the manner specified by local or state regulation.
- For bridges that will be cleaned and painted, see Special Note Bridge Cleaning And Painting for specific instructions on handling the material.
- Worker exposure to materials containing lead during construction work is regulated by Federal OSHA [(29 CFR 1926.62 (a)]. This regulation requires worker protection during construction "where lead or materials containing lead are present."
- If there are any questions regarding this note, please contact Danny Peake, Director, Division of Environmental Analysis, 200 Mero Street, Frankfort, KY 40601, Phone (502) 564-7250, or O'Dail Lawson at (502) 562-5020

Lead Paint Inspection Report

To: Tom Springer, QK4, Inc.

Date: August 2, 2024

Conducted By: Jason Boston, LFI, Inc.

Project and Structure Identification

Project: Hopkins County

Structure ID: #054B00009N

Structure Location: KY 138 over Pond River, Lyon County, Kentucky

Sample Description: The gray coating is considered lead-based paint.

Inspection Date: July 26, 2024

Results and Recommendations

Pursuant to EPA regulations, lead-based paint (LBP) is defined as paint or other surface coatings that contain an amount of lead equal to or greater than 1 milligram per square centimeter (1.0 mg/cm²) or higher of lead by XRF analysis or 0.5% (5,000 ppm or 5 mg/kg) lead by weight. The lead level in a paint may require lead hazard abatement. Additionally, worker exposure to materials containing lead during construction work is regulated by Federal OSHA [(29 CFR 1926.62 (a)]. This regulation requires worker protection during construction "….where lead or materials containing lead are present".

One sample of gray paint was collected from the structure steel members. Lead concentrations were detected at concentrations of 1.3750% lead by weight in the gray coating. Applicable worker precautions should be implemented during future demolition activities, as necessary. Laboratory analytical data is attached.

Project #: # 3407302 B Date Sampled : 7/26/2024		Date Received : 29-Jul-24	Z	ANALYTICAL RESULTS	Results (% By Weight Of Lead)	1.3750							Please note that according to the EPA Regulations any sample that contains 0.5 % or greater by weight of Lead is considered to be a Lead Containing Material.	Hinteraco Ulanal
		Date	2	ANALYTIC	Paint Description	Gray							Details: Please note that ac any sample that cor of Lead is consider Material.	Hind Bar
LFI project # 2 - 10024 L F I	Hopkins County		Work Area: Hopkins County		flow Rate (L)	N/A N/A								
Project: LF Client: L1	Location: Ho		Work Area: Ho		(m) əmiT	N/A							or Damage	Winterford Mensah Analyst
	OL.Com	AIHA #			əmiT bn∃	N/A							<u>Results Code</u> : ND = None Detected FTD = Filter Tampering or Damage N/A = Not Applicable	Winterfo Analyst
ory 12	.33 MRSInc@A				Start Time	N/A							Results Code: ND = None De FTD = Fitter Ta N/A = Not App	
Mrs. Inc. Analytical Laboratory 332 West Broadway / Suite # 902	Louisville, Kentucky - 40202 - 2133 Phone # (502) 495 - 1212 / E-Mail Address : CEOMRSIne@AOL.Com	LEAD EVALUATION DATA	102459		Location	Hopkins County							7082	Sampled By : Jason Boston - LFI Name
					Sample #	# 1							Analytical Method - NIOSH 7082	Sampled By : .

HOPKINS COUNTY STP BRZ 9030 (500) Contract ID: 255382 MRS, Inc. 332 West Broadway / Suite # 613

Louisville, Kentucky - 40202 - 2111

Phone	#:	(502) 495 - 1212
Fax	#:	(502) 491 - 7111

Page 29 of 372

Linebach Funkhouser, Inc. Client : 287-22 Project :

CHAIN OF CUSTODY RECORD

PROJECT: 2 - 10024	COMMENTS AND/OR INSTRUCTIONS:
LOCATION: <u>Hojskins Co.</u>	
SAMPLED BY: Varan Boston	Group Method
SAMPLE TYPE: COMPOSITE GRAB	Stop First Positive
SAMPLE MATRIX:	point count < 47

	DATE AND TIME	SAMPLE LOCATION	ANALYSIS REQUIRED									
SAMPLE NUMBER			PLM	read								
1	7-24-24	-		X								
		2	4									
				¥								
				1								
				ler.								
_												
		5										
					×							

Relinquished By: (Signature)	Date	Time	Received By: (Signature)
Comp. Butu	7-29-24	1000	Winners Marsa
Relinquished By: (Signature)	Date	Time	Received By: (Signature)
0			

- 3. Pressure washing, verify and document:
 - a. Washing pressure at the wand.
 - b. Tip size used.
 - c. Wash angle and stand-off distance.
 - d. The concrete is satisfactorily cleaned.
- 4. Sealer application, verify and document:
 - a. Proper cure time for new concrete.
 - b. Concrete surface is dry.
 - c. Document time since washed.
 - d. Was the bridge deck opened to traffic after washing?
 - e. Document ambient temperature, surface temperature, relative humidity, and dew point.
 - f. Application and distribution method.
 - g. Coverage to be complete and even.
 - h. Material is not allowed to remain pooled.
 - i. Monitor material usage.
 - j. No traffic on the bridge decks until proper cure time is allowed.

IV. MEASUREMENT

- **A. Concrete Sealing.** The Department will measure the quantity per square feet of each area sealed.
- **B. Mobilization For Concrete Surf Treatment.** The Department will pay the lump sum bid for an additional mobilization when Concrete Sealing must be performed after the Engineer has deemed the project complete except for Concrete Sealing and the structure is opened to traffic.

V. PAYMENT

- A. 23378EC Concrete Sealing Sq. Ft. Payment at the contract unit price per square feet is full compensation for the following: (1) Furnish all labor, materials, tools, and equipment; (2) Clean the bridge deck; (3) Seal the bridge deck; (4) Maintain & control traffic; and, (5) Any other work specified as part of this contract.
- **B. 26233EC Mobilization For Concrete Surface Treatment L.S.** Payment at the contract lump sum price bid shall be full compensation for the Contractor to remobilize on the project to perform Concrete Sealing as detailed herein this special note.

SPECIAL NOTE

For Additional Environmental Commitments

IN ADDITION TO OTHER ENVIRONMENTAL COMMITMENTS LISTED IN THIS CONTRACT, THE FOLLOWING COMMITMENTS ALSO APPLY, AS THIS IS A FEDERALLY FUNDED UNDERTAKING AS DEFINED IN SECTION 106 OF THE NATIONAL HISTORIC PRESERVATION ACT, <u>36 CFR 800.16(Z)</u>:

1) The KYTC has completed a Phase 1 archaeological survey for a site-specific area surrounding the bridge. The cleared area is shown as "Archaeologically Cleared Area" or "Environmentally Cleared Area" on the concept plans and/or the map attached to this note or included elsewhere in the proposal. Likewise, any areas that must be avoided have been labeled "Do Not Disturb." The contractor shall install snow fencing to clearly delineate the boundary of the allowable work/staging area. This work/staging area is restricted to the following: the Archaeologically/Environmentally Cleared Area (noted previously); the right-of-way and easements wherein all activities, equipment, materials, etc. must be contained; and any additional, privately owned land obtained for temporary use by the Contractor through written agreement with the landowner.

If the Contractor deems it necessary to use additional areas outside the Archaeologically/ Environmentally Cleared Area for <u>any</u> purposes—e.g., laydown yards, vehicle parking, parking cranes, delivering beams, borrow areas, waste areas, etc.—the Contractor must first get a written agreement with the landowner (assuming the additional area is outside the right-ofway). Then the Contractor shall seek approval of the use of the site—whether within or outside the right-of-way—by both the KYTC Section Supervisor and the Bridging Kentucky Environmental Lead at <u>BKY_Env@docs.e-builder.net</u>. The Contractor shall provide a map of the area(s) to be used, including access points, and property-owner agreements. The BKY Environmental Team will complete initial field investigations for archaeological, historical, ecological, and other environmental clearances. If any potentially significant site or resources are found, the KYTC has the right to deny the use of the proposed site. The maps and property owner agreements are to be submitted at least ten (10) business days prior to the Preconstruction Conference, or sixty (60) days prior to the Contractors access to the site, for coordination and review by the KYTC District and Bridging Kentucky Team.

A <u>Liquidated Damage of \$50,000</u> will be assessed whenever the Contractor has used any restricted areas. The fee will be assessed on a *per bridge* basis, whether the contract involves bridge bundles or a single bridge. In addition, all fines, fees, penalties, remediation costs, and other damages related to breaches of Threatened and Endangered Species Act Section 7, National Historic Preservation Act Section 106, Clean Water Act Sections 401 and 404, Kentucky General Permit for Stormwater Discharges KYR10, Environmental Protection Agency requirements, State Historic Preservation Office requirements, and other related permitting agencies will be paid by the Contractor, including all associated costs and burdens placed upon the Kentucky Transportation Cabinet.

2) In the event that human remains are encountered during project activities, all work should be immediately stopped in the area. The area should be cordoned off, and, in accordance with KRS 72.020, the county coroner and local law enforcement must be contacted immediately. Upon confirmation that the human remains are not of forensic interest, the unanticipated discovery must be reported to Nicolas Laracuente at the Kentucky Heritage Council at (502) 892-3614, George Crothers at the Office of State Archaeology at (859) 257-1944, and KYTC DEA archaeologists at (502) 564-7250.

For guidance regarding inadvertent discovery and treatment of human remains, refer to the KYTC's <u>Right of Way Guidance Manual</u> (Section ROW-1202), and the Advisory Council on Historic Preservation's (ACHP) <u>Policy Statement Regarding Treatment of Human Remains and Grave</u> <u>Goods</u> (adopted by ACHP February 23, 2007).

3) If, during the implementation of The Project, a previously unidentified historic/ archaeological property is discovered or a previously identified historic/archaeological property is affected in an unanticipated manner, the contractor shall (1) call KYTC DEA archaeologists at (502) 564-7250, (2) call SHPO archaeologists at (502) 892-3614, and (3) ensure that all work within a reasonable area of the discovery shall cease until such time as a treatment plan can be developed and implemented.

SPECIAL NOTE

FOR SEDIMENT PREVENTION AND EROSION CONTROL

FOR IMPACT REGARDLESS OF SIZE OF THE DISTRUBED AREA

Potential impacts to gray bat foraging habitat and habitat for federally listed fish and mussel species will be minimized by implementing erosion prevention and sediment control measures.

As required under Section 213 of the KYTC Standard Specifications, prior to onsite activities a **site-specific** *Erosion Control Plan* including BMPs to ensure continuous erosion control throughout the construction and post construction period. The plan will identify individual Disturbed Drainage Areas (DDA) where storm water from the construction area will be discharged off site or into waters of the Commonwealth.

Should the Contractor fail to create a BMP Plan or provide and maintain the necessary erosion control, Liquidated Damages will apply at the rate specified in the contract. If no rate is specified, Liquidated Damages will be applied at the rate specified in Section 108 of the Standard Specifications.

The erosion prevention and sediment controls proposed are presented below.

- The location of the individual erosion prevention/sediment control measures will be identified by the Resident Engineer and Contractor. The Contractor will place erosion control devices as identified in the site-specific BMP Plan prior to beginning work.
- Mulch will be placed, during grade and drain activities, across all areas where no work will be conducted for a period of 14 consecutive days.
- Tree clearing within the riparian zone will be minimized. Trees to be removed will be determined by the resident engineer and the contractor prior to disturbance. (Note: Any "Special Note for Tree Clearing Restrictions" must be adhered to.)
- Silt fence, or other approved method as appropriate, will be installed at the edge of waters within the project corridors to eliminate the deposition of rock and debris in the streams during construction activities. In the unforeseen event that unintended debris does enter the streams, the resident engineer will halt the contributing activity until appropriate remedial actions have been implemented.
- To the maximum extent plausible, construction activities will take place during low-flow periods.
- Equipment staging and cleaning areas will be located to eliminate direct inputs to waters of the Commonwealth. These areas will be located such that effluent will be filtered through vegetated areas and appropriate sediment controls prior to discharge offsite.

- Concrete will be poured in a manner to avoid spills into the streams. In the unforeseen event that a spill does occur, the USFWS will be notified, and the resident engineer will immediately halt the activity until remedial measures have been implemented.
- KYTC proposes to stabilize areas disturbed during construction activities through vegetation establishment and placement of riprap and geotextile fabric. Re-vegetation of the disturbed areas will allow thermoregulation of water within the streams, establish long-term, regenerative stabilization of the stream banks, and provide nutrients to the aquatic macroinvertebrate community through inputs of organic material.
- Areas disturbed during construction and not stabilized with rip rap and erosion blanket will be seeded using a standard seed mix. Depending on project slope and project location, application rates and seed mix types will vary. The Contractor shall perform all final seeding and protection, in accordance with the plans and Section 212 of KYTC Standard Specifications.
- Contrary to Section 213.03.03, paragraph 2, the Engineer shall conduct inspections as needed to verify compliance with Section 221 of KYTC Standard Specifications. The Engineer's inspections shall be performed a minimum of once per month and within seven (7) days after a storm of ½ inch or greater. Copies of the Engineer's inspections shall not be provided to the Contractor unless improvements to the BMPs are required. The Contractor shall initiate corrective action within 24 hours of any reported deficiency and complete the work within five (5) days. The Engineer shall use Form TC 63-61 A for this report. Inspections performed by the Engineer do not relieve the Contractor of any responsibility for compliance. If corrections are not made within the five (5) days specified, the liquidated damages will apply at the rate specified in the Liquidated Damages note in the contract.
- Contrary to Sections 212.05 and 213.05, unless listed in the proposal, bid items for temporary BMPs and items for permanent erosion control will not be measured for payment and will be replaced with one lump sum item for the services. Payment will be pro-rated based on the Project Schedule as submitted by the Contractor and as agreed to by the Engineer.
- The Contractor shall be responsible for applying "good engineering practices." The Contractor may use any temporary BMPs and permanent BMPs that fall within the guidance of the current Standard Specifications, KYTC's Best Management Practices manual, and with the approval of the KYTC Engineer.

FOR IMPACT GREATER THAN 1.0 ACRE

When the total disturbed area for a project, including laydown and waste/borrow areas, is greater than 1.0 acre, the Contractor shall be responsible for filing the Kentucky Pollution discharge Elimination System (KPDES) KYR10 permit Notice of Intent (NOI) with the Kentucky Division of Water (DOW). The Contractor will be responsible for following the KPDES requirements of local Municipal Separate Storm Sewer System (MS4) programs with jurisdiction. Required NOI shall name the Contractor as the Facility Operator and include the KYTC Contract ID Number (CID) for reference. For grouped contracts with more than one structure, each structure will be treated independently in regard to disturbed area unless another structure is within 0.25 mile of

the structure. For structures within 0.25 mile of each other, the total disturbed area will be the sum of the combined disturbed areas. The Contractor shall be responsible for filing the KPDES permit Notice of Termination (NOT) with the Kentucky DOW and any local MS4 Program that has jurisdiction. The NOT shall be filed after the Engineer agrees the project is stabilized or the project has been formally accepted.

The Contractor shall perform all temporary erosion/sediment control functions including providing a Best Management Practice (BMP) Plan, conducting required inspections, modifying the BMP Plan documents as construction progresses, and documenting the installation and maintenance of BMPs in conformance with the KPDES KYR10 permit effective on August 1, 2009, or a permit re-issued to replace that KYR10 permit. This work shall be conducted in conformance with the requirements of Section 213 of the KYTC current Department of Highways, Standard Specifications for Road and Bridge Construction (Standard Specifications).

The Contractor shall be responsible for the examination of the soils to be encountered and make his own independent determination of the temporary BMPs that will be required to accomplish effective erosion prevention and sediment control. The Contractor shall provide the Engineer copies of all documents required by the KPDES permit at the time they are prepared.

They KYR10 web page, which includes the General Permit and eNOI application is here: <u>https://eec.ky.gov/Environmental-</u> Protection/Water/PermitCert/KPDES/Documents/KYR10PermitPage.pdf

If there are any questions regarding this note, please contact Danny Peake, Director, Division of Environmental Analysis, 200 Mero Street, Frankfort, KY 40601, Phone (502) 564-7250.

ATTACH KPDES PERMIT

Kentucky Transportation Cabinet

Highway District 2

And

(2), Construction

Kentucky Pollutant Discharge Elimination System Permit KYR10 Best Management Practices (BMP) plan

Groundwater protection plan

For Highway Construction Activities

For

Rehab – Super Strengthen

Project: CID ## - ####

KPDES BMP Plan Page 1 of 14

Project Information

Note -(1) = Design (2) = Construction (3) = Contractor

- 1. Owner Kentucky Transportation Cabinet, District 2 (1)
- 2. Resident Engineer: (2)
- 3. Contractor Name: (2)

Address: (2)

Phone number: (2)

Contact: (2)

Contractor's agent responsible for compliance with KPDES permit requirements: (3)

- 4. Project Control Number: (2)
- 5. Route (Address): KY 138 over Pond River 1)
- 6. Latitude/Longitude (project mid-point): 37°31'35.7"N 87°21'15.5"W (1)
- 7. County (project mid-point): Hopkins County (1)
- 8. Project start date (date work will begin): (2)
- 9. Projected completion date: (2)

A. Site Description

- 1. Nature of Construction Activity (from letting project description): Address deficiencies of KY 138 Bridge (054B00009N) over Pond River, MP 8.48. Rehabilitation SYP No.2-10024. (1)
- 2. Order of major soil disturbing activities: (2) and (3)
- 3. **Projected volume of material to be moved:** (3)
- 4. Estimate of total project area (acres): (3)
- 5. Estimate of area to be disturbed (acres): (3)
- 6. **Post construction runoff coefficient** will be included in the project drainage folder. Persons needing information pertaining to the runoff coefficient will contact the resident engineer to request this information. (1)
- 7. Data describing existing soil condition: Soils mapped for the location by the United States Department of Agriculture (USDA)–National Resource Conservation Service (NRCS) consist of three soil types: Cape silty clay loam (Ce), Elk silt loam (EkC), and Otwood silt loam (OtB) (Soil Survey Staff 2019). As described in the soil survey, the setting for Cape silty clay loam is floodplains; they are derived from acid clayey alluvium, are poorly drained, and the frequency of flooding is occasional. Elk soils are found on stream terraces, are derived from mixed fine-silty alluvium, are well drained and rarely flooded. Otwood soils are found on stream terraces, are derived from mixed fine-silty alluvium, are moderately well drained, and are rarely flooded. (1) and (2)
- 8. Data describing existing discharge water quality (if any): (2)
- 9. Receiving water name: Pond River (1)

10. TMDLs and Pollutants of Concern in Receiving Waters: (1 DEA)

11. Site map: Project layout sheet plus the erosion control sheets in the project plans that depict Disturbed Drainage Areas (DDAs) and related information. These sheets depict the existing project conditions with areas delineated by DDA (drainage area bounded by watershed breaks and right of way limits), the storm water discharge locations (either as a point discharge or as overland flow) and the areas that drain to each discharge point. These plans define the limits of areas to be disturbed and the location of control measures. Controls will be either site specific as designated by the designer or will be annotated by the contractor and resident engineer before disturbance commences. The project layout sheet shows the surface waters and wetlands.

12. **Potential sources of pollutants:** The primary source of pollutants is solids that are mobilized during storm events. Other sources of pollutants include oil/fuel/grease from servicing and operating construction equipment, concrete washout water, sanitary wastes, and trash/debris. (3)

B. Sediment and Erosion Control Measures

1. Plans for highway construction projects will include erosion control sheets that depict Disturbed Drainage Areas (DDAs) and related information. These plan sheets will show the existing project conditions with areas delineated by DDA within the right of way limits, the discharge points and the areas that drain to each discharge point. Project managers and designers will analyze the DDAs and identify Best Management Practices (BMPs) that are site specific. The balance of the BMPs for the project will be listed in the bid documents for selection and use by the contractor on the project with approval by the resident engineer.

Projects that do not have DDAs annotated on the erosion control sheets will employ the same concepts for development and managing BMP plans.

- 2. Following award of the contract, the contractor and resident engineer will annotate the erosion control sheets showing location and type of BMPs for each of the DDAs that will be disturbed at the outset of the project. This annotation will be accompanied by an order of work that reflects the order or sequence of major soil moving activities. The remaining DDAs are to be designated as "Do Not Disturb" until the contractor and resident engineer prepare the plan for BMPs to be employed. The initial BMP's shall be for the first phase (generally Clearing and Grubbing) and shall be modified as needed as the project changes phases. The BMP Plan will be modified to reflect disturbance in additional DDA's as the work progresses. <u>All DDA's will have adequate BMP's in place before being disturbed.</u>
- **3.** As DDAs are prepared for construction, the following will be addressed for the project as a whole or for each DDA as appropriate:
 - Construction Access—This is the first land-disturbing activity. As soon as construction begins, bare areas will be stabilized with gravel and temporary mulch and/or vegetation.
 - Sources—At the beginning of the project, all DDAs for the project will be inspected for areas that are a source of storm water pollutants. Areas that are a source of pollutants will receive appropriate cover or BMPs to arrest the introduction of pollutants into storm water. Areas that have not been opened by the contractor will be inspected periodically (once per month) to determine if there is a need to employ BMPs to keep pollutants from entering storm water.

- Clearing and Grubbing—The following BMP's will be considered and used where appropriate.
 - Leaving areas undisturbed when possible.
 - Silt basins to provide silt volume for large areas.
 - Silt Traps Type A for small areas.
 - Silt Traps Type C in front of existing and drop inlets which are to be saved.
 - Diversion ditches to catch sheet runoff and carry it to basins or traps or to divert it around areas to be disturbed.
 - Brush and/or other barriers to slow and/or divert runoff.
 - Silt fences to catch sheet runoff on short slopes. For longer slopes, multiple rows of silt fence may be considered.
 - Temporary mulch for areas which are not feasible for the fore mentioned types of protections.
 - Non-standard or innovative methods.
- Cut and Fill and Placement of Drainage Structures—The BMP Plan will be modified to show additional BMP's such as:
 - Silt Traps Type B in ditches and/or drainways as they are completed.
 - Silt Traps Type C in front of pipes after they are placed.
 - Channel Lining.
 - Erosion Control Blanket.
 - Non-standard or innovative methods.
- Profile and X-Section in Place—The BMP Plan will be modified to show elimination of BMP's which had to be removed and the addition of new BMP's as the roadway was shaped. Probably changes include:
 - Silt Trap Type A, Brush and/or other barriers, Temporary mulch, and any other BMP which had to be removed for final grading to take place.
 - Additional Silt Traps Type B and Type C to be placed as final drainage patterns are put in place.
 - Additional Channel Lining and/or Erosion Control Blanket.
 - Temporary mulch for areas where Permanent Seeding and Protection cannot be done within 21 days.
 - Special BMP's such as Karst Policy.
- Finish Work (Paving, Seeding, Protect, etc.)—A final BMP Plan will result from modifications during this phase of construction. Probable changes include:

- Removal of Silt Traps Type B from ditches and drainways if they are protected with other BMP's which are sufficient to control erosion, i.e. Erosion Control Blanket, or Permanent Seeding and Protection on moderate grades.
- Permanent Seeding and Protection.
- Placing Sod.
- Planting trees and/or shrubs where they are included in the project.
- BMP's, including Storm Water Management Devices such as velocity dissipation devices and Karst policy BMP's, to be installed during construction to control the pollutants in storm water discharges that will occur after construction has been completed are: (3)

C. Other Control Measures

1. Solid Materials

No solid materials, including building materials, shall be discharged to waters of the commonwealth, except as authorized by a Section 404 permit.

2. Waste Materials

All waste materials that may leach pollutants (paint and paint containers, caulk tubes, oil/grease containers, liquids of any kind, soluble materials, etc.) will be collected and stored in appropriate covered waste containers. Waste containers shall be removed from the project site on a sufficiently frequent basis as to not allow wastes to become a source of pollution. All personnel will be instructed regarding the correct procedure for waste disposal. Wastes will be disposed in accordance with appropriate regulations. Notices stating these practices will be posted in the office.

3. Hazardous Waste

All hazardous waste materials will be managed and disposed of in the manner specified by local or state regulation. The contractor shall notify the Section Engineer if there any hazardous wastes being generated at the project site and how these wastes are being managed. Site personnel will be instructed regarding proper storage and handling of hazardous wastes when required. The Transportation Cabinet will file for generator, registration when appropriate, with the Division of Waste Management and advise the contractor regarding waste management requirements.

4. Spill Prevention

The following material management practices will be used to reduce the risk of spills or other exposure of materials and substances to the weather and/or runoff. (3)

Good Housekeeping

The following good housekeeping practices will be followed onsite during the construction project.

- An effort will be made to store only enough product required to do the job.
- All materials stored onsite will be stored in a neat, orderly manner in their appropriate containers and, if possible, under a roof or other enclosure.
- Products will be kept in their original containers with the original manufacturer's label.
- Substances will not be mixed with one another unless recommended by the manufacturer.
- Whenever possible, all the product will be used up before disposing of the container.
- Manufacturers' recommendations for proper use and disposal will be followed.
- The site contractor will inspect daily to ensure proper use and disposal of materials onsite.

Hazardous Products

These practices will be used to reduce the risks associated with all hazardous materials.

- Products will be kept in original containers unless they are not resealable.
- Original labels and material safety data sheets (MSDS) will be reviewed and retained.
- Contractor will follow procedures recommended by the manufacturer when handling hazardous materials.
- If surplus product must be disposed of, manufacturers' or state/local recommended methods for proper disposal will be followed.

5. Product-specific Practices

The following product-specific practices will be followed onsite:

> Petroleum Products

• Vehicles and equipment that are fueled and maintained on site will be monitored for leaks and receive regular preventative maintenance to reduce the chance of leakage. Petroleum products

onsite will be stored in tightly sealed containers, which are clearly labeled and will be protected from exposure to weather.

- The contractor shall prepare an Oil Pollution Spill Prevention Control and Countermeasure plan when the project that involves the storage of petroleum products in 55 gallon or larger containers with a total combined storage capacity of 1,320 gallons. This is a requirement of 40 CFR 112.
- This project (will / will not) (3) have over 1,320 gallons of petroleum products with a total capacity, sum of all containers 55-gallon capacity and larger.

> Fertilizers

Fertilizers will be applied at rates prescribed by the contract, standard specifications or as directed by the resident engineer. Once applied, fertilizer will be covered with mulch or blankets or worked into the soil to limit exposure to storm water. Storage will be in a covered shed. The contents of any partially used bags of fertilizer will be transferred to a sealable plastic bin to avoid spills.

> Paints

All containers will be tightly sealed and stored indoors or under roof when not being used. Excess paint or paint wash water will not be discharged to the drainage or storm sewer system but will be properly disposed of according to manufacturers' instructions or state and local regulations.

Concrete Truck Washout

Concrete truck mixers and chutes will not be washed on pavement, near storm drain inlets, or within 75 feet of any ditch, stream, wetland, lake, or sinkhole. Where possible, excess concrete and wash water will be discharged to areas prepared for pouring new concrete, flat areas to be paved that are away from ditches or drainage system features, or other locations that will not drain off site. Where this approach is not possible, a shallow earthen wash basin will be excavated away from ditches to receive the wash water.

> Spill Control Practices

In addition to the good housekeeping and material management practices discussed in the previous sections of this plan, the following practices will be followed for spill prevention and cleanup:

• Manufacturers' recommended methods for spill cleanup will be clearly posted. All personnel will be made aware of procedures and the location of the information and cleanup supplies.

- Materials and equipment necessary for spill cleanup will be kept in the material storage area. Equipment and materials will include as appropriate, brooms, dust pans, mops, rags, gloves, oil absorbents, sand, sawdust, and plastic and metal trash containers.
- All spills will be cleaned up immediately after discovery.
- The spill area will be kept well ventilated and personnel will wear appropriate protective clothing to prevent injury from contract with a hazardous substance.
- Spills of toxic or hazardous material will be reported to the appropriate state/local agency as required by KRS 224 and applicable federal law.
- The spill prevention plan will be adjusted as needed to prevent spills from reoccurring and improve spill response and cleanup.
- Spills of products will be cleaned up promptly. Wastes from spill clean-up will be disposed in accordance with appropriate regulations.

D. Other State and Local Plans

This BMP plan shall include any requirements specified in sediment and erosion control plans, storm water management plans or permits that have been approved by other state or local officials. Upon submittal of the NOI, other requirements for surface water protection are incorporated by reference into and are enforceable under this permit (even if they are not specifically included in this BMP plan). This provision does not apply to master or comprehensive plans, non-enforceable guidelines or technical guidance documents that are not identified in a specific plan or permit issued for the construction site by state or local officials. (1)

E. Maintenance

- 1. The BMP plan shall include a clear description of the maintenance procedures necessary to keep the control measures in good and effective operating condition.
- 2. Maintenance of BMPs during construction shall be a result of weekly and post rain event inspections with action being taken by the contractor to correct deficiencies.
- 3. Post Construction maintenance will be a function of normal highway maintenance operations. Following final project acceptance by the cabinet, district highway crews will be responsible for identification and correction of deficiencies regarding ground cover and cleaning of storm water BMPs. The project manager shall identify any BMPs that will be for the purpose of post construction storm water management with specific guidance for any non-routine maintenance. (1)

F. Inspections

Inspection and maintenance practices that will be used to maintain erosion and sediment controls:

- All erosion prevention and sediment control measures will be inspected at least once each week and following any rain of one-half inch or more.
- Inspections will be conducted by individuals that have successfully completed KEPSC-RI course as required by Section 213.02.02 of the Standard Specifications for Road and Bridge Construction, current edition.
- > Inspection reports will be written, signed, dated, and kept on file.
- > Areas at final grade will be seeded and mulched within 14 days.
- Areas that are not at final grade where construction has ceased for a period of 21 days or longer and soil stockpiles shall receive temporary mulch no later than 14 days from the last construction activity in that area.
- All measures will be maintained in good working order. If a repair is necessary, it will be initiated within 24 hours of being reported.
- Built-up sediment will be removed from behind the silt fence before it has reached halfway up the height of the fence.
- Silt fences will be inspected for bypassing, overtopping, undercutting, depth of sediment, tears, and to ensure attachment to secure posts.
- Sediment basins will be inspected for depth of sediment, and built-up sediment will be removed when it reaches 50 percent of the design capacity and at the end of the job.
- Diversion dikes and berms will be inspected, and any breaches promptly repaired. Areas that are eroding or scouring will be repaired and reseeded / mulched as needed.
- Temporary and permanent seeding and mulching will be inspected for bare spots, washouts, and healthy growth. Bare or eroded areas will be repaired as needed.
- All material storage and equipment servicing areas that involve the management of bulk liquids, fuels, and bulk solids will be inspected weekly for conditions that represent a release or possible release of pollutants to the environment.

G. Non–Storm Water Discharges

It is expected that non-storm water discharges may occur from the site during the construction period. Examples of non-storm water discharges include:

- > Water from water line flushings.
- > Water form cleaning concrete trucks and equipment.
- Pavement wash waters (where no spills or leaks of toxic or hazardous materials have occurred).
- Uncontaminated groundwater and rainwater (from dewatering during excavation).

All non-storm water discharges will be directed to the sediment basin or to a filter fence enclosure in a flat vegetated infiltration area or be filtered via another approved commercial product.

H. Groundwater Protection Plan (3)

This plan serves as the groundwater protection plan as required by 401 KAR 5:037.

Contractors statement: (3)

The following activities, as enumerated by 401 KAR 5:037 Section 2, require the preparation and implementation of a groundwater protection plan, and will or may be conducted as part of this construction project:

2. (e) Land treatment or land disposal of a pollutant.

2. (f) Storing...or related handling of hazardous waste, solid waste or special waste...in tanks, drums, or other containers, or in piles (does not include wastes managed in a container placed for collection and removal of municipal solid waste for disposal off site).

2. (g) ...handling of materials in bulk quantities (equal or greater than 55 gallons or 100 pounds net dry weight transported held in an individual container) that, if released to the environment, would be a pollutant.

_____2. (j) Storing or related handling of road oils, dust suppressants at a central location.

2. (k) Application or related handling of road oils, dust suppressants or deicing materials (does not include use of chloride-based deicing materials applied to roads or parking lots).

2. (m) Installation, construction, operation, or abandonment of wells, bore holes, or core holes (does not include bore holes for the purpose of explosive demolition).

Or, check the following only if there are no qualifying activities:

_____ There are no activities for this project as listed in 401 KAR 5:037 Section 2 that require the preparation and implementation of a groundwater protection plan.

The contractor is responsible for the preparation of a plan that addresses the 401 KAR 5:037 Section 3. (3) Elements of site-specific groundwater protection plan:

- (a) General information about this project is covered in the Project information.
- (b) Activities that require a groundwater protection plan have been identified above.
- (c) Practices that will protect groundwater from pollution are addressed in *Section C: Other Control Measures*.
- (d) Implementation schedule—all practices required to prevent pollution of groundwater are to be in place prior to conducting the activity.
- (e) Training is required as a part of the ground water protection plan. All employees of the contractor, sub-contractor, and resident engineer personnel will be trained to understand the nature and requirements of this plan as they pertain to their job function(s). Training will be accomplished within one week of employment and annually thereafter. A record of training will be maintained by the contractor with a copy provided to the resident engineer.
- (f) Areas of the project and groundwater plan activities will be inspected as part of the weekly sediment and erosion control inspections.
- (g) Certification (see signature page).

Contractor and Resident Engineer Plan Certification

The contractor that is responsible for implementing this BMP plan is identified in the Project Information section of this plan.

The following certification applies to all parties that are signatory to this BMP plan:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. Further, this plan complies with the requirements of 401 KAR 5:037. By this certification, the undersigned state that the individuals signing the plan have reviewed the terms of the plan and will implement its provisions as they pertain to ground water protection.

Resident Engineer and Contractor Certification:

(2) Resident Engineer signature

Signed		,	
	Typed or printed name ²	Title	Signature
(3) Signed		,	
. , _	Typed or printed name ¹	Title	Signature

- 1. Contractors Note: to be signed by a person who is the owner, a responsible corporate officer, a general partner or the proprietor or a person designated to have the authority to sign reports by such a person in accordance with 401 KAR 5:060 Section 9. This delegation shall be in writing to: Manager, KPDES Branch, Division of Water, 14 Reilly Road, Frankfort, Kentucky 40601. Reference the Project Control Number (PCN) and KPDES number when one has been issued.
- 2. KYTC note: to be signed by the Chief District Engineer or a person designated to have the authority to sign reports by such a person (usually the resident engineer) in accordance with 401 KAR 5:060 Section 9. This delegation shall be in writing to: Manager, KPDES Branch, Division of Water, 14 Reilly Road, Frankfort, Kentucky 40601. Reference the Project Control Number (PCN) and KPDES number when one has been issued.

Sub-Contractor Certification

The following sub-contractor shall be made aware of the BMP plan and responsible for implementation of BMPs identified in this plan as follows:

Subcontractor Name:

Address:

Phone:

The part of BMP plan this subcontractor is responsible to implement is:

I certify under penalty of law that I understand the terms and conditions of the general Kentucky Pollutant Discharge Elimination System permit that authorizes the storm water discharges, the BMP plan that has been developed to manage the quality of water to be discharged as a result of storm events associated with the construction site activity and management of non-storm water pollutant sources identified as part of this certification.

Signed

Typed or printed name¹ Title

Signature

1. Sub-Contractor Note: to be signed by a person who is the owner, a responsible corporate officer, a general partner or the proprietor or a person designated to have the authority to sign reports by such a person in accordance with 401 KAR 5:060 Section 9. This delegation shall be in writing to: Manager, KPDES Branch, Division of Water, 14 Reilly Road, Frankfort, Kentucky 40601. Reference the Project Control Number (PCN) and KPDES number when one has been issued.

SPECIAL NOTE FOR CONTRACT COMPLETION DATE AND LIQUIDATED DAMAGES ON BRIDGE REPAIR CONTRACTS

I. COMPLETION DATE.

Upon Notice to Proceed, the Contractor has the option of selecting the Begin Work date. Once selected, notify the Department in writing of the date selected at least two weeks prior to beginning work and provide a proposed project schedule. All work is to be completed by the specified contract completion date. The Contractor is allotted 550 calendar days once work begins to complete all work to safely reopen the structure with no lane closures. At a minimum, prior to reopening the lane to traffic, all strength requirements and curing for materials used shall be completed per Division 600 of the Standard Specifications.

The Engineer will begin charging calendar days for a structure on the day the Contractor begins work, with the exception of placement of signs, regardless of holidays or seasonal weather limitations.

II. LIQUIDATED DAMAGES.

Liquidated damages will be assessed to the Contractor in accordance with the Transportation Cabinet, Department of Highway's current Standard Specifications for Road and Bridge Construction, Section 112.03.15A, when the lane closures are used beyond the allotted number of calendar days. Liquidated Damages will be assessed per the Standard Specification Section 108.09 when the contract time extends beyond the contract date.

Contrary to the Standard Specifications, liquidated damages will be assessed to the Contractor during the months of December, January, February and March when the contract time has expired on any individual bridge. Contract time will be charged during these months. All construction must be completed in accordance with the weather limitations specified in Section 606 and/or Section 601 as applicable. No extension of Contract time will be granted due to inclement weather or temperature limitations that occur due to starting work on the Contract or a structure late in the construction season.

SPECIAL NOTE

Seasonal Tree Clearing Restriction

DUE TO THE RECOVERY PLAN FOR ENDANGERED BATS, NO TREE CLEARING IS PERMITTED FROM <u>MAY 15 THROUGH JULY 31.</u>

If there are any questions regarding this note, please contact Danny Peake, Director, Division of Environmental Analysis, 200 Mero Street, Frankfort, KY 40601, Phone (502) 564-7250.

SPECIAL NOTE FOR NON-TRACKING TACK COAT

1. DESCRIPTION AND USEAGE. This specification covers the requirements and practices for applying a non-tracking tack asphalt coating. Place this material on the existing pavement course, prior to placement of a new asphalt pavement layer. Use when expedited paving is necessary or when asphalt tracking would negatively impact the surrounding area. This material is not suitable for other uses. Ensure material can "break" within 15 minutes under conditions listed in 3.2.

2. MATERIALS, EQUIPMENT, AND PERSONNEL.

2.1 Non-Tracking Tack. Provide material conforming to Subsection 2.1.1.

Property	Specification	Test Procedure
Viscosity, SFS, 77 ° F	20 - 100	AASHTO T 72
Sieve, %	0.3 max.	AASHTO T 59
Asphalt Residue ¹ , %	50 min.	AASHTO T 59
Oil Distillate, %	1.0 max.	AASHTO T 59
Residue Penetration, 77 ° F	0 - 30	AASHTO T 49
Original Dynamic Shear (G*/sin δ), 82 ° C	1.0 min.	AASHTO T 315
Softening Point, ° F	149 min.	AASHTO T 53

2.1.1 Provide a tack conforming to the following material requirements:

¹Bring sample to 212 °F over a 10-15 minute period. Maintain 212 °F for 15-20 minutes or until 30-40 mL of water has distilled. Continue distillation as specified in T59.

97.5 min.

AASHTO T 44

- 2.2. Equipment. Provide a distributor truck capable of heating, circulating, and spraying the tack between 170 °F and 180 °F. Do not exceed 180 °F. Circulate the material while heating. Provide the correct nozzles that is recommend by the producer to ensure proper coverage of tack is obtained. Ensure the bar can be raised to between 14" and 18" from the roadway.
- 2.3. Personnel. Ensure the tack supplier has provided training to the contractor on the installation procedures for this product. Make a technical representative from the supplier available at the request of the Engineer.

3. CONSTRUCTION.

Solubility, %

3.1 Surface Preparation. Prior to the application of the non-tracking tack, ensure the pavement surface is thoroughly dry and free from dust or any other debris that would inhibit adhesion. Clean the surface by scraping, sweeping, and the use of compressed air. Ensure this preparation process occurs shortly before application to prevent the return of debris on to the pavement. If rain is expected within one hour after application, do not apply material. Apply material only when the surface is dry, and no precipitation is expected.

3.2 Non-tracking Tack Application. Placement of non-tracking tack is not permitted from October 1st to May 15th. When applying material, ensure the roadway temperature is a minimum of 40°F and rising. Prior to application, demonstrate competence in applying the tack according to this note to the satisfaction of the Engineer. Heat the tack in the distributor to between 170 - 180 °F. After the initial heating, between 170 - 180 °F, the material may be sprayed between 165 °F and 180 °F. Do not apply outside this temperature range. Apply material at a minimum rate of 0.70 pounds (0.08 gallons) per square yard. Ensure full coverage of the material on the pavement surface. Full coverage of this material is critical. Increase material application rate if needed to achieve full coverage. Schedule the work so that, at the end of the day's production, all non-tracking tack is covered by an asphalt mixture. If for some reason the non-tracking tack cannot be covered by an asphalt mixture, ensure the non-tracking tack material is clean and reapply the non-tracking tack prior to placing the asphalt mixture. Do not heat material more than twice in one day.

3.3 Non-tracking Tack Certification. Furnish the tack certification to the Engineer stating the material conforms to all requirements herein prior to use.

3.4 Sampling and Testing. The Department will require a sample of non-tracking tack be taken from the distributor at a rate of one sample per 15,000 tons of mix. Take two 1 gallon samples of the heated material and forward the sample to the Division of Materials for testing within 7 days. Ensure the product temperature is between 170 and 180 °F at the time of sampling.

- 4. MEASUREMENT. The Department will measure the quantity of non-tracking tack in tons. The Department will not measure for payment any extra materials, labor, methods, equipment, or construction techniques used to satisfy the requirements of this note. The Department will not measure for payment any trial applications of non-tracking tack, the cleaning of the pavement surface, or furnishing and placing the non-tracking tack. The Department will consider all such items incidental to the non-tracking tack.
- 5. PAYMENT. The Department will pay for the non-tracking tack at the Contract unit bid price and apply an adjustment for each manufacturer's lot of material based on the degree of compliance as defined in the following schedule. Non-tracking tack will not be permitted for use from October 1st to May 15th. During this timeframe, the department will allow the use of an approved asphalt emulsion in lieu of a non-tracking tack product but will not adjust the unit bid price of the material. When a sample fails on two or more tests, the Department may add the deductions, but the total deduction will not exceed 100 percent.

Non-Tracking Tack Price Adjustment Schedule						
Test	Specification	100% Pay	90% Pay	80% Pay	50% Pay	0% Pay
Viscosity, SFS, 77 ° F	20-100	19 - 102	17 - 18	15 - 16	14	≤13
			103 - 105	106 - 107	108 - 109	≥110
Sieve, %	0.30 max.	≤ 0.40	0.41 - 0.50	0.51 - 0.60	0.61 - 0.70	≥ 0.71
Asphalt Residue, %	50 min.	≥49.0	48.5 - 48.9	48.0 - 48.4	47.5-47.9	≤ 47.4
Oil Distillate, %	1.0 max.	≤1.0	1.1-1.5	1.6 - 1.7	1.8-1.9	>2.0
Residue Penetration, 77 ° F.	30 max.	≤ 31	32 - 33	34 - 35	36 - 37	≥ 38
Original Dynamic Shear (G*/sin δ), 82 ° C	1.0 min.	≥0.95	0.92 - 0.94	0.90 - 0.91	0.85 - 0.89	≤ 0.84
Softening Point, ° F	149 min.	≥145	142 - 144	140 - 141	138 - 139	≤ 137
Solubility, %	97.5 min.	≥ 97.0	96.8 - 96.9	96.6 - 96.7	96.4 - 96.5	≤ 96.3

<u>Code</u> 24970EC Pay Item Asphalt Material for Tack Non-Tracking <u>Pay Unit</u> Ton

Revised: May 23, 2022

SPECIAL NOTE FOR ELECTRONIC DELIVERY MANAGEMENT SYSTEM (e-Ticketing) ASPHALT

This Special Note will apply when indicated on the plans or in the proposal. Section references herein are to the Department's Standard Specifications for Road and Bridge Construction current edition.

1.0 DESCRIPTION. Incorporate an e-Ticketing Delivery Software for weighed asphalt material delivered to the project to report loads and provide daily running totals of weighed asphalt material for pay items and incidental work during the construction processes from the point of measurement and loading to the point of incorporation to the project.

2.0 MATERIALS AND EQUIPMENT. Contractor shall supply material data in JavaScript Object Notation (JSON) documents to the KYTC e-Ticketing Delivery Software (KYTC e-Ticketing Portal) via Application Programming Interface (API) or direct connection. Test and verify that ticket data can be shared from the original source no fewer than 30 days prior to material placement activities. An e-Ticketing Delivery Software supplier can provide a qualified representative for on-site technical assistance during the initial setup, pre-construction verifications, and data management and processing as needed during the Project to maintain material data delivery capabilities. Virtual meetings may be hosted in lieu of on-site meetings when deemed appropriate by the Engineer.

Provide e-Ticketing Delivery Software that will meet the following:

- 1. The e-Ticketing Delivery Software shall be fully integrated with the Contractor's Load Read-Out scale system at the material source location.
- 2. The e-Ticketing Delivery Software shall provide real-time delivery to KYTC e-Ticketing Portal.
- 3. Transmit any updates to the ticket data within 5 minutes of a change.

3.0 CONSTRUCTION. Provide the Engineer with the manufacturer's specifications and all required documentation for data access at the pre-construction conference.

A. Construction Requirements

- 1. Install and operate software in accordance with the manufacturer's specifications.
- 2. Verify that all pertinent information is provided by the software within the requirements of this Special Note.

B. Data Deliverables

Provide to the Engineer a means in which to gather report summaries by way of iOS apps, web pages, or any other method at the disposal of the Engineer. The Engineer may request data at any time during the project.

1. Asphalt Material

a. Real-time Continuous Data Items

Provide the Engineer access to JSON documents capable of being transmitted through the KYTC's e-Ticketing Portal that displays the following information in real-time with a web-based system compatible with iOS and Windows environments.

- Each Truck
 - Supplier Name
 - o Supplier Address
 - Supplier Phone
 - Plant location
 - o Date
 - Time at source
 - Project Location

- Contract ID#
- Carrier Name
- o Unique Truck ID
- Description of Material
- Mix Design Number
- Gross, Tare and Net Weight
- o Weighmaster

4.0 MEASUREMENT. The Department will not measure the electronic delivery management system.

5.0 PAYMENT. The Department will not measure this work for payment and will consider all items contained in this note to be incidental to the asphalt mixtures on the project, as applicable.

May 5, 2025

SPECIAL NOTE FOR ELECTRONIC DELIVERY MANAGEMENT SYSTEM (e-Ticketing) AGGREGATE

This Special Note will apply when indicated on the plans or in the proposal. Section references herein are to the Department's Standard Specifications for Road and Bridge Construction current edition.

1.0 DESCRIPTION. Incorporate an e-Ticketing Delivery Software for weighed aggregate material delivered to the project to report loads and provide daily running totals of weighed aggregate material for pay items and incidental work during the construction processes from the point of measurement and loading to the point of incorporation to the project.

2.0 MATERIALS AND EQUIPMENT. Contractor shall supply material data in JavaScript Object Notation (JSON) documents to the KYTC e-Ticketing Delivery Software (KYTC e-Ticketing Portal) via Application Programming Interface (API) or direct connection. Test and verify that ticket data can be shared from the original source no fewer than 30 days prior to material placement activities. An e-Ticketing Delivery Software supplier can provide a qualified representative for on-site technical assistance during the initial setup, pre-construction verifications, and data management and processing as needed during the Project to maintain material data delivery capabilities. Virtual meetings may be hosted in lieu of on-site meetings when deemed appropriate by the Engineer.

Provide e-Ticketing Delivery Software that will meet the following:

- 1. The e-Ticketing Delivery Software shall be fully integrated with the Contractor's Load Read-Out scale system at the material source location.
- 2. The e-Ticketing Delivery Software shall provide real-time delivery to KYTC e-Ticketing Portal.
- 3. Transmit any updates to the ticket data within 5 minutes of a change.

3.0 CONSTRUCTION. Provide the Engineer with the manufacturer's specifications and all required documentation for data access at the pre-construction conference.

A. Construction Requirements

- 1. Install and operate software in accordance with the manufacturer's specifications.
- 2. Verify that all pertinent information is provided by the software within the requirements of this Special Note.

B. Data Deliverables

Provide to the Engineer a means in which to gather report summaries by way of iOS apps, web pages, or any other method at the disposal of the Engineer. The Engineer may request data at any time during the project.

1. Aggregate Material

a. Real-time Continuous Data Items

Provide the Engineer access to JSON documents capable of being transmitted through the KYTC's e-Ticketing Portal that displays the following information in real-time with a web-based system compatible with iOS and Windows environments.

- Each Truck
 - Supplier Name
 - Supplier Address
 - Supplier Phone
 - Plant location
 - o Date
 - Time at source
 - Project Location

- Contract ID#
- Carrier Name
- o Unique Truck ID
- Description of Material
- o Load Number
- Gross, Tare and Net Weight
- o Weighmaster

4.0 MEASUREMENT. The Department will measure the electronic delivery management system as a lump sum item.

5.0 PAYMENT. The Department will make payment for the completed and accepted quantities under the following:

- 1. Payment is full compensation for all work associated with providing all required equipment, training, and documentation.
- 2. Payment will be full compensation for costs related to providing the e-Ticketing Delivery Software, including integration with plant load-out systems, and report viewing/exporting process. All quality control procedures including the software representative's technical support and on-site training shall be included in the Contract lump sum price.

Code	Pay Item	<u>Pay Unit</u>
26248EC	ELECTRONIC DELIVERY MGMT SYSTEM-AGG	LS

May 5, 2025

SPECIAL NOTE FOR RECYCLED ASPHALT PAVEMENT (RAP) STOCKPILE MANAGEMENT

I. GENERAL

The use of reclaimed asphalt pavement (RAP) from Department projects or other approved sources in hot mix asphalt (HMA) or warm mix asphalt (WMA) shall be subject to stockpile management and handling of material as described in this section.

The Department approves RAP on a stockpile basis, following the process set forth in this method. The contractor's responsibilities in the process are as follows:

- To obtain the Department's approval of all RAP prior to its use on a Department project and to deliver test data and samples as required
- To monitor and preserve the quality and uniformity of the approved material during storage and handling, adding no unapproved material to the existing stockpile
- To comply with the Department's requirements regarding replenishment of approved stockpiles

The Department will approve RAP based on its composition and variability in gradation and asphalt content, and on visual inspections of the stockpile, which the Department may conduct at its discretion. The Department may withdraw approval of a stockpile if the requirements of this specification are not followed in good faith.

The Maximum Percentage Allowed in a mix design will be based on these criteria and on the category of RAP source, as defined in this document.

II. APPROVAL PROCESS

Qualified asphalt producers (listed in List of Approved Materials-Asphalt Mixing Plants) may submit requests for RAP stockpile approval to the Asphalt Branch, Division of Materials, in the Annual Certification for Previously Approved Asphalt Mixing Plants and Related Equipment. The requester shall provide test results as prescribed in Part IID. The Division of Materials may, at their discretion, collect samples or inspect a RAP stockpile consistent with Section IIE.

Upon completion of the review of testing results and, if applicable, visual inspection, the Division of Materials, Asphalt Branch will approve or disapprove the material by letter and will assign a Stockpile Identification Number for each approved RAP stockpile. Note: The contractor's average gradation and asphalt content, as listed in the approval letter, shall be the gradation used in subsequent mix designs. The approval letter will state the applicable limits on the use of the material in mix designs and will summarize the Department's findings, listing the average gradation and asphalt content from the contractor's tests and the corresponding values found by the Department. Where the Maximum Percentage Allowed is low due to variability, the contractor may elect to improve the uniformity of the material by further processing and may again sample, test, and request approval for the material.

No material shall be added to a stockpile after it has been approved, except as provided in Parts V, VI, and VII below.

IIA. RAP Quality Management Plan

For a contractor to receive approval to use RAP on any department project, a RAP Quality Management Plan must first be approved by the department. The RAP Quality Management Plan shall be submitted to the

Division of Materials annually for approval as part of the Contractor's Quality Control Plan/Checklist. The Quality Management Plan is required to demonstrate how the Contractor will provide consistency and quality of material utilized in all asphalt mixes produced for use on Department projects. The Quality Management Plan shall include:

- Unprocessed RAP Stockpiles
 - Designation of stockpile(s) as single or multiple source
 - o Designation of stockpile(s) as classified or unclassified
 - Designation of stockpile(s) as captive or continuously replenishing
 - Plan for how stockpile(s) is built (layers, slope, etc.)
 - Plan to minimize stockpile(s) contamination
- Processing and Crushing
 - Equipment used to feed screener or crusher
 - Excavation process based on equipment type
- Processing Millings
 - Single Project or Source
 - Screening, Fractionation, or Crushing plan
 - o Multiple Source
 - Process to achieve uniform material from stockpile
 - Screening, Fractionation, or Crushing plan
- Processed RAP Stockpiles
 - Minimization of segregation
 - Minimization of moisture

IIB. RAP Stockpile Placement

All processed RAP stockpiles shall be placed on a sloped, paved surface. The requirement for a paved surface may be waived by the Cabinet if the Contractor's RAP Quality Management Plan demonstrates effective material handling that will minimize deleterious material from beneath the processed stockpile entering the plant. *No processed stockpile will be placed directly on grass or dirt.*

IIC. Stockpile Identification Signs

RAP stockpiles shall be identified with posted signs displaying the gradation of material in the stockpile (course, intermediate, or fine). These signs shall be made of weatherproof material and shall be highly visible. Numerals shall be easily readable from outside the stockpile area. If a stockpile exists in two or more parts, each part must have its own sign.

IID. Standard Approval Procedure

The Contractor shall obtain random samples representative of the entire stockpile and shall have each sample tested for gradation and asphalt content according to <u>KM 64-426</u>, <u>KM 64-427</u>, and AASHTO T308. The material samples must be in its final condition after all crushing and screening. At least one sample shall be obtained for each 1,000 tons of processed RAP, with a minimum of five samples per stockpile. Sampling shall be performed according to the method prescribed for asphalt mix aggregates in the Department's Materials Field Testing and Sampling Manual and KM 64-601. The minimum sampling size (after quartering) for tests of RAP samples is 1,500 g. except for samples containing particles more than one inch in diameter, for which the minimum is 2,000 g.

To request approval of a RAP stockpile, submit the following documents to the Division of Materials. It is the requester's responsibility to correctly address, label, and deliver these submittals:

• Submit request for approval at beginning of the paving season as part of the Annual Certification for Previously Approved Asphalt Mixing Plants and Related Equipment.

• If requesting approval after paving season begins, submit memo, including stockpile portion of the inspection list for Annual Certification for Previously Approved Asphalt Mixing Plants and Related Equipment, to Division of Materials.

• Reports of the tests prescribed above using the Stockpile <INSERT NAME> document.

• A drawing of the plant site showing the location of the stockpile to be approved *and all other stockpiles on the premises*

Mail, deliver or email the request form, with test reports and site drawing, to:

Kentucky Transportation Cabinet Division of Materials ATTN: Asphalt Branch Manager 1227 Wilkinson Boulevard Frankfort, Kentucky 40601

Robert.Semones@ky.gov

IIE. Tests and inspections by the Department

The Department shall have the right to observe the collection of samples, or to perform the sampling and testing as a verification of contractor submittal. As a condition of approval, the Department may at any time inspect and sample RAP stockpiles for which approval has been requested and may perform additional quality control tests to determine the consistency and quality of the material.

The approval letter issued by the Department will include any results of verification testing performed by the Cabinet. The approved contractor results should be used by mix design technicians in the design calculations.

III. RAP STOCKPILE TIERED MANAGEMENT AND EFFECTIVE BINDER CONTENT

The stockpile management and approval requirements will be tiered based on the maximum cold feed percentages as defined in this section and Table 1. below.

Міх Туре	0- <u>≤</u> 12%	12- <u><</u> 20%	20- <u><</u> 35%
Surface	Tier 1	Tier 2	Tier 3
Base	Tier 1	Tier 2	Tier 3

Table 1. Tiered Testing Requirements

NOTE: All asphalt mixes and binder selection will be subject to Section 409 of the current Standard Specifications.

The following requirements will apply based on the percentage of RAP in the mix.

Tier 1

Tier 1 mixes (less than or equal to 12% RAP) will be subject to the requirements of sections IIA, IIB, and IIC.

Tier 2

Tier 2 mixes (12% to less than 20% RAP) will be subject to the requirements of Section II in its entirety and Table 2 requirements.

Tier 3

Tier 3 Asphalt Base mixes with 20% to less than 35% RAP, Tier 3 Asphalt Surface mixes with 20% to less than 30% RAP will be subject to Section II in its entirety and Table 2 requirements.

IV. MAXIMUM PERCENTAGE OF RAP ALLOWED

The Maximum Percent of RAP allowed in mix designs shall be the lowest percentage determined by the gradation and asphalt content of the RAP, as established under the criteria below, and requirements listed in Section III.

Limits according to range in gradation and bitumen content

The Maximum Percent of RAP Allowed, based on gradation and asphalt content, shall be determined by the Department using the standard deviation of these values. This standard deviation will be calculated using data provided by the contractor from at least five samples. While the contractor is required to provide the data from these tested samples, the Department retains the discretion to perform its own sampling and testing to support or verify its findings. An apparent outlier shall not be considered in determining these ranges. Where one result appears to be unrepresentative of the whole, two or more additional samples shall be tested. The outlying value of all tests shall then be excluded from the range. The maximum percentage of RAP allowable shall be the lowest percentage determined according to Table 2 below.

Standard Deviation as calculated above:						
	Surface					
% asphalt content	< 0.4	< 0.5				
% passing No. 200 sieve	< 1.25	< 1.5				
% passing Median Sieve	< 4.0	< 5.0				
	Alle	Allowable RAP Cold Feed %				
	Tier 3 - 20%-30%	Tier 2 - 12%-20%	Tier 1 - 0%-12%			
	Base					
% asphalt content	< 0.5	< 0.75				
% passing No. 200 sieve	< 1.5	< 2.25				
% passing Median sieve	< 5.0	< 7.0				
	Alle	Allowable RAP Cold Feed %				
	Tier 3 - 20%-35%	Tier 2 - 12%-20%	Tier 1 - 0%-12%			

Table 2. Maximum	Percent RAP A	ccording to Va	riability in Test	Results

NOTE: These allowances notwithstanding, the Contractor is required to maintain the mixture within the Mixture Control Tolerances of Kentucky Method 443.

The percentage allowable in mix designs shall be limited to meet the design criteria for viscosity established in the Standard Specifications.

V. GENERAL STOCKPILE REQUIREMENTS AND REPLENISHMENT

V.A. Single Pavement Source

Early approval of material from a single pavement source. When a new stockpile is to consist entirely of millings removed from a single existing pavement, the stockpile may be approved based on samples taken during the milling and processing operations, prior to completion of milling. The initial stockpile may be approved as either a new stockpile or a new stockpile in continual replenishment status.

For continual replenishment status, samples shall be taken from the processed stockpile after it reaches 1,000 tons. A total of five initial samples, plus one additional sample for every 1,000 tons, is required. As prescribed in Part II above, the contractor shall test all samples and deliver the test results, together with a letter request for approval in Continual Replenishment status, to the address indicated. The stockpile shall be subject to initial approval as prescribed above in Part II. Once approved, it may be replenished without further approvals as provided in Part VII below.

V.B. Heterogeneous or contaminated material

Asphalt pavement millings containing traffic detection loops, raised pavement markers, or other debris must be separated and excluded before stockpiling RAP for approval for use in KYTC asphaltic concrete mixtures.

No material other than RAP from an approved stockpile shall be included in mixtures for State projects. The following materials are specifically excluded:

• Material contaminated with foreign matter such as liquids, soil, concrete, or debris

• Plant waste, especially waste containing abnormal concentrations of bitumen, drum build-up, or material from spills or plant clean-up operations

The following materials shall not be added to or placed in proximity to an approved stockpile but may be accumulated in a separate stockpile and submitted for approval according to Part III:

- Production mixtures returned to the plant for any reason.
- Mis-proportioned mixtures, especially those generated at start-up.

VI. REPLENISHMENT OF STOCKPILES

An approved RAP stockpile may be replenished with Department approval, provided the replenishment material meets all necessary requirements for approval and maintains uniformity in gradation and asphalt content as outlined in this document.

VI.A. Procedure and approval criteria

The procedure for requesting approval of a stockpile replenishment, that is not in continual replenishment status, shall be the same as for approval of an original stockpile, and the material for the replenishment shall meet all criteria for approval as a new stockpile. RAP proposed for replenishment shall be sampled and tested by the Contractor for gradation and asphalt cement as prescribed in Section II above. The Laboratory shall

review these results and provide approval for use in Department asphalt mix designs, according to Table 2 above.

VI.B. Effect of replenishment on existing approved mix designs

Replenishment of a stockpile may render certain mix designs invalid, depending on the percent RAP allowed in the design and on the difference in average properties between the old and new stockpiles. A replenished stockpile may be used as the RAP ingredient in an existing approved design provided that:

1. The Maximum Percent Allowed for the replenishment stockpile equals or exceeds the percent RAP called for in the mix design. In no case may the Maximum Percent Allowed be exceeded.

However, if a mix design calls for up to 5.0 percent more than the Maximum Percent Allowed for the replenishment, the *design* may be adjusted, with approval, to use the lower percent allowed, provided that the production mixture continues to meet all acceptance criteria. For example, a design which calls for 20 percent RAP may be adjusted and produced with 15 percent if it continues to meet for acceptance.

VII. CONTINUAL REPLENISHMENT WITHOUT RE-APPROVAL

At the request of the contractor, a previously approved stockpile may be placed in Continual Replenishment Status and may be replenished any number of times without re-approval provided that:

- 1. Replenishment is within six months of the last stockpile addition.
- 2. The contractor shall continue to monitor and test the materials added to the stockpile and shall forward these results to the Division of Materials for every 1,000 tons of RAP added to the stockpile.
- 3. The contractor must certify that replenishment materials are free of contaminants.
- 4. The Department shall be notified by letter to the Director of the Division of Materials that the stockpile is being replenished on a continual basis.
- 5. The RAP Maximum Percent Allowed for continual replenishment shall be limited by Sections III and IV.

Note: Upon request, one 20-pound sample bag of RAP for each Continual Replenishment Stockpile shall be submitted to the Division of Materials for petrographic analysis every 12 months.

The Department may inspect, sample, and test such stockpiles at its discretion and may, upon determining that the stockpile is unsuitable, withdraw approval of the material and all mix designs which include it. Approval of the stockpile may be withdrawn at any time based upon extreme or erratic ingredient proportions, unsuitable ingredients, or poor performance, as determined by the Division of Materials, Asphalt Branch. The Department will conduct periodic comparison testing on the opposite quarters of samples submitted by the Contractor for special replenishment approval category. The approval of the stockpile may be withdrawn if

erroneous information was found on the contractor's testing and/or improper sampling procedures were involved after a thorough investigation.

VIII. DEPLETION OF STOCKPILE AND EXPIRATION OF APPROVAL

When a stockpile has been fully depleted, the Contractor may replenish it within 24 months after the date of depletion; a depleted stockpile not replenished after 24 months will be removed from the approved list and may not be replenished.

Approval of a stockpile may be withdrawn if, in the finding of the Division of Materials, Asphalt Branch, the total amount of material used in new mixtures equals the total tonnage of the original stockpile plus all approved replenishments. Six years from the original approval of a stockpile or from its most recent replenishment, a stockpile shall be presumed to be depleted, and its approval shall expire. This shall apply to all stockpiles, regardless of status or history of use.

IX. RECORDS

The Contractor shall maintain records at the plant site on all RAP stockpiles. These records shall be available for inspection by representatives of the Department and shall include the following:

• All test results.

• The Department's approval letter for each stockpile and replenishment, together with the Contractor's requests for approval and all data submitted therewith.

• A current drawing of all stockpile locations at the plant site, including unapproved stockpiles, showing stockpile numbers of all stockpiles approved for State work.

X. RELOCATION OF STOCKPILE

If material from an approved RAP stockpile is to be moved to another location, the contractor shall seek approval from the Department prior to its further use on State projects. A letter request shall be submitted to the Division of Materials indicating the current stockpile location, the total quantity of material to be moved, and the amount, if any, to remain in the current location. The Division of Materials will issue an approval letter applicable to the new location.

June 18, 2025

SPECIAL NOTE FOR DOUBLE ASPHALT SEAL COAT

Use RS-2 or RS-2C asphalt material that is compatible with the seal aggregate. Apply the first course of asphalt seal coat at the rate of 3.2 lbs/sy of asphalt and 30 lbs/sy of size #78 seal coat aggregate. Apply the second course at 2.8 lbs/sy of asphalt and 20 lbs/sy of size #9M seal coat aggregate. The Engineer may adjust the rate of application as conditions warrant. Use caution in applying liquid asphalt material to avoid over spray getting on curbs, gutter, barrier walls, bridges, guardrail, and other roadway appurtenances.

The Department will not measure any surface preparation required prior to applying the asphalt seal coat, but shall be incidental to "Asphalt Material for Asphalt Seal Coat".

1-3215 Double Asphalt Seal Coat 01/02/2012

Special Note for Bridge Demolition, Renovation and Asbestos Abatement

If the project includes any bridge demolition or renovation, the successful bidder is required to notify Kentucky Division for Air Quality (KDAQ) via filing of form (DEP 7036) a minimum of 10 working days prior to commencement of any bridge demolition or renovation work.

Any available information regarding possible asbestos containing materials (ACM) on or within bridges to be affected by the project has been included in the bid documents. These are to be included with the Contractor's notification filed with the KDAQ. If not included in the bid documents, the Department will provide that information to the successful bidder for inclusion in the KDAQ notice as soon as possible. If there are no documents stating otherwise, the bidders should assume there are no asbestos containing materials that will in any way affect the work.

Asbestos Inspection Report

To: Tom Springer, QK4, Inc.

Date: January 31, 2019

Conducted By: Jason Boston, LFI, Inc. Kentucky Accredited Asbestos Inspector #57253

Project and Structure Identification

Project: Hopkins County: Item No. 2-10024

Structure ID: #054B00009N

Structure Location: Ky-138 Over Pond River, Hopkins County, Kentucky

Sample Description: Mastic in deck joints

Inspection Date: January 25, 2019

Results and Recommendations

The asbestos inspection was performed in accordance with current United States Environmental Protection Agency (US EPA) regulations, specifically 40 CFR Part 61, Asbestos National Emissions Standards for Hazardous Air Pollutants (NESHAP) revision, final rule effective November 20, 1990.

It is recommended that this report accompany the 10-Day Notice of Intent for Demolition (<u>DEP7036 Form</u>) which is to be submitted to the Kentucky Division of Air Quality prior to abatement, demolition, or renovation of any building or structure in the Commonwealth.

No suspect asbestos containing (ACM) were observed.

<u>MRS, INC.</u>

MRS, Inc. Analytical Laboratory Division

332 West Broadway / Suite # 902 Louisville, Kentucky - 40202 - 2133 (502) 495-1212 Fax: (502) 491-7111

BULK SAMPLE ASBESTOS ANALYSIS

Analysis N # Client Name:

LFI

#91293 D

Address: Hopkins County - 2 - 10024

Project # 168 - 18

Sampled By:

Jason Boston

		% FIBROUS ASBESTOS			% NON-ASBESTOS FIBERS						
Sample ID	Color	Layered	Fibrous	Chrysotile	Amosite	crocidolite	Others	Cellulose	Fiberglass	Syn. Fiber	Other/Mat.
#1A	Black	Yes	No	2%	(To Be	Point Cou	inted)	2%			96%
#1B	Black	Yes	No	2%	(To Be	Point Cou	inted)	2%			96%

Methodology : EPA Method 600/R-93-116

Date Analyzed : 29-Jan-19 Analyst : Winterford Mensah

Reviewed By:

Wintegers Mencals

The test relates only to the items tested. This report does not represent endorsement by NVLAP or any agency of the U.S Government. Partial Reproduction of any part of this report is strictly prohibited. Samples shall be retained for (30) days.

AIHA # 102459

AJHA #1 02459

	<u>M</u> R	RS, INC. MRS	, Inc. Analytical L	aboratory Division
332 West	Broadway /	/ Suite # 902	Phone	#: (502) 495-1212
Louisville,	Kentucky -	40202 - 2133	E-Mai	I Address: CEOMRSInc@AOL.Com
Client:	LFI		Project No:	# 91293 D
Address:	114 Fairfa	ax Avenue	Sample ID:	#1A
	Louisville	, КҮ	Sampled:	25-Jan-19
		40207	Received:	28-Jan-19
			Analyzed:	29-Jan-19 - Point Count -
	Attention	: Russell Brooks		
		Bulk San	nple Analysis	
			,,,	
Sampled I	By :	Jason Boston		
Facility/L	ocation:	Hopkins County - 2 - 10	024	
Field Desc	ription:	Deck Joint - Tar		
Laborator	y Descriptio	on:		
		Thick Black material		
Asbestos	Materials:			
		Chrysotile = 1/400 = 0.2	25 % (< 1 %) Sam	ple Is Negative
Non-Asbe	stos Fibrou	s Materials :		
		Cellulose		0.25 %
		Binders		99.50 %
Remarks:	The sampl	e was analyzed for asbes	tos content follow	wing the EPA Methodology
	(600/R-93	3/116). The test relates o	nly to the items t	ested. This report does not
	represent	endorsement by NVLAP	or any agency of	the U.S. Government.
Analyst:	Wir	nterford Mensah	Reviewed By:	Hintogers Menal
				Signature

AIHA	#102459	

/

AIHA #102459 / AIHA #102459

	MR	RS, INC. MRS	, Inc. Analytical L	aboratory Division	
332 West	Broadway ,	[/] Suite # 902	Phone	#: (502) 495-1212	
Louisville,	Kentucky -	40202 - 2133	E-Mail Address: CEOMRSInc@AOL.Com		
Client:	LFI		Project No:	# 91293 D	
Address:	114 Fairfa	ax Avenue	Sample ID:	# 1 B	
	Louisville	, КҮ	Sampled:	25-Jan-19	
		40207	Received:	28-Jan-19	
			Analyzed:	29-Jan-19 - Point Count -	
	Attention	: Russell Brooks			
		Bulk San	nple Analysis		
		Duik dui			
Sampled I	By :	Jason Boston			
Facility/L	•	Hopkins County - 2 - 10	024		
Field Desc	cription:	Deck Joint - Tar			
Laborator	y Descriptio	on:			
		Thick Black material			
Asbestos	Materials:				
		Chrysotile = 1/400 = 0.2	25 % (< 1 %) Sam	ple Is Negative	
Non-Asbe	stos Fibrou	s Materials :			
		Cellulose		0.25 %	
		Binders		99.50 %	
Remarks:	The sampl	e was analyzed for asbes	tos content follow	wing the EPA Methodology	
	-	-	-	ested. This report does not	
	represent	endorsement by NVLAP	or any agency of	the U.S. Government.	
		• • • • •			
Analyst:	Wir	nterford Mensah	Reviewed By:	- Mintegers Mensel	

AIHA #102459	/
	,

AIHA #102459

/ AIHA #102459

HOPKINS COUNTY STP BRZ 9030 (500)

MRS, Inc. P.O. Box 19424 Louisville, Kentucky 40259-0424 Phon (502) 495 - 1212 Fax (502) 491 - 7111

Client : Linebach Funkhouser Project : 168-18

CHAIN OF CUSTODY RECORD

PROJECT: Hopkins Count LOCATION: 602 Biston SAMPLED BY: aun DATE: gnua

COMMENTS AND/OR INSTRUCTIONS: _________Group Method _______Stop First Positive _______point count <4%

SAMPLE NUMBER	LOCATION	MATRIX	COLOR	SIZE	COMMENTS	T/L W/C	PLM
I A IB	Deck join t	tar	black				
				A Martin Contraction	An Ar Anna Ta		Prins Arts
	-						
				Ч. -			
					1°		
						-	

Relinquished By: (Signature) Quel-B-th	Date 1/28/19	Time 1330	Received By: (Signature)
Relinquished By: (Signature	Date	Time	Received By: (Signature)

HOPKINS COUNTY STP BRZ 9030 (500) Contract ID: 255382 Page 74 of 372

Commonwealth of Kentucky Department for Environmental Protection Division for Air Quality Jason P Boston Has met the requirements of 401 KAR 58:005 and is accredited as an: Asbestos Inspector pri 1 Agency Interest Id: 148138

Expiration Date:

Agency Interest License Number: 57255 Date: 10/17/2018 07/02/2019

SUBMITAL LANE (instructions for completing form on back) ID # SUBMITAL LANE			NOTIFICATION ABATEMENT/DEMO	NOTIFICATION OF ASBESTOS ABATEMENT/DEMOLITION/RENOVATION		
Description of Alic Outset Contact Person The this form with Regional Office where project will be performed*** Locs # Contact Person State Zp Second Contact Person Description of altected facility components Docs Contact Person Contact Person Description of altected facility components Docs Second Contact Person Contact Person Description of altected facility components Docs Second Contact Person Contact Person Description of altected facility components Docs Second Contact Person Contact Person Description of altected facility components Docs Age (ns.) State Zp Description of altected facility or facil	PAGE 1 OF INITIAL SUBMITTAL DATE		(Instructions for co		OFFICE USE ONLY	S COL 2 9030
contact Person Description of planmed renovation/demolition, including abatement methods s	REVISION DATE NOTIFICATION #		this form with Regional Offi Kentucky Divisi 300 Sower Bou Frankfort			JNTY (500)
P. State Zh Anoncol Person State Zh State Zh Contact Person Contact Person State Zh State Zh Abbestos detection technique Mount of Cat. I. & II nontriable ACM involved but will not be removed: Age (vis.) State Age (vis.) State Age (vis.) State Affected Presente drant derivicuse of Facility or Affected Fact (sp. ft) Age (vis.) State Age (vis.) State Affected Presente drant derivicuse of facility or Affected Fact (sp. ft) Age (vis.) Describe contingency plan should nontriable ACM become friable or additional ACM be uncovered during renovation demolition: Interlor Category II Contact Person End Renovalion Interlor Category II Address Phone Interlor Category II Address Contact with at at least one person trained as required by 40 CFR Interlor Category II Interlor Disposal Stie Address Disposal Stie Address Conting the vork described herein. (potional) Interlor Category II Intord (cotiti with wit at least one person trained as required by 40	Contractor			Description of planned renovation/demol	ition, including abatement methods	6
Contact Person Contact Person s State Zp s State Zp contact Person State Zp contact Person Contact Person State Zp contact Person Contact Person State Zp contact Person Contact Person State Zp Age (yrs.) State Zp Description of affected facility components Age (yrs.) State Zp Description of affected facility components Age (yrs.) State Zp Description of affected facility components Age (yrs.) State Zp Description of affected facility components Age (yrs.) State Zp Description of caclity components Ion Demonston Description ACM is encoration of affected facility components Description affect of a contrigue of additional ACM is encoration of affected facility components Ion Demonston Description ACM is encored during renovation of affected facility of a contrigue of additional ACM is encored during renovation of affected facility of a contributed ACM is encored during renovation of addition and ACM is encored during renovation of addition and ACM is encored during renovation of addition and ACM is encored during renovat	City	State				
State Zp State Zp Abersos detection technique Abersos detection technique Contact Person State Contact Person Contact Person Contact Person Contact Person State Zp Age (vis.) Size of Facility or Affected Part (sqt.1) Size of Facility or Affected Part (sqt.1) Describe physical characteristics that make it nontriable and methods Age (vis.) Size of Facility or Affected Part (sqt.1) Describe ontionals: Describe Demolition Check ONLY ONE): Describe ontionals: Ionol Demolition End Removal Describe ontionals: Describe ontionals: Ionol Demolition End Removal Contact Person Describe ontionals: Describe ontionals: Ionol Demolition End Removal Contact Person Describe ontionals: Describe ontionals: Describe ontionals: Ionoration Enderess Contend Removal Describe ontional	Phone	Contact Person				
s	Owner			Description of affected facility componen	şı	
Indextor State Zp Contact Person Contact Person State Zp Contact Person Contact Person Contact Person Contact Person Age (yrs.) Size of Facility of Mitocted Part (sq.th) Describe physical characteristics that make it nonfriable and methods Age (yrs.) Size of Facility of Mitocted Part (sq.th) Describe physical characteristics that make it nonfriable and methods Age (yrs.) Size of Facility of Mitocted Part (sq.th) Describe physical characteristics that make it nonfriable and methods Age (yrs.) Size of Facility of Mitocted Part (sq.th) Describe physical characteristics that make it nonfriable and methods Age (yrs.) Size of Facility of Mitocted Part (sq.th) Describe physical characteristics that make it nonfriable and methods Age (yrs.) Size of Facility of Mitocted Part (sq.th) Describe contingency plan should nonfriable ACM become friable or additional ACM be uncovered during renovation demolition: Describe physical characteristics that make it nonfriable or additional ACM become friable ACM Interso Interso Describe Contingency plan should nonfriable ACM Describe Contingency plan should nonfriable ACM Interso Interso Describe Contingency plan should nonfriable ACM	Address					
0 Contact Person Anount of Cat. I & I Inonfriable ACM involved but will not be removed: ect Location State Zhe ess State Zhe est Location State Zhe est Location State Zhe ity Age (vrs.) State Zhe ity Age (vrs.) State Zhe ors Affected Present and Prior Use of Facility or Affected Part (sq. th.) Describe physical characteristics that make it nonfriable ACM become friable ACM category I Affected Present and Prior Use of Facility Describe physical characteristics that make it nonfriable ACM become friable ACM become friab	City	State		Asbestos detection technique		
ect Location ect Location est	Phone			Amount of Cat. I & II nonfriable ACM in	volved but will not be removed:	
esc	Project Location					
In y Age (yrs.) State Zp	Address			Describe physical characteristics that		
Describe of Facility - Affected Part (sq. ft.) Describe contingency plan should nonfriable ACM become friable or additional ACM be uncovered during renovation/ demolition: ECT (CHECK ONLY ONE): Describe contingency plan should nonfriable ACM become friable or additional ACM be uncovered during renovation/ demolition: monition Ordered Demolition Describe contingency plan should nonfriable ACM become friable or additional ACM be uncovered during renovation/ demolition: iss: End Removal Demolition Demolition (Demolition End Removal Category I Demolition (Demolition End Removal City State Zip (Demolition It as posed Site Demolition Demolition City Demolition (Demolition (optional) It ereby certify that at least one person trained by 40 CFR City Demolition and for stricty non-friable work) (Demolition (optional) It ereby certify that at least one person trained by 40 CFR City Demolition and for stricty non-friable work) (Demolition (optional) It ereby certify that at least one person trained by 40 CFR Demolition and for stricty non-friable work)	City	State		to keep it nonfriable (optional):		
	Facility Age (yrs.)	Size of Facility or Affe	cted Part (sq.ft.)			
onenergencyong-term	#Floors Affected	Present and Prior I	Jse of Facility	contingency plan should	ACM become friable	
ad Demolition End Removal Imansporter End Removal Address Imansporter End Removal Address Imansporter End Removal Imansporter Imansporter End Removal Imansporter Imansporter End Removal Imansporter Imansporter End Removal Imansporter Imansporter Category II Imansporter Imansporter Imanifiable ACM Imansporter Imansporter Imanifiable ACM Imansporter Imansporter Imanifiable ACM Imansporter Imansporter Imanifiable ACM Imansporter Imansporter Imansporter Imansporter Imansporter Imans	TYPE OF PROJECT (CH	HECK ONLY ONE):		additional ACM be uncovered during reno	vation/ demolition:	
End Removal End Removal End Removal Address End Removalion/Demolition State End Removalion/Demolition City Category II Category I nonfriable ACM Category I (optional) Disposal Site (optional) City (optional) City (optional) City I hereby certify that at least one person trained as required by 40 CFR 61.145(c)(8) will supervise the abatement work described herein. (optional for strictly non-friable work) Submitted by: Company Name:		Crdered Demolition				
End Removal Address End Removation/Demolition City End Removation/Demolition City Category Il Category I nonfriable ACM Phone (optional) City (optional) City (optional) City (optional) I hereby certify that at least one person trained as required by 40 CFR 61.145(c)(8) will supervise the abatement work described herein. (optional for strictly non-friable work) Submitted by: Submitted by: Company Name: Company Name:	PROJECT DATES:			Transporter		
End Renovation/Demolition City State Zip Category II Category I Phone Disposal Site Zip nonfriable ACM nonfriable ACM Contegory I Address Zip (optional) (optional) I hereby certify that at least one person trained as required by 40 CFR City Zip (optional) I hereby certify that at least one person trained as required by 40 CFR Gity State Zip I hereby certify non-friable work) I hereby certify that at least one person trained as required by 40 CFR Gity State Zip I hereby certify non-friable work) I hereby certify that at least one person trained as required by 40 CFR State Zip I hereby certify non-friable work) I hereby certify non-friable work) Submitted by: Image: Company Name: Image: Company Name:	Start Removal	End Remov	al	Address		
Category Il nonfriable ACM Category I nonfriable ACM Category I nonfriable ACM Category I (optional) Category I nonfriable ACM Address City City State (optional) City (optional) I hereby certify that at least one person trained as required by 40 CFR for strictly non-friable work) for strictly non-friable work) Submitted by: Submitted by: Company Name: Company Name:	Start Renovation/Demoli		ion/Demolition	City		
Category Il nonfriable ACM Category I nonfriable ACM Category I (optional) Category I nonfriable ACM (optional) City (optional) City (optional) I hereby certify that at least one person trained as required by 40 CFR 61.145(c)(8) will supervise the abatement work described herein. (optional for strictly non-friable work) Submitted by: Submitted by: Company Name: Company Name:	Amount of ACM to be F	Removed:		Phone		
Regulated ACM Category II Category I Regulated ACM nonfriable ACM Category I (RACM) (optional) (optional) (optional) (optional) (optional) Indication (optional) (optional) Indication (optional) (optional) Indication (optional) I hereby certify that at least one person trained as required by 40 CFR Indication I hereby certify that at least one person trained as required by 40 CFR Indication I hereby certify that at least one person trained as required by 40 CFR Indication I hereby certify that at least one person trained as required by 40 CFR Indication I hereby certify non-friable work) Indication I to strictly n			_	Disposal Site		
(RACM) nonfriable ACM nonfriable ACM City State Zip (optional) (optional) (noptional) I hereby certify that at least one person trained as required by 40 CFR 61.145(c)(8) will supervise the abatement work described herein. (optional for strictly non-friable work) for strictly non-friable work) Submitted by: Company Name: Company Name:	Regulated /		Category I	Address		
I hereby certify that at least one person trained as required by 40 CFR 61.145(c)(8) will supervise the abatement work described herein. (optional for strictly non-friable work) Submitted by: Company Name:	(RACM		nonfriable ACM (optional)	City		
61.145(c)(8) will supervise the abatement work described herein. (optional for strictly non-friable work) Submitted by: Company Name:	Linear	- t		I hereby certify that at least one person	trained as required by 40 CFR	
Page 12 of for strictly non-friable work) Submitted by: Company Name:	Square			61.145(c)(8) will supervise the abatement	work described herein. (optional	Co
Submitted by: Company Name:	Feet			for strictly non-friable work)		
Company Name:	Cubic Feet			Submitted by:		
	100	-		Company Name:		

NOTIFICATION OF ASBESTOS ABATEMENT/DEMOLITION/RENOVATION **INSTRUCTIONS FOR COMPLETING FORM DEP7036:**

Filing Deadline: This form must be completed and filed with the Kentucky Division for Air Quality at least ten (10) working days before starting any asbestos removal, demolition, or other work which will disturb asbestos-containing material (ACM) in Kentucky facilities outside Jefferson County and in schools statewide, including Jefferson County. File with appropriate Regional Office.

Benotification: If developments occur that invalidate information on a notification (e.g., changes in dates, amounts, locations), file a revised form within the time frames specified in 401 KAR 58:025. Notifications may be numbered in the top-left corner (optional). First two digits are project year; remaining digits are project number (e.g., the first project in 1999 is 99-1).

Attachments: Attachments may be included to provide additional information, propose alternative procedures, declare nonfriable removal, identify secondary transporters,

Line-by-Line Instructions:

Contractor/Owner: the contractor is the asbestos remover (or, for zero-asbestos demolitions, the demolition contractor). The owner is the entity having the work done. Project Location: The location at the address given where the work is taking place (e.g., which building/floor/room?). Present/Prior Use: Enter the present and prior use(s) of the facility.

Type of Project: Each choice shown in this category has a specific description under 401 KAR 58:025:

Emergency renovations result from a sudden, unexpected event. If the project is an emergency renovation, attach a detailed description of the sudden,

unexpected event that necessitated removal. Include the exact date and hour the event occurred and explain how the event caused an unsafe condition, or would cause equipment damage or unreasonable financial burden.

Planned renovations are renovations that do not qualify as emergency renovations.

threshold amounts and can be estimated based on past years' experience. File yearly estimate at least 10 working days before the beginning of the calendar year for which A long-term notification is a type of planned renovation which involves a number of nonscheduled small-scale removals whose annual total exceeds the NESHAP a long-term notification is being given.

Demolitions involve the wrecking or taking out of a load-supporting structural member, such as a load-bearing beam or wall. Tearing down a structure, dismantling it piecemeal, and moving it from one place to another are all considered demolitions.

Ordered demolitions must result from a demolition order issued by a government agency because the building is structurally unsound and in danger of imminent collapse. For ordered demolitions, attach to the notification a signed, dated copy of order that includes demolition deadlines and name/title/authority of the government epresentative issuing the order.

Project Dates: Schedules must be precise and accurate. The "start removal" date is the date the removers arrive on-site and begin physically preparing the work area for emoval. "End removal" is the date the removers dismantle the work area after cleaning and clearing it. If circumstances arise that invalidate previously submitted start dates, a revised notification must be submitted showing the updated, correct start date. If the start date has been moved up, submit written renotification at least ten working days before the new start date. If the start date has been moved back, telephone the Division as soon as possible before the original date and submit written renotification no later than the original start date.

Schedules for renovation and demolition (next line after removal schedule) are handled similarly, except that renotification is required only for schedule changes involving demolitions, not renovations.

equire you to identify the amount of nonfriable ACM that will be removed, the table provides space for nonfriable ACM to accommodate those notifiers who choose to Amount of ACM: In this table, enter the amount and type (RACM, Category I, and/or Category II) of asbestos that will be removed. Although the regulation does not document these removals.

Description of project: Describe the demolition or renovation work to be performed and method(s) to be used, including work practices and engineering controls to be used

Asbestos Detection Technique: Give a general description of the asbestos survey, for example, "AHERA-style survey by accredited inspector; samples analyzed by PLM."

Amount of nonfriable ...: If all nonfriable ACM will be properly removed, enter "NA."

Contingency Plans: If Category II nonfriable ACM becomes crumbled, pulverized, or reduced to powder, or if additional RACM is discovered, describe procedures to be followed. For example, "Move demolition activity away from ACM immediately; remove the ACM using regulation-required procedures." Even "Stop work, call Division for Air Quality" is OK. HOPKINS COUNTY STP <u>BRZ 9030 (500)</u>

KENTUCKY TRANSPORTATION CABINET Department of Highways DIVISION OF RIGHT OF WAY & UTILITIES

Contract ID: 255382 Page 77 of 372

TC 62-226 Rev. 01/2016 Page 1 of 1

RIGHT OF WAY CERTIFICATION

🛛 🖂 🛛 Original		Re-Cer	tificatio	n	RIGHT OF WAY CERTIFICATION				
ITEM	#			COUNTY	PROJE	CT # (STATE)	PROJECT # (FEDERAL)		
02-10024		H	Hopkins		1100 FD04 1	21 9414001R			
PROJECT DESC	RIPTIC	N							
Bridging Kentu	ckv - C	54B0000	09N - KY	138 over Pond Creek (re	ehab)				
No Addit					,				
		<u> </u>			e right of way w	as acquired in accord	ance to FHWA regulations		
under the Unifo	rm Relo	cation As	sistance	and Real Property Acquisit	ions Policy Act o	f 1970, as amended.	No additional right of way or		
relocation assist		-							
				of Way Required and Cl					
		-	-	ol of access rights when ap	-		· ·		
possession. Trial or appeal of cases may be pending in court but legal possession has been obtained. There may be some improvements remaining on the right-of-way, but all occupants have vacated the lands and improvements, and KYTC has physical possession and the									
remaining on the right-of-way, but all occupants have vacated the lands and improvements, and KYTC has physical possession and the rights to remove, salvage, or demolish all improvements and enter on all land. Just Compensation has been paid or deposited with the									
rights to remove, salvage, or demolish all improvements and enter on all land. Just Compensation has been paid or deposited with the court. All relocations have been relocated to decent, safe, and sanitary housing or that KYTC has made available to displaced persons									
adequate replacement housing in accordance with the provisions of the current FHWA directive.									
Conditio	n # 2 (/	Additiona	al Right	of Way Required with E	xception)				
					-		the proper execution of the		
	project has been acquired. Some parcels may be pending in court and on other parcels full legal possession has not been obtained, but								
right of entry has been obtained, the occupants of all lands and improvements have vacated, and KYTC has physical possession and right									
to remove, salvage, or demolish all improvements. Just Compensation has been paid or deposited with the court for most parcels. Just Compensation for all pending parcels will be paid or deposited with the court prior to AWARD of construction contract									
						S AWARD OF COnstruct			
Condition # 3 (Additional Right of Way Required with Exception) The acquisition or right of occupancy and use of a few remaining parcels are not complete and/or some parcels still have occupants. All									
	-		-	ent housing made available			-		
				-			e necessary right of way will not		
			-				paid or deposited with the		
				ng. KYTC will fully meet all	-				
	-	-		all acquisitions, relocation orce account construction.	s, and full payme	ents after bid letting a	and prior to		
Total Number of Pa				EXCEPTION (S) Parcel #	ANTICI	PATED DATE OF POSSESSI	ON WITH FXPLANATION		
Number of Parcels		-	-						
Signed Deed		•	0						
Condemnation			0						
Signed ROE Notes/ Comment		dditional 9	0 Shoot if no						
Acquisition comp	-	uultional 3	bileet ii lie	ecessary)					
		N/ Proio	oct Mana	ager		Right of Way Su	inervisor		
LPA RW Project Manager Right of Way Supervisor Printed Name Printed Name							•		
Signature									
Date					Date		06/21/19		
	Rig	ht of Wa	v Direct	or		FHWA	00,21,10		
Printed Name			Dean N		Printed Name				
Signature			Dearrin		Signature				
Date					Date				
L	L				Date				

Hopkins County No federal number available No state project number available Mile point: 8.457 TO 8.493 BRIDGE PROJECT IN HOPKINS COUNTY ON (054B00009N) KY-138 at POND RIVER ITEM NUMBER: 02-10024.00

PROJECT NOTES ON UTILITIES

For all projects under 2000 Linear feet which require a normal excavation locate request pursuant to KRS 367.4901-4917, the awarded contractor shall field mark the proposed excavation or construction boundaries of the project (also called white lining) using the procedure set forth in KRS 367.4909(9)(k). For all projects over 2000 linear feet, which are defined as a "Large Project" in KRS 367.4903(18), the awarded contractor shall initially mark the first 2000 linear feet minimally of proposed excavation or construction boundaries of the project to be worked using the procedure set forth in KRS 367.4909(9)(k). This temporary field locating of the project excavation boundary shall take place prior to submitting an excavation location request to the underground utility protection Kentucky Contact Center. For large projects, the awarded contractor shall work with the impacted utilities to determine when additional white lining of the remainder of the project site will take place. This provision shall not alter or relieve the awarded contractor from complying with requirements of KRS 367.4905 to 367.4917 in their entirety.

Please Note: The information presented in this Utility Note is informational in nature and the information contained herein is not guaranteed.

The contractor will be responsible for contacting all utility facility owners on the subject project to coordinate his activities. The contractor will coordinate his activities to minimize and, where possible, avoid conflicts with utility facilities. Due to the nature of the work proposed, it is unlikely to conflict with the existing utilities beyond minor facility adjustments. Where conflicts with utility facilities are unavoidable, the contractor will coordinate any necessary relocation work with the facility owner and Resident Engineer. The Kentucky Transportation Cabinet maintains the right to remove or alter portions of this contract if a utility conflict occurs. The utility facilities as noted in the previous section(s) have been determined using data garnered by varied means and with varying degrees of accuracy: from the facility owners, a result of S.U.E., field inspections, and/or reviews of record drawings. The facilities defined may not be inclusive of all utilities in the project scope and are not Level A quality, unless specified as such. It is the contractor's responsibility to verify all utilities and their respective locations before excavating.

The contractor shall make every effort to protect underground facilities from damage as prescribed in the Underground Facility Damage Protection Act of 1994, Kentucky Revised Statute KRS 367.4901 to 367.4917. It is the contractor's responsibility to determine and take steps necessary to be in compliance

Hopkins County No federal number available No state project number available Mile point: 8.457 TO 8.493 BRIDGE PROJECT IN HOPKINS COUNTY ON (054B00009N) KY-138 at POND RIVER ITEM NUMBER: 02-10024.00

with federal and state damage prevention directives. The contractor is instructed to contact KY 811 for the location of existing underground utilities. Contact shall be made a minimum of two (2) and no more than ten (10) business days prior to excavation. The contractor shall submit Excavation Locate Requests to the Kentucky Contact Center (KY 811) via web ticket entry. The submission of this request does not relieve the contractor from the responsibility of contacting non-member facility owners, whom are to be contacted through their individual Protection Notification Center. It may be necessary for the contractor to contact the County Court Clerk to determine what utility companies have facilities in the area. Non-compliance with these directives can result in the enforcement of penalties.

NOTE: DO NOT DISTURB THE FOLLOWING FACILITIES LOCATED WITHIN THE PROJECT DISTURB LIMITS

The Contractor is fully responsible for protection of all utilities listed above

THE FOLLOWING FACILITY OWNERS ARE RELOCATING/ADJUSTING THEIR FACILITIES WITHIN THE PROJECT LIMITS AND WILL BE COMPLETE PRIOR TO CONSTRUCTION

City of Calhoun - Water

North Hopkins Water District - Water

AT&T- Communication

Hopkins County No federal number available No state project number available Mile point: 8.457 TO 8.493 BRIDGE PROJECT IN HOPKINS COUNTY ON (054B00009N) KY-138 at POND RIVER ITEM NUMBER: 02-10024.00

THE FOLLOWING FACILITY OWNERS HAVE FACILITIES TO BE RELOCATED/ADJUSTED BY THE OWNER OR THEIR SUBCONTRACTOR AND IS TO BE COORDINATED WITH THE ROAD CONTRACT

Kentucky Utilities - Electric Transmission. KU will have transmission lines relocated by November 1st, 2024

THE FOLLOWING FACILITY OWNERS HAVE FACILITIES TO BE RELOCATED/ADJUSTED BY THE ROAD CONTRACTOR AS INCLUDED IN THIS CONTRACT

Not Applicable

RAIL COMPANIES HAVE FACILITIES IN CONJUNCTION WITH THIS PROJECT AS NOTED

⊠ No Rail Involvement □ Rail Involved □ Rail Adjacent

Hopkins County No federal number available No state project number available Mile point: 8.457 TO 8.493 BRIDGE PROJECT IN HOPKINS COUNTY ON (054B00009N) KY-138 at POND RIVER ITEM NUMBER: 02-10024.00

AREA FACILITY OWNER CONTACT LIST

Facility Owner		Contact Name	Phone	Email
AT&T-AT&T KY - Communication	3719 Bardstown Road Louisville KY 40218	Gary Kidd	5024544591	gk7523@att.com
City of Calhoun - Water		Ron Coleman	2702733092	mayor@cityofcalhounky.com
Kentucky Utilities - Electric	220 West Main Street, Louisville, KY 40202	Kyle Godsave	502-627- 2489	kyle.godsave@lge-ku.com
North Hopkins Water District - Water	316 Liberty Church Loop Madisonville Ky 42431	Tim Moore	2708759947	nhwaterfo@gmail.com

DEPARTMENT OF THE ARMY U.S. ARMY CORPS OF ENGINEERS, LOUISVILLE DISTRICT 600 DR. MARTIN LUTHER KING JR PL LOUISVILLE, KY 40202

January 8, 2024

Regulatory Division South Branch ID No. LRL-2023-00577-ncc

Mr. Andrew Logsdon Kentucky Transportation Cabinet DEA 200 Mero Street Frankfort, Kentucky 40622

Dear Mr. Logsdon:

This is in response to your request for authorization to discharge dredged or fill material into "waters of the United States (U.S.)" associated with the replacement of Bridge ID 054B00009N, which carries Jewell City Road (KY-138) over Pond River (KYTC Item No. 2-10024.00). The proposed project would entail the complete removal of the existing bridge and construction of a new bridge without load restrictions on a new alignment downstream (north) of the existing structure, with geometrics (width, length, hydraulic opening, etc.) similar to the current structure. New approaches would be required for a distance of approximately 1,400 feet west and approximately 800 feet east of the new bridge. Due to construction of a new structure and removal of the existing structure, activities within the stream, including two temporary work pads and a coffer dam, are expected. In addition, the proposed project would require the relocation of approximately 0.20 miles of 69kV transmission line (Rumsey - Corydon 691003) and transmission structures from construction disturbance limits of the new KY-138 bridge crossing at Pond River. No impacts or fill would occur in Pond River or "waters of the United States (U.S.)" due to the project. The proposed project is located on Jewell Road (KY-138) at Pond River near Jewel City, Hopkins County, Kentucky (Latitude: 37.526592/Longitude: 87.354295), and would permanently impact approximately 40 linear feet (0.009 acre) of Pond River, 0.035 acre of open water pond, and 0.063 acres of four wetlands, respectively, and temporarily impact approximately 40 linear feet of Pond River. The information supplied by you was reviewed to determine whether a Department of the Army (DA) permit will be required under the provisions of Section 404 of the Clean Water Act and Section 10 of the Rivers and Harbors Act.

Your project is considered a discharge of backfill or bedding material for a road crossing. The project is authorized under the provisions of 33 CFR 330 Nationwide Permit (NWP) No. 14, <u>Linear Transportation Projects</u>, and NWP No. 57, <u>Electric Utility Line and Telecommunications</u> <u>Activities</u>, as published in the Federal Register December 27, 2021. Under the provisions of this

authorization, you must comply with the enclosed Terms and General Conditions for NWP Nos. 14 and 57, and the following Special Conditions:

- a. All work authorized by this permit shall be performed in strict compliance with the attached "LRL-2023-00577 Jewell City Road Bridge Replacement Location and Design Plan", which is a part of this permit. Any modification to these plans affecting the authorized work shall be approved by the U.S. Army Corps of Engineers prior to implementation.
- b. The Permittee shall comply with all conditions of the General Section 401 WQC Certification for NWP 14, Transportation Projects, and NWP 57, Electric Utility Line and Telecommunication Activities, issued on February 25, 2022 by KDOW, which are incorporated herein by reference.
- c. The permittee shall account for potential adverse effects to the Indiana bat and their habitat through the processes identified in the 2015 Interim Programmatic Agreement for Forest Dwelling Bats between the Permittee, the Federal Highway Administration, and the U.S. Fish and Wildlife Service's Kentucky Field Office.
- d. The Permittee shall implement the sedimentation and erosion control methods outlined in pages 19-20 of the project's biological assessment to minimize potential adverse effects on gray bats, their prey, and their foraging habitat.
- e. The Permittee shall mark "Do Not Disturb" on construction maps and in the field at the edge of the southwest quadrant of the area of potential effect and shall restricted activities south and west of the intersection of KY 138 (Jewel City Road) and KY 370 (Onion Road).
- f. The Permittee shall fully implement all stipulations in the MOA between the Permittee, the KYSHPO, and the FHWA, for KY 138 (Jewell City Road) Bridge (No. 054B00009N) over Pond River, Hopkins County, Kentucky, Kentucky Transportation Cabinet Item No. 2-10024.00, dated December 1, 2022, which is incorporated herein by reference.
- g. Within 30 days from the date of completing the authorized work, the Permittee shall restore 40 linear feet of temporary stream impacts to pre-existing contours and elevations. The affected areas shall be re-vegetated, as appropriate to minimize erosion and ensure site stability.
- h. The Permittee must comply with the enclosed General Conditions and Kentucky Regional Conditions.

This verification is valid until the NWPs are modified, reissued, or revoked. NWP Nos. 14 and 57 will be modified, reissued, or revoked on **March 14, 2026**. It is incumbent upon KYTC to remain informed of changes to the NWPs. If the Permittee commences or is under contract to commence this activity before the date that the relevant NWPs are modified or revoked, they will have 12 months from the date of the modification or revocation of the NWPs

to complete the activity under the present terms and conditions of these NWPs. The enclosed Compliance Certification must be submitted to the District Engineer within 30 days of completion of the authorized activity or the implementation of any required compensatory mitigation, whichever occurs later. Please note that we also perform periodic inspections to ensure compliance with our permit conditions and applicable Federal laws. A copy of this letter will be forwarded to your agent and to the KDOW.

For your information, effective March 9, 1999, the Corps of Engineers instituted an administrative appeals process. A permit applicant may appeal an individual permit denial or an individual permit that was issued with conditions (a proffered individual permit). To initiate the appeals process regarding the terms and conditions of this permit, you must write a letter to the district engineer explaining your objections to the permit. The enclosed Notification of Applicant Options (NAO) outlines the initial appeals process and options available to you. The objection letter must be received by the district engineer within 60 days of the date of the NAO. Please be aware that no work can occur in jurisdictional waters until the appeals process is completed.

Based on the information provided to this office, the site contains approximately 40 linear feet of one perennial stream, 0.035 acre of open water pond, and 0.063 acres of four wetlands, respectively, that may be considered jurisdictional "waters of the U.S.," in accordance with the Regulatory Guidance Letter for Jurisdictional Determinations issued by the U.S. Army Corps of Engineers on October 31, 2016 (RGL No. 16-01).

As indicated in the guidance, this Preliminary Jurisdictional Determination (PJD) is nonbinding and cannot be appealed and only provides a written indication that "waters of the U.S.," including wetlands, may be present on-site. For purposes of computation of impacts, compensatory mitigation requirements, and other resource protection measures, a permit decision made on the basis of a PJD will treat all waters and wetlands on the site as if they are jurisdictional "waters of the U.S."

Attached to this letter are a PJD, a Notification of Administrative Appeal Options and Process and Request for Appeal (NAO-NAP) form, as mentioned above. However, a PJD is not appealable and impacting "waters of the U.S." identified in the PJD will result in you waiving the right to request an AJD at a later date. An AJD may be requested (which may be appealed), by contacting me for further instruction.

The delineation included herein has been conducted to identify the location and extent of the aquatic resource boundaries and/or the jurisdictional status of aquatic resources for purposes of the Clean Water Act for the particular site identified in this request. This delineation and/or jurisdictional determination may not be valid for the Wetland Conservation Provisions of the Food Security Act of 1985, as amended. If you or your tenant are USDA program participants, or anticipate participation in USDA programs, you should discuss the applicability of a certified wetland determination with the local USDA service center prior to starting work.

If you have any questions, please contact us by writing to the District Regulatory Office at the above address, ATTN: CELRL-RDS, or contact Norma Condra directly at (502) 315-6680 or norma.c.condra@usace.army.mil. Any correspondence on this matter should refer to our ID Number LRL-2023-00577-ncc.

Sincerely

David Baldridge Digitally signed by David Baldridge Date: 2024.01.08 11:40:04 -05'00'

David Baldridge Chief, South Branch Regulatory Division

Enclosures

Enclosures:

- 1. NWP Nos. 14 and 57 Terms and Conditions
- 2. NWP General Conditions
- 3. WQC Conditions
- 4. LRL-2023-00577 Jewell Road Bridge Replacement Location and Design Plan

Copies Furnished:

Mr. Richard Clausen (Agent) RES Kentucky, LLC rclausen@res.us

Kentucky Energy & Environment Cabinet Division of Water <u>401wqc@ky.gov</u>

Compliance Certification:

Permit Number: LRL-2023-00577-ncc

Name of Permittee: Kentucky Transportation Cabinet

Date of Issuance: January 8, 2024

Upon completion of the activity authorized by this permit and any mitigation required by this permit, sign this certification, and return it to the following address:

U.S. Army Corps of Engineers CELRL-RDS P.O. Box 59 Louisville, Kentucky 40201

Please note that your permitted activity is subject to a compliance inspection by an U.S. Army Corps of Engineers representative. If you fail to comply with this permit, you are subject to permit suspension, modification, or revocation.

I hereby certify that the work authorized by the above referenced permit has been completed in accordance with the terms and conditions of the said permit, and required mitigation was completed in accordance with the permit conditions.

Signature of Permittee

Date

	U.S. /	Army Corps of E	ngineers (USACE)		Form Approved -
	PRELIMINARY	JURISDICTION	AL DETERMINATION	(PJD)	OMB No. 0710-0024
For use of this for	orm, see Sec 404 CV	VA, Sec 10 RHA, Se	c 103 MPRSA; the proponen	t agency is CECW-COR.	Expires 2024-04-30
Authority		Act, Section 10, 33 L		Section 404, 33 USC 1344;	Marine Protection, Research, and gineers; Final Rule for 33 CFR
Principal Purpose	The information that		used in evaluating your reque ct to federal jurisdiction unde		ere are any aquatic resources referenced above.
Routine Uses Disclosure	This information may public, and may be r location where feder may be made availa	y be shared with the made available as pa ral jurisdiction is to be able to the public on t ested information is v	Department of Justice and o art of a public notice or FOIA e determined will be included he District's website and/or o	ther federal, state, and loca request as required by fed l in any resulting jurisdiction on the Headquarters USAC	al government agencies, and the eral law. Your name and property nal determination (JD), which
		The	Agency Disclosure Notice ((ADN)	
reviewing instruction information. Send co Services, at <u>whs.mc</u>	ns, searching existing comments regarding th c-alex.esd.mbx.dd-do	g data sources, gathe he burden estimate o pd-information-collect	or burden reduction suggestion tions@mail.mil. Respondents	a needed, and completing ons to the Department of D s should be aware that notw	ponse, including the time for and reviewing the collection of efense, Washington Headquarter vithstanding any other provision o y a currently valid OMB control
		SECTIO	N I - BACKGROUND INFOR	RMATION	
A. REPORT COMP	LETION DATE FOR	PJD: 2023-12-22			
Mr. Andrew L	sportation Cabinet				
	CE, FILE NAME, ANE ity Road (KY-138)		nent, LRL-2023-00577-nd	cc	
	TION AND BACKGF E BELOW TO DOCL	UMENT MULTIPLE A	AQUATIC RESOURCES AND		CES AT DIFFERENT SITES)
State: Kentuck	·		arish/Borough: <u>Hopkins</u>	City: J	ewell City
Center coordinat		degree decimal form	nat): Latitude: <u>37.526592</u>	° Longitu	ude: 87.354295 °
Nome of second					
	waterbody: Pond				
	CRMED FOR SITE E\ () Determination. Date	,	K ALL THAT APPLY):		
Field Detern					
	malion				
Date(s):				STIDE OF TO DECLI ATC	
Date(s):	E OF AQUATIC RES	SOURCES IN REVIE	W AREA WHICH "MAY BE"	Type of aquatic resource	

Site	Latitude (decimal	Longitude	Estimated amount of	Type of aquatic resource	Geographic authority to which the
Number	degrees)	(decimal degrees)	aquatic resource in review	(i.e., wetland vs. non-	aquatic resource "may be"
			area (acreage and linear	wetland waters)	subject (i.e., Section 404 or
			feet, if applicable)		Section 10/404)
Wetland	1 37.52730	-87.35094	0.021 ac.	PEM	404
wetianu	1 57.52750	-87.55094	0.021 ac.	P E IVI	404
W7 (1 1	4 27 52710	97.25051	0.000		404
Wetland 4	4 37.52719	-87.35051	0.009 ac.	PEM	404
Dand Div	27 52662	97 25424	40.16	Demonial	10/404
Pond Riv	er 37.52663	-87.35424	40 lf.	Perennial	10/404
Wetland	27 52606	07 25221	0.008 ac.	PEM	404
wettand	2 37.52696	-87.35331	0.008 ac.	P E IVI	404
Wetlend	<u>37.52637°/-87.3</u>	97 25(19	0.025	DEM	404
Wetland :	5618°	-87.35618	0.025 ac.	PEM	404
Open	37.52641°/-87.3	07.25(10	0.025		404
Water 1	5618°	-87.35618	0.035 ac.	PUBHh (OW)	404

 The Corps of Engineers believes that there may be jurisdictional aquatic resources in the review area, and the requestor of this PJD is hereby advised of his or her option to request and obtain an approved JD (AJD) for that review area based on an informed decision after having discussed the various types of JDs and their characteristics and circumstances when they may be appropriate.

2) In any circumstance where a permit applicant obtains an individual permit, or a Nationwide General Permit (NWP) or other general permit verification requiring "preconstruction notification" (PCN), or requests verification for a non-reporting NWP or other general permit, and the permit applicant has not requested an AJD for the activity, the permit applicant is hereby made aware that: (1) the permit applicant has elected to seek a permit authorization based on a PJD or no JD whatsoever, which do not make an official determination of jurisdictional aquatic resources; (2) the applicant has the option to request an AJD before accepting the terms and conditions of the permit authorization, and that basing a permit authorization on an AJD could possibly result in less compensatory mitigation being required or different special conditions; (3) the applicant has the right to request an individual permit rather than accepting the terms and conditions of the NWP or other general permit authorization; (4) the applicant can accept a permit authorization and thereby agree to comply with all the terms and conditions of that permit, including whatever mitigation requirements the USACE has determined to be necessary; (5) undertaking any activity in reliance upon the subject permit authorization without requesting an AJD constitutes the applicant's acceptance of the use of the PJD or reliance on no JD whatsoever; (6) accepting a permit authorization (e.g., signing a proffered individual permit) or undertaking any activity in reliance on any form of USACE permit authorization based on a PJD or no JD whatsoever constitutes agreement that all aquatic resources in the review area affected in any way by that activity will be treated as jurisdictional, and waives any challenge to such jurisdiction in any administrative or judicial compliance or enforcement action, or in any administrative appeal or in any Federal court; and (7) whether the applicant elects to use either an AJD or a PJD, the JD will be processed as soon as practicable. Further, an AJD, a proffered individual permit (and all terms and conditions contained therein), or individual permit denial can be administratively appealed pursuant to 33 C.F.R. Part 331. If, during an administrative appeal, it becomes appropriate to make an official determination whether geographic jurisdiction exists over aquatic resources in the review area, or to provide an official delineation of jurisdictional aquatic resources in the review area, the USACE will provide an AJD to accomplish that result, as soon as is practicable. This PJD finds that there "may be" waters of the U.S. and/or that there "may be" navigable waters of the U.S. on the subject review area, and identifies all aquatic features in the review area that could be affected by the proposed activity, based on the following information:

F. SUPPORTING DATA. Data reviewed for PJD (check all that apply)
Checked items should be included in subject file. Appropriately reference sources below where indicated for all checked items:
Maps, plans, plots or plat submitted by or on behalf of the PJD requestor:
BRIDGE NO.: 054B00009N
Map: HOPKINS COUNTY, KENTUCKY
KYTC ITEM NO.: 2-10024.00, Project Development Map
Data sheets prepared/submitted by or on behalf of the PJD requestor.
Office concurs with data sheets/delineation report.
Office does not concur with data sheets/delineation report

Rationale:		
Data sheets prepared by the USACE:		
Corps navigable waters' study:		
U.S. Geological Survey Hydrologic Atlas:		
USGS NHD data.		
USGS 8 and 12 digit HUC maps.		
U.S. Geological Survey map(s). Cite scale & quad nar	ne:	
USDA Natural Resources Conservation Service Soil S Citation:	Survey.	
National Wetlands Inventory map(s).		
Cite Name:		
State/Local Wetland Inventory map(s):		
FEMA/FIRM maps:		
100-year Floodplain Elevation is: . (N	ational Geodectic Verti	cal Datum of 1929)
Photographs: Aerial (<i>Name & Date</i>):		
or Other (<i>Name & Date</i>): KY Brid	138 Bridge Replace lging KY Waters Ph	ement Project (Item 12-10024) Bridge ID 054B00009N, notos, dated 1/18/2023.
Previous determination(s). File no. and date of respon	se letter:	
Other information (<i>please specify</i>):		
IMPORTANT NOTE: The information recorded on this for for later jurisdictional determinations	-	been verified by the USACE and should not be relied upon
Name of Regulatory Staff Member Completing PJD	Date	Signature of Regulatory Staff Member Completing PJD
Norma C. Condra	2023-12-22	CONDRA.NORMA.C.1082941 Digitally signed by CONDRA.NORMA.C.1082941726 726 Date: 2023.12.22 13:04:27 -05'00'
Name of Person Requesting PJD	Date	Signatureof Person Requesting PJD (REQUIRED, unless
Andrew Logsdon, KYTC		obtaining the Signature String Particulation obtaining the Signature String Particulation of the Signature String

¹ Districts may establish timeframes for requester to return signed PJD forms. If the requester does not respond within the established time frame, the district may presume concurrence and no additional follow up is necessary prior to finalizing an action.

2021 KENTUCKY REGIONAL GENERAL CONDITIONS

These regional conditions are in addition to, but do not supersede, the requirements in the Federal Register (See volume 86, date January 13, 2021, pp 2867-2874 for the text of Section C, General Conditions).

Notifications for all Nationwide Permits (NWPs) shall be in accordance with General Condition No. 32.

1. For activities that would result in a loss of Outstanding State or National Resource Waters (OSNRWs), Exceptional Waters (EWs), Coldwater Aquatic Habitat Waters (CAHs) and waters with Designated Critical Habitat (DCH) under the Endangered Species Act for the NWPs listed below, a Pre-Construction Notification (PCN) will be required to the Corps. The Corps will coordinate with the appropriate resource agencies (see attached list) on these NWPs for impacts to these waters.

NWP 3 (Maintenance)

NWP 4 (Fish and Wildlife Harvesting, Enhancement, and Attraction Devices and Activities)

NWP 5 (Scientific Measurement Devices)

NWP 6 (Survey Activities)

NWP 12 (Oil or Natural Gas Pipeline Activities)

NWP 13 (Bank Stabilization)

NWP 14 (Linear Transportation Projects)

NWP 15 (U.S. Coast Guard Approved Bridges)

NWP 16 (Return Water from Upland Contained Disposal Areas)

NWP 17 (Hydropower Projects)

- NWP 18 (Minor Discharges)
- NWP 19 (Minor Dredging)
- NWP 20 (Response Operations for Oil or Hazardous Substances)
- NWP 22 (Removal of Vessels)
- NWP 23 (Approved Categorical Exclusions)
- NWP 25 (Structural Discharges)

NWP 30 (Moist Soil Management for Wildlife)

NWP 32 (Completed Enforcement Actions)

NWP 33 (Temporary Construction, Access, and Dewatering)

NWP 36 (Boat Ramps)

- NWP 41 (Reshaping Existing Drainage Ditches)
- NWP 51 (Land-Based Renewable Energy Generation Facilities)
- NWP 57 (Electric Utility Line and Telecommunications Activities)

NWP 58 (Utility Line Activities for Water and Other Substances)

2. In addition to the notification and agency coordination requirements in the NWPs, for impacts greater than 0.25 acres in all "waters of the U.S." for the NWPs listed below, a PCN will be required to the Corps. The Corps will coordinate with the appropriate resource agencies (see attached list) on these NWPs:

NWP 3 (Maintenance) NWP 14 (Linear Transportation Projects)

- 3. Nationwide Permit No. 14 Linear Transportation Projects.
 - (a) New road alignments or realignments are limited to a permanent loss of 500 linear feet of intermittent or perennial stream length or the stream bed acreages listed in the table below at each crossing. Road crossings with permanent losses greater than 500 linear feet of intermittent or perennial stream or the stream bed acreages listed in the table below associated with new alignments or realignments will be evaluated as an individual permit (i.e., a Letter of Permission or Standard Permit).

Varying	Table of Acreages at Varying Stream Widths for 500 Linear Feet of Impact					
Stream	Acres of					
Width	Stream at					
(Feet)	Varying					
	Widths for					
	500 Linear					
	Feet of Stream					
1	0.011					
2	0.023					
3	0.034					
4	0.046					
5	0.057					
6	0.069					
7	0.080					
8	0.092					
9	0.103					
10	0.115					

(b) In addition to the notification requirements contained in NWP 14, the permittee must submit a PCN to the district engineer prior to commencing the activity for the permanent loss of greater than 300 linear feet of stream bed or the stream bed acreages listed in the table below. (See General Condition 32 and the definition of "loss of waters of the United States" in the Nationwide Permits for further information.)

Table of Acreages at Varying Stream Widths for 300 Linear Feet of Impact					
Stream Width	Acres of Stream at Varying Widths for 300 Linear Feet of				
(Feet)	Stream 0.007				
2	0.014				
3	0.021				
5	0.034				
6 7	0.041 0.048				
8	0.055				
<u>9</u> 10	0.062				

- 4. Notification in accordance with General Condition 32 is required to the Corps for all activities located in the following Section 10 waterways, to include the portion of their tributaries below the Ordinary High Water Mark or navigation pool, or otherwise subject to inundation, by the Section 10 waterway:
 - Mississippi River
 - Ohio River
 - Licking River
 - Kentucky River
 - Salt River
 - Green River
 - Cumberland River
 - Tennessee River
 - Big Sandy River (from mouth to Louisa, KY)
- 5. All applications and requests should be submitted electronically. To submit applications or other requests electronically, all documents should be saved as a PDF document, and then submitted as an attachment in an email to the following email address:

CELRL.Door.To.The.Corps@usace.army.mil

Your email should include the following:

a) Subject Line with the name of the applicant, type of request, and location (County and State). Example: RE: Doe, John, DA Permit Application, Jefferson County, KY
b) Brief description of the request and contact information (phone number, mailing address, and email address) for the applicant and/or their agent.

c) Project Location: Address and Latitude/Longitude in decimal degrees (e.g. 42.927883, -88.362576).

All forms that require signature must be digitally signed or signed manually, scanned and then sent electronically.

Electronic documents must have sufficient resolution to show project details. In order to have the highest quality documents, the original digital documents should be converted to PDF rather than providing scanned copies of original documents.

The electronic application and attached documents must not exceed 10 megabytes (10MB).

6. For all activities, the applicant shall review the U.S. Fish and Wildlife Service's IPaC website: http://ecos.fws.gov/ipac to determine if the activity might affect threatened and/or endangered species or designated critical habitat. If federally-listed species or designated critical habitat are identified, a PCN in accordance with General Condition 18 and 32 would be triggered and the official species list generated from the IPaC website must be submitted with the PCN.

Further information:

Outstanding State or National Resource Water (OSNRWs), Exceptional Waters (EWs), and Coldwater Aquatic Habitat Waters (CAHs) are waters designated by the Commonwealth of Kentucky, Natural Resources and Environmental Protection Cabinet. The list can be found at the following link: <u>http://eppcapp.ky.gov/spwaters/</u>

Designated Critical Habitat (DCH) under the Endangered Species Act is determined within the Commonwealth of Kentucky by the U.S. Fish and Wildlife Service. The current list of Kentucky's Threatened, Endangered, and Federal Candidate Species can be found at the following link: <u>http://www.fws.gov/frankfort/EndangeredSpecies.html</u>

Information on Pre-Construction Notification (PCN) can be found at NWP General Condition No. 32 in the Federal Register (See volume 86, date January 13, 2021, pp 2867-2874 for the text of Section C, General Conditions).

COORDINATING RESOURCE AGENCIES

Chief, Wetlands Regulatory Section U.S. Environmental Protection Agency Region IV Atlanta Federal Center 61 Forsyth Street, SW Atlanta, Georgia 30303

Supervisor U.S. Fish & Wildlife Service JC Watts Federal Building, Room 265 330 West Broadway Frankfort, Kentucky 40601

Supervisor 401 Water Quality Certification Kentucky Division of Water 300 Sower Boulevard, 3rd Floor Frankfort, KY 40601

Commissioner Department of Fish and Wildlife Resources #1 Sportsman's Lane Frankfort, KY 40601

Executive Director and State Historic Preservation Officer Kentucky Heritage Council 410 High Street Frankfort, KY 40601

ANDY BESHEAR GOVERNOR

REBECCA W. GOODMAN SECRETARY

COMMISSIONER

ENERGY AND ENVIRONMENT CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION ANTHONY R. HATTON

> 300 SOWER BOULEVARD FRANKFORT, KENTUCKY 40601

General Certification--Nationwide Permit # 14 **Linear Transportation Projects**

This General Certification is issued **December 18, 2020**, in conformity with the requirements of Section 401 of the Clean Water Act of 1977, as amended (33 U.S.C. §1341), as well as Kentucky Statute KRS 224.16-050.

For this General Certification and all General Certifications of Nationwide Permits (NWP), the term 'surface water' is defined pursuant to 401 KAR Chapter 10, Section 1(72): Surface Waters means those waters having well-defined banks and beds, either constantly or intermittently flowing; lakes and impounded waters; marshes and wetlands; and any subterranean waters flowing in well-defined channels and having a demonstrable hydrologic connection with the surface. Lagoons used for waste treatment and effluent ditches that are situated on property owned, leased, or under valid easement by a permitted discharger are not considered to be surface waters of the Commonwealth.

As required by 40 CFR Part 121 – State Certification of Activities Requiring a Federal License or Permit, all conditions include a statement explaining why the condition is necessary to assure that any discharge authorized under the general permit will comply with water quality requirements and a citation to federal, state, or tribal law that authorizes the condition. The statements and citations are included with each condition. The statements are written entirely at the end of the certification under the section Statements of Necessitv.

Agricultural operations, as defined by KRS 224.71-100(1) conducting activities pursuant to KRS 224.71-100 (3), (4), (5), (6), or 10 are deemed to have certification if they are implementing an Agriculture Water Quality Plan pursuant to KRS 224.71-145.

For all other operations, the Commonwealth of Kentucky hereby certifies under Section 401 of the Clean Water Act (CWA) that it has reasonable assurances that applicable water quality standards under Kentucky Administrative Regulations Title 401, Chapter 10, established pursuant to Sections 301, 302, 303, 306 and 307 of the CWA, will not be violated for the activity covered under NATIONWIDE PERMIT 14, namely Linear Transportation Projects, provided that the conditions in this certification are met. Activities that do not meet the conditions of this General Certification require an Individual Section 401 Water Quality Certification.

- Activities occurring within surface waters assessed by the Kentucky Division of Water as designated Outstanding State Resource Waters, National Resource Waters, Cold Water Aquatic Habitat, Exceptional Waters, or identified as candidate Outstanding State Resource Waters or candidate Exceptional Waters are not authorized under this General Certification and require an Individual Certification. [Statement A and citations KRS 224.70-110, 401 KAR 10:030, Section 1(1), Section 1(2), & Section 1(3); and 401 KAR 10:031, Section 4(2) & Section 8]
- Activities impacting surface waters assessed by the Kentucky Division of Water as impaired for warm water or cold water aquatic habitat where the parameter or source is related to habitat* are not authorized under this General Certification and require an Individual Certification. [Statement B and citations KRS 224.70-110 and 401 KAR 10:031, Section 2 & Section 4]

*These include waters impaired by the parameter 'habitat assessment', 'combined biota/habitat bioassessment' or any parameter from the parameter group 'habitat alterations, and/or waters where the parameter identified as a cause of impairment has a source from the source group 'habitat impacts'.

- 3. Activities impacting surface waters assessed by the Kentucky Division of Water as full support for warm water or cold water aquatic habitat are not authorized under this General Certification and require an Individual Certification. [Statements A and B and citations KRS 224.70-110 and 401 KAR 10:031, Section 2 & Section 4]
- The activity will not occur within surface waters identified as perpetually-protected mitigation sites (e.g., deed restriction or conservation easement). [Statement C and citations KRS 224.70-110, 401 KAR 10:030, Section 1(3); and 40 C.F.R. 230.97]
- 5. Activities with cumulative temporary and permanent impacts greater than 1/2 acre of wetland or 300 linear feet of surface waters are not authorized under this General Certification and require an Individual Certification. This General Certification shall not apply to projects where multiple Nationwide Permits are issued for individual crossings which are part of a single, larger transportation projects. [Statement A and citations KRS 224.70-110, 401 KAR 10:030, Section 1(3)(b) & Section 1(4)(b); and 401 KAR 10:031, Section 2 & Section 4]
- For complete linear transportation projects, all impacts shall not exceed a cumulative length of 500 linear feet within each Hydrologic Unit Code (HUC) 14. [401 KAR 10:030 and 401 KAR 10:031]
- Stream realignment greater than 100 feet is not authorized under this General Certification and require and Individual Certification. [Statement A and citations KRS 224.70-110, 401 KAR 10:030, Section 1(3)(b) & Section 1(4)(b); and 401 KAR 10:031, Section 2 & Section 4]

- Surface water impacts covered under this General Certification and undertaken by those persons defined as an agricultural operation under the Agricultural Water Quality Act must be completed in compliance with the Kentucky Agricultural Water Quality Plan (KAWQP). [Statements A and F and citations KRS 224.71-145(1), 401 KAR 10:030, Section 1(3)(b) & Section 1(4)(b); and 401 KAR 10:031, Section 2 & Section 4]
- Any crossings must be constructed in a manner that does not impede natural water flow. [Statement A and citations KRS 224.70-110, 401 KAR 10:030, Section 1(3)(b) & Section 1(4)(b); and 401 KAR 10:031, Section 2 & Section 4]
- 10. The use of creek rock for bank stabilization; grouted rip-rap; unformed, poured grout; unformed, poured concrete; poured asphalt; or asphalt pieces is not authorized under this General Certification and requires an Individual Certification. Poured concrete or grout will be authorized under this General Certification when contained by tightly sealed forms or cells. Equipment shall not discharge waste washwater into surface waters at any time without adequate wastewater treatments. [Statement A and citations 401 KAR 10:030, Section 1(3)(b) & 1(4)(b); and 401 KAR 10:031, Section 2 & Section 4]
- 11. New stormwater detention/ retention basins constructed in surface waters or modifications to stormwater detention/ retention basins resulting in the reduction in reach or that cause impairment of flow of surface waters are not authorized under this General Certification and require an Individual Certification. [Statement A and citations KRS 224.70-110, 401 KAR 10:030, Section 1(3)(b) & Section 1(4)(b); and 401 KAR 10:031, Section 2 & Section 4]
- 12. Erosion and sedimentation pollution control plans and Best Management Practices (BMPs) must be designed, installed, and maintained in effective operating condition at all times during construction activities so that violations of state water quality standards do not occur. [Statements A and D and citations KRS 224.70-110, 401 KAR 10:030, Section 1(3)(b) & Section 1(4)(b); and 401 KAR 10:031, Section 2 & Section 4]
- 13. Sediment and erosion control measures, such as check-dams constructed of any material, silt fencing, hay bales, etc., shall not be placed within surface waters, either temporarily or permanently, without prior approval by the Kentucky Division of Water's Water Quality Certification Section. If placement of sediment and erosion control measures in surface waters is unavoidable, design and placement of temporary erosion control measures shall not be conducted in such a manner that may result in instability of streams that are adjacent to, upstream, or downstream of the structures. All sediment and erosion control devices shall be removed and the natural grade restored within the completion timeline of the activities. [Statements A and D and citations KRS 224.70-110, 401 KAR 10:030, Section 1(3)(b) & Section 1(4)(b); and 401 KAR 10:031, Section 2 & Section 4]

- 14. Measures shall be taken to prevent or control spills of fuels, lubricants, or other toxic materials used in construction from entering surface waters. [Statements A and D and citations. [KRS 224.70-110, 401 KAR 10:030, Section 1(3)(b) & Section 1(4)(b); and 401 KAR 10:031, Section 2 & Section 4]
- Removal of riparian vegetation shall be limited to that necessary for equipment access. [Statements A and D and citations KRS 224.70-110, 401 KAR 10:030, Section 1(3)(b) & Section 1(4)(b); and 401 KAR 10:031, Section 2 & Section 4]
- 16. To the maximum extent practicable, all in-stream work under this certification shall be performed under low-flow conditions [Statements A and D and citations KRS 224.70-110, 401 KAR 10:030, Section 1(3)(b) & Section 1(4)(b); and 401 KAR 10:031, Section 2 & Section 4]
- 17. Heavy equipment (e.g., bulldozers, backhoes, and draglines), if required for this project, should not be used or operated within the stream channel. In those instances in which such in-stream work is unavoidable, then it shall be performed in such a manner and duration as to minimize turbidity and disturbance to substrates and bank or riparian vegetation. [Statements A and D and citations KRS 224.70-110, 401 KAR 10:030, Section 1(3)(b) & Section 1(4)(b); and 401 KAR 10:031, Section 2 & Section 4]
- 18. Any fill shall be of such composition that it will not adversely affect the biological, chemical, or physical properties of the receiving waters and/or cause violations of water quality standards. If rip-rap is utilized, it should be of such weight and size that bank stress or slump conditions will not be created because of its placement. [Statements A and D and citations KRS 224.70-110, 401 KAR 10:030, Section 1(3)(b) & Section 1(4)(b); and 401 KAR 10:031, Section 2 & Section 4]
- If domestic water supply intakes are located downstream that may be affected by increased turbidity and suspended solids, the permittee shall notify the operator when such work will be done prior to construction. [Statement E and citations KRS 224.70-110, 401 KAR 10:030, Section 1(3)(b) & Section 1(4)(b); and 401 KAR 10:031, Section 2 & Section 4]
- 20. Should evidence of stream pollution or jurisdictional wetland impairment and/or violations of water quality standards occur as a result of this activity (either from a spill or other forms of water pollution), the Kentucky Division of Water shall be notified immediately by calling (800) 928-2380. [Statement A and D and citations KRS 224.70-110, 401 KAR 10:030, Section 1(3)(b) & Section 1(4)(b); and 401 KAR 10:031, Section 2 & Section 4]
- 21. The Kentucky Division of Water requires submission of a formal application for any federal applicant that is not required to submit a Preconstruction Notification that would typically be required of any non-federal applicant. [Statements A and D and citations KRS 224.70-110, 401 KAR 10:030, Section 1(3)(b) & Section 1(4)(b); and 401 KAR 10:031, Section 2 & Section 4]

- 22. The Kentucky Division of Water may require submission of a formal application for an Individual Certification for any project that has been determined to likely have a significant adverse effect upon water quality or degrade surface waters so that existing uses of the water body or downstream waters are precluded. [Statement A and citations KRS 224.70-110, 401 KAR 10:030, Section 1(3)(b) & Section 1(4)(b); and 401 KAR 10:031, Section 2 & Section 4]
- 23. If the final issued General Permit for Nationwide Permit 14 Linear Transportation Projects changes significantly, the Division of Water may opt to deny certification for this permit. [Statements A and D and citations KRS 224.70-110, 401 KAR 10:030, Section 1(3)(b) & Section 1(4)(b); and 401 KAR 10:031, Section 2 & Section 4]

Statements of Necessity:

- A. This condition is necessary to protect waters categorized under the anti-degradation policy to protect the designated and existing uses and to maintain the associated water quality criteria necessary to protect these water resources.
- B. This condition is necessary to protect existing uses and the level of water quality necessary to protect those existing uses shall be assured in impaired water.
- C. This condition is necessary for long-term protection of compensatory mitigation sites.
- D. This condition is necessary to provide for the prevention, abatement, and control of all water pollution and to conserve water resources for legitimate uses, safeguard from pollution the uncontaminated waters, prevent the creation of any new pollution, and abate any existing pollution.
- E. This condition is necessary to protect domestic water supply use.
- F. This condition is necessary to evaluate, develop, and improve best-management practices in conservation plans, compliance plans, and forest stewardship management plans; establish statewide and regional agriculture water quality plans; and otherwise promote soil and water conservation activities that protect surface waters from the adverse impacts of agriculture operations within the Commonwealth.

Violation of Kentucky state water quality standards may result in civil penalties and remediation actions.

For assistance contact the Kentucky Division of Water, Water Quality Certification Section by email (<u>401WQC@ky.gov</u>) or by phone (502)-564-3410.

ANDY BESHEAR GOVERNOR REBECCA W. GOODMAN Secretary

ANTHONY R. HATTON

ENERGY AND ENVIRONMENT CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION

> 300 Sower Boulevard FRANKFORT, KENTUCKY 40601

General Certification--Nationwide Permit (NWP) 2021

NWP 12 – Oil or Natural Gas Pipeline Activities

NWP 57 – Electrical Utility Line and Telecommunications Activities

NWP 58 – Utility Line Activities for Water and Other Substances

This General Certification is issued **December 18, 2020** in conformity with the requirements of Section 401 of the Clean Water Act of 1977, as amended (33 U.S.C. §1341), as well as Kentucky Statute KRS 224.16-050.

For this General Certification and all General Certifications of Nationwide Permits (NWP), the term 'surface water' is defined pursuant to 401 KAR Chapter 10, Section 1(72): Surface Waters means those waters having well-defined banks and beds, either constantly or intermittently flowing; lakes and impounded waters; marshes and wetlands; and any subterranean waters flowing in well-defined channels and having a demonstrable hydrologic connection with the surface. Lagoons used for waste treatment and effluent ditches that are situated on property owned, leased, or under valid easement by a permitted discharger are not considered to be surface waters of the Commonwealth.

As required by 40 CFR Part 121 – State Certification of Activities Requiring a Federal License or Permit, all conditions include a statement explaining why the condition is necessary to assure that any discharge authorized under the general permit will comply with water quality requirements and a citation to federal, state, or tribal law that authorizes the condition. The statements and citations are included with each condition. The statements are written entirely at the end of the certification under the section *Statements of Necessity*.

Agricultural operations, as defined by KRS 224.71-100(1) conducting activities pursuant to KRS 224.71-100 (3), (4), (5), (6), or 10 are deemed to have certification if they are implementing an Agriculture Water Quality Plan pursuant to KRS 224.71-145.

The Commonwealth of Kentucky hereby certifies under Section 401 of the Clean Water Act (CWA) that it has reasonable assurances that applicable water quality standards under Kentucky Administrative Regulations Title 401, Chapter 10, established pursuant to Sections 301, 302, 303, 306 and 307 of the CWA, will not be violated for the activities covered by the above listed Nationwide Permits, provided that the conditions in

this General Certification are met. Activities that do not meet the conditions of this General Certification require an Individual Section 401 Water Quality Certification.

- Activities occurring within surface waters assessed by the Kentucky Division of Water as designated Outstanding State Resource Waters, National Resource Waters, Cold Water Aquatic Habitat, Exceptional Waters, or identified as candidate Outstanding State Resource Waters or candidate Exceptional Waters are not authorized under this General Certification and require an Individual Certification. [Statement A and citations KRS 224.70-110, 401 KAR 10:030, Section 1(1), Section 1(2), & Section 1(3); and 401 KAR 10:031, Section 4(2) & Section 8]
- Activities impacting surface waters assessed by the Kentucky Division of Water as impaired for warm water or cold water aquatic habitat where the parameter or source is related to habitat* are not authorized under this General Certification and require an Individual Certification. [Statement B and citations KRS 224.70-110 and 401 KAR 10:031, Section 2 & Section 4]

*These include waters impaired by the parameter 'habitat assessment', 'combined biota/habitat bioassessment' or any parameter from the parameter group 'habitat alterations, and/or waters where the parameter identified as a cause of impairment has a source from the source group 'habitat impacts'.

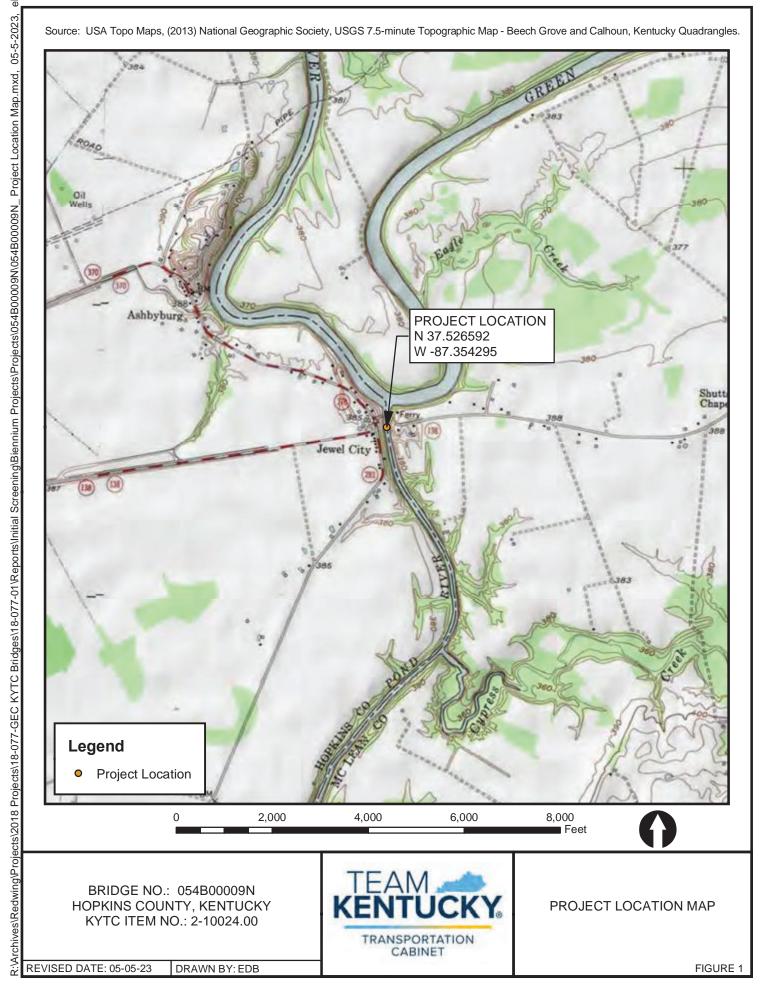
- 3. Activities impacting surface waters assessed by the Kentucky Division of Water as full support for warm water or cold water aquatic habitat are not authorized under this General Certification and require an Individual Certification. [Statements A and B and citations KRS 224.70-110 and 401 KAR 10:031, Section 2 & Section 4]
- The activity will not occur within surface waters identified as perpetually-protected mitigation sites (e.g., deed restriction or conservation easement). [Statement C and citations KRS 224.70-110, 401 KAR 10:030, Section 1(3); and 40 C.F.R. 230.97]
- 5. Activities with cumulative temporary and permanent impacts greater than 1/2 acre of wetland or 300 linear feet of surface waters are not authorized under this General Certification and require an Individual Certification. This General Certification shall not apply to projects where multiple Nationwide Permits are issued for individual crossings which are part of a single, larger utility projects. Cumulative impacts include utility line crossings, permanent or temporary access roads, headwalls, associated bank stabilization areas, substations, pole or tower foundations, maintenance corridor, and staging areas. [Statement A and citations KRS 224.70-110, 401 KAR 10:030, Section 1(3)(b) & Section 1(4)(b); and 401 KAR 10:031, Section 2 & Section 4]
- For a single crossing, impacts from the construction and maintenance corridor in surface waters shall not exceed 50 feet of bank disturbance. [Statement A and citations KRS 224.70-110, 401 KAR 10:030, Section 1(3)(b) & Section 1(4)(b); and 401 KAR 10:031, Section 2 & Section 4]

- 7. Stream impacts under Conditions 5 and 6 of this certification are defined as the length of bank disturbed. For utility line crossings and roads, only one bank length is used in calculation of the totals. [Statement A and citations KRS 224.70-110, 401 KAR 10:030, Section 1(3)(b) & Section 1(4)(b); and 401 KAR 10:031, Section 2 & Section 4]
- This General Certification is limited to the <u>crossing</u> of surface waters by utility lines. This certification does <u>not</u> authorize the installation of utility lines in a linear manner within the stream channel or below the top of the stream bank. [Statement A and citations KRS 224.70-110, 401 KAR 10:030, Section 1(3)(b) & Section 1(4)(b); and 401 KAR 10:031, Section 2 & Section 4]
- Stream relocation, realignment, straightening, and/or widening are not authorized under this General Certification and require an Individual Certification. [Statement A and citations KRS 224.70-110, 401 KAR 10:030, Section 1(3)(b) & Section 1(4)(b); and 401 KAR 10:031, Section 2 & Section 4]
- 10. Any crossings must be constructed in a manner that does not impede natural water flow. [Statement A and citations KRS 224.70-110, 401 KAR 10:030, Section 1(3)(b) & Section 1(4)(b); and 401 KAR 10:031, Section 2 & Section 4]
- 11. Blasting of stream channels, even under dry conditions, is not allowed under this General Certification and require and Individual Certification. [Statement A and citations KRS 224.70-110, 401 KAR 10:030, Section 1(3)(b) & Section 1(4)(b); and 401 KAR 10:031, Section 2 & Section 4]
- 12. Utility lines trenched parallel to the stream shall be located at least 50 feet from an intermittent or perennial stream, measured from the top of the stream bank. Construction within the 50 foot buffer may be authorized if avoidance and minimization efforts are shown and adequate methods are utilized to prevent soil from entering the stream. [Statements A and D and citations KRS 224.70-110, 401 KAR 10:030, Section 1(3)(b) & Section 1(4)(b); and 401 KAR 10:031, Section 2 & Section 4]
- 13. Utility line stream crossings shall be constructed by methods that maintain flow and allow for dry excavation. Water pumped from the excavation shall be contained and allowed to settle prior to re-entering the stream. Excavation equipment and vehicles shall operate outside of the flowing portion of the stream. Spoil material from the excavation shall not be allowed to enter the flowing portion of the stream. [Statement A and D and citations KRS 224.70-110, 401 KAR 10:030, Section 1(3)(b) & Section 1(4)(b); and 401 KAR 10:031, Section 2 & Section 4]
- 14. The activities shall not result in any permanent changes in pre-construction elevation contours in surface waters or stream dimension, pattern or profile. [Statement A and citations KRS 224.70-110, 401 KAR 10:030, Section 1(3)(b) & Section 1(4)(b); and 401 KAR 10:031, Section 2 & Section 4]
- 15. Utility line activities which impact wetlands shall not result in conversion of the area to non-wetland status. [Statement A and citations KRS 224.70-110, 401 KAR

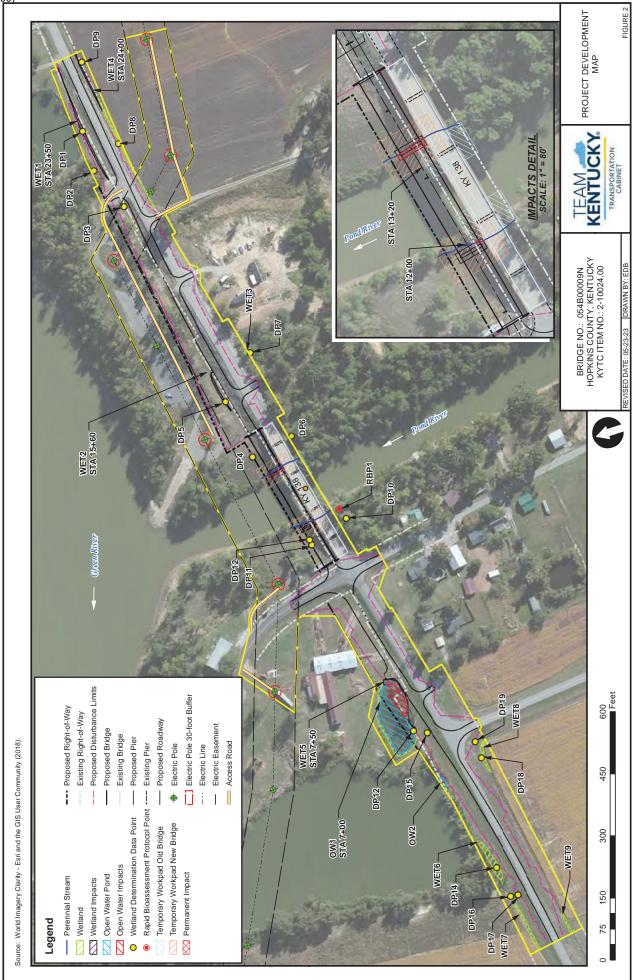
10:030, Section 1(3)(b) & Section 1(4)(b); and 401 KAR 10:031, Section 2 & Section 4]

- 16. Clearing of forested wetlands for the installation or maintenance of utility lines is not authorized under this certification. [Statement A and citations 401 KAR 10:030, Section 1(3)(b) & Section 1(4)(b); and 401 KAR 10:031, Section 2 & Section 4]
- 17. Surface water impacts covered under this General Certification and undertaken by those persons defined as an agricultural operation under the Agricultural Water Quality Act must be completed in compliance with the Kentucky Agricultural Water Quality Plan (KAWQP). [Statements A and F and citations KRS 224.71-145(1), 401 KAR 10:030, Section 1(3)(b) & Section 1(4)(b); and 401 KAR 10:031, Section 2 & Section 4]
- 18. The use of creek rock for bank stabilization; grouted rip-rap; unformed, poured grout; unformed, poured concrete; poured asphalt; or asphalt pieces is not authorized under this General Certification and requires an Individual Certification. Poured concrete or grout will be authorized under this General Certification when contained by tightly sealed forms or cells. Equipment shall not discharge waste washwater into surface waters at any time without adequate wastewater treatments. [Statement A and citations 401 KAR 10:030, Section 1(3)(b) & 1(4)(b); and 401 KAR 10:031, Section 2 & Section 4]
- 19. New stormwater detention/ retention basins constructed in surface waters or modifications to stormwater detention/ retention basins resulting in the reduction in reach or that cause impairment of flow of surface waters are not authorized under this General Certification and require an Individual Certification. [Statement A and citations KRS 224.70-110, 401 KAR 10:030, Section 1(3)(b) & Section 1(4)(b); and 401 KAR 10:031, Section 2 & Section 4]
- 20. Erosion and sedimentation pollution control plans and Best Management Practices (BMPs) must be designed, installed, and maintained in effective operating condition at all times during construction activities so that violations of state water quality standards do not occur. [Statements A and D and citations KRS 224.70-110, 401 KAR 10:030, Section 1(3)(b) & Section 1(4)(b); and 401 KAR 10:031, Section 2 & Section 4]
- 21. Sediment and erosion control measures, such as check-dams constructed of any material, silt fencing, hay bales, etc., shall not be placed within surface waters, either temporarily or permanently, without prior approval by the Kentucky Division of Water's Water Quality Certification Section. If placement of sediment and erosion control measures in surface waters is unavoidable, design and placement of temporary erosion control measures shall not be conducted in such a manner that may result in instability of streams that are adjacent to, upstream, or downstream of the structures. All sediment and erosion control devices shall be removed and the natural grade restored within the completion timeline of the activities. [Statements A and D and citations KRS 224.70-110, 401 KAR 10:030, Section 1(3)(b) & Section 1(4)(b); and 401 KAR 10:031, Section 2 & Section 4]

- 22. Measures shall be taken to prevent or control spills of fuels, lubricants, or other toxic materials used in construction from entering surface waters. [Statements A and D and citations. [KRS 224.70-110, 401 KAR 10:030, Section 1(3)(b) & Section 1(4)(b); and 401 KAR 10:031, Section 2 & Section 4]
- 23. Removal of riparian vegetation shall be limited to that necessary for equipment access. [Statements A and D and citations KRS 224.70-110, 401 KAR 10:030, Section 1(3)(b) & Section 1(4)(b); and 401 KAR 10:031, Section 2 & Section 4]
- 24. To the maximum extent practicable, all in-stream work under this certification shall be performed under low-flow conditions [Statements A and D and citations KRS 224.70-110, 401 KAR 10:030, Section 1(3)(b) & Section 1(4)(b); and 401 KAR 10:031, Section 2 & Section 4]
- 25. Heavy equipment (e.g. bulldozers, backhoes, and draglines), if required for this project, should not be used or operated within the stream channel. In those instances in which such in-stream work is unavoidable, then it shall be performed in such a manner and duration as to minimize turbidity and disturbance to substrates and bank or riparian vegetation. [Statements A and D and citations KRS 224.70-110, 401 KAR 10:030, Section 1(3)(b) & Section 1(4)(b); and 401 KAR 10:031, Section 2 & Section 4]
- 26. Any fill shall be of such composition that it will not adversely affect the biological, chemical, or physical properties of the receiving waters and/or cause violations of water quality standards. If rip-rap is utilized, it should be of such weight and size that bank stress or slump conditions will not be created because of its placement. [Statements A and D and citations KRS 224.70-110, 401 KAR 10:030, Section 1(3)(b) & Section 1(4)(b); and 401 KAR 10:031, Section 2 & Section 4]
- 27. If domestic water supply intakes are located downstream that may be affected by increased turbidity and suspended solids, the permittee shall notify the operator when such work will be done prior to construction. [Statement E and citations KRS 224.70-110, 401 KAR 10:030, Section 1(3)(b) & Section 1(4)(b); and 401 KAR 10:031, Section 2 & Section 4]
- 28. Should evidence of stream pollution or jurisdictional wetland impairment and/or violations of water quality standards occur as a result of this activity (either from a spill or other forms of water pollution), the Kentucky Division of Water shall be notified immediately by calling (800) 928-2380. [Statement A and D and citations KRS 224.70-110, 401 KAR 10:030, Section 1(3)(b) & Section 1(4)(b); and 401 KAR 10:031, Section 2 & Section 4]
- 29. The Kentucky Division of Water requires submission of a formal application for any federal applicant that is not required to submit a Preconstruction Notification that would typically be required of any non-federal applicant. [Statements A and D and citations KRS 224.70-110, 401 KAR 10:030, Section 1(3)(b) & Section 1(4)(b); and 401 KAR 10:031, Section 2 & Section 4]


- 30. The Kentucky Division of Water may require submission of a formal application for an Individual Certification for any project that has been determined to likely have a significant adverse effect upon water quality or degrade surface waters so that existing uses of the water body or downstream waters are precluded. [Statement A and citations KRS 224.70-110, 401 KAR 10:030, Section 1(3)(b) & Section 1(4)(b); and 401 KAR 10:031, Section 2 & Section 4]
- 31. If the final issued General Permit for Nationwide Permit # 12, 57, or 58 changes significantly, the Division of Water may opt to deny certification for this permit. [Statements A and D and citations KRS 224.70-110, 401 KAR 10:030, Section 1(3)(b) & Section 1(4)(b); and 401 KAR 10:031, Section 2 & Section 4]

Statements of Necessity:


- A. This condition is necessary to protect waters categorized under the anti-degradation policy to protect the designated and existing uses and to maintain the associated water quality criteria necessary to protect these water resources.
- B. This condition is necessary to protect existing uses and the level of water quality necessary to protect those existing uses shall be assured in impaired water.
- C. This condition is necessary for long-term protection of compensatory mitigation sites.
- D. This condition is necessary to provide for the prevention, abatement, and control of all water pollution and to conserve water resources for legitimate uses, safeguard from pollution the uncontaminated waters, prevent the creation of any new pollution, and abate any existing pollution.
- E. This condition is necessary to protect domestic water supply use.
- F. This condition is necessary to evaluate, develop, and improve best-management practices in conservation plans, compliance plans, and forest stewardship management plans; establish statewide and regional agriculture water quality plans; and otherwise promote soil and water conservation activities that protect surface waters from the adverse impacts of agriculture operations within the Commonwealth.

Violation of Kentucky state water quality standards may result in civil penalties and remediation actions.

For assistance contact the Kentucky Division of Water, Water Quality Certification Section by email (<u>401WQC@ky.gov</u>) or by phone (502)-564-3410.

Project Development Map.mxd, 05-24-2023, e

Archives/Redwing/Projects/2018 Projects/18-077-GEC KYTC Bridges/18-077-01/Reports/Initial Screening/Biennium Projects/Projects/18-000090/054B000090/

A2 D2 054B00009N Hopkins

Communicate All Promises:#1

Subject:	Use of Kittinger Park					
Creator:	Springer, Tom					
Date Created:	11.03.2021 09:26AM					

Status:

Closed

Commitments	Kittinger Park (NE quadrant) is a public-owned park and is protected
	from use during construction by Section 4(f) (23 CFR 774), with the following exceptions:
	(1) The temporary easement and right-of-way purchased for this bridge project can and should be used for their intended purposes.
	(2) The contractor may pursue temporary use of the remaining area of the park for parking and staging during construction, if:
	(a) the details are coordinated with and approved by the McLean
	County Fiscal Court Judge/Executive Curtis Dame in writing and
	provided to the KYTC: Office: 270-273-3213 Cell: 270-499-8277, cdame@mcleanky.com;
	(b) adequate access to the park, including the boat ramp and parking, remain open and available to the public at all times.
	(c) any damages caused by the temporary use are restored to the pre- construction conditions.
	Likewise, the property in the NE quadrant outside of the right-of-way is owned by McLean County (even though it is in Hopkins County) and is designated as a future park area. Any temporary use of that future park must be coordinated with and approved by the McLean County Judge/Executive.
	This CAP was written by Tom Springer of the Bridging KY Team, please
	call or email with any questions: 502-544-6310, tspringer@qk4.com
Discipline Category	Environmental
Initiator Comments	

Comments

Report of Geotechnical Exploration

054B00009N KY 138 over Pond River Hopkins County, Kentucky

Prepared by: Stantec Consulting Services Inc. Lexington, Kentucky

Stantec Consulting Services Inc. 3052 Beaumont Centre Circle, Lexington KY 40513-1703

January 25, 2022 File: rpt_001_let_178568003

Attention: Mr. Rodney Little, PE

Bridging Kentucky Area 2 Team Lead Qk4 149 Creek Terrace, Suite 2 Somerset, Kentucky 42503

Reference: Report of Geotechnical Exploration 054B00009N KY 138 over Pond River Hopkins County, Kentucky

Dear Mr. Little,

Stantec Consulting Services Inc. (Stantec) is submitting the geotechnical engineering report for the referenced structure with this letter.

This report presents results of the field exploration along with our recommendations for the design and construction for the referenced bridge. As always, we enjoy working with your staff and if we can be of further assistance, please contact our office.

Sincerely,

STANTEC CONSULTING SERVICES INC.

Janald -

Donald Blanton, PE Project Manager Phone: (859) 422-3033 Fax: (859) 422-3100 Donald.blanton@stantec.com

/dlb/

Table of Contents

1.0	INTRODUC	CTION 1	
2.0	SITE TOPO	GRAPHY AND GEOLOGIC CONDITIONS 2)
3.0	FIELD INV	ESTIGATION 2	2
4.0	SUBSURFA	CE CONDITIONS	;
5.0	LABORAT	ORY TESTING AND RESULTS	;
6.0 6.1 6.2 6.3 6.4 6.5	GENERAL EMBANKA SETTLEMEI DOWNDR	ARING ANALYSES	845555
7.0	SEISMIC D	PESIGN CONSIDERATIONS	,
8.0 8.1 8.2	ROADWA	Y AND BRIDGE RECOMMENDATIONS	7
9.0	CLOSING		
LIST O	F TABLES		
Table	1. KY 138 c	over Pond River – Boring Summary 2)
	F FIGURES		
Figure	1. Google	e Image Showing Project Site1	
LIST OI	FAPPENDI	CES	
APPEN		SITE MAP	
APPEN	IDIX B	TYPED BORING LOGS	
APPEN	IDIX C	LABORATORY DATA SHEETS	
APPEN	DIX D	STABILITY ANALYSES	
APPEN	IDIX E	IDEALIZED SOIL PROFILE	

January 25, 2022

1.0 INTRODUCTION

The Kentucky Transportation Cabinet (KYTC) has initiated the Bridging Kentucky program. The purpose of the program is to rehabilitate or replace over 1,000 bridges across the state. Bridges that have been identified to be a part of the program are structures that because of their deteriorating conditions and resulting low load ratings are limiting the movement of people and freight across the state.

This report addresses the geotechnical considerations for Bridge 054B00009N, KY 138 over Pond River. The subject bridge site is in Hopkins County. The bridge location is shown on Figure 1 below.

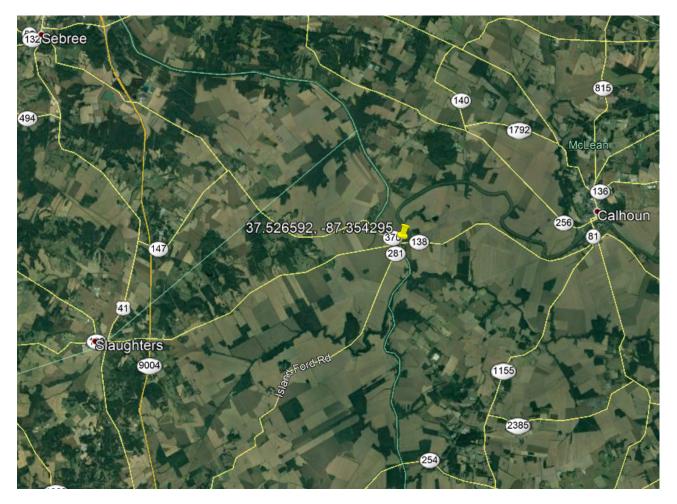


Figure 1. Google Image Showing Project Site.

January 25, 2022

2.0 SITE TOPOGRAPHY AND GEOLOGIC CONDITIONS

The topography of the site is representative of the Western Coal Field Physiographic area of western Kentucky and is described as a gently rolling uplands. Specifically, the bridge site crosses a drainage feature referenced as Pond River near its confluence with the Green River. This area is a relatively flat plain in the eastern edge of the county in the Green and Pond River Valleys that tends to be subject to flooding because stream gradients that are low.

The site is on the Geologic Map of the Calhoun Quadrangle, Western Kentucky (GQ-1239). Based on the review of this geologic map, the bridge site is underlain by alluvium and lacustrine deposits of the Pleistocene and Holocene geological epoch. This deposit consists of sand, clay, silt, and gravel and are on the order of 110 feet thick.

The Rough Creek fault system is located approximately 1 mile north-northwest of the proposed bridge replacement site.

3.0 FIELD INVESTIGATION

A geotechnical exploration was conducted in March of 2021 which consisted of one subsurface boring, designated herein as 054B00009N-1. Initial design for the bridge had the structure being relocated to the north of the existing bridge. Because of this relocation and the amount of new embankment to be constructed, additional analyses were necessary. Therefore, a second geotechnical exploration was conducted in October of 2021 which consisted of two additional boring 054B00009N-2 and 054B00009N-3. The boring locations and surface elevations were obtained by the Bridging Kentucky TEAM and are presented in Appendix A. Table 1 provides a summary of the location, elevation, and depth of each boring drilled for the proposed bridge.

			Top of Rock/Refusal Bottom of Hole			m of Hole	
Hole No.	Latitude	Longitude	Surface Elevation (ft.) MSL	Depth (ft.)	Elevation (ft.) MSL	Depth (ft.)	Elevation (ft.) MSL
054B00009N-1	37.526979	-87.353811	376.0	N/A	N/A	81.5	294.5
054B00009N-2	37.526839	-87.353847	374.7	99.5	275.2	100.6	274.1
054B00009N-3	37.526662	-87.354808	373.2	96.8	276.4	100.2	273.0

Table 1. KY 138 over Pond River – Boring Summary

^a No auger refusal was encountered in boring 045B00009N-1.

The drill crew operated a truck-mounted drill rig equipped with hollow-stem augers. The field personnel generally performed soil sampling at five-foot intervals of depth to obtain in situ strength data and specimens for subsequent laboratory natural moisture content determinations and classification testing. Standard penetration testing (SPT) was conducted at regular intervals at these boring locations.

January 25, 2022

4.0 SUBSURFACE CONDITIONS

In general, the subsurface materials observed in the sample borings consisted primarily of brown to gray lean clay with varying amounts of silt and sand that was moist to wet, and very soft to stiff. Silty sand materials were encountered near bedrock. Standard penetration test blow counts (N) in soil material ranged from 0 to 52 blows per foot. The soil thickness encountered was found to be on the order of 100 feet at the bridge location. Detailed logs of the borings are presented in Appendix B.

Observation wells were not installed. Water was encountered at the time of drilling at depths between 15 and 33 feet. Groundwater can be expected to be encountered at the level of Pond River. Groundwater levels and/or conditions may vary considerably, with time, according to the prevailing climate, rainfall or other factors.

5.0 LABORATORY TESTING AND RESULTS

Stantec performed laboratory testing on soil samples from the borings. All laboratory tests were performed in accordance with the applicable AASHTO or Kentucky Methods soil and rock testing specifications. Laboratory testing consisted of natural moisture content, grain size-sieve analyses (silt plus clay determinations), and soil classification index testing.

The SPT soil samples tested classify as CL, CL-ML and ML according to USCS and A-6 and A-4 based on the AASHTO classification system. Results of the laboratory testing are also presented in Appendix C.

Undisturbed (Shelby) tube samples were obtained from selected locations. Soil samples were extruded from the tubes, trimmed into six-inch specimens, and described visually. Unit weights (wet and dry) and natural moisture contents were determined for each six-inch specimen. Selected specimens were subjected to engineering classification, unconfined compressive strength, consolidated-undrained triaxial testing and one-dimensional consolidation testing. The results of these tests are presented on the appropriate sections in Appendix C.

6.0 ENGINEERING ANALYSES

6.1 GENERAL

This project will consist of replacing the existing bridge. Initial design for the bridge had the structure being relocated to the north of the existing bridge. Because of this relocation, depth to bedrock and the amount of new embankment to be constructed, slope stability and settlement analyses were necessary. Any grading requirements or material placement that may be needed should be placed at 2H:1V slopes or flatter. Based on a combination of existing

January 25, 2022

conditions and anticipated grades, a recommendation for steel H piles is being provided for support of the foundation elements for the subject structure.

6.2 EMBANKMENT STABILITY ANALYSES

Station 14+50 was evaluated for short- and long-term slope stability along with a rapid drawdown analysis. Stantec evaluated the global stability of the embankment slopes utilizing the SLOPE/W software. Short-term analyses, using total-stress shear-strength parameters for foundations and embankment materials, simulate conditions that will exist immediately following completion of the embankments. Long-term analyses, using effective-stress shear-strength parameters, simulate conditions that will exist long after the embankment is constructed and excess pore pressures within the foundation materials have dissipated.

Based on the proposed construction limits, it is estimated that the majority of the roadway embankments will be constructed from an unknown borrow source. Shear-strength parameters for the soil embankment materials were estimated through trial and error to determine the minimum typical soil strength values which would meet the KYTC factor of safety requirements. The shear strength parameters for the foundation soils were derived from soil classifications, unconfined compressive strength, consolidated-undrained triaxial testing and associated published correlations of such data. Shear-strength parameters used for the embankment and foundation materials are shown on the embankment stability sections in Appendix D. Table 2 summarizes the shear-strength parameters modeled for the embankment materials.

Soil Fill Material									
Short-Term Total Stress				Long-Term Effective Stress					
С	=	1,000 psf		C	=	200 psf			
φ	=	0°		$\overline{\Phi}$	=	19°			
γ	=	120 pcf		γ	=	120 pcf			

Table 2. Embankment Shear-Strength Parameters

Results of slope stability analyses, including predicted minimum factors of safety, predicted failure surfaces, and modeled groundwater table positions are presented on the computer output in Appendix D. A summary of the results of the embankment stability analyses is provided in Table 3.

	Slope	Approximate	Factor of Safety					
Station	Geometry (H:V)	Embankment Height (ft)	Short- Term	Long- Term	Rapid draw- down			
14+50	2.1	20	1.8	1.6	1.3			

Table 3. Summary of Embankment Stability Analysis

January 25, 2022

The factors of safety presented in Table 3 meet or exceed the minimum target values outlined in the KYTC Geotechnical Manual and indicate the 2:1 (H:V) embankment configurations should exhibit adequate stability as proposed for the embankment configurations.

6.3 SETTLEMENT AND LATERAL SQUEEZE POTENTIAL

This project will consist of replacing the existing bridge. The new bridge will be relocated to the north of the existing bridge. Project plans indicate the back-station approach embankment will be on the order of 22 feet in height. The subsurface exploration indicates the foundation soils at End Bent 2 to consist of approximately 95 feet of clay and silty clay materials overlying silty sands to a depth of approximately 97 feet. Settlement parameters used in the analyses were based on the one-dimensional consolidation testing results. Based on the analyses, at total of approximately 9 inches of settlement will occur at the left shoulder at End Bent 2. It is estimated that the approximate time for to achieve primary consolidation (90% of total settlement) of the clays soils is on the order of 1,656 days (4.5 years). Based on these results and the anticipated construction schedule it is estimated that the foundation elements will be designed to accommodate the down drag loads.

Studies conducted by the FHWA have shown that some bridge end bents supported on piles driven through thick deposits of compressive soils have tilted or rotated toward the embankment. FHWA guidelines suggest that if the pressure exerted by the weight of the embankment exceeds three times the undrained shear strength of the foundation soils, the potential for lateral squeeze exists. A review of the subsurface data obtained from the borings indicates the clay soils beneath End Bent 2 approach embankment exhibit an undrained shear strength of 950 psf. The maximum embankment loading at this location was estimated to be approximately 2,640 psf. Based on the noted criteria, the embankment loading does not exceed three times the average soil shear strength, indicating the potential for lateral squeeze is low at this location.

6.4 DOWNDRAG ESTIMATES

Based on the anticipated loads and the subsurface profile at the bridge site, a foundation system consisting of deep foundation elements bearing on the underlying bedrock. The settlement analyses presented in Section 6.3, the foundation soils at End Bent 2 may experience 9 inches due to construction of the new embankment. Studies indicate that little as 0.4 to 0.5 inches of settlement is sufficient to mobilize negative skin friction forces at the pile-soil interface. It is our understanding that because of anticipated construction schedule the foundation elements will be installed without a waiting period for settlement. Therefore, the proposed piles at the abutment locations will be subject to negative skin friction. Based on the settlement analyses, the pile length subjected to downdrag is 93.3 feet (based on an estimated top of pile elevation 393 feet). The estimated drag load for a 12x53 H-pile is 356.9 kips (178.5 tons). The estimated drag load for a 14x89 H-pile is 414.5 kips (207.3 tons).

January 25, 2022

6.5 STEEL H-PILE ANALYSES

6.5.1 Pile Capacity

Because of the anticipated loads and the subsurface profile at the bridge site, a foundation system consisting of deep foundation elements bearing on the underlying bedrock is being recommended. Due to the nature of the soil deposits and the subsurface conditions observed at the site, an axial resistance factor (ϕ_c) of 0.6 is recommended for good driving conditions as outlined in Section 6.5.4.2 of the current LRFD Design Specifications. The estimated total factored axial resistance of a 12x53 H-pile using (ϕ_c) of 0.6, is 465.0 kips. For 14x89 piles, the estimated total factored axial resistance is 783.0 kips. An idealized soil profile is presented in Appendix E.

6.5.2 Hammer Energy

Static pile analyses were conducted to estimate the ultimate driving resistance that 12-inch and 14-inch steel H-piles would experience during the installation process. Drivability analyses were performed at the End Bent locations. The analyses were performed using guidelines presented in the FHWA "Soils and Foundations Workshop Manual".

The soil column contributing to driving resistance at the End Bent locations includes existing embankment material and foundation soils. The pile is estimated to encounter silty, sandy clay materials. The results of FHWA research and other literature regarding pile installation indicate that significant reductions in skin resistances occur during pile driving, primarily due to the dynamics of the installation process. Soils are remolded and pore water pressures apparently increase, causing reductions in shear strengths. The driving resistances were estimated under the condition that no interruptions, and therefore no pile "set" characteristics would be experienced during the driving process.

The drivability analyses were conducted using the GRLWEAP (Version 2010) computer program for steel H-piles driven to depth. To perform the drivability analyses, two situations were modeled. The first one involved determining the minimum hammer energy which would drive the H-piles to depth without excessive blows, and which would achieve the maximum allowable pile capacity. This condition would show the minimum hammer energy necessary to drive the pile to depth. The second part of the analyses would determine what the maximum hammer energy can be to drive the piles to depth, and one which would not damage the pile during the driving process. The FHWA publication titled "Soils and Foundations Workshop Manual-Second Edition" defines a reasonable range of hammer blows to be between 30 and 144 blows per foot for a steel H-pile.

The results of the drivability analyses indicate that a hammer with a minimum energy of 60 footkips and a maximum energy of 186 foot-kips will be required to drive 12x53 steel H-piles to practical refusal without encountering excessive blow counts or damaging the piles.

Stantec acc v:\1785\active\178568003\geotechnical\054b00009n\report\rp_stn_dlb_054b00009n_geofinal_rev_01_25_2022.docx

January 25, 2022

The drivability analyses for the 14-inch H-piles indicate that a hammer with a minimum energy of 66 foot-kips and a maximum energy of 265 foot-kips will be required to drive 14x89 steel H-piles to practical refusal without encountering excessive blow counts or damaging the piles.

7.0 SEISMIC DESIGN CONSIDERATIONS

The 2020 AASHTO LRFD Bridge Design Specifications provide guidelines for determining the seismic hazard at a bridge site. The seismic hazard for a bridge site is characterized by the acceleration response spectrum and the site factors for the relevant site classification. Based on the results of the exploration and the geology of the area, the soil and rock profile in the vicinity of the bridge should be classified as site classification E, as per AASHTO, Table 3.10.3.1.1 - Site Class Definitions, and used for design purposes.

8.0 ROADWAY AND BRIDGE RECOMMENDATIONS

Stantec developed the following recommendations based upon reviews of available data, information obtained during the field exploration, results of laboratory testing and engineering analyses, and discussions with TEAM personnel.

8.1 ROADWAY GEOTECHNICAL NOTES

8.1.1. Clearing and grubbing of embankment areas shall be completed in accordance with Section 202 of the current Kentucky Department of Highways Standard Specifications for Road and Bridge Construction.

8.1.2. Removal of existing structures and other obstructions shall be completed in accordance with Section 203 of the current Kentucky Department of Highways Standard Specifications for Road and Bridge Construction.

8.1.3. Procedures shall be performed as required to control erosion and water pollution in accordance with Sections 212 and 213 of the current Kentucky Department of Highways Standard Specifications for Road and Bridge Construction.

8.1.4. All water wells and/or cisterns within the limits of construction, whether shown on the plans or not, shall be plugged in accordance with Section 708 of the current Kentucky Department of Highways Standard Specifications for Road and Bridge Construction.

8.1.5. All catch basins and manholes shall be filled and capped and all septic tanks shall be filled in accordance with Section 708 of the current Kentucky Department of Highways Standard Specifications for Road and Bridge Construction.

8.1.6. All channel changes and special ditches shall be constructed prior to placement of any embankment materials adjacent to them in accordance with Section 206 of the current

January 25, 2022

Kentucky Department of Highways Standard Specifications for Road and Bridge Construction. Materials excavated from these areas may be utilized in construction of the embankments but may require aeration to the proper moisture contents prior to compaction operations. No extra payment shall be permitted for re-handling, hauling, stockpiling and/or manipulating these materials.

8.1.7. In accordance with Section 206 of the current Kentucky Department of Highways Standard Specifications for Road and Bridge Construction, the moisture content of embankment and subgrade materials shall not vary from the optimum moisture content, as determined by KM 64-511, by more than plus or minus two percent. This moisture content requirement shall have equal weight with the density requirement when determining the acceptability of embankment or subgrade construction. Refer to the family of curves for moisture-density relationships.

8.1.8 All soils, whether from roadway excavation or borrow, may require manipulation to obtain proper moisture contents prior to compaction. Direct payment shall not be permitted for re-handling, hauling, stockpiling and/or manipulating soils.

8.1.9. The Contractor is responsible for conducting any operations necessary to excavate the cut areas to the required typical sections. The cost of these operations shall be incidental to the earthwork.

8.1.10. Slope protection meeting the requirements of Section 703 and 805 of the Standard Specifications for Road and Bridge Construction, current edition, will be required at the end bent locations. Place Type I Geotextile Fabric, in accordance with Sections 214 and 843 of the Standard Specifications between the embankment and the protection.

8.1.11. Any saturated, soft, unstable areas encountered within embankment foundation limits and/or any other areas as directed by the Engineer shall be drained and stabilized using broken rock excavated beneath the RDZ. An estimated 3-foot working platform shall be constructed in such areas.

8.1.12. The Contractor shall construct embankment foundation benches and transverse benches as indicated on the plans or as directed by the Engineer, prior to placement of embankments in areas requiring such benches.

8.1.13. Embankment foundation benches/slope serrations and perforated pipe underdrains shall be constructed at the following approximate locations in accordance with current Kentucky Department of Highways Standard Drawings RGX-010 and RDP-006, project cross-sections and as directed by the Engineer. The benches shall be constructed one at a time beginning with the lowest bench. Each bench shall be backfilled prior to excavation of the next bench. This procedure should be followed to help maintain stability of the existing slopes in these areas.

Approximate Station Limits

Mailnline

0+50 to 4+00, Right

January 25, 2022

Approximate Station Limits

Mailnline 2+50 to 5+50, Left 18+50 to 18+75, Right 21+50 to 24+25, Right 22+00 to 24+50, Left

8.1.14. Conventional transverse benches shall be constructed, and perforated pipe underdrains installed at the following approximate locations in accordance with Kentucky Department of Highways Standard Drawings RDP-005 and RDP-006, project cross-sections (as applicable), and as directed by the Engineer. Contrary to Standard Drawing RDP-006, transverse benches and perforated pipe underdrains shall be installed in both uphill and downhill transition areas between cuts and fills. Existing perforated pipe underdrains along I-71 should be extended.

Approximate Station Limits

Mainline	;
10+25	
18+25	

8.1.15. Perforated pipes for subgrade drainage shall be installed at vertical sags and at the upgrade ends of structures, in accordance with Kentucky Department of Highways Standard Drawing RDP-005 and/or as directed by the Engineer. Contrary to Standard Drawing RDP-005, such drains shall be installed even when a rock roadbed is being constructed. These drainage features shall be installed at the following approximate locations:

Approximate Station Limits

Mainline	
10+25	
15+00	

8.1.16. At the writing of this report, a borrow source for embankment material has not been identified. It is recommended that borrow materials to be used for embankment construction meet the following minimum strength parameters.

	Soil Fill Material								
Short-Term				Long-Term					
Total Stress				Effective Stress					
С	=	1,000 psf		C	=	200 psf			
φ	=	0°		$\overline{\Phi}$	=	19°			
γ	=	120 pcf		γ	=	120 pcf			

January 25, 2022

The Contractor shall perform laboratory testing to confirm that the minimum total stress and effective stress strength parameters are equal to or greater than the above values per material type for each borrow area. The test results shall be submitted to the Engineer for approval.

8.2 BRIDGE FOUNDATION RECOMMENDATIONS

8.2.1. **A plan note should be included by the designer** that indicates that temporary shoring, sheeting, cofferdams, and/or dewatering methods may be required to facilitate foundation construction. It should be anticipated that groundwater will be encountered at foundation locations within the flood plain of Pond River.

8.2.2. The following table provides recommended pile lengths applicable at the referenced substructure element locations. It is estimated that 12-inch or 14-inch H-pile foundations are being planned for use in supporting the new bridge substructure elements.

Hole No.	Total Factored Axial Resistance ^a (kips)	Top of Rock (ft) MSL
12x53 H-Pile	465	276.4 to 275.2
14x89 H-pile	783	276.4 to 275.2

a. Obtained using $\phi {=} 0.6$ based on good driving conditions.

8.2.3. **A plan note should be included by the designer** which states the following hammer criteria: At the End Bent locations, a diesel pile driving hammer with a rated energy between 60 foot-kips and 186 foot-kips will be required to drive 12x53 steel H-piles to practical refusal without encountering excessive blow counts or damaging the piles. Alternatively, a diesel pile driving hammer with a rated energy between 66 foot-kips and 265 foot-kips will be required to drive 14x89 steel H-piles to practical refusal without encountering excessive blow counts or damaging the piles. The Contractor shall submit the proposed pile driving system to the Engineer for approval prior to the installation of the first pile. Approval of the pile driving system by the Engineer will be subject to satisfactory field performance of the pile driving procedures.

8.2.4. The design and installation of the pile foundations should conform to current AASHTO LRFD Bridge Design Specifications, and Section 604 of the current edition of the Kentucky Department of Highways Standard Specifications for Road and Bridge Construction.

8.2.5. The AASHTO LRFD Bridge Design Specifications recommend a resistance factor for horizontal geotechnical resistance of a single pile or pile group of 1.0 for lateral capacity analyses.

8.2.6. The 2020 AASHTO LRFD Bridge Design Specifications recommends axial resistance factors based on pile driving conditions (good or severe driving conditions). Based on the general subsurface conditions encountered across the project, it is anticipated that there will be good pile driving conditions. Therefore, it is recommended that the axial resistance of piles in

January 25, 2022

compression (ϕ_c) used in design be 0.60. Further, the combined axial and flexural resistance factors for design should be $\phi_c = 0.70$ and $\phi_f = 1.00$ as noted in Section 6.5.4.2 of the referenced AASHTO specifications.

9.0 CLOSING

9.1. The conclusions and recommendations presented herein are based on data and subsurface conditions from the borings drilled during the geotechnical exploration using that degree of care and skill ordinarily exercised under similar circumstances by competent members of the engineering profession. No warranties can be made regarding the continuity of conditions across the site.

9.2. General soil descriptions and indicated boundaries are based on an engineering interpretation of all available subsurface information and may not necessarily reflect the actual variation in subsurface conditions between borings.

9.3. The observed water levels and/or conditions indicated on the boring log are as recorded at the time of exploration. These water levels and/or conditions may vary considerably, with time, according to the prevailing climate, rainfall, tail water elevations or other factors and are otherwise dependent on the duration of and methods used in the exploration program.

9.4. Stantec exercised sound engineering judgment in preparing the subsurface information presented herein. This information has been prepared and is intended for design and estimating purposes. Its presentation on the plans or elsewhere is for the purpose of providing intended users with access to the same information. This subsurface information interpretation is presented in good faith and is not intended as a substitute for independent interpretations or judgments of the Contractor.

9.5. All structure details shown herein are for illustrative purposes only and may not be indicative of the final design conditions shown in the contract plans.

HOPKINS COUNTY STP BRZ 9030 (500) Contract ID: 255382 Page 125 of 372

APPENDIX A SITE MAP

HOPKINS COUNTY STP BRZ 9030 (500) Contract ID: 255382 Page 127 of 372

APPENDIX B TYPED BORING LOGS

STP BRZ 9030 (500) Drilling Firm: Stantec For: Division of Structural Design Geotechnical Branch

DRILLER'S SUBSURFACE LOG

Contract ID: 255382 Page 128 of 372

Printed: 1/25/22

Project ID: <u>178568003</u> Item Number: <u>Statewide</u>							Project Project	idge		
Hole Numb	oer <u>054B(</u>	00009N-1	Immediate Water Depth	15.0 (03/30/21)	Start D)ate _ 03/30/2	021		Hole Type <u>sample</u>	<u>e_</u>
Surface Ele	evation <u>3</u>	76.0'	Static Water Depth NA _		End D	ate <u>03/31/20</u>	021		Rig_Number <u>55#4</u>	<u>ı </u>
Fotal Deptl	h <u>81.5'</u>		Driller M. Martin _		Latitud	le(83) <u>37.52</u>	6979			
_ocation _	+ ' <i>Lt.</i>				Longit	ude(83) <u>-87</u> .	353811			
Lithold	ogy	Doporintio		Overburden	Sample No.	Depth (ft)	Rec. (ft)	SP1 Blow		Remarks
levation	Depth	Descriptic	n	Rock Core	Std/Ky RQD	Run (ft)	Rec (ft)	Rec (%)	c SDI) (JS)	Remarks
					1	2.0-3.5	1.5	2-3-	2 SPT	
					2	5.0-6.5	1.0	3-3-	3 SPT	
				·	3	10.0-11.5	1.5	3-2-	3 SPT	
					0	10.0 11.0	1.0	02		
					4	15.0-16.5	1.5	3-5-	5 SPT	
		Medium stif	f to stiff, light brown to brow wet, lean clay.	n, moist to	5	20.0-21.5	1.5	2-3-	4 SPT	
					6	25.0-26.5	1.5	3-3-	3 SPT	
					7	30.0-31.5	1.5	2-3-	3 SPT	
				·	8	35.0-36.5	1.5	0-2-	3 SPT	
336.0	40.0				9	40.0-41.5	1.5	2-2-	3 SPT	
		Soft to stiff	, light gray to gray, wet, silty with sand.	/ lean clay	10	45.0-46.5	1.5	1-2-	3 SPT	
						-0.0-40.J	1.0	1-2-		

STP BRZ 9030 (500) Drilling Firm: Stantec For: Division of Structural Design Geotechnical Branch

DRILLER'S SUBSURFACE LOG

Printed: 1/25/22

Contract ID: 255382

Page 129 of 372

-	D: <u>1785</u> nber: <u>St</u>	<u>68003</u> tatewide						Project Type: <u>Structure Bridge</u> Project Manager: _			
Hole Numb	oer <u>054B0</u>	00009N-1	Immediate Water Depth _	15.0 (03/30/21)	Start [Date <u>03/30</u> /	/2021		Hole	Туре <u>samp</u>	le
Surface Ele	evation <u>3</u>	76.0'	Static Water Depth <u>NA</u>		End D	ate <u>03/31/</u>	2021		Rig_N	Number <u>55</u>	<u>#4</u>
Fotal Deptl	h <u>81.5'</u>		Driller <u><i>M. Martin</i></u>		Latitud	de(83) <u>37.5</u>	26979				
ocation _	+ ' <i>Lt.</i>				Longit	ude(83) <u>-8</u>	7.353811				
Litholo	ogy	Descriptic		Overburden	Sample No.	Depth (ft)	Rec. (ft)	SI Blo	PT ws	Sample Type	Remarks
levation	Depth	Description	11	Rock Core	Std/Ky RQD	Run (ft)	Rec (ft)	R (%	ec %)	SDI (JS)	Kemanos
					11	50.0-51.5	1.5	5-6	6-6	SPT	
					12	55.0-56.5	1.3	4-	5-4	SPT	
-				·	13	60.0-61.5	1.5	3./	1-6	SPT	
					13	00.0-01.5	1.5	3-2	+-0	3F1	
		Soft to stiff	f, light gray to gray, wet, sil with sand.	ty lean clay	14	65.0-66.5	1.5	1-2	2-3	SPT	
-					15	70.0-71.5	1.5	2-2	2-4	SPT	
					16	75.0-76.5	1.5	1-3	3-4	SPT	
294.5	81.5				17	80.0-81.5	1.5	0-0)-3	SPT	
			(Bottom of Hole 81.5') (No Refusal)								
)											

STP BRZ 9030 (500) Drilling Firm: Stantec For: Division of Structural Design Geotechnical Branch

DRILLER'S SUBSURFACE LOG

Printed: 1/25/22

Project II Item Nur			<u>Statewide</u> ·	- Various	5		Project Project		<u>Structure B</u> ger: _	ridge
Hole Numb Surface Ele Total Depti	evation <u>3</u> 3 h <u>100.6'</u>		Static Water Depth <u>NA</u> Driller <u>Andrew Clements</u>			Start Date <u>10/19/2021</u> End Date <u>10/20/2021</u> Latitude(83) <u>37.526839</u> Longitude(83) <u>-87.353847</u>		1Rig_Number _557_ 339		
Location				rburden	Sample No.	Depth (ft)	Rec. (ft)	SPT Blows		
Elevation	Elevation Depth		Rock Core		Std/Ky RQD	Run (ft)	Rec Rec (%)			Remarks
374.3/	0.4/	۱	Topsoil.	/						
- - 5				-	1	2.0-3.5	1.3	3-2-2	2 SPT	-
5 _ _				-	1	5.0-7.0	1.7		ST	5
- 10				-	2	10.0-11.5	1.5	4-4-5	5 SPT	<u>10</u>
-		Soft to stiff,	clay.	2	10.0-11.0	1.0				
<u>15</u> - -				-	2	15.0-17.0	1.7		ST	<u>15</u>
- 20				-						20
-				-	3	20.0-21.5	1.5	2-3-4	4 SPT	
25 349.7	25.0									25
-		Soft, light b	prownish gray to grayish brown, m lean clay.	ioist, -	3	25.0-27.0	1.8		ST	
	30.0									30
-				-	4	30.0-31.5	1.5	0-1-2	2 SPT	-
<u>35</u> -		Soft to sti	ff, light gray to gray, moist, lean cl	lay	4	35.0-37.0	1.8		ST	35
				ŀ						
40 334.7 - -	40.0				5	40.0-41.5	1.3	2-2-2	2 SPT	<u>40</u>
- 4 <u>5</u>		Soft. da	ark gray to gray, wet, silt with sand	ł						45
-		· - · ·, •		-	5	45.0-47.0	2.0		ST	
50										50

Contract ID: 255382 Page 130 of 372

Page 1 of 3

STP BRZ 9030 (500) Drilling Firm: Stantec For: Division of Structural Design Geotechnical Branch

DRILLER'S SUBSURFACE LOG

Contract ID: 255382 Page 131 of 372 Printed: 1/25/22

Page 2 of 3

Project IE Item Num			<u>Statewide - Vari</u>	<u>ous</u>		Project Type: <u>Structure Bridge</u> Project Manager: _				
Hole Numbo Surface Ele Total Depth Location _ +	evation <u>37</u> n <u>100.6'</u>	74.7'	Immediate Water Depth <u>33.0 (10/19/2</u> Static Water Depth <u>NA</u> Driller <u>Andrew Clements</u>	End D Latitud	Start Date <u>10/19/20</u> End Date <u>10/20/20</u> Latitude(83) <u>37.520</u> Longitude(83) <u>-87.3</u>			le Type <u>sam</u> g_Number <u>55</u>		
Litholog			Overburden	n Sample No.	Depth (ft)	Rec. (ft)	SPT Blows	Sample Type	Remarks	
Elevation	Depth	Descriptic	on Rock Core	e Std/Ky RQD	Run (ft)	Rec (ft)	Rec (%)	SDI (JS)	Kelliainə	
; 319.7	55.0	Soft, da	ark gray to gray, wet, silt with sand.	6	50.0-51.5	1.5	2-1-1	SPT		
010.7				6	55.0-56.0	0.7		ST		
		Very soft to	stiff, light gray to gray, moist, lean clay with sand.	7	60.0-61.5	1.3	0-1-1	SPT		
_			with Sana.	7 8 9	65.0-67.0 67.0-68.5 70.0-71.5	0.0	3-7-5 0-1-5	ST SPT SPT		
i 299.7	75.0			8	75.0-77.0	2.0		ST		
<u>-</u>				0	80.0-81.5	1.5	0-0-0	SPT		
5		Very soft tc	o medium stiff, gray to light gray, moist, sandy silty clay.	9	85.0-87.0	2.0		ST		
<u>)</u>				11	90.0-91.5	0.0	0-0-4	SPT		
279.7	95.0			10	95.0-95.1	0.0	11-17-18	3 ST		
275.2		Dense, lig	ht gray, wet, sand with gravel and silt.	12	95.1-96.6	1.4	11-17-10	SPT		

STP BRZ 9030 (500) Drilling Firm: Stantec For: Division of Structural Design Geotechnical Branch

DRILLER'S SUBSURFACE LOG

Printed: 1/25/22

Contract ID: 255382

Page 3 of 3

Page 132 of 372

Project ID: <u>1</u> Item Number	178568003 r: <u>Statewide</u>	<u>State</u>	<u>Statewide - Various</u>				Project Type: <u>Structure Bridge</u> Project Manager: _				
Hole Number <u>(</u> Surface Elevatio Total Depth <u>10</u> Location <u>+ 'La</u>	on <u>374.7'</u> 00.6'	Static Water Depth <u>NA</u>	Immediate Water Depth <u>33.0 (10/19/21)</u> Static Water Depth <u>NA</u> Driller <u>Andrew Clements</u>		Start Date <u>10/19/2</u> End Date <u>10/20/20</u> Latitude(83) <u>37.52</u> Longitude(83) <u>-87.</u>		021Rig_N 26839				
Lithology			Overburden	Sample No.	Depth (ft)	Rec. (ft)	SPT Blows	Sample Type			
Elevation Dep	Descr	iption	Rock Core	Std/Ky RQD	Run (ft)	Rec (ft)	Rec (%)	SDI (JS)	Remarks		
274.1 10	0.6	Black, carbonaceous shale			100.0-100.6	0.6	40-50/0.10'	SPT			
- - - - -		(Bottom of Hole 100.6') (Refusal @ 100)							1 <u>05</u>		
 <u>11</u> 0 									1 <u>1(</u>		
- <u>11</u> 5 -									1 <u>15</u>		
 1 <u>2</u> 0 									1 <u>2(</u>		
 1 <u>2</u> 5 									1 <u>2</u>		
- <u>130</u> -									1 <u>3(</u>		
- <u>13</u> 5 -									1 <u>3</u>		
- <u>140</u> -									14 <u>(</u>		
- <u>145</u> -									14 <u>t</u>		
- 150									150		

STP BRZ 9030 (500) Drilling Firm: Stantec For: Division of Structural Design Geotechnical Branch

DRILLER'S SUBSURFACE LOG

Contract ID: 255382
Page 133 of 372
Printed: 1/25/22

	eotechn	ical Branch							Page 1 of 3
Project I Item Nur		<u>68003</u> tatewide	<u>Statewide - Vari</u>	ous_			t Type: t Manag	<u>Structure B</u> jer: _	<u>Pridge</u>
Hole Numb Surface Ele Total Depti	evation <u>3</u> h <u>100.2'</u>	73.2'	Immediate Water Depth <u>NA</u> Static Water Depth <u>NA</u> Driller <u>Andrew Clements</u>		Start Date <u>10/20/2021</u> End Date <u>10/21/2021</u> Latitude(83) <u>37.526662</u> Longitude(83) <u>-87.354808</u>		Rig_Number _ <u>557_</u>		
Litholc	Lithology Descrip		Overburden	Sample No.	Depth (ft)	Rec. (ft)	SPT Blows		Remarks
Elevation	Depth	Descripti	Rock Core		Std/Ky Run RQD (ft)		Rec (%)	SDI (JS)	Remarks
372.8 /	10.4/	<u>↓</u>	Topsoil.	_/					-
- - 5				1	2.5-4.0	1.5	2-1-3	SPT	5
-				1	5.0-7.0	2.0		ST	
<u>10</u> -				2	10.0-11.5	1.5	2-3-5	SPT	<u>10</u>
- - 15									<u>15</u>
-				2	15.0-17.0	1.9		ST	
<u>20</u> -				3	20.0-21.5	1.5	3-2-4	SPT	20
- 2 <u>5</u>		Soft to me	edium stiff, light brown to brown, moist,						25
-			lean clay.	3	25.0-27.0	2.0		ST	-
<u>30</u> -				4	30.0-31.5	1.5	1-1-3	SPT	<u>30</u>
<u>35</u>									35
-				4	35.0-37.0	2.0		ST	
<u>40</u> -				5	40.0-41.5	1.5	1-1-3	SPT	<u>40</u>
- - 45							_		45
				5	45.0-47.0	2.0		ST	-10
50 323.2	50.0								50

55

65

70

80

85

95

100273.0

100.2

STP BRZ 9030 (500)

Drilling Firm: Stantec

For: Division of Structural Design

Geotechnical Branch

DRILLER'S SUBSURFACE LOG

Contract ID: 255382 Page 134 of 372

Printed: 1/25/22

Page 2 of 3

Project ID: 178568003 Statewide - Various Project Type: Structure Bridge Project Manager: Item Number: Statewide Start Date 10/20/2021 Hole Type sample Immediate Water Depth _____ Surface Elevation 373.2' End Date 10/21/2021 Rig_Number 55T Static Water Depth _____ Total Depth 100.2' Latitude(83) 37.526662 Driller Andrew Clements Location + 'Lt. Longitude(83) -87.354808 Lithology Sample Depth Rec SPT Sample Overburden (ft) Blows Туре No. (ft) Remarks Description Std/Kv SDI Run Rec Rec Elevation Depth Rock Core RQD (JS) (ft) (ft) (%) 6 50.0-51.5 1.3 0-0-1 SPT 55 Very soft to soft, light gray, moist, lean clay. 6 55.0-57.0 2.0 ST <u>60 313.2</u> 60.0 60 7 60.0-61.5 1.5 0-0-4 SPT 65 65.0-67.0 7 2.0 ST Medium stiff, gray, moist, silty clay. <u>70</u> 8 70.0-71.5 1.5 0-2-5 SPT 75 298.2 75.0 75 75.0-77.0 ST 8 2.0 80 SPT 9 0-0-1 80.0-81.5 1.5 Very soft to stiff, gray, wet, silty clay with sand. 85 9 85.0-87.0 0.0 ST SPT 10 87.0-88.5 1.5 2-3-11 <u>90 283.</u>2 90.0 <u>90</u> 11 90.0-91.5 0.9 16-30-22 SPT Medium dense to dense, gray, wet, silty sand with gravel. 95 95.0-95.2 95.2-96.7 ST SPT 0.2 10 11-11-9 276.4 96.8 12 Black, carbonaceous shale.

100

STP BRZ 9030 (500) Drilling Firm: Stantec For: Division of Structural Design

DRILLER'S SUBSURFACE LOG

Printed: 1/25/22

Contract ID: 255382
Page 135 of 372

G	Jeolechn	nical Branch									Page 3 of 3
Project II Item Nur		568003 Statewide	Statev	wide - Variou	<u>IS</u>		Project Project			ructure -	<u>Bridge</u>
		373.2'	Immediate Water Depth <u>NA</u> Start Date <u>10/20/20</u> Static Water Depth <u>NA</u> End Date <u>10/21/20</u> Driller <u>Andrew Clements</u> Latitude(83) <u>37.526</u> Longitude(83) <u>-87.536</u>		<u>021</u> 26662			Гуре <u>sam</u> lumber <u>55</u>			
Litholo	ogy				Sample No.	e Depth (ft)	Rec. (ft)	SP ⁻ Blow		Sample Type	
Elevation	Depth	Descriptio	n 	Rock Core	Std/Ky RQD	(ft)	Rec (ft)	Rec (%)	b)	SDI (JS)	Remarks
- - - 1 <u>05</u> -			(Bottom of Hole 100.2') (Refusal @ 100)		13	100.0-100.2	2 0.2	50/0.:	20'	<u>SPT</u>	- - 1 <u>05</u> -
- <u>11</u> 0 -											- 1 <u>10</u> -
- - 115 -											- - 1 <u>15</u> -
- - <u>12</u> 0 -											- - 1 <u>20</u> -
- - <u>-</u> 1 <u>2</u> 5 -											- - 1 <u>25</u> -
 1 <u>3</u> 0 											- - 1 <u>30</u> -
- - - - - -											1 <u>35</u>
- - 1 <u>4</u> 0 -											- - 1 <u>40</u> -
- - <u>14</u> 5 -											
- - 150								L			- - 150

HOPKINS COUNTY STP BRZ 9030 (500) Contract ID: 255382 Page 136 of 372

APPENDIX C LABORATORY DATA SHEETS

	Bridging KY - 0		Project Number	
ource	054B00009N-1	, 2.0'-3.5', 5.0'-6.	<u>5'</u> Lab ID	127
imple Type 📑	SPT Composite	9	Date Received	
			Date Reported	4-12-2
			Test Results	
Natu	al Moisture C	ontent	Atterberg Limits	
Test Not Per			Test Method: AASHTO T 89 & T 90	
Moistur	e Content (%):	N/A	Prepared: Dry	
			Liquid Limit:	33
_		Cost of More	Plastic Limit:	
	ticle Size Ana		Plasticity Index:	
	/lethod: AASH		Activity Index:	0.6
	thod: AASHTC			
Hydrometer I	/lethod: AASH ⁻	10 1 88		
Dorti	cle Size	%	Moisture-Density Relation	snip
Sieve Size		-	Test Not Performed	NI/A
Sieve Size	· · ·	Passing	Maximum Dry Density (lb/ft ³):	
	N/A		Maximum Dry Density (kg/m ³):	
	N/A		Optimum Moisture Content (%):	N/A
	N/A		Over Size Correction %:	N/A
	N/A			
3/4"	19	100.0		
3/8"	9.5	99.0	California Bearing Rati	<u>o</u>
No. 4	4.75	98.9	Test Not Performed	
No. 10	2	98.7	Bearing Ratio (%):	
No. 40	0.425	98.0	Compacted Dry Density (lb/ft ³):	
No. 200	0.075	88.8	Compacted Moisture Content (%):	N/A
	0.02	56.8		
	0.005	32.7		
	0.002	25.1	Specific Gravity	
estimated	0.001	19.7	Test Method: AASHTO T 100	
			Prepared: Dry	NI- 40
Plus 3 in. ma	terial, not inclue	ded: U (%)	Particle Size:	
	ASTM		Specific Gravity at 20° Celsius:	2.13
Panao		AASHTO		
Range Gravel	(%)	(%)	Classification	
Coarse San		0.7	Classification Unified Group Symbol:	CI
Medium San		0.7		
Fine Sand	9.2	9.2	Group Name:	
Silt	56.1	63.7		
Clay	32.7	25.1	AASHTO Classification:	A-6 (12)
	52.1	20.1		(13)

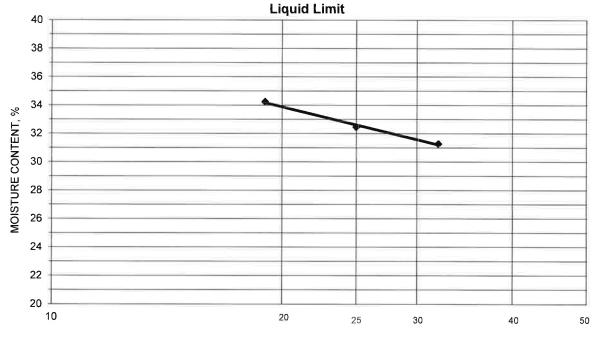
STP BRZ 9030 (500)

HOPKINS COUNTY

Particle-Size Analysis of Soils

AASHTO T 88

Stantec
Junice


	Name	Bridging KY	- 054B0	0009N			Proje	ct Number	178568003
Source		054B00009I	N-1, 2.0'	-3.5', 5.0'-6.5'			50 	Lab ID	1275
				20			•		
		Siovo	analvei	s for the Por	tion Coarser t	han the No	10 Siovo		
		Sieve	anaiysi	s for the Pon	lion Coarser l	Sieve	%		
т	est Method		го т 88			Sieve			
						5120	Passing		
Piep	pared using	ААЗП	ГО Т 87						
Der	tiala Chana	Develop							
	ticle Shape	And the second se							10
Particle	Hardness:	Hard an	d Durabl	e					
	Tested By		_						
		04-02-2021	_						
Date	e Received	04-01-2021				3/4"	100.0		
						3/8"	99.0		
Maximur	m Particle s	ize: 3/4" Siev	'e			No. 4	98.9		
						No. 10	98.7		
		Δ.	nalvala	for the portio	n Einer then	the No. 10 S	lieue		
Analysis	Record on		-	ioi the portic	on Finer than				
Analysis	Daseu on	-3 inch fraction	oniy			No. 40	98.0		
0		0.70				No. 200	88.8		
Spec	ific Gravity	2.73	÷			0.02 mm	56.8		
						0.005 mm	32.7		
Dispe	ersed using	Apparatus A	- Mecha	anical, for 1 m	linute	0.002 mm	25.1		
						0.001 mm	19.7		
				Particle Size	Distribution				
ASTM	Coarse Gravel	Fine Gravel	C. Sand	Medium Sand	Fine Sand		Silt	Clay	
ASTM	0.0	1.1	0.2	0.7	9.2		6.1	32.7	
AASHTO		Gravel 1.3		Coarse Sand	Fine Sand				
Sieve				0.7	9.2		Sill 63.7		5.1
	Size in inches			0.7 Sieve Size in sieve	9.2				
	Size in inches 3 2 1	3/4 3/8		Sieve Size in sieve 0 16 30 4	9.2 numbers 10 100	200			5.1
				Sieve Size in sieve 0 16 30 4	9.2 numbers	200			
				Sieve Size in sieve 0 16 30 4	9.2 numbers 10 100				5.1
				Sieve Size in sieve 0 16 30 4	9.2 numbers 10 100	200			100
				Sieve Size in sieve 0 16 30 4	9.2 numbers 10 100				100
				Sieve Size in sieve 0 16 30 4	9.2 numbers 10 100				100 90 80
				Sieve Size in sieve 0 16 30 4	9.2 numbers 10 100				100 90 80 70
				Sieve Size in sieve 0 16 30 4	9.2 numbers 10 100				100 90 80 70
				Sieve Size in sieve 0 16 30 4	9.2 numbers 10 100				100 90 80 70
				Sieve Size in sieve 0 16 30 4	9.2 numbers 10 100				100 90 80 70
				Sieve Size in sieve 0 16 30 4	9.2 numbers 10 100				100 90 80 70
				Sieve Size in sieve 0 16 30 4	9.2 numbers 10 100		63.7		100 90 80 70 60 sse
				Sieve Size in sieve 0 16 30 4	9.2 numbers 10 100		63.7		100 90 80 70 60 50 40 40
				Sieve Size in sieve 0 16 30 4	9.2 numbers 10 100		63.7		100 90 80 70 60 50 40 40 30
				Sieve Size in sieve 0 16 30 4	9.2 numbers 10 100		63.7		100 90 80 70 60 50 40 40
				Sieve Size in sieve 0 16 30 4	9.2 numbers 10 100		63.7		100 90 80 70 60 50 40 40 30 20
				Sieve Size in sieve 0 16 30 4	9.2 numbers 10 100		63.7		100 90 80 70 60 50 40 40 30
				Sieve Size in sieve 0 16 30 4	9.2 numbers 10 100		63.7		100 90 80 70 60 50 40 40 30 20
100				Sieve Size in sieve 0 16 30 4 0	9.2 numbers 10 100		63.7		100 90 80 70 60 50 40 40 30 20 10
		3/4 3/8		Sieve Size in sieve 0 16 30 4 0	9.2 numbers 100 100 100 100 100 100 100 100 100 10				100 90 80 70 60 50 40 30 40 30 20 10 0
		3/4 3/8		Sieve Size in sieve 0 16 30 4 0	9.2 numbers 100 100 100 100 100 100 100 100 100 10				100 90 80 70 60 50 40 30 20 10 0
100		3/4 3/8		Sieve Size in sieve 0 16 30 4 0	9.2 numbers 100 100 100 100 100 100 100 100 100 10		63.7		100 90 80 70 60 50 40 30 20 10 0.001

Stantec Consulting Services Inc. Lexington, Kentucky

ATTERBERG LIMITS

Project	Bridging KY - 054B0	0009N			Project No.	178568003
Source	054B00009N-1, 2.0	-3.5', 5.0'-6.5'			Lab ID	1275
					% + No. 40	2
Tested By	JMB	Test Method	Date Received	04-01-2021		
Test Date	04-09-2021	Prepared	Dry		-	
				•		
	Wet Soil and	Dry Soil and				
	Tare Mass	Tare Mass	Tare Mass	Number of	Water Content	
	(g)	(g)	(g)	Blows	(%)	Liquid Limit
	11.85	10.07	4.38	32	31.3	
	11.46	9.71	4.32	25	32.5	
	11.73	9.85	4.36	19	34.2	33

NUMBER OF BLOWS

PLASTIC LIMIT AND PLASTICITY INDEX

ſ	Wet Soil and	Dry Soil and		Water		
	Tare Mass	Tare Mass	Tare Mass	Content		
L	(g)	(g)	(g)	(%)	Plastic Limit	Plasticity Index
	11.92	10.75	4.32	18.2	18	15
	11.38	10.34	4.34	17.3		

Remarks:

Reviewed By

Template: tmp_sum_input_xlsm Version: 20170217 Approved By: RJ

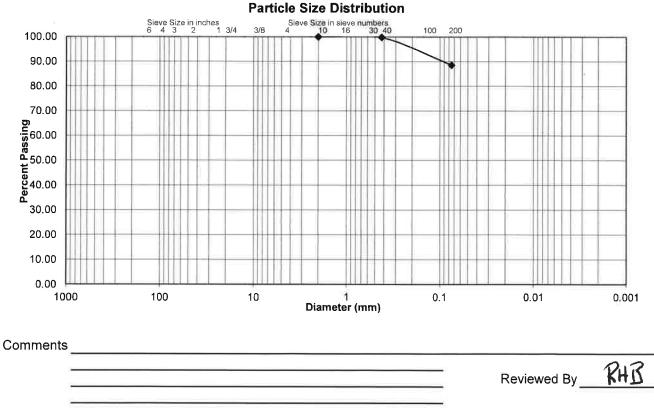
Stantec Consulting Services Inc. Lexington, Kentucky

Stantec

Gradation Analysis

AASHTO T 88

Project Name Bridging KY	′ - 054B00009N	
Source 054B00009	N-1, 10.0'-11.5'	
Preparation Method	AASHTO T 11 Method	AL
Soak Time (min)	1170	
Particle Shape	N/A	
Particle Hardness	N/A	
Sample Dry Mass (g)	305.68	
Moisture Content (%)	22.0	


	Grams	%	%
Sieve Size	Retained	Retained	Passing
No. 10	0.00	0.0	100.0
No. 40	0.52	0.2	99.8
No. 200	34.33	11.2	88.6
Pan	270.83	88.6	

Project Number	178568003
Lab ID	1278
Date Received	04-01-2021
Preparation Date	04-01-2021
Test Date	04-06-2021

Analysis based on total sample.

% Gravel	0.0
% Sand	11.4
% Fines	88.6
Fines Classification	N/A
D ₁₀ (mm)	N/A
D ₃₀ (mm)	N/A
D ₆₀ (mm)	N/A

Cu	N/A	
Cc	N/A	

Template: tmp_200_input_xlsm Version: 20170216 Approved By: RJ

Stantec Consulting Services Inc. Lexington, Kentucky Reported By: RHB Report Date: 04/06/2021

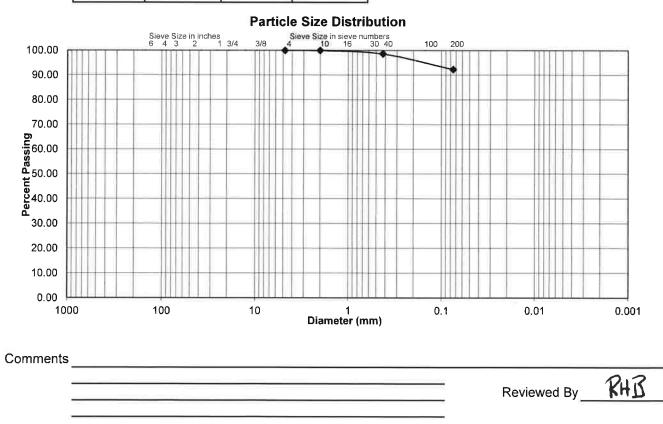
Gradation Analysis

AASHTO T 88

Project Name Bridging KY - 054B00009N	Project Number	178568003
Source 054B00009N-1, 15.0'-16.5'	Lab ID	1279
Preparation Method AASHTO T 11 Method A	Date Received	04-01-2021
Soak Time (min) 1170	Preparation Date	04-01-2021
Particle Shape Angular	Test Date	04-06-2021
Particle Hardness Hard and Durable	1	
Sample Dry Mass (g) <u>393.22</u>	Analysis based on total	sample.

Moisture Content (%) 26.6

	0	0/	0/
	Grams	%	%
Sieve Size	Retained	Retained	Passing
			[]
			·
No. 4	0.00	0.0	100.0
No. 10	0.21	0.1	99.9
No. 40	5.25	1.3	98.6
No. 200	24.93	6.3	92.3
Pan	362.83	92.3	12122


Test Date	04-06-2021
17	

% Gravel <u>0</u> 4

% Gravel	0.1
% Sand	7.7
% Fines	92.3
Fines Classification	N/A
D ₁₀ (mm)	N/A
D ₃₀ (mm)	N/A

D ₃₀ (mm)	N/A
D ₆₀ (mm)	N/A

Cu	N/A	
Сс	N/A	

Template: tmp_200_input.xlsm Version: 20170216 Approved By: RJ

Stantec Consulting Services Inc. Lexington, Kentucky

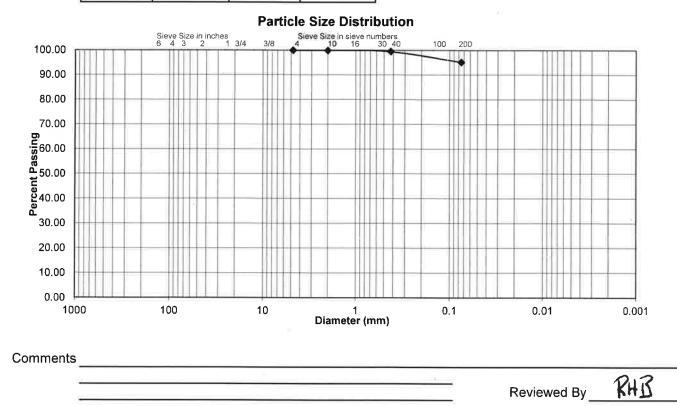
Reported By: RHB Report Date: 04/06/2021

Gradation Analysis

AASHTO T 88

Project Name Bridging KY - 054B00009N	Р
Source 054B00009N-1, 20.0'-21.5'	
Preparation Method AASHTO T 11 Method A	
Soak Time (min) 1170	Pre
Particle Shape Angular	
Particle Hardness Hard and Durable	
Sample Dry Mass (g) 419.06	Analysis

Moisture Content (%) 24.2


-	Grams	%	%
Sieve Size	Retained	Retained	Passing
No. 4	0.00	0.0	100.0
No. 10	0.28	0.1	99.9
No. 40	1.75	0.4	99.5
No. 200	18.25	4.4	95.2
Pan	398.78	95.2	

Project Number	178568003
Lab ID	1280
Date Received	04-01-2021
Preparation Date	04-01-2021
Test Date	04-06-2021

Analysis based on total sample.

% Gravel	0.1
% Sand	4.8
% Fines	95.2
Fines Classification	N/A
D ₁₀ (mm)	N/A
D ₃₀ (mm)	N/A
D ₆₀ (mm)	N/A

Cu	N/A	
Сс	N/A	_

Template: tmp_200_input.xlsm Version: 20170216 Approved By: RJ Stantec Consulting Services Inc. Lexington, Kentucky Reported By: RHB Report Date: 04/06/2021

HOPKINS COUNTY
STP BRZ 9030 (500)

oject Name B			Project Number	178568003
ource <u>0</u>	54B00009N-1	25.0'-26.5', 30.0	D'-31.5' Lab ID	1281
ample Type S	PT Composite	9	Date Received	4-1-21
			Date Reported	4-9-21
			Test Results	
	I Moisture Co	ontent	Atterberg Limits	
Test Not Perfo			Test Method: AASHTO T 89 & T 90	
 Moisture 	Content (%):	N/A	Prepared: Dry	
			_ Liquid Limit:	33
			Plastic Limit:	18
	cle Size Anal		Plasticity Index:	
Preparation Me			Activity Index:	0.6
Gradation Met				
Hydrometer Me	ethod: AASH I	0188	Mainten Danate Datation	
Particle	o Sizo	%	Moisture-Density Relation	isnip
Sieve Size		-		N1/A
Sieve Size	(mm)	Passing	Maximum Dry Density (lb/ft ³):	
	N/A		Maximum Dry Density (kg/m ³):	
	N/A		Optimum Moisture Content (%):	N/A
	N/A		Over Size Correction %:	N/A
	N/A			
3/4"	19	100.0		
3/8"	9.5	99.3	California Bearing Rat	io
No. 4	4.75	99.2	Test Not Performed	
No. 10	2	98.9	Bearing Ratio (%):	
No. 40	0.425	98.5	Compacted Dry Density (lb/ft ³):	
No. 200	0.075	89.7	Compacted Moisture Content (%):	N/A
	0.02	62.2	E	
	0.005	32.7	Creatifie Creative	
estimated	0.002	24.8	Specific Gravity	
estimated	0.001	19.4	Test Method: AASHTO T 100	
Plus 3 in. mate	rial not includ	lad: 0 (%)	Prepared: Dry Particle Size:	No. 10
	nai, not inclut		Specific Gravity at 20° Celsius:	
	ASTM	AASHTO		2.13
Range	(%)	(%)		
Gravel	0.8	1.1	Classification	
Coarse Sand	0.3	0.4	Unified Group Symbol:	CI
Medium Sand			Group Name:	Lean clay
Fine Sand	8.8	8.8		Louirolay
Silt	57.0	64.9	· · · · · · · · · · · · · · · · · · ·	
Clay	32.7	24.8	AASHTO Classification:	A-6(13)

Particle-Size Analysis of Soils

Project Number 178568003

AASHTO T 88

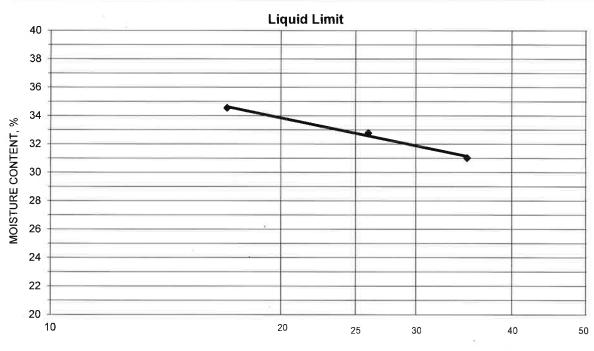
Project Name

Stantec
Stantec
Scancee

Bridging KY - 054B00009N

Source		054B00009N-1	1, 25.0'-26.	5', 30.0'-3	1.5'		-	Lab ID	1281
		Sieve an	alysis for	the Porti	on Coarser t	han the No.	. 10 Sieve		
						Sieve	%		
Те	est Method	AASHTO) T 88			Size	Passing		
	ared using			-		-	· · ··································		
ricp	area asing	///01110	, 10/	•2					
Dorti	iala Shana	Annul	lor			·			
	icle Shape	Angul	ar	-					
Particle	Hardness:	Hard and [Jurable	5					
	Tested By	TRH							
	Test Date	04-02-2021							
Date	Received	04-01-2021				3/4"	100.0		
	-					3/8"	99.3		
Maximum	n Particle s	size: 3/4" Sieve				No. 4	99.2		
						No. 10	98.9		
		Ana	lysis for th	ne portio	n Finer than t	t <u>he No. 10 S</u>	Sieve		
Analysis	Based on	-3 inch fraction	only			No. 40	98.5		
						No. 200	89.7		
Speci	ific Gravity	2.73				0.02 mm	62.2		
- 1						0.005 mm			
Disner	nsed using	Apparatus A - I	Mechanica	l for 1 mi	nute	0.002 mm			
Disper	iscu using		Wiedhamea	, 101 1 111	nute	0.001 mm			
						0.001 1111	19.4		
			Part	icle Size	Distribution				
							0:0	Clay	
ASTM	Coarse Gravel			lium Sand	Fine Sand		Silt		-
ASTM	Coarse Gravel 0.0	0.8	0.3	0_4	8.8		57.0	32.7	
ASTM AASHTO			0.3						
AASHTO		0.8 Gravel	0.3 Coa	0_4 Irse Sand	8.8 Fine Sand 8.8		57.0 Silt	32.7 Clay	
AASHTO	0.0 Size in inches	0.8 Gravel 1.1 3/4 3/8 4	0.3 Coa Sieve 10 10	0.4 <u>urse Sand</u> 0.4 Size in sieve n 6 30 40	8.8 Fine Sand 8.8 umbers 100		57.0 Silt	32.7 Clay	- - - - - - - -
AASHTO Sieve S	0.0 Size in inches	0.8 Gravel 1.1	0.3 Coa Sieve	0.4 Inse Sand 0.4 Size in sieve n	8.8 Fine Sand 8.8 umbers 100		57.0 Silt	32.7 Clay	1 ¹⁰⁰
AASHTO Sieve S	0.0 Size in inches	0.8 Gravel 1.1 3/4 3/8 4	0.3 Coa Sieve 10 10	0.4 <u>urse Sand</u> 0.4 Size in sieve n 6 30 40	8.8 Fine Sand 8.8 umbers 100		57.0 Silt	32.7 Clay	100
AASHTO Sieve S	0.0 Size in inches	0.8 Gravel 1.1 3/4 3/8 4	0.3 Coa Sieve 10 10	0.4 <u>urse Sand</u> 0.4 Size in sieve n 6 30 40	8.8 Fine Sand 8.8 umbers 100		57.0 Silt	32.7 Clay	90
AASHTO Sieve S	0.0 Size in inches	0.8 Gravel 1.1 3/4 3/8 4	0.3 Coa Sieve 10 10	0.4 <u>urse Sand</u> 0.4 Size in sieve n 6 30 40	8.8 Fine Sand 8.8 umbers 100		57.0 Silt	32.7 Clay	-
AASHTO Sieve S	0.0 Size in inches	0.8 Gravel 1.1 3/4 3/8 4	0.3 Coa Sieve 10 10	0.4 <u>urse Sand</u> 0.4 Size in sieve n 6 30 40	8.8 Fine Sand 8.8 umbers 100		57.0 Silt	32.7 Clay	90 80
AASHTO Sieve S	0.0 Size in inches	0.8 Gravel 1.1 3/4 3/8 4	0.3 Coa Sieve 10 10	0.4 <u>urse Sand</u> 0.4 Size in sieve n 6 30 40	8.8 Fine Sand 8.8 umbers 100		57.0 Silt	32.7 Clay	90 80 70
AASHTO Sieve S 3	0.0 Size in inches 3 2 1	0.8 Gravel 1.1 3/4 3/8 4	0.3 Coa Sieve 10 10	0.4 rrse Sand 0.4 Size in sieve n 6 30 40 2 2 2 2 2 2 2 2 2 2 2 2 2	8.8 Fine Sand 8.8 umbers 100		57.0 Silt 64.9	32.7 Clay	90 80 70
AASHTO Sieve S 3	0.0 Size in inches	0.8 Gravel 1.1 3/4 3/6 4	0.3 Coa Sieve 10 10	0.4 <u>urse Sand</u> 0.4 Size in sieve n 6 30 40	8.8 Fine Sand 8.8 umbers 100		57.0 Silt	32.7 Clay	90 80 70 60 ig
AASHTO Sieve S 3	0.0 Size in inches 3 2 1	0.8 Gravel 1.1 3/4 3/6 4	0.3 Coa Sieve 10 10	0.4 rrse Sand 0.4 Size in sieve n 6 30 40 2 2 2 2 2 2 2 2 2 2 2 2 2	8.8 Fine Sand 8.8 umbers 100		57.0 Silt 64.9	32.7 Clay	90 80 70 60 ig
AASHTO Sieve S 3	0.0 Size in inches 3 2 1	0.8 Gravel 1.1 3/4 3/6 4	0.3 Coa Sieve 10 10	0.4 rrse Sand 0.4 Size in sieve n 6 30 40 2 2 2 2 2 2 2 2 2 2 2 2 2	8.8 Fine Sand 8.8 umbers 100		57.0 Silt 64.9	32.7 Clay	90 80 70 60 ig
AASHTO Sieve S 3	0.0 Size in inches 3 2 1	0.8 Gravel 1.1 3/4 3/6 4	0.3 Coa Sieve 10 10	0.4 rrse Sand 0.4 Size in sieve n 6 30 40 2 2 2 2 2 2 2 2 2 2 2 2 2	8.8 Fine Sand 8.8 umbers 100		57.0 Silt 64.9	32.7 Clay	90 80 70 60 ig
AASHTO Sieve S 3	0.0 Size in inches 3 2 1	0.8 Gravel 1.1 3/4 3/6 4	0.3 Coa Sieve 10 10	0.4 rrse Sand 0.4 Size in sieve n 6 30 40 2 2 2 2 2 2 2 2 2 2 2 2 2	8.8 Fine Sand 8.8 umbers 100		57.0 Silt 64.9	32.7 Clay	90 80 70 60 50 40 40
AASHTO Sieve S 3	0.0 Size in inches 3 2 1	0.8 Gravel 1.1 3/4 3/6 4	0.3 Coa Sieve 10 10	0.4 rrse Sand 0.4 Size in sieve n 6 30 40 2 2 2 2 2 2 2 2 2 2 2 2 2	8.8 Fine Sand 8.8 umbers 100		57.0 Silt 64.9	32.7 Clay	90 80 70 60 ig
AASHTO Sieve S 3	0.0 Size in inches 3 2 1	0.8 Gravel 1.1 3/4 3/6 4	0.3 Coa Sieve 10 10	0.4 rrse Sand 0.4 Size in sieve n 6 30 40 2 2 2 2 2 2 2 2 2 2 2 2 2	8.8 Fine Sand 8.8 umbers 100		57.0 Silt 64.9	32.7 Clay	90 80 70 60 50 40 40 30
AASHTO Sieve S 3	0.0 Size in inches 3 2 1	0.8 Gravel 1.1 3/4 3/6 4	0.3 Coa Sieve 10 10	0.4 rrse Sand 0.4 Size in sieve n 6 30 40 2 2 2 2 2 2 2 2 2 2 2 2 2	8.8 Fine Sand 8.8 umbers 100		57.0 Silt 64.9	32.7 Clay 24.8	90 80 70 50 60 50 40 40
AASHTO Sieve S 3	0.0 Size in inches 3 2 1	0.8 Gravel 1.1 3/4 3/6 4	0.3 Coa Sieve 10 10	0.4 rrse Sand 0.4 Size in sieve n 6 30 40 2 2 2 2 2 2 2 2 2 2 2 2 2	8.8 Fine Sand 8.8 umbers 100		57.0 Silt 64.9	32.7 Clay 24.8	90 80 70 60 50 40 40 30
AASHTO Sieve S 3	0.0 Size in inches 3 2 1	0.8 Gravel 1.1 3/4 3/6 4	0.3 Coa Sieve 10 10	0.4 rrse Sand 0.4 Size in sieve n 6 30 40 2 2 2 2 2 2 2 2 2 2 2 2 2	8.8 Fine Sand 8.8 umbers 100		57.0 Silt 64.9	32.7 Clay 24.8	90 80 70 60 50 40 30 20 10
AASHTO Sieve S 3	0.0 Size in inches 3 2 1	0.8 Gravel 1.1 3/4 3/8 4 	0.3 Coa Sieve 10 10	0.4 rrse Sand 0.4 0.	8.8 Fine Sand 8.8 umbers 100 100 100 100 100 100 100 10		57.0 Silt 64.9	32.7 Clay 24.8	90 80 70 60 50 40 30 20 10 0
AASHTO Sieve S 3	0.0 Size in inches 3 2 1	0.8 Gravel 1.1 3/4 3/6 4	0.3 Coa Sieve 10 10	0.4 rrse Sand 0.4 0.	8.8 Fine Sand 8.8 umbers 100		57.0 Silt 64.9	32.7 Clay 24.8	90 80 70 60 50 40 30 20 10
AASHTO Sieve 3 3 1 1 100	0.0 Size in inches 3 2 1	0.8 Gravel 1.1 3/4 3/8 4 	0.3 Coa Sieve 10 10	0.4 rrse Sand 0.4 0.	8.8 Fine Sand 8.8 umbers 100 100 100 100 100 100 100 10		57.0 Silt 64.9	32.7 Clay 24.8	90 80 70 60 50 40 30 20 10 0
AASHTO Sieve 3 3 1 1 1 100	0.0 Size in inches 3 2 1	0.8 Gravel 1.1 3/4 3/8 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.4 rrse Sand 0.4 Size in sieve n 5 30 40 1 2 1 Diame	8.8 Fine Sand 8.8 umbers 100 100 100 100 100 100 100 10		57.0 Silt 64.9	32.7 Clay 24.8	90 80 70 60 50 40 30 20 10 0
AASHTO Sieve 3 3 1 1 1 100	0.0 Size in inches 3 2 1	0.8 Gravel 1.1 3/4 3/8 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.4 rrse Sand 0.4 Size in sieve n 5 30 40 1 2 1 Diame	8.8 Fine Sand 8.8 umbers 100 100 100 100 100 100 100 10		57.0 Silt 64.9	32.7 Clay 24.8	90 80 70 60 50 40 30 20 10 0
AASHTO Sieve 3 3 1 1 1 100	0.0 Size in inches 3 2 1	0.8 Gravel 1.1 3/4 3/8 4 		0.4 rrse Sand 0.4 Size in sieve n 5 30 40 1 2 1 Diame	8.8 Fine Sand 8.8 umbers 100 100 100 100 100 100 100 10		57.0 Silt 64.9	32.7 Clay 24.8	90 80 70 60 50 40 30 20 10 0

Stantec Consulting Services Inc. Lexington, Kentucky



HOPKINS COUNTY

Stantec

ATTERBERG LIMITS

Project	Bridging KY - 054B		Project No.	178568003		
Source	054B00009N-1, 25.	Lab ID	1281			
		% + No. 40	2			
Tested By	JMB	Date Received	04-01-2021			
Test Date	04-08-2021	Prepared	Dry		8	
	1					
	Wet Soil and	Dry Soil and				
	Tare Mass	Tare Mass	Tare Mass	Number of	Water Content	
	(g)	(g)	(g)	Blows	(%)	Liquid Limit
	16.96	15.62	11.30	35	31.0	
	20.99	18.60	11.31	26	32.8	
	19.53	17.44	11.39	17	34.5	33

NUMBER OF BLOWS

PLASTIC LIMIT AND PLASTICITY INDEX

ſ	Wet Soil and	Dry Soil and		Water		
	Tare Mass	Tare Mass	Tare Mass	Content		
	(g)	(g)	(g)	(%)	Plastic Limit	Plasticity Index
	19.65	18.43	11.54	17.7	18	15
[19.42	18.16	11.38	18.6	A.	

Remarks:

Reviewed By

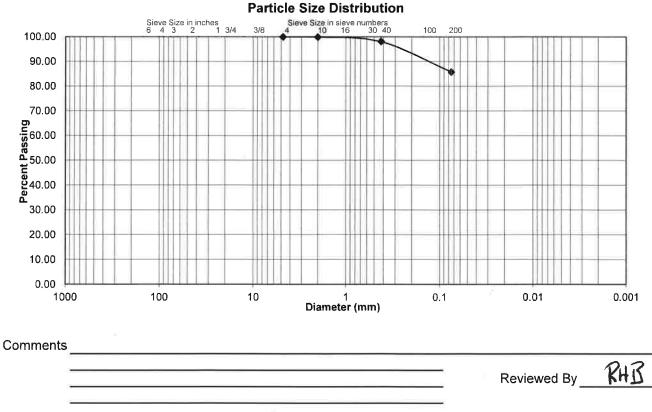
Template: tmp_sum_input.xlsm Version: 20170217 Approved By: RJ

AASHTO T 88

Stantec
Project Name Bridging KY - 054B00

ging KY - 054B00009N	Proj
B00009N-1, 35.0'-36.5'	
Method AASHTO T 11 Method A	Dat
e (min) 1170 F	Prepa
Shape Angular	
rdness Hard and Durable	
ass (g) 300.78 Analys	sis ba

Moisture Content (%) 23.4


	Grams	%	%
Sieve Size	Retained	Retained	Passing
No. 4	0.00	0.0	100.0
No. 10	0.23	0.1	99.9
No. 40	5.40	1.8	98.1
No. 200	37.23	12.4	85.8
Pan	257.92	85.8	

Project Number	178568003
Lab ID	1284
Date Received	04-01-2021
Preparation Date	04-01-2021
Test Date	04-06-2021

Analysis based on total sample.

% Gravel	0.1
% Sand	14.2
% Fines	85.8
Fines Classification	N/A
D ₁₀ (mm)	N/A
D ₃₀ (mm)	N/A
D ₆₀ (mm)	N/A

Cu	N/A	
Сс	N/A	

Template: tmp_200_input.xlsm Version: 20170216 Approved By: RJ Stantec Consulting Services Inc. Lexington, Kentucky Reported By: RHB Report Date: 04/06/2021

Project Name Source			Project Number 178568 2'-46.5', 50.0'-51.5' Lab ID
Sample Type	SPT Composite)	Date Received4- Date Reported4-1
			Test Results
Natu	ral Moisture Co	ontent	Atterberg Limits
Test Not Per	formed		Test Method: AASHTO T 89 & T 90
Moistu	re Content (%):	N/A	Prepared: Dry
			Liquid Limit: 22
			Plastic Limit: 17
	rticle Size Anal		Plasticity Index: 5
	Method: AASHT		Activity Index: 0.3
	ethod: AASHTO		
Hydrometer	Method: AASHT	OT 88	
			Moisture-Density Relationship
	cle Size	%	Test Not Performed
Sieve Size	e (mm)	Passing	Maximum Dry Density (lb/ft ³): N/A
	N/A		Maximum Dry Density (kg/m ³): N/A
	N/A		Optimum Moisture Content (%): N/A
	N/A		Over Size Correction %: N/A
	N/A		
	N/A		
3/8"	9.5	100.0	California Bearing Ratio
No. 4	4.75	99.8	Test Not Performed
No. 10	2	99.7	Bearing Ratio (%): N/A
No. 40	0.425	99.4	Compacted Dry Density (lb/ft ³): N/A
No. 200	0.075	77.4	Compacted Moisture Content (%): N/A
p	0.02	41.2	
	0.005	21.7	
	0.002	15.3	Specific Gravity
estimated	0.001	11.0	Test Method: AASHTO T 100
			Prepared: Dry
Plus 3 in. ma	terial, not incluc	led: 0 (%)	Particle Size: No. 10
			Specific Gravity at 20° Celsius: 2.70
B . 345	ASTM	AASHTO	
Range	(%)	(%)	
Gravel	0.2	0.3	Classification
Coarse San Medium Sar		0.3	Unified Group Symbol: CL-ML
Fine Sand		22.0	Group Name:Silty clay with s
Silt	55.7	62.1	
Clay	21.7	15.3	
	21./	10.0	AASHTO Classification:A-4_

HOPKINS COUNTY STP BRZ 9030 (500)

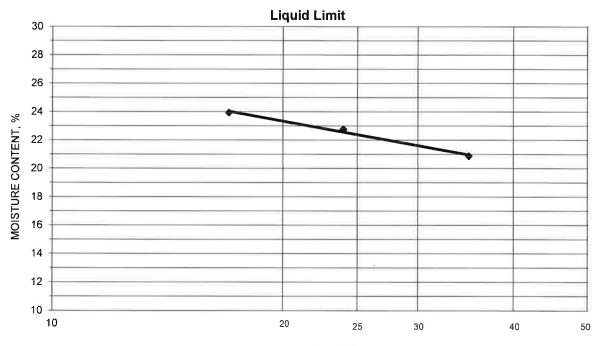
Analysis of Soils

1285

Project Nam		Bridging KY					_ Proje		1
Source	-	054B00009	N-1, 40.0)'-41.5', 45.0'-4	46.5', 50.0'-5	1.5'	-	Lab ID	
		0:000				4L 4L - NI -	-		
		Sieve	anaiysi	s for the Port	ion Coarser	Sieve	. 10 Sieve		
Test I	Method	AASH	TO T 88			Size	Passing		
Prepare	d using	AASH	TO T 87						
Particle	Shane	An	gular						
Particle Ha			d Durab	le					
	sted By	TRH 04-02-202	1						
		04-02-202							
	-					3/8"	100.0		
Maximum Pa	article siz	ze: 3/8" Sie	ve			No. 4	99.8		
				• · · · · · · · · · · · · · · · · · · ·	- 4	No. 10	99.7		
Analysis Bas	sed on -			for the portio	on Finer thar	No. 40	99.4		
						No. 200	77.4		
Specific	Gravity	2.7				0.02 mm			
	d using A	Apparatus A	A - Mecha	anical, for 1 m	inute	0.005 mm 0.002 mm 0.001 mm	15.3		
Dispersed				Particle Size	Distributio	0.002 mm 0.001 mm	15.3 11.0	Clay	
Dispersed	d using A	Fine Gravel	A - Mecha	Particle Size	Distributio	0.002 mm 0.001 mm	15.3 11.0 Silt 55.7	Clay 21.7	Cla
Dispersed ASTM COM AASHTO	arse Gravel 0.0	Fine Gravel	C. Sand	Particle Size Medium Sand 0.3 Coarse Sand 0.3	Distribution Fine Sand 22.0 Fine Sand 22.0	0.002 mm 0.001 mm	15.3 11.0	21.7	
Dispersed	arse Gravel 0.0	Fine Gravel 0.2 Gravel 0.3	C. Sand 0.1	Particle Size Medium Sand 0.3 Coarse Sand	Distribution Fine Sand 22.0 Fine Sand 22.0 numbers	0.002 mm 0.001 mm	15.3 11.0 Silt 55.7 Silt	21.7	
Dispersed	arse Gravet 0.0	Fine Gravel 0.2 Gravel 0.3	C. Sand 0.1	Particle Size Medium Sand 0.3 Coarse Sand 0.3 Sieve Size in sieve	Distribution Fine Sand 22.0 Fine Sand 22.0 numbers	0.002 mm 0.001 mm	15.3 11.0 Silt 55.7 Silt	21.7	Cla 15.1
Dispersed ASTM Cor AASHTO Sieve Size in	arse Gravet 0.0	Fine Gravel 0.2 Gravel 0.3	C. Sand 0.1	Particle Size Medium Sand 0.3 Coarse Sand 0.3 Sieve Size in sieve	Distribution Fine Sand 22.0 Fine Sand 22.0 numbers	0.002 mm 0.001 mm	15.3 11.0 Silt 55.7 Silt	21.7	
Dispersed ASTM Cor AASHTO Sieve Size in	arse Gravet 0.0	Fine Gravel 0.2 Gravel 0.3	C. Sand 0.1	Particle Size Medium Sand 0.3 Coarse Sand 0.3 Sieve Size in sieve	Distribution Fine Sand 22.0 Fine Sand 22.0 numbers	0.002 mm 0.001 mm	15.3 11.0 Silt 55.7 Silt	21.7	
Dispersed ASTM Cor AASHTO Sieve Size in	arse Gravet 0.0	Fine Gravel 0.2 Gravel 0.3	C. Sand 0.1	Particle Size Medium Sand 0.3 Coarse Sand 0.3 Sieve Size in sieve	Distribution Fine Sand 22.0 Fine Sand 22.0 numbers	0.002 mm 0.001 mm	15.3 11.0 Silt 55.7 Silt	21.7	
Dispersed ASTM Cor AASHTO Sieve Size in	arse Gravet 0.0	Fine Gravel 0.2 Gravel 0.3	C. Sand 0.1	Particle Size Medium Sand 0.3 Coarse Sand 0.3 Sieve Size in sieve	Distribution Fine Sand 22.0 Fine Sand 22.0 numbers	0.002 mm 0.001 mm	15.3 11.0 Silt 55.7 Silt	21.7	
Dispersed ASTM Cor AASHTO Sieve Size in	arse Gravet 0.0	Fine Gravel 0.2 Gravel 0.3	C. Sand 0.1	Particle Size Medium Sand 0.3 Coarse Sand 0.3 Sieve Size in sieve	Distribution Fine Sand 22.0 Fine Sand 22.0 numbers	0.002 mm 0.001 mm	15.3 11.0 Silt 55.7 Silt	21.7	
Dispersed ASTM Cor AASHTO Sieve Size in	arse Gravet 0.0	Fine Gravel 0.2 Gravel 0.3	C. Sand 0.1	Particle Size Medium Sand 0.3 Coarse Sand 0.3 Sieve Size in sieve	Distribution Fine Sand 22.0 Fine Sand 22.0 numbers	0.002 mm 0.001 mm	15.3 11.0 Silt 55.7 Silt	21.7	
Dispersed ASTM Cor AASHTO Sieve Size in	arse Gravet 0.0	Fine Gravel 0.2 Gravel 0.3	C. Sand 0.1	Particle Size Medium Sand 0.3 Coarse Sand 0.3 Sieve Size in sieve	Distribution Fine Sand 22.0 Fine Sand 22.0 numbers	0.002 mm 0.001 mm	15.3 11.0 Silt 55.7 Silt	21.7	
Dispersed	arse Gravet 0.0	Fine Gravel 0.2 Gravel 0.3	C. Sand 0.1	Particle Size Medium Sand 0.3 Coarse Sand 0.3 Sieve Size in sieve	Distribution Fine Sand 22.0 Fine Sand 22.0 numbers	0.002 mm 0.001 mm	15.3 11.0 Silt 55.7 Silt	21.7	
Dispersed	arse Gravet 0.0	Fine Gravel 0.2 Gravel 0.3	C. Sand 0.1	Particle Size Medium Sand 0.3 Coarse Sand 0.3 Sieve Size in sieve	Distribution Fine Sand 22.0 Fine Sand 22.0 numbers	0.002 mm 0.001 mm	15.3 11.0 Silt 55.7 Silt	21.7	
Dispersed	arse Gravet 0.0	Fine Gravel 0.2 Gravel 0.3	C. Sand 0.1	Particle Size Medium Sand 0.3 Coarse Sand 0.3 Sieve Size in sieve	Distribution Fine Sand 22.0 Fine Sand 22.0 numbers	0.002 mm 0.001 mm	15.3 11.0 Silt 55.7 Silt	21.7	
Dispersed	arse Gravet 0.0	Fine Gravel 0.2 Gravel 0.3	C. Sand 0.1	Particle Size Medium Sand 0.3 Coarse Sand 0.3 Sieve Size in sieve	Distribution Fine Sand 22.0 Fine Sand 22.0 numbers	0.002 mm 0.001 mm	15.3 11.0 Silt 55.7 Silt	21.7	15.

Template: tmp_sum_input.xlsm Version: 20170217 Approved By: RJ

HOPKINS COUNTY


Stantec Consulting Services Inc. Lexington, Kentucky

HOPKINS COUNTY

ATTERBERG LIMITS

Project	Bridging KY - 054B0	0009N		Project No.	178568003	
Source	054B00009N-1, 40.	0'-41.5', 45.0'-46	Lab ID	1285		
		% + No. 40	1			
Tested By	JMB	Date Received	04-01-2021			
Test Date	04-09-2021	Prepared	Dry			
				·		
	Wet Soil and	Dry Soil and				
	Tare Mass Tare Mass Tare Mass Number of					
	(g)	(g)	(g)	Blows	(%)	Liquid Limit
	17.96	16.81	11.30	35	20.9	
	20.10	18.48	11.36	24	22.8	
	17.95 16.67 11.32 17				23.9	22

NUMBER OF BLOWS

PLASTIC LIMIT AND PLASTICITY INDEX

ſ	Wet Soil and	Dry Soil and		Water		
	Tare Mass	Tare Mass	Tare Mass	Content		
	(g)	<u>(g)</u>	(g)	(%)	Plastic Limit	Plasticity Index
	20.37	19.11	11.32	16.2	17	5
	19.09	17.95	11.33	17.2		

Remarks:

Reviewed By

Template: tmp_sum_input.xlsm Version: 20170217 Approved By: RJ

	Bridging KY - 0 054B00009N-1	54B00009N , 55.0'-56.5', 60.0	D'-61.5' Project Number	178568003 1289
-				4.4.04
	SPT Composite	9	Date Received Date Reported	
			Test Results	
Natu	ral Moisture C	ontent	Atterberg Limits	
Test Not Per	formed		Test Method: AASHTO T 89 & T 90	
Moistu	e Content (%):	N/A	Prepared: Dry	
			Liquid Limit:	25
			Plastic Limit:	15
	ticle Size Ana		Plasticity Index:	
	/lethod: AASH1		Activity Index:	0.5
Gradation Me	ethod: AASHTC	D T 88		
Hydrometer I	Method: AASH ⁻	ГО Т 88		
		1 0/ 1	Moisture-Density Relation	nship
	cle Size	%	Test Not Performed	
Sieve Size	(Passing	Maximum Dry Density (lb/ft ³):	
	N/A		Maximum Dry Density (kg/m ³):	N/A
	N/A		Optimum Moisture Content (%):	N/A
	N/A		Over Size Correction %:	N/A
	N/A			
	N/A			
	N/A		California Bearing Rat	io
	N/A		Test Not Performed	
No. 10	2	100.0	Bearing Ratio (%):	N/A
No. 40	0.425	99.6	Compacted Dry Density (lb/ft ³):	
No. 200	0.075	85.8	Compacted Moisture Content (%):	N/A
	0.02	52.8		
	0.005	27.2		
	0.002	19.2	Specific Gravity	
estimated	0.001	14.6	Test Method: AASHTO T 100 Prepared: Dry	
Plus 3 in, ma	terial, not includ	ded: 0 (%)	Particle Size:	No. 10
			Specific Gravity at 20° Celsius:	
	ASTM	AASHTO		
Range	(%)	(%)		
Gravel	0.0	0.0	Classification	
Coarse San		0.4	Unified Group Symbol:	CL
Medium San		1000	Group Name:	Lean clay
Fine Sand	13.8	13.8		
Silt	58.6	66.6		
Clay	27.2	19.2	AASHTO Classification:	A-4 (6)

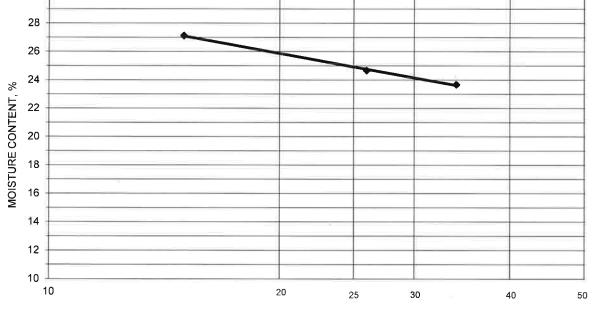
Particle-Size Analysis of Soils

Project Number 178568003

AASHTO T 88

Project Name

Bridging KY - 054B00009N


Source		054B00009N-1	, 55.0'-56.5	, 60.0'-6	1.5'			Lab ID	1289
		Sieve an	alvsis for t	he Porti	on Coarser t	han the No	10 Sieve		
						Sieve	%		
Те	est Method	AASHTO	T 88			Size	Passing		
	ared using					0120	rassing		
Prep	ared using	AASHIU	1 0/						
	icle Shape								
Particle	Hardness:	N/A							
	Tested By	TRH							
	Test Date	04-02-2021							
Date	Received	04-01-2021							
Maximun	n Particle s	size: No. 10 Siev	ie i						
Maximan			°			No. 10	100.0		
							100.0		
		Ana	ysis for the	portion	n Finer than t	the No. 10 S	Sieve		
Analysis	Based on	-3 inch fraction	only			No. 40	99.6		
•						No. 200	85.8		
Speci	ific Gravity	2 73				0.02 mm	52.8		
0,000						0.005 mm	27.2		
Dispa	read using	Apparatus A - I	(lechanical	for 1 mir	auto	0.002 mm	19.2		
Dispe	ised using	Apparatus A - I	viecnanical,		lute				
						0.001 mm	14.0		
			Partic	le Size	Distribution				
ASTM	Coarse Gravel		Sand Mediu	m Sand	Fine Sand		Silt	Clay	
	0.0	0,0 Gravel	And and a second se	.4	13.8 Fies Seed	4	8.6	27.2	
AASHTO		0.0		e Sand	Fine Sand 13.8		Silt 66.6	Clav 19.2	
Sieve	Size in inches		Sieve S	lize in sieve nu	Imbers				
3	3 2 1	3/4 3/8 4	10 16	30 40	100	200			100
+++									90
+		+		┝┝┼┼┼┼┼┼		▲ -			
		+ +++++++							- 80
									70
									60 ig
++++							┪		as
++++	++++-+-	++++++++++++++++++++++++++++++++++++		┟┼┼┼┼┼┼			₹		Percent Passing
		+							cel
									40 8
								1 1 1 1	
							X		
									- 30
									- 30
									- 30
									- 30 - 20 - 10
100							0.01		30 20 10 0
100		10		1 Diame	ter (mm) 0.1		0.01	0.0	30 20 10 0
100		10		1 Diame	ter (mm) 0.1		0.01	0.0	30 20 10 0
				l Diame	ter (mm) 0.1				30 20 10 0
	Comments	10		1 Diame	ter (mm) 0.1			0.0	30 20 10 0
	Comments			¹ Diame	ter (mm) 0.1				30 20 10 0

HOPKINS COUNTY

ATTERBERG LIMITS

Project	Bridging KY - 054E	300009N	Project No.	178568003		
Source	054B00009N-1, 55	5.0'-56.5', 60.0'-61	Lab ID	1289		
					% + No. 40	0
Tested By	JMB	Test Method	AASHTO T 89 a	& T 90	Date Received	04-01-2021
Test Date	04-08-2021	Prepared	Dry			
	Wet Soil and	Dry Soil and				
	Tare Mass	Tare Mass	Tare Mass	Number of	Water Content	
	(g)	(g)	(g)	Blows	(%)	Liquid Limit
	14.62	12.66	4.38	34	23.7	
	10.89	9.60	4.37	26	24.7	
	13.01	11,15	4.29	15	27.1	25
	C					
	30		Liquid	Limit		
	28					
		-				
	26					

NUMBER OF BLOWS

PLASTIC LIMIT AND PLASTICITY INDEX

ſ	Wet Soil and	Dry Soil and		Water		
	Tare Mass	Tare Mass	Tare Mass	Content		
	(g)	(g)	(g)	(%)	Plastic Limit	Plasticity Index
	11.39	10.47	4.34	15.0	15	10
	10.71	9.88	4.34	15.0		

Remarks:

Reviewed By

Template: tmp_sum_input.xlsm Version: 20170217 Approved By: RJ

	Bridging KY - 0	54B00009N , 65.0'-66.5', 70.0	Project Number 17856800
-urce	05460000910-1	, 65.0-66.5 , 70.0	'-71.5' Lab ID 1292
mple Type	SPT Composite	9	Date Received 4-1-2
	·		Date Reported 4-9-2
			Test Results
Natu	ral Moisture C	ontent	Atterberg Limits
Test Not Per	formed		Test Method: AASHTO T 89 & T 90
Moistu	re Content (%):	N/A	Prepared: Dry
			Liquid Limit: 26
			Plastic Limit: 17
Par	ticle Size Anal	<u>ysis</u>	Plasticity Index: 9
Preparation I	Method: AASH1	ОТ 87	Activity Index: 0.5
Gradation Me	ethod: AASHTC) T 88	
Hydrometer I	Method: AASH1	TO T 88	
			Moisture-Density Relationship
Parti	cle Size	%	Test Not Performed
Sieve Size	(mm)	Passing	Maximum Dry Density (lb/ft ³): N/A
	N/A		Maximum Dry Density (kg/m ³): N/A
	N/A		Optimum Moisture Content (%): N/A
	N/A		Over Size Correction %: N/A
	N/A		
	N/A		
3/8"	9.5	100.0	California Bearing Ratio
No. 4	4.75	99.9	Test Not Performed
No. 10	2	99.8	Bearing Ratio (%): N/A
No. 40	0.425	99.4	Compacted Dry Density (lb/ft ³): N/A
No. 200	0.075	80.9	Compacted Moisture Content (%): N/A
110. 200	0.02	48.7	
	0.005	24.1	
	0.002	17.0	Specific Gravity
estimated	0.001	13.0	Test Method: AASHTO T 100
			Prepared: Dry
Plus 3 in. ma	terial, not includ	ded: 0 (%)	Particle Size: No. 10
			Specific Gravity at 20° Celsius: 2.72
	ASTM	AASHTO	
Range	(%)	(%)	
Gravel	0.1	0.2	Classification
Coarse San		0.4	Unified Group Symbol: CL
Medium San			Group Name: Lean clay with sand
Fine Sand		18.5	
Silt	56.8	63.9	
Clay	24.1	17.0	AASHTO Classification: A-4 (5)
]

Particle-Size Analysis of Soils

AASHTO T 88

HOPKINS COUNTY

STP BRZ 9030 (500)

Project Name	Bridging KY - 054E	300009N	Proje	ct Number 1	78568003	
Source	054B00009N-1, 65	054B00009N-1, 65.0'-66.5', 70.0'-71.5'				1292
				-		
	Sieve analys	sis for the Portion Co	arser than the No	. 10 Sieve		
			Sieve	%		
Test Metho	d AASHTO T 8	8	Size	Passing		
Prepared usin						
	<u> </u>					
Particle Shap	e Angular					
Particle Hardness		ble				
Tested B	y TRH					
	e 04-02-2021		1			
	d 04-01-2021					
			3/8"	100.0		
Maximum Particle	size: 3/8" Sieve		No. 4	99.9		
			No. 10	99.8		
	A	- for the postion Firm	5 .			
Analysia Record on		s for the portion Fine				
Analysis based on	-3 inch fraction only	/	No. 40	99.4		
Crasifia Crawit	0.70		No. 200	80.9		
Specific Gravit	y <u> </u>		0.02 mm			
Dispersed usin	a Apparatus A Mas	hanical for 1 minute	0.005 mm			
Dispersed using	g Apparatus A - Med	hanical, for 1 minute	0.002 mm			
			0.001 mm	13.0		
112-2		Particle Size Distri	oution		5-1	
ASTM Coarse Grave	Fine Gravel C. San 0.1 0.1		Sand	Silt 56 B	Clay 24.1	-
AASHTO			1.0			
	Gravel	Coarse Sand Fine	Sand	Silt	Clay	
	Gravel 0.2	Coarse Sand Fine	Sand 3.5		11	
Sieve Size in inches	0.2	Coarse Sand Fine	3.5	Silt	Clay	
Sieve Size in inches		Coarse Sand Fine 0.4 10 Sieve Size in sieve numbers 10		Silt	Clay	
Sieve Size in inches	0.2	Coarse Sand Fine 0.4 10 Sieve Size in sieve numbers 10	3.5	Silt	Clay	
Sieve Size in inches	0.2	Coarse Sand Fine 0.4 10 Sieve Size in sieve numbers 10	100 200	Silt	Clay	100 90
Sieve Size in inches	0.2	Coarse Sand Fine 0.4 10 Sieve Size in sieve numbers 10	3.5	Silt	Clay	100
Sieve Size in inches	0.2	Coarse Sand Fine 0.4 10 Sieve Size in sieve numbers 10	100 200	Silt	Clay	100 90 80
Sieve Size in inches	0.2	Coarse Sand Fine 0.4 10 Sieve Size in sieve numbers 10	100 200	Silt	Clay	100 90 80 70
Sieve Size in inches	0.2	Coarse Sand Fine 0.4 10 Sieve Size in sieve numbers 10	100 200	Silt	Clay	100 90 80 70
Sieve Size in inches	0.2	Coarse Sand Fine 0.4 10 Sieve Size in sieve numbers 10	100 200	Silt	Clay	100 90 80 70
Sieve Size in inches	0.2	Coarse Sand Fine 0.4 10 Sieve Size in sieve numbers 10	100 200	Silt	Clay	100 90 80 70
Sieve Size in inches	0.2	Coarse Sand Fine 0.4 10 Sieve Size in sieve numbers 10	100 200	Silt	Clay	100 90 80 70
Sieve Size in inches	0.2	Coarse Sand Fine 0.4 10 Sieve Size in sieve numbers 10	100 200	Silt 63.9	Clay	100 90 80 70 60 80 60 50 40 40
Sieve Size in inches	0.2	Coarse Sand Fine 0.4 10 Sieve Size in sieve numbers 10	100 200	Silt 63.9	Clay	100 90 80 70
Sieve Size in inches	0.2	Coarse Sand Fine 0.4 10 Sieve Size in sieve numbers 10	100 200	Silt 63.9	Clay	100 90 80 70 60 80 60 50 40 40
Sieve Size in inches	0.2	Coarse Sand Fine 0.4 10 Sieve Size in sieve numbers 10	100 200	Silt 63.9	Clay	100 90 80 70 60 50 40 40 30 20
Sieve Size in inches	0.2	Coarse Sand Fine 0.4 10 Sieve Size in sieve numbers 10	100 200	Silt 63.9		100 90 80 70 60 50 40 30 20
Sieve Size in inches	0.2	Coarse Sand Fine 0.4 10 Sieve Size in sieve numbers 10	100 200	Silt 63.9		100 90 80 70 60 50 40 40 30 20
Sieve Size in inches	0.2	Coarse Sand Fine 0.4 10 Sieve Size in sieve numbers 10		Silt 63.9		100 90 80 70 60 50 40 40 30 20 10
		Coarse Sand Fine 0.4 11 Sieve Size in sieve numbers 10 16 30 40 10 16 30 40 40 40 40 40 40 40 40 40 40 40 40 40		Silt 63.9		100 90 80 70 60 50 40 30 20 10 0
		Coarse Sand Fine 0.4 11 Sieve Size in sieve numbers 10 16 30 40 10 16 30 40 40 40 40 40 40 40 40 40 40 40 40 40		Silt 63.9		100 90 80 70 60 50 40 30 20 10 0

Stantec Consulting Services Inc. Lexington, Kentucky

Reported By: RJ Report Date: 04/09/2021

13.09

12.13

13.27

11.29

10.51

11.38

ATTERBERG LIMITS

26

25.6

26.0

26.7

32

23

15

Project	Bridging KY - 054B00009N				Project No.	178568003
Source	054B00009N-1, 65.0'-66.5', 70.0'-71.5'				Lab ID	1292
Tested By	JMB	Test Method AASHTO T 89 & T 90			% + No. 40	04-01-2021
Test Date	04-08-2021	Prepared Dry			Date Received	
÷	Wet Soil and Tare Mass (g)	Dry Soil and Tare Mass (g)	Tare Mass (g)	Number of Blows	Water Content (%)	Liquid Limit

4.26

4.27

4.31

40	Liquid	 	
38			
36			
34			
32			
30			
28			
26	¢	 	
24		• 	
22			
20 10	20		

NUMBER OF BLOWS

PLASTIC LIMIT AND PLASTICITY INDEX

1	Wet Soil and	Dry Soil and		Water		
	Tare Mass	Tare Mass	Tare Mass	Content		
	(g)	(g)	(g)	(%)	Plastic Limit	Plasticity Index
	12.23	11.05	4.26	17.4	17	9
	12.25	11.10	4.34	17.0		

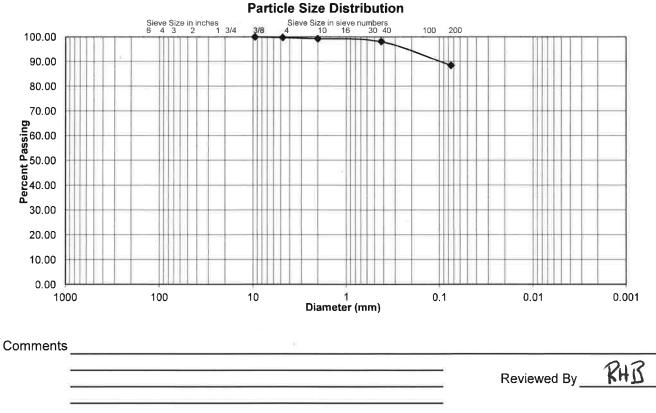
Remarks:

Reviewed By

HOPKINS COUNTY

AASHTO T 88

Project Name Bridging KY - 054B00009N	Project Nu
Source 054B00009N-1, 75.0'-76.5'	
Preparation Method AASHTO T 11 Method A	Date Rec
Soak Time (min) 1170	Preparation
Particle Shape Rounded	Test
Particle Hardness Hard and Durable	
Sample Dry Mass (g) 353.92	Analysis based o
Moisture Content (%) 24.5	


	i (A	
	Grams	%	%
Sieve Size	Retained	Retained	Passing
3/8"	0.00	0.0	100.0
No. 4	0.89	0.3	99.7
No. 10	1.62	0.5	99.3
No. 40	4.06	1.1	98.1
No. 200	34.36	9.7	88.4
Pan	312.99	88.4	

Project Number	178568003
Lab ID	1295
Date Received	04-01-2021
Preparation Date	04-01-2021
Test Date	04-06-2021

on total sample.

% Gravel	0.7
% Sand	10.9
% Fines	88.4
Fines Classification	N/A
D ₁₀ (mm)	N/A
D ₃₀ (mm)	N/A
D ₆₀ (mm)	N/A

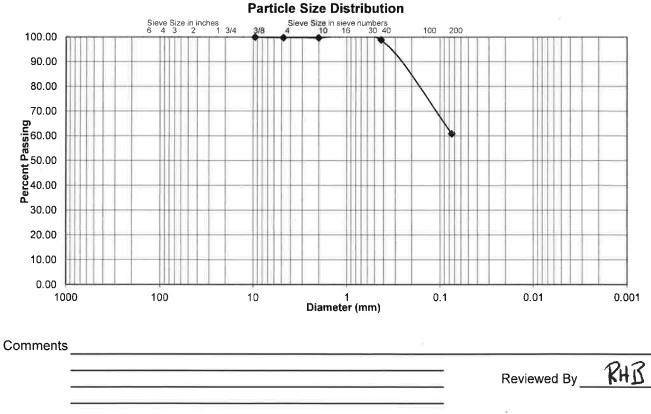
N/A	
N/A	
	N/A N/A

Template: tmp_200_input.xlsm Version: 20170216 Approved By: RJ

Stantec Consulting Services Inc. Lexington, Kentucky

Reported By: RHB Report Date: 04/06/2021

AASHTO T 88


Project Name Bridging KY - 054B00009N	Project Number	1785
Source 054B00009N-1, 80.0'-81.5'	Lab ID	12
Preparation Method AASHTO T 11 Method A	Date Received	04-01
Soak Time (min) 1170	Preparation Date	04-01
Particle Shape Rounded	Test Date	04-06
Particle Hardness Hard and Durable	-	
Sample Dry Mass (g) 415.03	Analysis based on total	sample
Moisture Content (%) 20.0		

	Grams	%	%
Sieve Size	Retained	Retained	Passing
		<u> </u>	
3/8"	0.00	0.0	100.0
No. 4	0.78	0.2	99.8
No. 10	0.38	0.1	99.7
No. 40	3.53	0.9	98.9
No. 200	157.67	38.0	60.9
Pan	252.67	60.9	

Project Number	178568003
Lab ID	1296
Date Received	04-01-2021
Preparation Date	04-01-2021
Test Date	04-06-2021

% Gravel	0.3
% Sand	38.8
% Fines	60.9
Fines Classification	N/A
D ₁₀ (mm)	N/A
D ₃₀ (mm)	N/A
D ₆₀ (mm)	N/A

Cu	N/A	
Сс	N/A	

Template: tmp_200_input.xlsm Version: 20170216 Approved By: RJ

Stantec Consulting Services Inc. Lexington, Kentucky

Reported By: RHB Report Date: 04/06/2021

Stantec										Moistu	Moisture Content of Soil AASHTO T 265	ntent of Soil AASHTO T 265
Project Name Bridging KY - 054B00009N	N600									Pro	Project Number	178568003
											Tested By	TRH
Maximum Particle Size in Sample	No. 40	No. 4	1/2"	14	2"							
Recommended Minimum Mass (g)	10	100	300	500	1,000					·	Test Method	AASHTO
Material Type: <u>Stratified</u> , <u>Lam</u> inated, <u>Len</u> sed, <u>Hom</u> ogeneous, <u>Dist</u> urbed	<u>1</u> ogeneous, <u>1</u>	<u>Dist</u> urbed										
					Maximum	Materia	irial	Pass Min.	-	Wet Soil &	Dry Soil &	
7			Date	Material	Particle	Excluded	ded	Mass?	Can Weight	Can Weight	CanWeight	Moisture
- 1		Lab ID	Tested	Type	Size	Amount	Size	(N/X)	(B)	(g)		Content (%)
- 1		1276	4/1/21	Hom	No. 40			Yes	30.48	166.04	138.98	24.9
		1277	4/1/21	Hom	1/2"			No	30.06	169.88	141.36	25.6
054B00009N-1, 10.0'-11.5'		1278	4/1/21	Hom	No. 4			Yes	303.75	676.56	609.43	22.0
		1279	4/1/21	Hom	No. 40			Yes	313.53	811.59		26.6
-		1280	4/1/21	Dist	No. 40			Yes	286.32	806.65	705.38	24.2
-		1282	4/1/21	Dist	No. 4			Yes	31.49	187.74	157.15	24.3
054B00009N-1, 30.0'-31.5'		1283	4/1/21	Dist	No. 4			Yes	30.11	164.85	138.70	24.1
054B00009N-1, 35.0'-36.5'		1284	4/1/21	Hom	No. 4			Yes	300.36	671.55	601.14	23.4
054B00009N-1, 40.0'-41.5'		1286	4/1/21	Hom	No. 4			Yes	29.75	198.36	164.60	25.0
		1287	4/1/21	Dist	No. 40			Yes	30.70	198.53	164.69	25.3
054B00009N-1, 50.0'-51.5'		1288	4/1/21	Hom	No. 4			Yes	31.58	192.45	168.59	17.4
-		1290	4/1/21	Hom	No. 4			Yes	30.56	223.24	185.23	24.6
		1291	4/1/21	Hom	No. 4			Yes	31.02	209.82	176.31	23.1
		1293	4/1/21	Hom	No. 4			Yes	30.13	195.93	160.78	26.9
		1294	4/1/21	Hom	No. 4			Yes	30.21	210.03	170.55	28.1
054B00009N-1, 75.0'-76.5'		1295	4/1/21	Hom	No. 4			Yes	304.84	745.50	658.76	24.5
054B00009N-1, 80.0'-81.5'		1296	4/1/21	Hom	No. 4			Yes	305.70	803.76	720.73	20.0
										ť		2
										ž	Reviewed By	- ¥.
)

Stantec Consulting Services Inc. Lexington, Kentucky

Reported By: RJ Report Date: 04/09/2021

HOPKINS COUNTY STP BRZ 9030 (500)

Page 1 of 1

Template: tmp_mc_input.xlsm Version: 20170216 Approved By: RJ

AASHTO T 88

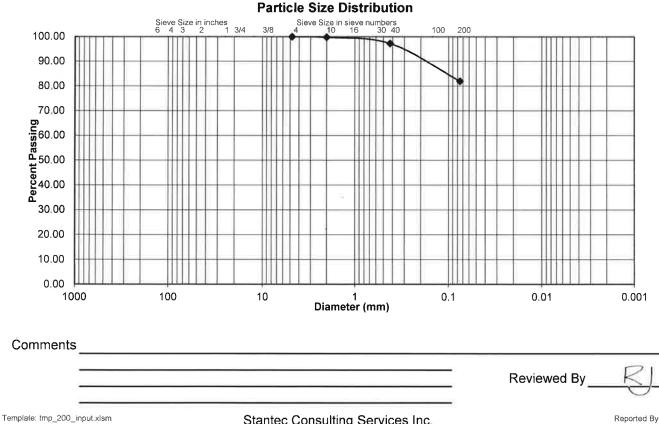
178568003

Stantec	
Project Name Bridging KY - 054B00009N	
Source 054B00009N-2, 2.0'-3.5'	
Preparation Method AASHTO T 11 Method A	
Soak Time (min) 350	
Particle Shape Angular	
Particle Hardness Hard and Durable	
Sample Dry Mass (g) 116.54	
Mainture Content (9) 10.2	

Moisture Content (%) 19.2

	Grams	%	%
Sieve Size	Retained	Retained	Passing
	÷		
		·	
No. 4	0.00	0.0	100.0
No. 10	0.28	0.2	99.8
No. 40	2.93	2.5	97.2
No. 200	17.84	15.3	81.9
Pan	95.49	81.9	

Lab ID 1314 Date Received 10-21-2021 Preparation Date 10-22-2021 Test Date 10-26-2021


Analysis Based on Total Sample.

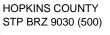
Project Number

% Gravel	0.2
% Sand	17.8
% Fines	81.9
Fines Classification	N/A
D ₁₀ (mm)	N/A
D ₃₀ (mm)	N/A

D₆₀ (mm) N/A

Cu	N/A	
Cc	N/A	

Version: 20170216 Approved By: RJ Stantec Consulting Services Inc. Lexington, Kentucky Reported By: RJ Report Date: 11/09/2021


ample Type ST <u>Natural</u> Test Not Perfor	4B00009N-2	, 0.0 7.0		1340
<u>Natural</u> Test Not Perform				
Test Not Perfor			Date Received	10-25-21
Test Not Perfor			Date Reported	11-11-21
Test Not Perfor			Test Results	
	Moisture C	ontent	Atterberg Limits	
Moisture (ned		Test Method: AASHTO T 89 & T 90	
	Content (%):	N/A	Prepared: Dry	
			Liquid Limit:	
			Plastic Limit:	
Partic	le Size Ana	ysis	Plasticity Index:	
Preparation Met			Activity Index:	0.5
Gradation Methe				č.
Hydrometer Met	thod: AASH	ГО Т 88		
			Moisture-Density Relation	ship
Particle	Size	%	Test Not Performed	
Sieve Size	(mm)	Passing	Maximum Dry Density (lb/ft ³);	N/A
	N/A		Maximum Dry Density (kg/m ³):	N/A
	N/A		Optimum Moisture Content (%):	
	N/A	÷	Over Size Correction %	N/A
	N/A			10/7
· · · · · · · · · · · · · · · · · · ·	N/A			
	N/A		California Bearing Rati	0
No. 4	4.75	100.0	Test Not Performed	
No. 10	2	99.9	Bearing Ratio (%):	N/A
No. 40	0.425	99.6	Compacted Dry Density (lb/ft ³):	
No. 200	0.925	87.6	Compacted Dry Density (Ib/It).	
110.200	0.070	59.7		10//1
ł	0.005	33.1		
ł	0.002	26.2	Specific Gravity	
Estimated	0.002	21.4	Test Method: AASHTO T 100	
Lotimatod	0.001		Prepared: Dry	
Plus 3 in. Materi	al. Not Inclu	ded: 0 (%)	Particle Size:	No 10
	,		Specific Gravity at 20° Celsius:	
ſ	ASTM	AASHTO		
Range	(%)	(%)	L	
Gravel	0.0	0.1	Classification	
Coarse Sand	0.1	0.3	Unified Group Symbol:	CL
Medium Sand	0.3		Group Name:	
Fine Sand	12.0	12.0		
Silt	54.5	61.4		
Clay	33.1	26.2	AASHTO Classification:	A-6(11)
		······································		
Comments:				
7.			Deviewed De	[2]
÷			Reviewed By	<u> </u>

) Stantec

Particle-Size Analysis of Soils

AASHTO T 88

Project I Source	Name	Bridging KY 054B00009							_ Proje	ct Number Lab ID	178568003 1340
		Sieve	Analysi	s for the	Porti	on Coar	ser tha	an the No	10 Sieve		
-			TO T 00					Sieve	%		
		AASH					-	Size	Passing		
Prep	ared Using	AASH	TO T 87	-			-				
Part	icle Shape:	An	gular				-				
	Hardness:		d Durabl	e			10		<u> </u>		
							F				
	Tested By	DW									
		10-28-2021									
Dat	e Received	10-25-2021									
Maximui	m Particle S	Size: No. 4 Si	eve				H	No. 4	100.0		
								No. 10	99.9		
					Portior	n Finer tl	nan th	e No. 10			
Analysis	Based on	-3 inch Fract	ion Only				_ -	No. 40	99.6		
Snor		0.64					F	No. 200).02 mm	87.6		
oper	Sinc Gravity	2.64	-					0.02 mm			
Dispe	rsed Usina	Apparatus A	- Mecha	anical fo	r 1 Mir	nute).002 mm			
Diopo	lood oomig	, ippulatuo ,		annoan, ro		lato		0.001 mm			
					0.		-				
	Coarse Gravel	Fine Gravel	C. Sand	Medium S		Distribu Fine San			Silt	Clay	
ASTM	0.0	0.0	0.1	0.3		12.0			54.5	33.1	
AASHTO		Gravel 0.1		Coarse Sa 0,3	and	Fine San 12.0	d		Silt 61.4		Clay 26.2
Sieve	Size in Inches		6d 03	Sieve Size							
	3 2 1	3/4 3/8			30 40	10	200	,	1 1111		100
											90
			$\left \right $		++++		A	+++		++++	
					++++			\mathbb{N}			80
											70
					++++			A			
									A		60 · is
											50 d <u>t</u>
					++++	_					- je
									A		40 2
					++++			++++			30
		+ +++++									A
											20
		+			++++						10
											o
100		10		1	Diame	ter (mm)	0.1		0.01		0.001
						. ,					
(Comments								Re	viewed By	KI
									-		
									÷		0

Stantec

ATTERBERG LIMITS

		ing KY - 054B				Project No. Lab ID	178568003
Source	0540	0000910-2, 5.0	1-7.0				1340 . 0
Tested By		JMB	Test Method	AASHTO T 8	0 & T 00	Date Received	10-25-2021
Test Date	1	0-29-2021	Prepared	Dry	9 0 1 90		10-23-2021
1001 Duto	_	0 20 2021	- Tropared	Diy			
Ĩ	W	et Soil and	Dry Soil and		1	1 1	
		are Mass	Tare Mass	Tare Mass	Number of	Water Content	
		(g)	(g)	(g)	Blows	(%)	Liquid Limit
		17.90	16.28	11.05	32	31.0	*
			10.81	24	32.8		
		18.40	16.46	10.90	15	34.9	32
-		10.40	10.40	10.90	15	54.9	32
Į					1		
				Liqu	id Limit		
	40	1		Liqu			1
							_
	38			-			
	36						
			-				
%	34						
MOISTURE CONTENT, %	32						
Ë							
Ő	30						_
SE (28						
ID L	20						
SIO	26						
Σ							
	24						
	22						
	20	·					[]
	1	0		20	25	30	40 50

NUMBER OF BLOWS

PLASTIC LIMIT AND PLASTICITY INDEX

W	et Soil and	Dry Soil and		Water		
т	are Mass	Tare Mass	Tare Mass	Content		
	(g)	(g)	(g)	(%)	Plastic Limit	Plasticity Index
	17.28	16.30	11.01	18.5	18	14
	17.33	16.38	11.09	18,0		

Remarks:

Reviewed By

Page 1 of 1

Unconfined Compressive Strength of Cohesive Soil

KM 64-522

Project Name	Bridging KY -	054B00009	N				Project		178568003
Source 054B0000 Visual Description) brown m	oiet firm					Lab ID	1340
Visual Description	Lean Ciay (CL	. <i>)</i> , brown, n	ioist, initi			Rec	overed	1	.2'
							nterval		- 5.6'
Specimen Type:	Undisturbed	LL	32	PL	18	10011		0.1	
1				PI	14		Date B	Extruded	10/26/2021
Initial Wet	Density (pcf)	125.0		3 					10/27/2021
Initial Moisture	Content (%)	22.5	Initial MC	Taken Be	fore Test	, From Trin			
	Density (pcf)	102.1							
At Test Moisture		N/A	At Test MC	Taken <u>N</u> /	A				
	Density (pcf)	N/A							
	ecific Gravity	2.64			_				
	aturation (%)	96.6	Ur			sive Streng		1.58	
	ge Height (in)	6.011				ear Streng		0.79	
	Diameter (in) _ ameter Ratio	2.881				kimum Stre		6.3	
Height to Di		Z. 1		Strai	n Rale lo	Failure (%	/ mm.)	1,00	
			Stress v	s. Strain					
1.80				-	1		- E	1	
1.60									
1.40									
5 1.20									
<u></u> 1.00		1	-						
Stress (1st)									
ت 0.60									
0.40									
0.20									
0.00			-ll						
0.0	1.0	2.0	3.0 4	0 8	5.0	6.0	7.0	8.0	9.0
				Strain (%))				
Failure Ske	etch				Pocket	Penetrome			
						Torvane F	Reading	(kg/cm ²)	N/A
	r -	С	omments					-	
				κ.					
	\sim	_							
	rql	1							
		-						_	
		-							
		÷							
							Rovia	ewed By	RI
							1.000	shou by	-9-

AASHTO T 88

iect Name	Bridaina KV	′ - 054B0000	9N		Project Number 17856800
		- 004B0000			Lab ID 1315
		AASHTO T			Lab ID 1315 Date Received 10-21-202
	Time (min)				
	ticle Shape		1		Preparation Date 10-22-202
		Hard and Du	rabla	9	Test Date
			iraple	6	
	ry Mass (g)		Ē		Analysis Based on Total Sample.
woisture C	Content (%)	21.2	9		
Г		Grams	%	%	% Gravel 0.3
	Sieve Size	Retained	Retained	Passing	% Sand 14.7
Г					% Fines 85.0
F					Fines Classification N/A
1					
Ī					D ₁₀ (mm) N/A
					D ₃₀ (mm) N/A
F				1	$D_{60} \text{ (mm)} \text{N/A}$
ŀ					
ŀ					
-					
					Cc N/A
-					
ŀ	No. 4	0.00	0.0	100.0	
ŀ	No. 10	0.57	0.0	99.7	
-	No. 40	6.22	3.6	96.0	
-	No. 200	19.02	11.1	85.0	
- t	Pan	145.86	85.0		
			Particle	e Size Distrib	ution
		Sieve Size in inches 6 4 3 2 1			
100.00		6 4 3 2 1	3/4 3/8 4	10 16 3	bers 10 40 100 200
100.00		6 4 3 2 1	3/4 3/8 4	Sieve Size in sieve num	bers 10 40 100 200
100.00 90.00			3/4 3/8 4		bers 100 40 100 200
90,00			3/4 3/8 4		bers 10 40 100 200
90.00 80.00					
90.00 80.00 70.00					
90.00 80.00					
90.00 80.00 70.00 Diss 60.00 50.00 40.00 30.00					
90.00 80.00 70.00 60.00 50.00 t 50.00 50.00					
90.00 80.00 70.00 Diss 60.00 50.00 40.00 30.00					

Comments

1000

100

10

Reviewed By Template: tmp_200_input.xlsm Reported By: RJ Stantec Consulting Services Inc.

1

Diameter (mm)

0.1

0.01

Lexington, Kentucky

0.001

	Bridging KY - 0 054B00009N-2		Project Number	<u>178568003</u> 1341
Julioc	004800000112	, 10.0 - 17.0		
ample Type	ST		Date Received	
			Date Reported	11-11-21
			Test Results	
Natu	ral Moisture C	ontent	Atterberg Limits	
Test Not Per	formed		Test Method: AASHTO T 89 & T 90	
Moistu	re Content (%):	N/A	Prepared: Dry	
			Liquid Limit:	36
			Plastic Limit:	19
Pa	rticle Size Ana	ysis	Plasticity Index:	17
Preparation	Method: AASH	ОТ 87	Activity Index:	0.6
	ethod: AASHTC			
Hydrometer	Method: AASH	ГО Т 88		
Deuti	cle Size		Moisture-Density Relation	iship
		<u>%</u>	Test Not Performed	
Sieve Size	/	Passing	Maximum Dry Density (lb/ft ³):	
	N/A		Maximum Dry Density (kg/m ³):	N/A
	N/A		Optimum Moisture Content (%)	N/A
	N/A		Over Size Correction %:	N/A
1"	25	100.0		
3/4"	19	95.1	34	
3/8"	9.5	95,1	California Bearing Rati	0
No. 4	4.75	95.1	Test Not Performed	
No. 10	2	95.1	Bearing Ratio (%):	N/A
No. 40	0.425	95.0	Compacted Dry Density (lb/ft ³):	N/A
No. 200	0.075	84.9	Compacted Moisture Content (%):	N/A
	0.02	57.3		
	0.005	33.6		
	0.002	26.7	Specific Gravity	
Estimated	0.001	22.7	Test Method: AASHTO T 100	
			Prepared: Dry	
Plus 3 in. Ma	terial, Not Inclu	ded: 0 (%)	Particle Size: Specific Gravity at 20° Celsius:	
	ASTM	AASHTO		
Range	(%)	(%)		
Gravel	4.9	4.9	Classification	
Coarse San	d 0.0	0.1	Unified Group Symbol:	CL
Medium Sar	nd 0.1		Group Name: Lean C	lay with sand
Fine Sand	10.1	10.1	2	
Silt	51.3	58.2		
Clay	33.6	26.7	AASHTO Classification:	A-6(14)
Comments:				
्ट्रा गांगला.च.				

Particle-Size Analysis of Soils

🕥 Sta	ntec				2		Particle	e-Size		SIS Of AASHT	
Project Name Source	Bridging KY 054B000091							Projec	t Numbe Lab I[r <u>1785</u> D	
	Sieve	Analysis	s for th	e Porti	on Coarse	er than the					
						Siev					
Test Method		TO T 88				Siz	e Pase	sing			
Prepared Using	AASH	TO T 87									
Particle Shape		gular									
Particle Hardness		d Durable									
							_	_			
Tested By	/ DW										
•	11-04-2021					1"	100	0.0			
Date Received						3/4					
						3/8					
Maximum Particle	Size: 1" Sieve					No.	4 95	.1			
						No. 1	10 95	.1			
	A	nalvsis f	or the	Portior	Finer tha	n the No.	10 Sieve				
Analysis Based on						No. 4		0			
		,				No. 2					
Specific Gravity	2.68					0.02					
	ē	-				0.005	mm 33	.6			
Dispersed Using	Apparatus A	- Mecha	inical, fo	or 1 Mir	nute	0.002	mm 26	.7			
						0.001	mm 22	.7			
			Particl	e Size	Distributio	n					
ASTM Coarse Gravel		C. Sand	Medium		Fine Sand	_	Silt		Clay		
AASHTO	0,0 Gravel	0.0	0.1 Coarse S	Sand	10.1 Fine Sand		51.3 Silt		33.6	Clay	
	4.9		0_1		10.1		58.2			26.7	
Sieve Size in Inches 3 2 1	3/4 3/8	4 10		in Sieve Nu 30 40	umbers 100	200					
				1111				TITI			100
			·								90
				++++		A	+				
											30
											70
	<u> </u>						A	****			
								11111		e	SO is
										5	50 <u>1</u>
											-Sec
		I						4			
								1			30
	+++++++			++++		+++++++++++++++++++++++++++++++++++++++					
										²	20
										1	10
							- E				

Comments

10

Stantec Consulting Services Inc. Lexington, Kentucky

Diameter (mm)

1

0.1

Reviewed By

0.01

0

0.001

100

ATTERBERG LIMITS

34

32

30 10

Project	Bridg	ing KY - 054B(00009N	Project No.	178568003				
Source	054B	00009N-2, 15.	0'-17.0'					Lab ID	1341
								% + No. 40	5
Tested By		KG	Test Method	AASHTO T	89 &	T 90		Date Received	10-25-2021
Test Date	1	I-09-2021 Prepared Dry							
		et Soil and	Dry Soil and						
	Т	are Mass	Tare Mass	Tare Ma	ss	Numbe	er of	Water Content	
		(g)	(g)	(g)		Blow	/S	(%)	Liquid Limit
		19.51	17.33	11.13		35		35.2	
		20.01	17.64	11.09		23		36.2	
		20.29	17.80	11.06		19		36.9	36
I									
	50			Lie	quid	Limit			
	50								
	48								
	46 -							_	
	44 -								
*									
	42 -								
L L									
8	40								
RE	38 -								
MOISTURE CONTENT.				-					
SIO SIO	36 -					-			
Σ									

NUMBER OF BLOWS

25

30

20

Wet Soil and	Dry Soil and		Water		
Tare Mass	Tare Mass	Tare Mass	Content		
(g)	(g)	(g)	(%)	Plastic Limit	Plasticity Index
19.58	18.28	11.38	18.8	19	17
19.66	18.34	11.30	18.8		

Remarks:

Reviewed By

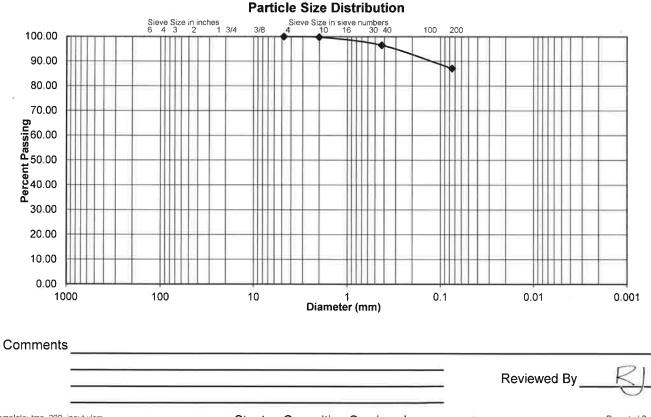
50

40

AASHTO T 88

\bigcirc	Stantec

Project Name Bridging KY - 054B00009N	Project Number	17
Source 054B00009N-2, 20.0'-21.5'	Lab ID	
Preparation Method AASHTO T 11 Method A	Date Received	10-
Soak Time (min) 360	Preparation Date	10-
Particle Shape Angular	Test Date	10-
Particle Hardness Hard and Durable	-	
Sample Dry Mass (g) 157.33	Analysis Based on Tota	l San
Moisture Content (%) 23.5		


	Grams	%	%
Sieve Size	Retained	Retained	Passing
E.			
No. 4	0.00	0.0	100.0
No. 10	0.30	0.2	99.8
No. 40	5.13	3.3	96.5
No. 200	14,90	9.5	87.1
Pan	137.00	87.1	

Project Number	178568003
Lab ID	1316
Date Received	10-21-2021
Preparation Date	10-22-2021
Test Date	10-26-2021

imple,

% Gravel % Sand	0.2
% Fines	87.1
Fines Classification	N/A
D ₁₀ (mm)	N/A
D ₃₀ (mm)	N/A
D ₆₀ (mm)	N/A

Cu	N/A	
Cc	N/A	

Template: tmp_200_input,xlsm Version: 20170216 Approved By: RJ

Stantec Consulting Services Inc. Lexington, Kentucky

Reported By: RJ Report Date: 11/09/2021

oject Name Bri		54B00009N	Project Number Lab ID	178568003 1342
	400000910-2	., 25.0 - 27.0		1342
ample Type ST			Date Received	10-25-21
			Date Reported	11-11-21
			Test Results	
Natural	Moisture C	ontent	Atterberg Limits	
Test Not Perfor	med		Test Method: AASHTO T 89 & T 90	
Moisture	Content (%)	N/A	Prepared: Dry	
			Liquid Limit:	
			Plastic Limit:	
	le Size Ana		Plasticity Index:	18
Preparation Me			Activity Index:	0.7
Gradation Meth				
Hydrometer Me	thod: AASH	10 88	Maintura Danaitu Balatian	- h in
Particle	Sizo	%	Moisture-Density Relation Test Not Performed	snip
Sieve Size		-		N1/A
Sieve Size	(mm)	Passing	Maximum Dry Density (lb/ft ³):	
	N/A		Maximum Dry Density (kg/m ³):	N/A
	N/A		Optimum Moisture Content (%):	N/A
	N/A	1	Over Size Correction %:	N/A
	N/A		· · · · · · · · · · · · · · · · · · ·	
	N/A			
	N/A		California Bearing Ratio	<u>0</u>
N= 10	N/A	100.0	Test Not Performed	
No. 10	2	100.0	Bearing Ratio (%):	
No. 40	0.425	99.2	Compacted Dry Density (lb/ft ³):	N/A
No. 200	0.075	93.3	Compacted Moisture Content (%):	N/A
0	0.02	70.2		
	0.005	34.9	Caracific Caracity	
Estimated	0.002	26.3	Specific Gravity Test Method: AASHTO T 100	
Estimated	0.001	22.0	Prepared: Dry	
Plus 3 in. Mater	ial Not Inclu	ded: 0 (%)	Particle Size:	No. 10
			Specific Gravity at 20° Celsius:	2 70
	ASTM	AASHTO		
Range	(%)	(%)		
Gravel	0.0	0.0	Classification	
Coarse Sand	0.0	0.8	Unified Group Symbol:	CL
Medium Sand	0.8		Group Name:	Lean clay
Fine Sand	5.9	5.9	1.0	
Silt	58.4	67.0		
Clay	34.9	26.3	AASHTO Classification:	A-6(17)
Comments:				
comments.				

Stantec

Particle-Size Analysis of Soils

AASHTO T 88

Project Nam Source	ie	Bridging KY 054B000091			Project	Number 178 Lab ID	3568003 1342		
		Sieve	Analvei	s for the Port	tion Coarser t	han the No	10 Sieve		
		Sleve	Allalysi	S IOI LIE FOI		Sieve	. 10 Sleve		
Test	Method	AASH	FO T 88			Size	Passing		
Prepareo			ГО Т 87			0120	1 dooning		
ropuloe	a comg			C					
Particle	-		/A						
Particle Har	rdness:	N	/A						
То	sted By	DW							
		10-27-2021	_						
		10-25-2021							
			-						
Maximum Pa	article S	Size: No. 10 S	lieve			No. 40	100.0		
						No. 10	100.0		
			-		on Finer than t				
Analysis Bas	sed on	-3 inch Fract	on Only			No. 40	99.2		
Specific	Crowity	27				No. 200	93.3		
Specific	Gravity	2.7	-			0.02 mm 0.005 mm	70.2 34.9		
Dispersed	l I Isina	Annaratus A	- Mech	anical, for 1 M	inute	0.003 mm			
Dispersed	a Osnig	Apparatus A			mute	0.002 mm			
						0.001 1111	22.0		
	arse Gravel	Fine Gravel	C. Sand	Particle Size Medium Sand	Distribution	1	0.14		
ASTM	0.0	0.0			Fine Sand		Silt	Clay	
			0.0	0.8	5.9		58.4	34.9	
AASHTO		Gravel 0.0	0.0	0.8 Coarse Sand 0.8	5.9 Fine Sand 5.9		58.4 Silt	Clay	
AASHTO Sieve Size ir		Gravel	0.0	Coarse Sand	Fine Sand 5.9		58.4		
Sieve Size in	n Inches	Gravel 0.0	4 1	Coarse Sand 0.8 Sieve Size in Sieve 10 16 30 4	Fine Sand 5.9 Numbers 0 100 :		58.4 Silt	Clay	100
Sieve Size in	n Inches	Gravel 0.0		Coarse Sand 0.8 Sieve Size in Sieve 10 16 30 4	Fine Sand 5.9 Numbers 0 100	200	58.4 Silt	Clay	
Sieve Size in	n Inches	Gravel 0.0		Coarse Sand 0.8 Sieve Size in Sieve 10 16 30 4	Fine Sand 5.9 Numbers 0 100		58.4 Silt	Clay	100 90
Sieve Size in	n Inches	Gravel 0.0		Coarse Sand 0.8 Sieve Size in Sieve 10 16 30 4	Fine Sand 5.9 Numbers 0 100	200	58.4 Silt 67.0	Clay	
Sieve Size in	n Inches	Gravel 0.0		Coarse Sand 0.8 Sieve Size in Sieve 10 16 30 4	Fine Sand 5.9 Numbers 0 100	200	58.4 Silt 67.0	Clay	90 80
Sieve Size in	n Inches	Gravel 0.0		Coarse Sand 0.8 Sieve Size in Sieve 10 16 30 4	Fine Sand 5.9 Numbers 0 100	200	58.4 Silt 67.0	Clay	90 80 70
Sieve Size in	n Inches	Gravel 0.0		Coarse Sand 0.8 Sieve Size in Sieve 10 16 30 4	Fine Sand 5.9 Numbers 0 100	200	58.4 Silt 67.0	Clay	90 80 70
Sieve Size in	n Inches	Gravel 0.0		Coarse Sand 0.8 Sieve Size in Sieve 10 16 30 4	Fine Sand 5.9 Numbers 0 100	200	58.4 Silt 67.0	Clay	90 80 70
Sieve Size in	n Inches	Gravel 0.0		Coarse Sand 0.8 Sieve Size in Sieve 10 16 30 4	Fine Sand 5.9 Numbers 0 100	200	58.4 Silt 67.0	Clay	90 80 70
Sieve Size in	n Inches	Gravel 0.0		Coarse Sand 0.8 Sieve Size in Sieve 10 16 30 4	Fine Sand 5.9 Numbers 0 100	200	58.4 Silt 67.0	Clay	90 80 70
Sieve Size in	n Inches	Gravel 0.0		Coarse Sand 0.8 Sieve Size in Sieve 10 16 30 4	Fine Sand 5.9 Numbers 0 100	200	58.4 Silt 67.0	Clay	90 80 70 60 50 40 40
Sieve Size in	n Inches	Gravel 0.0		Coarse Sand 0.8 Sieve Size in Sieve 10 16 30 4	Fine Sand 5.9 Numbers 0 100	200	58.4 Silt 67.0	Clay	90 80 70
Sieve Size in	n Inches	Gravel 0.0		Coarse Sand 0.8 Sieve Size in Sieve 10 16 30 4	Fine Sand 5.9 Numbers 0 100	200	58.4 Silt 67.0	Clay	90 80 70 60 50 40 30
Sieve Size in	n Inches	Gravel 0.0		Coarse Sand 0.8 Sieve Size in Sieve 10 16 30 4	Fine Sand 5.9 Numbers 0 100	200	58.4 Silt 67.0	Clay 26.3	90 80 70 60 50 40 40
Sieve Size in	n Inches	Gravel 0.0		Coarse Sand 0.8 Sieve Size in Sieve 10 16 30 4	Fine Sand 5.9 Numbers 0 100	200	58.4 Silt 67.0	Clay 26.3	90 80 70 60 50 40 30
Sieve Size in	n Inches	Gravel 0.0		Coarse Sand 0.8 Sieve Size in Sieve 10 16 30 4	Fine Sand 5.9 Numbers 0 100	200	58.4 Silt 67.0	Clay 26.3	90 80 70 60 50 40 30 20 10
Sieve Size in	n Inches	Gravel 0.0		Coarse Sand 0.8 Sieve Size in Sieve 0 16 30 4 7 7 7 7 7 7 7 7 7 7 7 7 7	Fine Sand 5.9 Numbers 0 100	200	58.4 Silt 67.0	Clay 26.3	90 80 70 60 50 40 30 20 10
	n Inches	Gravel 0.0		Coarse Sand 0.8 Sieve Size in Sieve 0 16 30 4 7 7 7 7 7 7 7 7 7 7 7 7 7	Fine Sand 5.9 Numbers 0 100	200	58.4 Silt 67.0	Clay 26.3	90 80 70 60 50 40 30 20 10
Sieve Size ir 3	n Inches 2 1	<u>Gravel</u> 0.0 3/4 3/8		Coarse Sand 0.8 Sieve Size in Sieve 0 16 30 4 7 7 7 7 7 7 7 7 7 7 7 7 7	Fine Sand 5.9 Numbers 0 100	200	58.4 Silt 67.0 0.01	Clay 26.3	90 80 70 60 50 40 30 20 10
Sieve Size ir 3	n Inches	<u>Gravel</u> 0.0 3/4 3/8		Coarse Sand 0.8 Sieve Size in Sieve 0 16 30 4 1 1 1 1 1 1 Diam	Fine Sand 5.9 Numbers 0 100	200	58.4 Silt 67.0 0.01	Clay 26.3	90 80 70 60 50 40 30 20 10

ATTERBERG LIMITS

Project	Bridg	ing KY - 054B(00009N					Project No.	178568003		
Source	054B	00009N-2, 25.	Lab ID	1342							
-				% + No. 40 1							
Tested By	_	JMB	Test Method	AASHTO T	89 &	T 90		Date Received	10-25-2021		
Test Date	1	0-29-2021	Prepared	Dry							
		χ									
		et Soil and	Dry Soil and								
	Т	are Mass	Tare Mass	Tare Ma	ss	Numb		Water Content			
ļ		(g)	(g)	(g)		Blo	ws	(%)	Liquid Limit		
	18.38		16.49	11.06		3	0	34.8			
		16.90	15.39	11.16		2:	5	35.7			
		18.25	16.32	11.10		2	0	37.0	36		
Í											
	50 Liquid Limit								1		
	48										
	46										
	1										
%	44										
Ľ	42										
E L Z	â										
8	40										
JRE	38										
STL	1										
MOISTURE CONTENT,	36					-					
2	34							4			
	34										

NUMBER OF BLOWS

25

30

PLASTIC LIMIT AND PLASTICITY INDEX

20

ſ	Wet Soil and	Dry Soil and		Water		
	Tare Mass	Tare Mass	Tare Mass	Content		
	(g)	(g)	(g)	(%)	Plastic Limit	Plasticity Index
	18.12	17.02	11.05	18.4	18	18
	17.51	16.60	11.70	18.6		

Remarks:

32

30 ⊥ 10

Reviewed By _____

40

50

No. 200

Pan

17.40

236.46

Gradation Analysis

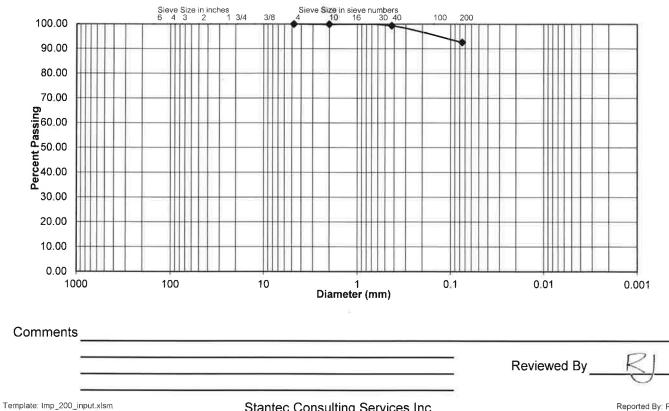
AASHTO T 88

178568003

10-21-2021 10-22-2021

10-27-2021

Project Name	e Bridging KY	′ - 054B0000	9N		Project	t Number	1785680
Source	e 054B00009		Lab ID	1317			
Prepar	ation Method	Date I	Received	10-21-20			
Soa	k Time (min)	370			Prepara	tion Date	10-22-20
	article Shape				Т	Fest Date	10-27-20
Partie	cle Hardness	Hard and Du	ırable				
Sample	Dry Mass (g)	255.55			Analysis Base	ed on Total	Sample.
Moisture	Content (%)	22.0					
		Grams	%	%	% Gravel	0.1	
	Sieve Size	Retained	Retained	Passing	% Sand	7.4	
				_	% Fines	92.5	
					Fines Classification	N/A	
					D ₁₀ (mm)	N/A	
					D ₃₀ (mm)	N/A	
					D ₆₀ (mm)	N/A	
					C++ N//	•	
					Cu N/A		
					Cc N/A	1	
	No. 4	0.00	0.0	100.0			
	No. 10	0.00	0.0	99.9			
	No. 40	1.41	0.1	99.3			
	110. 40	1,7T I	0.0	33.5			


6.8

92.5

Particle Size Distribution

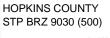
92.5

.....

Version: 20170216 Approved By: RJ

Stantec Consulting Services Inc. Lexington, Kentucky

Reported By: RJ Report Date: 11/09/2021


ource 054	1800009N-2	35.0'-37.0'	Project Number Lab ID	1343
	000000112			1040
ample Type ST			Date Received	
			Date Reported	11-11-21
			Test Results	
Natural	Moisture C	ontent	Atterberg Limits	
Test Not Perform	ned		Test Method: AASHTO T 89 & T 90	
Moisture C	Content (%):	N/A	Prepared: Dry	
		9	Liquid Limit:	30
			Plastic Limit:	17
	e Size Ana		Plasticity Index:	
Preparation Met			Activity Index:	0.5
Gradation Metho				
Hydrometer Met	noa: AASH	10 1 88	Maintura Danaity Palation	ohin
Particle	Size	%	Moisture-Density Relation Test Not Performed	isnip
Sieve Size	(mm)	Passing		N/A
Oleve Olze	N/A	Fassing	Maximum Dry Density (lb/ft ³):	
			Maximum Dry Density (kg/m ³):	
	N/A		Optimum Moisture Content (%):	
	N/A		Over Size Correction %:	N/A
	N/A			
	N/A N/A		California Boaring Bati	
	N/A		California Bearing Rati	0
No. 10	2	100.0	Bearing Ratio (%):	N/A
No. 40	0.425	99.6	Compacted Dry Density (lb/ft ³):	
No. 200	0.075	92.3	Compacted Div Density (ID/It).	
	0.02	62.5		
F	0.005	33.2		
F	0.002	24.7	Specific Gravity	
Estimated	0.001	21.0	Test Method: AASHTO T 100	
			Prepared: Dry	
Plus 3 in. Materi	al, Not Inclu	ded: 0 (%)	Particle Size:	No. 10
F		1	Specific Gravity at 20° Celsius:	2.70
	ASTM	AASHTO	L	
Range	(%)	(%)		
Gravel	0.0	0.0	Classification	
Coarse Sand Medium Sand	0.0	0.4	Unified Group Symbol:	
Fine Sand	7.3	7.3	Group Name:	Lean ciay
Silt	<u> </u>	67.6		
Clay	33.2	24.7	AASHTO Classification:	A-6 (11)
	50.2			
Comments:				
-			Reviewed By	-

Stantec

Particle-Size Analysis of Soils

AASHTO T 88

Project N	Name	Bridging KY					Projec	t Number	
Source		054B00009	N-2, 35.0)-37.0				Lab ID	1343
		Sieve	Analyci	s for the Bort	ion Conront	than the No	10 Siovo		
		Sleve	Analysi	s for the Port	ion Coarser	Sieve	10 Sieve		
, Te	est Method	AASH	ТО Т 88			Size	Passing		
Prep	ared Using	AASH	TO T 87			14			
	icle Shape: Hardness:		N/A N/A						
Particle	naiuriess.	-	N/A						
	Tested By	DW							
		10-28-202	1						
Date	e Received	10-25-202	1						
Maximur	m Porticlo 9	Size: No. 10	Siovo						
Maximur		SIZE. NO. 10	Sieve			No. 10	100.0		
		٨	nalveie	for the Portio	n Einar than				
Analvsis	Based on	-3 inch Frac				No. 40	99.6		
, ,			,			No. 200	92.3		
Spec	ific Gravity	2.7	_			0.02 mm	62.5		
Diana	un a d I la in a	Annorativa	N. Massis			0.005 mm	33.2		
Dispe	rsed Using	Apparatus A	A - Mecha	anical, for 1 Mi	inute	0.002 mm 0.001 mm	24.7		
							21.0		
	Coarse Gravel	Fine Gravel	C. Sand	Particle Size	Fine Sand		Silt	Clay	
ASTM	0,0	0.0 Gravel	0.0	0.4 Coarse Sand	7.3 Fine Sand		59.1 Silt	33,2 Cla	
AASHTO		0.0		0.4	7.3		67.6	24	
	Size in Inches 3 2 1	3/4 3/8	4 1	Sieve Size in Sieve I 0 16 30 40		200			
				<u> </u>					
									90
									80
		+				\mathbb{H}			
						A			70 ס
		+ ++++							8 60
									Percent Passing
									Cen
									40 8
									30
									A # 20
									-
									10
									o
100		10		1 Diamo	eter (mm) 0.	1	0.01		0.001
(\frown
	Comments						Rev	viewed By	\mathbf{K}
u	Comments						Rev	viewed By	K)

ATTERBERG LIMITS

Project	Bridg	ing KY - 054B(00009N	Project No.	178568003			
Source	054B	00009N-2, 35.	0'-37.0'				Lab ID	1343
000							% + No. 40	0
Tested By		JMB	Test Method	AASHTO T	89 &	Т 90	Date Received	10-25-2021
Test Date	1	0-29-2021	Prepared	Dry			n	
		et Soil and	Dry Soil and					
	Т	are Mass	Tare Mass	Tare Ma	ss	Number of	Water Content	
		(g)	(g)	(g)		Blows	(%)	Liquid Limit
	18.52		16.80	11.00		33	29.7	
		20.35	18.14	10.86		25	30.4	
		19.42	17.54	11.53		20	31.3	30
1								
1								
	40 -							
	40							
	38							
	1							
	36							
	34							
%								
EN	32 -							
CONTENT	30							
8	30						+	
MOISTURE	28							
STL	-							
Ō	26 -							
-								

PLASTIC LIMIT AND PLASTICITY INDEX

20

Wet Soil and	Dry Soil and		Water		
Tare Mass	Tare Mass	Tare Mass	Content		
(g)	(g)	(g)	(%)	Plastic Limit	Plasticity Index
17.08	16.21	11.19	17.3	17	13
18.27	17.17	10.92	17.6		

NUMBER OF BLOWS

25

30

Remarks:

24

22

20 10

Reviewed By

40

50

Page 1 of 1

Unconfined Compressive Strength of Cohesive Soil

KM 64-522

irce 054B00009N-2, 35.0'-3						· · ·	Number Lab ID	13
ual Description Lean Clay (JL), gray, mo	oist, firm			Poo	overed	1	.8'
			_			nterval		.o - 36.7'
pecimen Type: Undisturbed	LL	30	PL	17	100(1		00.2	00.1
			PI	13		Date E	Extruded	10/27/20
Initial Wet Density (pcf			8			Date	e Tested	10/27/20
Initial Moisture Content (%)		Initial MC	Taken Be	efore Tes	t, From Trir	nmings		
Initial Dry Density (pcf)								
At Test Moisture Content (%)		At Test MC	Taken N/	Α				
At Test Dry Density (pcf) Specific Gravity								
Degree of Saturation (%)		LIn	confined	Compres	sive Streng	ith (tsf)	1.19	
Average Height (in)		011			hear Streng		0.60	
Average Diameter (in)					ximum Stre		14.3	
Height to Diameter Ratio					Failure (%	· · · _	0.99	
						8		
1.40		Stress ve		1		1		
1.20								
1.20								
1,00						_		
0.60 (12) (12) 0.60								
ss								
et g 0.60								
0.40								
0.20								
0.00						_		
0.0 2.0	4.0	6.0 8.0	10	0.0	12.0	14.0	16.0	18.0
			Strain (%)				
	-							
Failure Sketch				Pocke	t Penetrom			
ЛУ					Torvane I	Reading	(kg/cm ²)	N/A
	C	comments						
				ŏ.				
	-							
	-							
	-							
	-							

Stantec Consulting Services Inc. Lexington, Kentucky Reported By: RJ Report Dale: 11/11/2021

AASHTO T 88

\bigcirc	Stantec
Project	Name Bridging KY - 054B000

- 054B00009N	oject Name Bridging KY
V-2, 40.0'-41.5'	Source 054B00009
AASHTO T 11 Method A	Preparation Method
370	Soak Time (min)
Rounded	Particle Shape
Hard and Durable	Particle Hardness
245.35 Analy	Sample Dry Mass (g)
24.1	Moisture Content (%)
	8

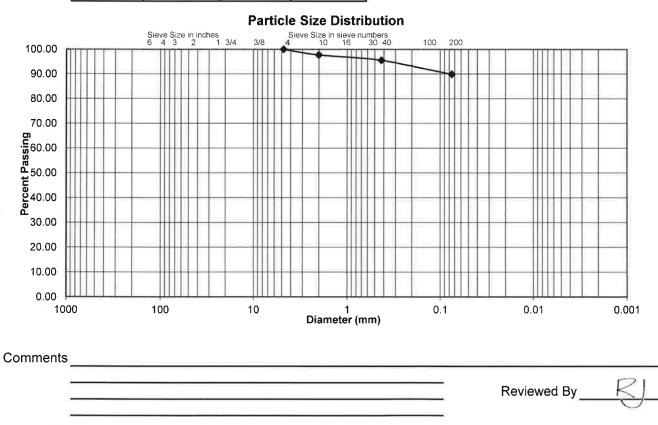
	Grams	%	%
Sieve Size	Retained	Retained	Passing
No. 4	0.00	0.0	100.0
No. 10	5.62	2.3	97.7
No. 40	5.28	2.2	95.6
No. 200	13.98	5.7	89.9
Pan	220.47	89.9	10210

 Project Number
 178568003

 Lab ID
 1318

 Date Received
 10-21-2021

 Preparation Date
 10-22-2021


 Test Date
 10-27-2021

Analysis Based on Total Sample

% Gravel	2.3
% Sand	- 7.9
% Fines	89.9
s Classification	N/A
	- R
D ₁₀ (mm)	N/A
D ₃₀ (mm)	N/A
D ₆₀ (mm)	N/A
Cu	N/A

Cc N/A

Fine

Template: tmp_200_input.xlsm Version: 20170216 Approved By: RJ

Stantec Consulting Services Inc. Lexington, Kentucky Reported By: RJ Report Date: 11/09/2021

oject Name Bri			Project Number Lab ID	178568003
urce 05	4B00009N-2	45.0'-47.0'	Lab ID	1344
mple Type ST			Date Received	10-25-21
			Date Reported	11-11-21
			Test Results	
Natural	Moisture Co	ontent	Atterberg Limits	
Test Not Perfor			Test Method: AASHTO T 89 & T 90	
Moisture	Content (%):	N/A	Prepared: Dry	
			Liquid Limit:	NP
			Plastic Limit:	NP
	le Size Anal		Plasticity Index:	NP
Preparation Me			Activity Index:	N/A
Gradation Meth				
Hydrometer Me		0100	Moisture-Density Relations	ship
Particle	Size	%	Test Not Performed	
Sieve Size	(mm)	Passing	Maximum Dry Density (lb/ft ³):	N/A
	N/A		Maximum Dry Density (kg/m ³):	
	N/A		Optimum Moisture Content (%):	
	N/A	3	Over Size Correction %	
	N/A			
	N/A			
	N/A		California Bearing Ratio	2
	N/A		Test Not Performed	
No. 10	2	100.0	Bearing Ratio (%):	
No. 40	0.425	99.9	Compacted Dry Density (lb/ft ³):	
No. 200	0.075	78.9	Compacted Moisture Content (%):	N/A
	0.02	32.6 12.5		
	0.003	9.9	Specific Gravity	
Estimated	0.002	8.5	Test Method: AASHTO T 100	
		0.0	Prepared: Dry	
Plus 3 in. Mater	ial, Not Inclue	ded: 0 (%)	Particle Size:	No. 10
			Specific Gravity at 20° Celsius:	2.65
	ASTM	AASHTO		
Range	(%)	(%)		
Gravel	0.0	0.0	Classification	
Coarse Sand	0.0	0.1	Unified Group Symbol:	
Medium Sand Fine Sand	0.1 21.0	21.0	Group Name:	Silt with sand
Silt	66.4	69.0		
Clay	12.5	9.9	AASHTO Classification:	A - 4(0)
oldy	12.0	0.0		
Comments:				
1			Reviewed By	171

Stantec

Particle-Size Analysis of Soils

AASHTO T 88

Project Name	Bridging KY - 054B	00009N			Projec	t Number	178568003
Source	054B00009N-2, 45.	0'-47.0'		Lab ID	1344		
	Sieve Analys	is for the Port	tion Coarser t				
—				Sieve	%		
Test Method				Size	Passing		
Prepared Using	AASHTO T 87						
Particle Shape	N/A			2			
Particle Hardness							
Tested By							
	10-28-2021						
Date Received	10-25-2021						
Maximum Particle \$	Siza: No. 10 Sigura						
	Size. NO. TO Sieve			No. 10	100.0		
Apolygia Road on			on Finer than t				
Analysis based on	-3 inch Fraction Only			No. 40 No. 200	99.9 78.9		
Specific Gravity	2 65			0.02 mm	32.6		
				0.005 mm	12.5		
Dispersed Using	Apparatus A - Mech	anical, for 1 M	inute	0.002 mm	9.9		
				0.001 mm	8.5		
		Particle Size	Distribution				
ASTM Coarse Gravel		Medium Sand	Fine Sand		Silt	Clav	
AASHTO	0.0 0.0 Gravel	0.1 Coarse Sand	21.0 Fine Sand	e e e e e e e e e e e e e e e e e e e	6.4 Silt		lay
Sieve Size in Inches	0.0	0.1 Sieve Size in Sieve I	21.0		69.0		9.9
	3/4 3/8 4	10 16 30 4		200			100
							100
					100		90
							80
							70
				$ \rangle$			60 ^u
				$+++\chi$			Pas
						+++++++++++++++++++++++++++++++++++++++	50 5
				X			40 40
							40 Lec
							40 Jan 200 30
					1 21111	•	30 20
					1 21111	• 4 •	30 20 <u>A</u> 10
100	10	1 Diam	eter (mm) 0.1				30 20 <u>4</u> 10 0
100	10	1 Diame	eter (mm) 0.1		1 21111	•	30 20 <u>A</u> 10
100	10	1 Diame	eter (mm) 0.1				30 20 <u>4</u> 10 0
	10		,		0.01	viewed By_	30 20 10 0.001

ATTERBERG LIMITS

Project	Bridg	ing KY - 054B	00009N				Project No.	178568003
Source		00009N-2, 45					Lab ID	1344
							% + No. 40	0
Tested By	JMB Test Method AASHTO T 89 & T 90						Date Received	10-25-2021
Test Date	10-29-2021 Prepared Dry							
						•		
		et Soil and	Dry Soil and					
	[т	are Mass	Tare Mass	Tare Ma	SS	Number of	Water Content	
		(g)	(g)	(g)		Blows	(%)	Liquid Limit
	-							
					auid	Limit		
	20	1		L	quia		T.	1
	18							
	16							
8	14							
5	10				·		_	
MOISTURE CONTENT %	12							
NC NC	10					NP		
C L)				_			
au	8				-			
LSIG	6							
N N								
	4							
	_							
	2							
	0							
		0		2	20	25	30	40 50
				NUM	BER O	F BLOWS		

PLASTIC LIMIT AND PLASTICITY INDEX

	Wet Soil and Tare Mass (g)	Dry Soil and Tare Mass (g)	Tare Mass (g)	Water Content (%)	Plastic Limit	Plasticity Index	
E							

Remarks:

Reviewed By____

<u>a</u>

Unconfined Compressive Strength of Cohesive Soil

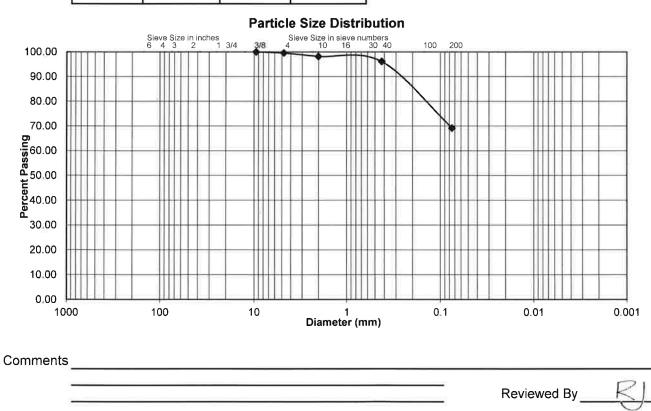
KM 64-522

Project Name B Source 054B00009	ridging KY - 0		9N			Proje	ct Number Lab ID	178568003
Visual Description S			, moist, soft				Labib	
						Recovered		.7'
						Test Interval	45.8'	- 46.3'
Specimen Type: U		ـ ^{LL} 127.6	NP	PL PI	NP NP			10/27/2021
Initial Moisture C		21.0	Initial MC Ta	aken Be	fore Test	, From Trimmings	-	10/2/12021
	ensity (pcf)	105.5		2 -				
At Test Moisture C		N/A	At Test MC Ta	aken <u>N/</u>	Α			
At Test Dry D		N/A						
	cific Gravity	2.65	Line	- un film o ol	0	ive Otreasth (tef)	0.44	
Degree of Sat	Height (%)	97.7 5.899	Unco			sive Strength (tsf) ear Strength (tsf)	0.41	
	iameter (in)	2.863				kimum Stress (%)	6.7	
Height to Diar	• • •	2.1				Failure (% / min.)		
..						,		
			Stress vs.	Strain				
0.45					•			
0.40					~			
0.35				-		· ·		
0.30				_				
(s) 0.30 (s) 0.25 (s) 0.20		/					1	
S S O DO								
9 0.20		/						
0.15								
0.10				_				
0.05				_				
0.00				_				
0,0	2.0		4.0	6.0		8.0 1	0.0	12.0
			:	Strain (%)			
				•	•			
Failure Sket	ch				Pocket	Penetrometer Re		
						Torvane Readin	g (kg/cm²)	N/A
	r	C	Comments					
ТАЙТ	\vee	8						
	1	1						
T	N						_	
		(i)						
		50 - 27-						
		-						21
						Re	viewed By	<u>K</u>
								\bigcirc

Template: tmp_uc_input xlsm Version: 20170217 Approved By: RJ Stantec Consulting Services Inc. Lexington, Kentucky

AASHTO T 88

Project Name Bridging KY						
Source 054B00009N-2, 50.0'-51.5'						
Preparation Method	AASHTO T 11 M	ethod A				
Soak Time (min)	380					
Particle Shape						
Particle Hardness	Hard and Durable	e				
Sample Dry Mass (g)	343.99					
Moisture Content (%)	22.2					


	Grams	%	%
Sieve Size	Retained	Retained	Passing
3/8"	0.00	0.0	100.0
No. 4	1.40	0.4	99.6
No. 10	4.90	1.4	98.2
No. 40	7.06	2.1	96.1
No. 200	92.80	27.0	69.1
Pan	237.83	69.1	(433

Project Number	178568003
Lab ID	1319
Date Received	10-21-2021
Preparation Date	10-22-2021
Test Date	10-27-2021

Analysis Based on Total Sample.

% Gravel	1.8
% Sand	29.0
% Fines	69.1
Fines Classification	N/A
D ₁₀ (mm)	N/A
D ₃₀ (mm)	N/A
D ₆₀ (mm)	N/A
Cu	N/A

Cc N/A

Template: tmp_200_input.xlsm Version: 20170216 Approved By: RJ Stantec Consulting Services Inc. Lexington, Kentucky

oject Name Bri Durce 054	dging KY - 0 4B00009N-2		Project Number Lab ID	
	+00000314-2	, 55.0-50.0		1345
ample Type ST			Date Received	10-25-21
			Date Reported	11-11-21
			Test Results	
Natural	Moisture Co	ontent	Atterberg Limits	
Test Not Perfor	med		Test Method: AASHTO T 89 & T 90	
Moisture (Content (%):	N/A	Prepared: Dry	
			_ Liquid Limit:	25
			Plastic Limit:	17
	le Size Anal		Plasticity Index:	8
Preparation Me			Activity Index:	0.6
Gradation Meth				
Hydrometer Me	thod: AASH1	O T 88		
Particle	Q:=-	%	Moisture-Density Relation	isnip
			Test Not Performed	N 1/A
Sieve Size	(mm)	Passing	Maximum Dry Density (lb/ft ³):	
	N/A		Maximum Dry Density (kg/m ³):	
	N/A		Optimum Moisture Content (%):	N/A
	N/A		Over Size Correction %:	N/A
	N/A			
3/4"	19	100.0		
3/8"	9.5	99.6	California Bearing Rati	0
No. 4	4.75	98.9	Test Not Performed	
No. 10	2	98.3	Bearing Ratio (%):	
No. 40	0.425	97.6	Compacted Dry Density (lb/ft ³):	
No. 200	0.075	70.9	Compacted Moisture Content (%):	N/A
	0.02	45.7		
	0.005	22.1 13.8	Encoific Crowity	
Estimated	0.002	9.8	Specific Gravity Test Method: AASHTO T 100	
Estimated	0.001	0.0	Prepared: Dry	
Plus 3 in. Materi	ial. Not Inclu	ded [.] 0 (%)	Particle Size:	No 10
			Specific Gravity at 20° Celsius:	
1	ASTM	AASHTO		
Range	(%)	(%)	5	
Gravel	1.1	1.7	Classification	
Coarse Sand	0.6	0.7	Unified Group Symbol:	CL
Medium Sand	0.7		Group Name: Lean C	clay with sand
Fine Sand	26.7	26.7		
Silt	48.8	57.1		
Clay	22.1	13.8	AASHTO Classification:	A-4 (3)
Comments:				

2

Particle-Size Analysis of Soils

	Sta	nte	C				Pa	article-Siz		ASHTO	
Project N	lame		KY - 054E					Projec	ct Number	178568	3003
Source		054B000	009N-2, 55	.0'-56.0'					Lab ID	1	345
		Sie	eve Analys	sis for th	e Porti	ion Coarser	than the No	- . 10 Sieve			
							Sieve	%			
	est Method		SHTO T 8				Size	Passing			
Prepa	ared Using	AA	SHTO T 8	/				<u> </u>			
Parti	cle Shape:	Round	led and An	gular							
Particle	Hardness:	Haro	d and Dura	ble							
	Tested By										
Data	Test Date Received						3/4"	100.0			
Date		10-23-2					3/4	99.6			
Maximun	n Particle S	Size: 3/4"	Sieve				No. 4	98.9			
							No. 10	98.3			
			Analysis	s for the	Portio	n Finer than	the No. 10	Sieve			
Analysis	Based on	-3 inch F	-				No. 40	97.6			
							No. 200	70.9			
Spec	ific Gravity	2.61	l				0.02 mm				
Dispar	rsed Using	Annarati		hanical f	or 1 Mi	nuto	0.005 mm 0.002 mm				
ызре	Sed Osing	Apparat		nameai, i		inde	0.001 mm				
				Partic	le Size	Distribution					
ASTM	Coarse Gravel 0.0	Fine Grav		Medium	Sand	Fine Sand 26.7		Silt	Clay		
AASHTO	0.0	Gravel	0.6	0.7 Coarse	Sand	Fine Sand		48.8 Silt		Clay	
Sieve	Size in Inches	1.7		Sieve Siz	e in Sieve N	26.7 lumbers		57.1		13.8	
;	3 2 1	3/4 3/8	4	10 16	30 40	100	200			100)
				4							
										90	
										80	
										70	-
										60	ssinç
										50	Percent Passing
										40	erce
										30	
		+						4			
t - 111		1 1						1 +++++		20	

Comments

10

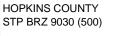
Stantec Consulting Services Inc. Lexington, Kentucky

Diameter (mm)

0.1

1

Reported By: RJ Report Date: 11/11/2021


0.001

0.01

Reviewed By

10 0

100

Stantec

ATTERBERG LIMITS

Project Source		jing KY - 054B 00009N-2, 55		Project No. Lab ID % + No. 40	178568003 1345 2			
Tested By		JMB	Test Method	AASHTO T	39 & T 90	-	Date Received	10-25-2021
Test Date		0-29-2021	Prepared	Dry			Baternoodinou	10 20 2021
			-					A
		et Soil and	Dry Soil and					
0	ר	are Mass	Tare Mass	Tare Mas		nber of	Water Content	
		(g)	(g)	(g)	В	lows	(%)	Liquid Limit
		17.84	16.63	11.60		35	24.1	
		18.00	16.71	11.55		28	25.0	
		17.98	16.59	11.38		17	26.7	25
			1 1				<u> </u>	
	20			Liq	uid Limit			
	30							
	28					_		
				-				
	26							
8	, 24	1					*	
° E						_		
MOISTLIRE CONTENT	22							
NC	20							
) 							
	18							
	5 16							
ž	-							
	14							
	12							
	10	10				_		
		10		20		25	30	40 50
						NO		

NUMBER OF BLOWS

PLASTIC LIMIT AND PLASTICITY INDEX

	Wet Soil and Tare Mass	Dry Soil and Tare Mass	Tare Mass	Water Content		
	(g)	(g)	(g)	(%)	Plastic Limit	Plasticity Index
	19.93	18.68	11.08	16.4	17	8
	19.02	17.81	10.64	16.9		
		÷))			
s: _						\square

Remarks:

Reviewed By

Unconfined Compressive Strength of Cohesive Soil

KM 64-522

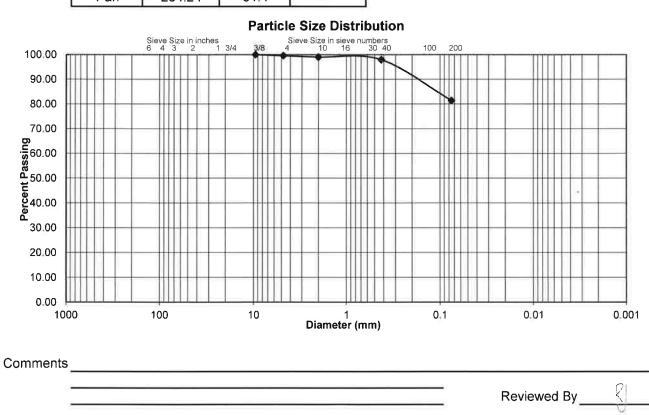
Project Name Source 054B0000	Bridging KY -		N				Project	Number Lab ID	178568003
Visual Description), grav, wet	soft				Labib	1343
, , , , , , , , , , , , , , , , , , ,	Loan olay in		<u>, g.a., not,</u>	0011		Rec	overed	C).6'
							nterval [—]		- 55.6'
Specimen Type:	Undisturbed	ĒL _	25	PL	17		-		
				PI	8				10/27/2021
	Density (pcf)	131.0						e Tested	10/27/2021
Initial Moisture		17.4	Initial MC	Taken Be	efore Tes	t, From Trin	nmings		
	Density (pcf)	111.6		Teleon NI					
At Test Moisture	Density (pcf)	<u> </u>	At Test MC	laken N/	A				
	ecific Gravity	2.61							
	aturation (%)	98.6	11	nconfined	Compres	sive Streng	th (tsf)	0.72	
	e Height (in)	5.953	0			hear Streng		0.72	
	Diameter (in)	2.886				ximum Stre		13.0	
	ameter Ratio	2.1				Failure (%		1.00	
-	-					,	· _		
			Stress v	/s. Strain					
0.80		11							
0.70		-		/		V			
0.60									<u> </u>
- 0.50									
(ع) 0.50		/							
g 0.40		/	-						
S 0,40 0,30							_		
0.20									
0.10									
0.00									
0.00	2.0	4.0 (5.0 8.	0 1	0.0	12.0	14.0	16.0	18.0
				Strain (%)				
Failure Ske	etch				Pocke	t Penetrome	eter Rea	dina (tsf)	N/A
						Torvane F	Reading	(kg/cm ²)	N/A
		С	omments				Ũ		
	-x /								
		-							
		s 							
							Povi	ewed By	RI
							I LEVI	Cwcu Dy	-9-

Stantec

Gradation Analysis

AASHTO T 88

Project Name Bridging KY - 054B00009N	F
Source 054B00009N-2, 60.0'-61.5'	
Preparation Method AASHTO T 11 Method A	
Soak Time (min) 370	Pi
Particle Shape Rounded	
Particle Hardness Hard and Durable	
Sample Dry Mass (g) 349.36	Analysi
Moisture Content (%) 25.4	


			2
	Grams	%	%
Sieve Size	Retained	Retained	Passing
3/8"	0.00	0.0	100.0
No. 4	1.54	0.4	99.6
No. 10	1.86	0.5	99.0
No. 40	3.69	1.1	98.0
No. 200	58.03	16.6	81.4
Pan	284.24	81,4	

Project Number	178568003
Lab ID	1320
Date Received	10-21-2021
Preparation Date	10-22-2021
Test Date	10-27-2021

Analysis Based on Total Sample.

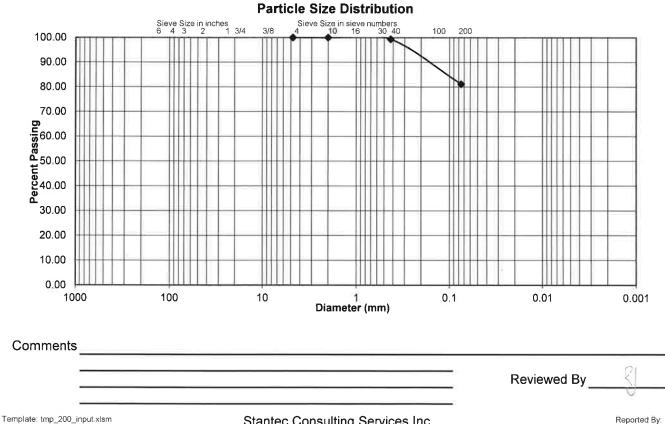
% Gravel	1.0
% Sand	17.7
% Fines	81.4
Fines Classification	N/A
D ₁₀ (mm)	N/A
D ₃₀ (mm)	N/A
D ₆₀ (mm)	N/A
	ų — į
Cu	N/A

Cc N/A

Template: tmp_200_input.xlsm Version: 20170216 Approved By: RJ Stantec Consulting Services Inc. Lexington, Kentucky

AASHTO T 88

178568003 1321 10-21-2021 10-21-2022 10-27-2021


Project Name Bridging KY - 054B00009N	Project Number
Source 054B00009N-2, 67.0'-68.5'	Lab ID
Preparation Method AASHTO T 11 Method A	Date Received
Soak Time (min) 380	Preparation Date
Particle Shape Rounded	Test Date
Particle Hardness Hard and Durable	
Sample Dry Mass (g) 283.45	Analysis Based on Tota
Moisture Content (%) 28.1	
2	

	Grams	%	%
Sieve Size	Retained	Retained	Passing
			·
	· · · · · · · · · · · · · · · · · · ·		
No. 4	0.00	0.0	100.0
No. 10	0.08	0.0	100.0
No. 40	1.78	0.6	99.3
No. 200	51.68	18.2	81.1
Pan	229.91	81.1	3.00.000

tal Sample.

% Gravel	0.0
% Sand	18.9
% Fines	81.1
Fines Classification	N/A
D ₁₀ (mm)	N/A
D ₃₀ (mm)	N/A
D ₆₀ (mm)	N/A

Cu	N/A	
Сс	N/A	

Version: 20170216 Approved By: RJ

Stantec Consulting Services Inc. Lexington, Kentucky

3/8"

No. 4

No. 10

No. 40

No. 200

0.00

2.73

2.94

5.86

52.39

0.0

1.0

1.1

2.1

18.9

Gradation Analysis

Cu N/A Cc N/A AASHTO T 88

178568003 1322 10-21-2021 10-22-2021 10-27-2021

Project Name	Bridging KY	- 054B0000	9N			Project	Number	1785680
Source	054B00009	N-2, 70.0'-71	.5'				Lab ID	1322
Preparat	ion Method	AASHTO T	11 Method A			Date F	Received	10-21-20
Soak	Time (min)	380				Preparat	tion Date	10-22-20
Par	ticle Shape	Rounded	5			Т	est Date	10-27-20
Particle	e Hardness	Hard and Du	ırable				2	
Sample D	ry Mass (g)	277.45	-			Analysis Base	ed on Tota	I Sample,
Moisture C	Content (%)	29.7	-					
_								
ſ		Grams	%	%]	% Gravel	2.0	
	Sieve Size	Retained	Retained	Passing		% Sand	21.0	
[% Fines	77.0	
[Fines Cla	assification	N/A	
						D ₁₀ (mm)	N/A	
[1	D ₃₀ (mm)	N/A	
f				<u> </u>		D ₆₀ (mm)	N/A	
-					1			

Pan 213.53 77.0 ----**Particle Size Distribution** Sieve Size in sieve numbers 4 10 16 30 40 Sieve Size in inches 6 4 3 2 1 3/4 3/8 100 200 100.00 90.00 80.00 1 70.00 Bercent Passing 50.00 Percent Passing 40.00 30.00 30.00 20.00 10,00 0.00 1000 100 10 0.1 0.01 1 Diameter (mm) 0.001 Comments Reviewed By

100.0

99.0

98.0

95.8

77.0

Template: tmp_200_input.xlsm Version: 20170216 Approved By: RJ

Ample Type ST Date Received Date Reported 10-25-2 11-11-2 Test Results Test Method: AASHTO T 89 Preparation Method: AASHTO T 88 Moisture-Density Relationship Test Not Performed Maximum Dry Density (lb/ft ³): N/A N/A N/A N/A N/A N/A Advinue Dry Density (lb/ft ³): N/A Optimum Moisture Content (%): N/A N/A Summer State Method: AASHTO T 88 Moisture-Density Relationship Tes		antec		Summary of Soil Tests
Durce 0548000009N-2, 75.0°-77.0° Lab ID 134 imple Type ST Date Received Date Reported 10-25-2 Date Reported 11-11-2 Test Results Matural Moisture Content Test Results Matural Moisture Content Moisture Content Test Results Atterberg Limits Particle Size Analysis Preparation Method: AASHTO T 88 Test Method: AASHTO T 88 Mydrometer Method: AASHTO T 88 Moisture Content (%): N/A N/A N/A N/A Moisture Content (%): N/A Optimum Moisture Content (%): N/A N/A N/A Moisture Content (%): N/A Optimum Moisture Content (%): N/A N/A Optimum Moisture Content (%): N/A Optimum Moisture Content (%): N/A Oot 2 96.7 No. 4 4.75 98.6 No. 4 0.002 15.0 Estimated 0.001 11.8 Plus 3 in. Material, Not Included: 0 (%) Gravel 1.4 2.7	oject Name	Bridging KY - 0	54B00009N	Project Number 178568003
Date Reported 11-11-2 Test Results Test Results Test Method: AASHTO T 89 & T 90 Preparation Method: AASHTO T 87 Particle Size Analysis Preparation Method: AASHTO T 87 Moisture Content (%): N/A Preparation Method: AASHTO T 88 Moisture-Density Relationship Preparation Method: AASHTO T 88 Moisture-Density Relationship Preparation Method: AASHTO T 88 Moisture-Density Relationship Preparatice Size % Site NiA Moisture-Density Relationship Test Not Performed Moisture-Density Relationship Test Not Performed Moisture Content (%): N/A Opensity (Ib/R ³): N/A				
Date Reported 11-11-2 Test Results Test Results Atterberg Limits Test Method: AASHTO T 89 & T 90 Preparation Method: AASHTO T 87 Particle Size Analysis Preparation Method: AASHTO T 87 Moisture Content (%): N/A Particle Size Analysis Preparation Method: AASHTO T 88 Moisture-Density Relationship Sature Density (Ib/R ³): N/A Particle Size % Sieve Size mm) Passing MiA Dopensity (Ib/R ³): N/A N/A Moisture-Density Relationship Test Not Performed Maximum Dry Density (Ib/R ³): N/A Optimum Moisture Content (%): N/A N/A Over Size Correction %: N/A Outer Size MiA Site Method: AASHTO T 100 Prepared: Dry Sand 1.3 Sand 27.7 Sand 27.7 Sand 27.7 Optimum Material, Not Included: 0 (%) Classificati		0T		D . b D . c c c c c c c c c c
Test Results Atterberg Limits Test Results Atterberg Limits Test Not Performed Moisture Content (%): N/A Particle Size Analysis Preparation Method: AASHTO T 87 Gradation Method: AASHTO T 88 Moisture-Density Relationship Particle Size % Sieve Size (mm) N/A Moisture-Density Relationship Test Not Performed Maximum Dry Density (lb/ft ³): N/A N/A N/A Moisture Content (%): N/A N/A N/A Optimum Moisture Content (%): N/A N/A N/A Optimum Moisture Content (%): N/A Optimum Moisture Content (%): N/A Ooco 0.002 41.9 0.002 11.8 Plus 3 in. Material, Not Included: 0 (%) Specific Gravity at 20° Celsius: Site 47.7 27.7 Sit 47.8 Fine Sand 27.7	mpie Type	51		
Atterberg Limits Test Not Performed Moisture Content (%): N/A Preparation Method: AASHTO T 87 Plastic Limit: 17 Preparation Method: AASHTO T 88 Moisture-Density Relationship Particle Size % Sieve Size (mm) Passing N/A Moisture-Density Relationship Test Not Performed N/A N/A Moisture-Density (Ib/ft ³): N/A N/A Moisture-Density (Ib/ft ³): N/A N/A Moisture-Density (Ib/ft ³): N/A N/A Optimum Moisture Content (%): N/A N/A Optimum Moisture Content (%): N/A No. 4 4.75 98.6 No. 4 4.75 98.6 0.02 41.9 Optimum Moisture Content (%): N/A Optimum Moisture Content (%): N/A Compacted Dry Density (Ib/ft ³): N/A 0.002 11.8 Prepared: Dry N/A Compacted Moisture Content (%): N/A Stestimated 0.001 11.8				
Test Not Performed				
Moisture Content (%): N/A Prepared: Dry Liquid Limit: 22 Plastic Limit: 17 Plastic Limit: 17 Particle Size Analysis Prepared: Dry Plastic Limit: 17 Plastic Limit: 17 Plastic Limit: 17 Plastic Virgitian 0.3 0.3 0.3 Gradation Method: AASHTO T 88 Moisture-Density Relationship 0.3 Particle Size % Maximum Dry Density (kp/ft ³): N/A N/A N/A Maximum Dry Density (kp/ft ³): N/A N/A N/A Optimum Moisture Content (%): N/A 3/4" 19 100.0 N/A Optimum Moisture Content (%): N/A 3/4" 19 100.0 Specific Gravity N/A Optimum Moisture Content (%): N/A No. 4 4.75 98.6 No. 40 0.425 96.7 N/A No. 200 0.002 15.0 Estimated 0.001 11.8 Prepared: Dry Prepared: Dry Specific Gravity 2.64			ontent	
Particle Size Analysis Plasticity Index: 5 Preparation Method: AASHTO T 87 Plasticity Index: 5 Gradation Method: AASHTO T 88 Activity Index: 0.3 Particle Size % Moisture-Density Relationship Particle Size % Moisture-Density Relationship Particle Size % Moisture Content (%): N/A N/A Maximum Dry Density (lb/ft ³): N/A N/A Maximum Dry Density (lb/ft ³): N/A N/A Optimum Moisture Content (%): N/A 3/8" 9.5 99.2 No. 4 4.75 98.6 No. 40 0.425 96.7 No. 200 0.0075 69.0 0.002 11.8 Compacted Dry Density (lb/ft ³): N/A Compacted Noisture Content (%): N/A Compacted Dry Density (lb/ft ³): N/A Plus 3 in. Material, Not Included: 0 (%) Specific Gravity 2.64 Medium Sand 0.6 Sandy silty cla Fine Sand 27.7 27.7 Silt <td></td> <td></td> <td>NIZA</td> <td></td>			NIZA	
Plastic Limit: 17 Plastic Limit: 17 Preparation Method: AASHTO T 87 Gradation Method: AASHTO T 88 Moisture-Density Relationship Test Not Performed Sieve Size % N/A Moisture-Density Relationship Test Not Performed Moisture Content (%): N/A Opensity (lb/ft ³): N/A Moisture Content (%): N/A Opensity (lb/ft ³): N/A	woistu	re Content (%).	N/A	
Particle Size Analysis Preparation Method: AASHTO T 87 Gradation Method: AASHTO T 88 Hydrometer Method: AASHTO T 88 Hydrometer Method: AASHTO T 88 Hydrometer Method: AASHTO T 88 Moisture-Density (Relationship Test Not Performed Maximum Dry Density (Ib/ft ³): N/A Maximum Dry Density (Ib/ft ³): N/A Mo. 4 3/4" 19 100.0 3/6" 9.5 99.2 No. 4 4.75 98.6 No. 4 4.75 98.6 No. 4 4.75 98.6 No. 40 0.425 96.7 No. 40 0.425 96.7 No. 200 0.0075 69.0 0.002 15.0 Compacted Dry Density (Ib/ft ³): N/A Compacted Dory Density (Ib/ft ³): N/A 91us 3 in. Material, Not Included: 0 (%) Particle Size: No. 10 Specific Gravity at 20° Celsius: 2.64 Medium Sand 0.6 Medium Sand 0.6 Fine Sand 27.7 Silt 47.8 Clay 21.2 Comments: 15.0				
Preparation Method: AASHTO T 87 Gradation Method: AASHTO T 88 Hydrometer Method: AASHTO T 88 Particle Size % Sieve Size (mm) N/A Sieve Size N/A N/A N/A Sieve Size N/A Optimum Moisture Content (%): N/A Sieve Size No. 40 0.425 0.002 41.9 0.002 11.8 Plus 3 in. Material, Not Included: 0 (%) Gravel 1.4 1.4 2.7 Coarse Sand 1.3 0.6 Fine Sand 27.7 Clay <t< td=""><td>Pa</td><td>rticle Size Anal</td><td>veie</td><td></td></t<>	Pa	rticle Size Anal	veie	
Gradation Method: AASHTO T 88 Moisture-Density Relationship Test Not Performed Sieve Size (mm) Passing N/A N/A Moisture-Density Relationship Test Not Performed Maximum Dry Density (lb/ft ³): N/A N/A All A All A N/A California Bearing Ratio N/A All A All A N/A Compacted Dry Density (lb/ft ³): N/A Output: Size Original Bearing Ratio N/A Compacted Dry Density (lb/ft ³): N/A Output: Size Original Bearing Ratio N/A Output: Size Original Colspan= 2 Size Or				
Mydrometer Method: AASHTO T 88 Moisture-Density Relationship Test Not Performed Moisture-Density Relationship Test Not Performed Moisture-Density Relationship Test Not Performed Maximum Dry Density (lb/ft ³): N/A N/A Moisture-Density Relationship Test Not Performed Maximum Dry Density (lb/ft ³): N/A Optimum Moisture Content (%): N/A				
Moisture-Density Relationship Particle Size % Sieve Size (mm) Passing N/A Maximum Dry Density (lb/ft ³): N/A N/A Maximum Dry Density (lb/ft ³): N/A N/A Optimum Moisture Content (%): N/A 3/4" 19 100.0 3/8" 9.5 99.2 No. 4 4.75 98.6 No. 40 0.425 96.7 No. 40 0.425 96.7 No. 200 0.075 69.0 0.002 21.2 0.005 21.2 0.0005 21.2 0.002 15.0 Estimated 0.001 11.8 Specific Gravity Plus 3 in. Material, Not Included: 0 (%) Particle Size: No. 10 Gravel 1.4 2.7 Classification Coarse Sand 1.3 0.6 Fine Sand 27.7 27.7 Sandy silty classification: Clay 21.2 15.0 AASHTO Classification:				
Particle Size % Sieve Size (mm) Passing N/A N/A N/A Maximum Dry Density (kg/m³): N/A N/A N/A Maximum Dry Density (kg/m³): N/A N/A N/A Maximum Dry Density (kg/m³): N/A N/A N/A Optimum Moisture Content (%): N/A 3/4" 19 100.0 N/A Over Size Correction %: N/A 3/4" 19 100.0 Specific Gravity (lb/ft³): N/A 0.0 2 97.3 Specific Gravity (lb/ft³): N/A No. 40 0.425 96.7 Compacted Dry Density (lb/ft³): N/A Compacted Dry Density (lb/ft³): N/A Compacted Dry Density (lb/ft³): N/A 0.002 41.9 Ococ Specific Gravity N/A Compacted Dry Density (lb/ft³): N/A Compacted Moisture Content (%): N/A Plus 3 in. Material, Not Included: 0 (%) Particle Size: No. 10 Specific Gravity at 20° Celsius: 2.64 Medium Sand	,			Moisture-Density Relationship
N/A Maximum Dry Density (kg/m³): N/A N/A N/A Optimum Moisture Content (%): N/A 3/4" 19 100.0 Over Size Correction %: N/A 3/4" 19 100.0 Site N/A 3/4" 19 100.0 N/A N/A 3/4" 19 100.0 Site N/A 3/8" 9.5 99.2 No.4 A.75 98.6 No. 40 0.425 96.7 Test Not Performed N/A 0.002 41.9 Ocores California Bearing Ratio N/A 0.002 15.0 Descriptic Gravity Compacted Dry Density (lb/ft³): N/A Plus 3 in. Material, Not Included: 0 (%) Specific Gravity at 20° Celsius: 2.64 Range (%) (%) Gravel 1.4 2.7 Coarse Sand 1.3 0.6 Sandy silty cla Fine Sand 27.7 27.7 Sandy silty cla Classification: A-4 (1 A/A (1	Part	icle Size	%	
N/A Maximum Dry Density (kg/m³): N/A N/A N/A Optimum Moisture Content (%): N/A 3/4" 19 100.0 Over Size Correction %: N/A 3/4" 19 100.0 Over Size Correction %: N/A 3/4" 19 100.0 Over Size Correction %: N/A 3/8" 9.5 99.2 California Bearing Ratio N/A No. 4 4.75 98.6 Test Not Performed N/A No. 40 0.425 96.7 Compacted Dry Density (ib/ft³): N/A 0.002 41.9 Compacted Moisture Content (%): N/A 0.002 11.8 Compacted Moisture Content (%): N/A Plus 3 in. Material, Not Included: 0 (%) Particle Size: No. 10 Specific Gravity at 20° Celsius: 2.64 Medium Sand 0.6 Fine Sand 27.7 27.7 Silt 47.8 54.0 Clay 21.2 15.0	Sieve Size	e (mm)	Passing	Maximum Dry Density (lb/ft ³): N/A
N/A Optimum Moisture Content (%): N/A N/A N/A Over Size Correction %: N/A 3/4" 19 100 0 Over Size Correction %: N/A 3/4" 19 100 0 Over Size Correction %: N/A 3/4" 19 100 0 Over Size Correction %: N/A 3/8" 9.5 99.2 Station %: N/A No. 4 4.75 98.6 Test Not Performed N/A No. 40 0.425 96.7 Compacted Dry Density (lb/ft ³): N/A 0.002 41.9 Ootofs 21.2 Ootofs 21.2 0.002 15.0 Specific Gravity Compacted Moisture Content (%): N/A Plus 3 in. Material, Not Included: 0 (%) Fest Method: AASHTO T 100 Prepared: Dry Particle Size: No. 10 Gravel 1.4 2.7 Coarse Sand 1.3 0.6 Group Name: Sandy silty cla Fine Sand 27.7 27.7 Silt 47.8 54.0 AASHTO Classification:		N/A		
N/A Over Size Correction %: N/A 3/4" 19 100.0 3/8" 9.5 99.2 No. 4 4.75 98.6 Test Not Performed Test Not Performed No. 40 0.425 96.7 N/A No. 40 0.425 96.7 N/A No. 200 0.075 69.0 Compacted Dry Density (lb/ft ³): N/A 0.002 41.9 0.005 21.2 N/A 0.002 15.0 Specific Gravity N/A Plus 3 in. Material, Not Included: 0 (%) Particle Size: No. 10 Specific Gravity at 20° Celsius: 2.64 Range (%) (%) Gravel 1.4 2.7 Coarse Sand 1.3 0.6 Fine Sand 27.7 27.7 Silt 47.8 54.0 Clay 21.2 15.0		N/A		
N/A 3/4" 19 100.0 3/8" 9.5 99.2 No. 4 4.75 98.6 No. 10 2 97.3 No. 40 0.425 96.7 No. 200 0.075 69.0 0.02 41.9 0.005 21.2 0.002 15.0 Specific Gravity Estimated 0.001 11.8 Plus 3 in. Material, Not Included: 0 (%) Gravel 1.4 2.7 Coarse Sand 1.3 0.6 Fine Sand 27.7 27.7 27.7 Silt 47.8 54.0 AASHTO Classification: Clay 21.2 15.0 AASHTO Classification:				
3/4" 19 100.0 3/8" 9.5 99.2 No. 4 4.75 98.6 No. 10 2 97.3 No. 40 0.425 96.7 No. 200 0.075 69.0 0.02 41.9 0.005 21.2 0.002 15.0 Specific Gravity N/A Estimated 0.001 11.8 Specific Gravity Plus 3 in. Material, Not Included: 0 (%) Particle Size: No. 10 Gravel 1.4 2.7 Coarse Sand 1.3 0.6 Medium Sand 0.6 Fine Sand 27.7 27.7 Silt 47.8 54.0 Clay 21.2 15.0 Comments: AASHTO Classification: A-4 (1				
No. 4 4.75 98.6 No. 10 2 97.3 No. 40 0.425 96.7 No. 200 0.075 69.0 0.02 41.9 0.005 21.2 0.002 15.0 Estimated 0.001 11.8 Plus 3 in. Material, Not Included: 0 (%) Particle Size: No. 10 Gravel 1.4 2.7 Coarse Sand 1.3 0.6 Medium Sand 0.6 Fine Sand 27.7 27.7 Silt 47.8 54.0 Clay 21.2 15.0	3/4"		100.0	
No. 4 4.75 98.6 No. 10 2 97.3 No. 40 0.425 96.7 No. 200 0.075 69.0 0.02 41.9 0.005 21.2 0.002 15.0 Estimated 0.001 11.8 Plus 3 in. Material, Not Included: 0 (%) Particle Size: No. 10 Specific Gravity 2.64 ASTM AASHTO Gravel 1.4 2.7 Coarse Sand 1.3 0.6 Medium Sand 0.6 Fine Sand 27.7 27.7 Silt 47.8 54.0 Clay 21.2 15.0	3/8"			California Bearing Ratio
No. 40 0.425 96.7 No. 200 0.075 69.0 0.02 41.9 0.005 21.2 0.002 15.0 Estimated 0.001 11.8 Plus 3 in. Material, Not Included: 0 (%) Particle Size: No. 10 Range (%) (%) Particle Size: No. 10 Gravel 1.4 2.7 Specific Gravity at 20° Celsius: 2.64 Medium Sand 0.6 Sandy silty classification Gravel 1.4 2.7 Sandy silty classification: A-4 (1 Comments:	No. 4	4.75	98.6	
No. 200 0.075 69.0 0.02 41.9 0.005 21.2 0.002 15.0 Estimated 0.001 11.8 Plus 3 in. Material, Not Included: 0 (%) Particle Size: No. 10 Range (%) (%) Gravel 1.4 2.7 Coarse Sand 1.3 0.6 Medium Sand 0.6 Fine Sand 27.7 27.7 Silt 47.8 54.0 Clay 21.2 15.0	No. 10	2	97.3	Bearing Ratio (%): N/A
No. 200 0.075 69.0 0.02 41.9 0.005 21.2 0.002 15.0 Estimated 0.001 11.8 Plus 3 in. Material, Not Included: 0 (%) Particle Size: No. 10 Range (%) (%) Gravel 1.4 2.7 Coarse Sand 1.3 0.6 Medium Sand 0.6 Fine Sand 27.7 27.7 Silt 47.8 54.0 Clay 21.2 15.0	No. 40	0.425	96.7	Compacted Dry Density (lb/ft ³): N/A
0.005 21.2 0.002 15.0 0.001 11.8 Plus 3 in. Material, Not Included: 0 (%) Particle Size: No. 10 ASTM AASHTO Range (%) (%) (%) Gravel 1.4 1.3 0.6 Medium Sand 0.6 Fine Sand 27.7 Silt 47.8 21.2 15.0	No. 200	0.075	69.0	
O.002 15.0 Estimated O.001 11.8 Plus 3 in. Material, Not Included: 0 (%) Test Method: AASHTO T 100 Range (%) (%) Gravel 1.4 2.7 Coarse Sand 1.3 0.6 Medium Sand 0.6 Fine Sand 27.7 27.7 Silt 47.8 54.0 Clay 21.2 15.0		0.02	41.9	
Estimated0.00111.8Plus 3 in. Material, Not Included: 0 (%)Test Method: AASHTO T 100 Prepared: Dry Specific Gravity at 20° Celsius:No. 10 Specific Gravity at 20° Celsius:Range(%)(%)Gravel1.42.7Coarse Sand1.30.6Medium Sand0.6Fine Sand27.727.7Silt47.854.0Clay21.215.0Comments:				
Plus 3 in. Material, Not Included: 0 (%) ASTM AASHTO Range (%) (%) Gravel 1.4 2.7 Coarse Sand 1.3 0.6 Medium Sand 0.6 Fine Sand 27.7 27.7 Silt 47.8 54.0 Clay 21.2 15.0				
ASTM AASHTO Range (%) (%) Gravel 1.4 2.7 Coarse Sand 1.3 0.6 Medium Sand 0.6 Fine Sand 27.7 27.7 Silt 47.8 54.0 Clay 21.2 15.0	Estimated	0.001	11.8	
ASTMAASHTORange(%)(%)Gravel1.42.7Coarse Sand1.30.6Medium Sand0.6Fine Sand27.727.7Silt47.854.0Clay21.215.0Comments:	Plus 3 in. Ma	aterial. Not Inclu	ded: 0 (%)	
ASTMAASHTORange(%)(%)Gravel1.42.7Coarse Sand1.30.6Medium Sand0.6Fine Sand27.727.7Silt47.854.0Clay21.215.0Comments:		,		
Gravel 1.4 2.7 Coarse Sand 1.3 0.6 Medium Sand 0.6 Fine Sand 27.7 27.7 Silt 47.8 54.0 Clay 21.2 15.0		ASTM	AASHTO	
Coarse Sand 1.3 0.6 Medium Sand 0.6 Fine Sand 27.7 27.7 Silt 47.8 54.0 Clay 21.2 15.0	Range	(%)	(%)	
Medium Sand 0.6 Fine Sand 27.7 27.7 Silt 47.8 54.0 Clay 21.2 15.0			2.7	
Fine Sand 27.7 27.7 Silt 47.8 54.0 Clay 21.2 15.0 Comments:			0.6	
Fine Sand 27.7 27.7 Silt 47.8 54.0 Clay 21.2 15.0 Comments:			A CARACT	Group Name: Sandy silty clay
Clay 21.2 15.0 AASHTO Classification: A-4 (1 Comments:				
Comments:				
	Clay	21.2	15.0	AASHTO Classification: <u>A-4 (1)</u>
Reviewed By	Comments			
	-			Reviewed By
	-			

Particle-Size Analysis of Soils

AASHTO T 88

Stantec
Juniec

Project Name Source	Bridging KY - 054B00009N 054B00009N-2, 75.0'-77.0			Proje	ect Number Lab ID	178568003 1347
	Sieve Analysis for t	he Portion Coarser th			i	
			Sieve	%		
Test Method	AASHTO T 88		Size	Passing		
Prepared Using	AASHTO T 87	-				
Particle Shape:	Rounded and Angular	F				
Particle Hardness:	Hard and Durable	ļ				
Tested By						

Tested By DW Test Date 10-29-2021 Date Received 10-25-2021

Maximum Particle Size: 3/4" Sieve

Analysis for the Portion Finer than th

Analysis Based on -3 inch Fraction Only

Specific Gravity 2.64

Dispersed Using Apparatus A - Mechanical, for 1 Minute

3/4"	100.0
3/8"	99.2
No. 4	98.6
No. 10	97.3
he No. 10 \$	Sieve
No. 40	96.7
No. 200	69.0
0.02 mm	41.9

No. 200	69.0
0.02 mm	41.9
0.005 mm	21.2
0.002 mm	
0.001 mm	11.8

STM	Co	arse	Grave	el I	Fin	e Gra	avel		C.	San	đ	N	lediu	m Sa	and			Fi	ne S	and		Т				S	ilt						Cla	av		1
5110		Q.(C			1.4				1.3			().6			1	27.7		47.8			8			21	21.2		1							
ѕнто	_	_			Gravel 2.7		-11			0	Coars	ie Sa 0.6	and	-	-	Fi	ne S 27	and 7		Ŧ						Silt 54.0		_					Claγ 15.0	1		
Sieve													eve S					bers										0.1.0							10.0	1
	3	2		1 3/	4	3/8			4		10)	16		30	4	0			100		200)													10
				1		- A				-	4	-	-	H		1	4			<u> </u>		Ĺ														I ''
	+	$\left \right $	-	-				+		+	-			\mathbb{H}	+	+				_	-	-	-		_	_		-	H		$\left \right $	+	-	-		90
												_			П	1	T						1								Ħ	-				80
		Ħ																				1						_								70
	++-	\mathbb{H}	-							+	+				+	+	+	-	+	_		A	X	\mid		_		_					_	-		ŧ.
										+					Ħ	1			1				1								Ħ			-		60
								t							Ħ										X	_	_								_	50
	+	\mathbb{H}	+	+				+	$\left \right $	-	-				+		-	-	+			+	+		-	1	L			-	\square	+				40
_								t			4				Ħ	1			t				t			_		A			Ħ					30
															Ħ	1			t				t						П							20
	++-	\vdash	+	+	_			+	$\left \right $	+	+	_			+	+	+	-	╞		-		+		+	-						P	4	•	Δ	ł
								-	H					Щ	Ħ	1	F		t				Ţ								Ħ	1				10
100	<u></u>					10			<u> </u>	_				<u> </u> 1	Di	am	ete	r (m	im)		0.1				_			0.	01				-		0.	0 001
C	Con	nme	ents	š								RC																		Re	evie	ewe	ed E	Ву_	_	R

Template: tmp_sum_input_xlsm Version: 20170217 Approved By: RJ

Stantec Consulting Services Inc. Lexington, Kentucky

HOPKINS COUNTY

ATTERBERG LIMITS

Stantec	
----------------	--

Project	Bridg	ing KY - 054B(00009N					Project No.	178568003	
Source	054B	00009N-2, 75.	0'-77.0'					Lab ID	1347	
								% + No. 40	3	
Tested By		JMB	Test Method		89 8	т 90		Date Received	10-25-2021	
Test Date	1	1-04-2021	Prepared	Dry						
		et Soil and	Dry Soil and							
	Tare Mass		Tare Mass	Tare Ma	SS			Water Content		
		(g)	(g)	(g)		Blows	S	(%)	Liquid Limit	4
	19.00		17.66	11.45	35		5	21.6		
		19.20	17.81	11.40		25		21.7		
		17.74	16.60	11.44		17		22.1	22	
	-									
	20			Lie	quid	Limit				
	30									
	28									
					_					
	26									
	, 24									
л Т	•									
MOISTI IBE CONTENT	22			•						
	20									
0	5									
	18									
LS I	5 16									
CW										
	14									
	12									
	10						_			
	1	0		2	20	25		30	40 50	
				A 11 15 57						
				NUME	SER O	F BLOWS				

PLASTIC LIMIT AND PLASTICITY INDEX

Wet Soil and	Dry Soil and		Water		
Tare Mass	Tare Mass	Tare Mass	Content		
(g)	(g)	(g)	(%)	Plastic Limit	Plasticity Index
19.94	18.55	10.78	17.9	17	5
19.35	18.18	11.00	16.3		

Remarks:

Reviewed By

Unconfined Compressive Strength of Cohesive Soil

KM 64-522

Project Name Bridging KY Source 054B00009N-2, 75.0'-7	- 054B00009	N				Project		178568003
Visual Description Sandy Silty (aray moist f	irm				Lab ID	1347
Visual Description Sandy Silly C		i, gray, moist, i			Reco	overed	2	.3'
					Test Ir	_		- 76.9'
Specimen Type: Undisturbed	LL	22	PL	17	i çat li	-	70.5	- 10.3
opeointen Type. ondistarbed			РІ	5		Date	Extruded	10/27/2021
Initial Wet Density (pcf)	132.6		1				-	10/27/2021
Initial Moisture Content (%)		Initial MC T	aken Befo	ore Test F	From Trim			10/21/2021
Initial Dry Density (pcf)						ininge		
At Test Moisture Content (%)		At Test MC T	aken N/A					
At Test Dry Density (pcf)						_	°	
Specific Gravity								
Degree of Saturation (%)		Und	onfined Co	ompressiv	e Streng	th (tsf)	1.06	
Average Height (in)				ined She			0.53	
Average Diameter (in)	2.853			n at Maxir			6.5	
Height to Diameter Ratio	2.1		Strain i	Rate to Fa	ailure (% .	/ min.)	1.00	
		Stress vs.	Strain					
1.20								
1.00					<u> </u>			
1.00								
0.00								
£ 0.80								
(tst)								
ន្ល 0.60								
<i></i> あ 0.40								
0.40								
0.20								
0.20								
0.00								
0.0 1.0	2.0	3.0 4.0	5.0) 6	5.0	7.0	8.0	9.0
			Strain (%)					
			Strain (70)					
Failure Sketch	1			Pocket P	enetrome	eter Rea	ding (tsf)	N/A
							(kg/cm^2)	
		comments			I UI VAITE I	\eauing	(Kg/CIII)	
		omments						
Ē	÷-							
	1							
	-						_	
								~
						Rev	iewed By	R
							···-,	-U
Template: tmp_uc_input xlsm	St	antec Consulti	na Service	es Inc				Reported By: RJ
Version: 20170217 Approved By: RJ	0.	Lexington,	-				Report I	Date: 11/11/2021

AASHTO T 88

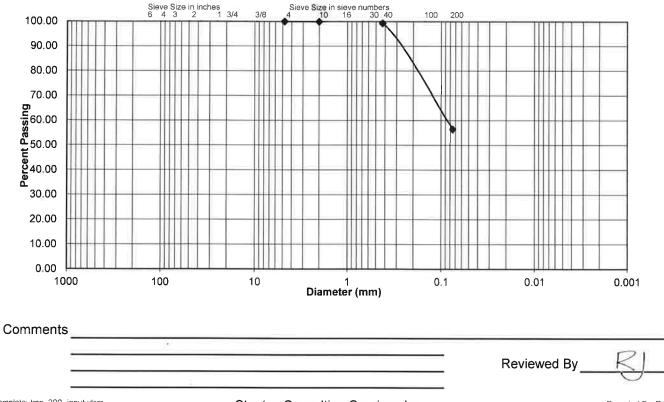
178568003

1323 10-21-2021

10-22-2021

10-27-2021

Project Name Bridging KY	Project Name Bridging KY - 054B00009N										
Source 054B00009		5	Lab ID	1323							
Preparation Method	AASHTO T		Received	10-21-20							
Soak Time (min)	380	2			Preparati	ion Date	10-22-20				
Particle Shape	Rounded		-		T	est Date	10-27-20				
Particle Hardness	Particle Hardness Hard and Durable										
Sample Dry Mass (g)	422.63				Analysis Base	d on Tota	l Sample.				
Moisture Content (%)	21.4										
	Grams	%	%	1	% Gravel	0.1					
Sieve Size	Retained	Retained	Passing		% Sand	43.5					
					% Fines	56.4					


56.4 N/A **Fines Classification**

D ₁₀ (mm)	N/A
D ₃₀ (mm)	N/A
D ₆₀ (mm)	N/A

Cu	N/A	
Сс	N/A	

	Grams	%	%
Sieve Size	Retained	Retained	Passing
No. 4	0.00	0.0	100.0
No. 10	0.34	0.1	99.9
No. 40	2.70	0.6	99.3
No. 200	181.18	42.9	56.4
Pan	238.41	56.4	

Particle Size Distribution

Template: tmp_200_input xIsm Version: 20170216 Approved By: RJ

Stantec Consulting Services Inc. Lexington, Kentucky

	antec		Summary of Soil Tests					
roject Name	Bridging KY - 0	54B00009N	Project Number 178568003					
ource	054B00009N-2	85.0'-87.0'	Lab ID 1348					
ample Type	<u>ет</u>		Date Received 10-25-21					
ample Type	51		Date Reported 11-11-21					
			Test Results					
Notu	ral Maistura Cr	ntont						
Test Not Per	ral Moisture Co formed	ment	Atterberg Limits Test Method: AASHTO T 89 & T 90					
	re Content (%)	NI/A	Prepared: Dry					
NOIStu			Liquid Limit: 23					
			Plastic Limit: 17					
Pa	ticle Size Anal	veie	Plastic Limit. 17 Plasticity Index: 6					
	Method: AASHT							
	ethod: AASHTO		Activity Index: 0.4					
	Method: AASHTO							
Tydrometer		0100	Moisture-Density Relationship					
Parti	cle Size	%	Test Not Performed					
Sieve Size		Passing	Maximum Dry Density (lb/ft ³): N/A					
01010 0120	N/A	radding						
	N/A		Optimum Moisture Content (%): N/A					
	N/A		Over Size Correction % N/A					
	N/A							
	N/A							
	N/A		California Bearing Ratio					
No. 4	4.75	100.0	Test Not Performed					
No. 10	2	99.9	Bearing Ratio (%): N/A					
No. 40	0.425	99.7	Compacted Dry Density (lb/ft ³): N/A					
No. 200	0.075	70.1	Compacted Moisture Content (%): N/A					
	0.02	43.6						
	0.005	23.9						
	0.002	16.9	Specific Gravity					
Estimated	0.001	12.5	Test Method: AASHTO T 100					
			Prepared: Dry					
Plus 3 in. Ma	terial, Not Inclue	ded: 0 (%)	Particle Size: No. 10					
			Specific Gravity at 20° Celsius: 2.69					
	ASTM	AASHTO						
Range	(%)	(%)						
Gravel	0.0	0.1	Classification					
Coarse San	d 0.1	0.2	Unified Group Symbol: CL-ML					
Medium Sar			Group Name: Silty clay with sand					
Fine Sand	29.6	29.6						
Silt	46.2	53.2	-					
Clay	23.9	16.9	AASHTO Classification: A-4 (2)					
Comments:								
-								
.								

Particle-Size Analysis of Soils

Project Number 178568003

AASHTO T 88

\mathbf{O}	Stantec

Project Name

Bridging KY - 054B00009N

Source	054B00009N-2, 8	5.0'-87.0'				Lab ID	1348
	Sieve Analy	sis for the Port	ion Coarser t				
Test Metho	d AASHTO T 8	28		Sieve Size	% Passing		
Prepared Usir				0120	1 dooling		
Particle Shap							
Particle Hardnes	s: Hard and Dura	able					
Tested							
Tested E	By DW te 11-01-2021						
	ed 10-25-2021						
Maximum Particle	e Size: No. 4 Sieve			No. 4	100.0		
				No. 10	99.9		
	Analysi	s for the Portio	n Finer than t	the No. 10 S	ieve		
Analysis Based or	n -3 inch Fraction Or	nly		No. 40	99.7		
Creatific Creati	tu 0.60			No. 200	70.1		
Specific Gravi	ly2.09			0.02 mm 0.005 mm	43.6 23.9		
Dispersed Usin	ng Apparatus A - Med	hanical, for 1 M	inute	0.002 mm	16.9		
	0 11	,		0.001 mm	12.5		
		Particle Size	Distribution				
ASTM Coarse Grav		d Medium Sand	Fine Sand		ilt	Clay	
AASHTO	0.0 0.1 Gravel	0 2 Coarse Sand	29.6 Fine Sand	40	Silt	23,9 Clay	
Sieve Size in Inches	0.1	0.2 Sieve Size in Sieve	29.6 Numbers	1	53.2	16.9	
3 2	1 3/4 3/8	10 16 30 4		200			100
							50
							90
							80
							70
							assi 06
							50 ¥
					A		Percent Passing
					A		. −
							- 30
							20
							10
100	10	1 Diam	eter (mm) 0.1		0.01	0.0	- 0
100			eter (mm) 0.1		0.01	0.0	

Template: lmp_sum_input_xlsm

Version: 20170217

Approved By: RJ

Stantec Consulting Services Inc. Lexington, Kentucky Reported By: RJ Report Date: 11/11/2021

Reviewed By

ATTERBERG LIMITS

		(Y - 054B) 09N-2, 85.					Project No. Lab ID	178568003 1348
							- % + No. 40	0
Tested By		ИB	Test Method		89 &	T 90	Date Received	10-25-2021
Test Date	11-05	5-2021	Prepared	Dry				
r.								
		oil and Mass	Dry Soil and Tare Mass	Tere Mer		Number	Water Content	
				Tare Mas	⁵⁵	Number of Blows	Water Content	Liquid Lippit
-		g)	(g)	(g)			(%)	Liquid Limit
		.93	16.72	11,33		35	22.4	
ļ	18	.79	17.38	11.39		22	23.5	
	19	.09	17.60	11.45		16	24.2	23
ſ								
L								
	30			Lic	quid L	imit		
	30							
	28							
	26							
_	24		+		_			
MOISTURE CONTENT, %					•			
EN	22					1		
L. L.	20							
S	20			1				
JRE	18							
ISTI								
ŌW	16							
	14							
	-							
	12							
	-							

NUMBER OF BLOWS

25

30

PLASTIC LIMIT AND PLASTICITY INDEX

20

Wet Soil and	Dry Soil and	~	Water		
Tare Mass	Tare Mass	Tare Mass	Content		
(g)	(g)	(g)	(%)	Plastic Limit	Plasticity Index
19.93	18.63	10.76	16.5	17	6
20.13	18.82	10.88	16.5		

Remarks:

10 ⊥ 10

Reviewed By

50

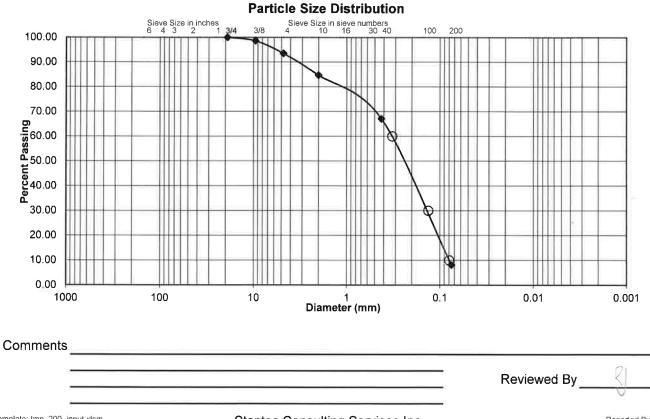
40

Unconfined Compressive Strength of Cohesive Soil

KM 64-522

								I O I OLL
Project Name Bridging KY	- 054B00009)N				Proiect I	Number 17	8568003
Source 054B00009N-2, 85.0'-8						· - ,	Lab ID	1348
Visual Description Silty Clay wi	th Sand (CL-	ML), gray, m	oist, firm					
					Recov	ered	2.3'	
					Test Int	erval	86.7' - 8	37.2'
Specimen Type: Undisturbed		23	PL	17				
			PI	6			xtruded 10	
Initial Wet Density (pcf							Tested 10	/28/2021
Initial Moisture Content (%		Initial MC	Taken Be	fore Test,	From Trimn	nings		
Initial Dry Density (pcf			Takan NI/	٨				
At Test Moisture Content (%)		At Test MC	Taken N/	4			;	
At Test Dry Density (pcf Specific Gravity								
Degree of Saturation (%		16	nconfined (Compressi	ve Strength	(tsf)	1.05	
Average Height (in		0.		•	ear Strength	· · ·	0.53	
Average Diameter (in					mum Stress		6.8	
Height to Diameter Ratio					ailure (% / ı		1.00	
C					Υ.	/		
		Stress v	s. Strain					
1.20								
1.20		10						
1.00								
1.00			/					
0.80								
(fst) 0.60								
x 0.60								
Stre								
0.40								
0.20								
0.00	2.0	3.0 4.	0 5	5.0	6.0 7	/ 7.0		
0.0 1.0	2.0	3,0 4.			0.0 /	.0	8.0	9.0
			Strain (%)					
	1			Destat		- D		•
Failure Sketch								
					Torvane Re	eading (kg/cm ⁻) N//	٩
		omments						
	.)) B. .							
	:							
	-					2		-
	0							0.
						Revie	wed By	K)

AASHTO T 88


Project Name Bridging KY - 054B00009N	Project Nu
Source 054B00009N-2, 95.1'-96.6'	· _
Preparation Method AASHTO T 11 Method A	Date Rec
Soak Time (min) 380	Preparation
Particle Shape Rounded	Test
Particle Hardness Hard and Durable	
Sample Dry Mass (g) 335.80	Analysis Based o
Moisture Content (%) 19.8	-

	Grams	%	%
Sieve Size	Retained	Retained	Passing
3/4"	0.00	0.0	100.0
3/8"	4.68	1.4	98.6
No. 4	17.27	5.1	93.5
No. 10	29.37	8.7	84.7
No. 40	59.21	17.6	67.1
No. 200	198.05	59.0	8.1
Pan	27.22	8.1	1777

Project Number	178568003
Lab ID	1325
Date Received	10-21-2021
Preparation Date	10-22-2021
Test Date	10-27-2021

Analysis Based on Total Sample.

% Gravel	15.3
% Sand	76.6
% Fines	8.1
Fines Classification	N/A
D ₁₀ (mm)	0.0793
D ₃₀ (mm)	0.1328
D ₆₀ (mm)	0.3251
Cu	4.10
Cc	0.68

Template: lmp_200_input.xlsm Version: 20170216 Approved By: RJ

Stantec Consulting Services Inc. Lexington, Kentucky

3/4"

3/8"

No. 4

No. 10

No. 40

No. 200

Pan

0.00

4.87

7.63

18.24

36.87

33.61

23.82

Gradation Analysis

AASHTO T 88

178568003

10-21-2021 10-22-2021

10-27-2021

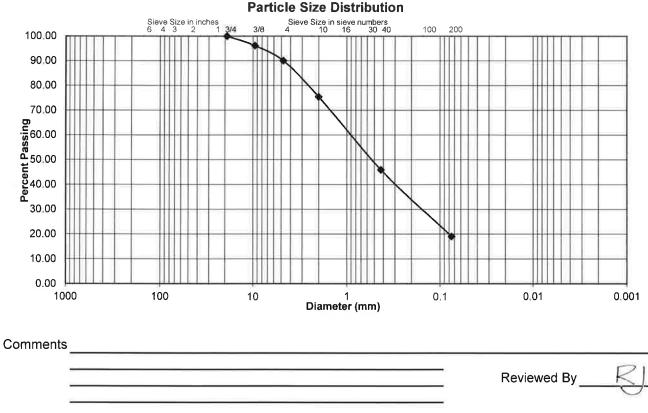
Project Name	Bridging KY	- 054B0000	9N			Project N	Number	1785680
Source	054B00009	N-2 , 100.0'-1	00.6'				Lab ID	1326
Prepara	tion Method	AASHTO T	11 Method A			Date Re	eceived	10-21-20
Soak	(Time (min)	390				Preparatio	on Date	10-22-20
Pa	rticle Shape	Angular				Те	est Date	10-27-20
Partic	le Hardness	Hard and Du	ırable					
Sample D	Dry Mass (g)	125.04				Analysis Based	l on Tota	I Sample
Moisture	Content (%)	15.3	-					
					27			
		Grams	%	%]	% Gravel	24.6	
	Sieve Size	Retained	Retained	Passing		% Sand	56.4	
]	% Fines	19.0	
					Fines Cla	assification	N/A	
						D ₁₀ (mm)	N/A	
						D ₃₀ (mm)	N/A	
						D ₆₀ (mm)	N/A	

0.0

3.9

6.1

14.6


29.5

26.9

19.0

% Gravel	24.6
% Sand	56.4
% Fines	19.0
es Classification	N/A
D ₁₀ (mm)	N/A
· · · · · · · · · · · · · · · · · · ·	
D ₃₀ (mm)	N/A
D ₆₀ (mm)	N/A

Cu	N/A	
Сс	N/A	

100.0

96.1

90.0

75.4

45.9

19.0

-

Template: tmp_200_input_xlsm Version: 20170216 Approved By: RJ

Stantec Consulting Services Inc. Lexington, Kentucky

		-	,	
	2	L		
	Ī			
	(C	5	
1	+			
1	1	1		

Project Name Bridging KY - 054B00009N

Moisture Content of Soil AASHTO T 265

Project Number 178568003 Tested By DW

Maximum Particle Size in Sample No. 40	40 No. 4	1/2"	- 4 m	2#						
Recommended Minimum Mass (g) 10	100	300	500	1,000					Test Method AASHTO	AASHTO
Material Type: <u>Str</u> atified, <u>Lam</u> inated, <u>Len</u> sed, <u>Hom</u> ogeneous, <u>Dist</u> urbed	ous, <u>Dist</u> urbed									
				Maximum	Material	al Pass Min.	Min.	Wet Soil &	L Dry Soil &	
		Date	Material	Particle	Excluded	ed Mass?	s? Can Weight	ght Can Weight	t Can Weight	Moisture
Source	Lab ID	D Tested	Type	Size	Amount	Size (Y/N)	(6) (1	(6)	(6)	Content (%)
054B00009N-2, 2.0'-3.5'	1314	10/21/21	Hom	No. 4		Yes	s 301.18	18 440.04		19.2
054B00009N-2, 10.0'-11.5'	1315	10/21/21	Hom	No. 4		Yes	s 309.36	36 517.37	7 481.03	21.2
054B00009N-2, 20.0'-21.5'	1316	10/21/21	Hom	No. 4		Yes	\$ 300.39	39 494.66	6 457.72	23.5
054B00009N-2, 30.0'-31.5'	1317	10/21/21	Hom	No. 4		Yes	\$ 308.48			22.0
054B00009N-2, 40.0'-41.5'	1318	10/21/21	Hom	No. 4		Yes	\$ 300.44	44 604.91	1 545.79	24.1
054B00009N-2, 50.0'-51.5'	1319	10/21/21	Hom	1/2"		Yes	s 300.58	58 720.89	9 644.57	22.2
054B00009N-2, 60.0'-61.5'	1320	10/21/21	Hom	1/2"		Yes	s 296.88	88 735.10	0 646.24	25.4
054B00009N-2, 67.0'-68.5'	1321	10/21/21	Hom	No. 4		Yes	s 308.06	06 671.17	7 591.51	28.1
054B00009N-2, 70.0'-71.5'	1322	10/21/21	Hom	1/2"		Ŷ	300.58	58 660.30	0 578.03	29.7
054B00009N-2, 80.0'-81.5'	1323	10/21/21	Hom	No. 4		Yes	s 303.76	76 816.78	8 726.39	21.4
054B00009N-2, 90.0'-91.5' No Recovery	1324	10/21/21								
054B00009N-2, 95.1'-96.6'	1325	10/21/21	Dist	1"		No	304.22	22 706.51	1 640.02	19.8
054B00009N-2, 100.0'-100.6'	1326	10/21/21	Dist	1.		Ŷ	305.10	10 449.27	7 430.14	15.3

Comments_

Reviewed By

Page 1 of 1

3/8"

No. 4

No. 10

No. 40

No. 200

Pan

0.00

3.54

1.69

4.11

10.78

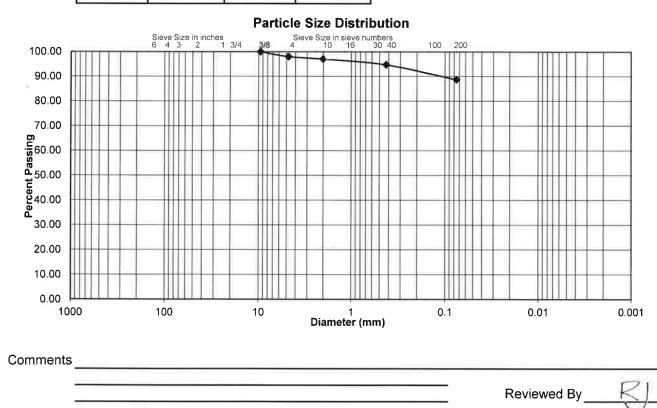
157.98

0.0

2.0

0.9

2.3


6.1

88.7

Gradation Analysis

Cu N/A Cc N/A AASHTO T 88

Project Name Bridging KY - 054B00009N					Project Number	178568003
Source 054B00009	N-3, 2.5'-4.0'				Lab ID	1327
Preparation Method	AASHTO T	11 Method A			Date Received	10-25-2021
Soak Time (min)	200				Preparation Date	10-27-2021
Particle Shape	Angular	-			Test Date	11-02-2021
Particle Hardness	Hard and Du	ırable	1 		8-	
Sample Dry Mass (g)	178.10			Analy	sis Based on Tota	l Sample.
Moisture Content (%)	23.3					
	Grams	%	%	% Gr	avel 2.9	
Sieve Size	Retained	Retained	Passing	% S	and 8.4	
				% Fi	nes 88.7	
				Fines Classific	ation N/A	
				D ₁₀	(mm) N/A	
				D ₃₀	(mm) N/A	
		·		D ₆₀	(mm) N/A	

100.0

98.0

97.1

94.8

88.7

Template: tmp_200_input xlsm Version: 20170216 Approved By: RJ

roject Name Brid	dging KY - 0 IB00009N-3		Project Number	178568003 1350
	100000311-3	, 5.0-7.0		1350
ample Type ST			Date Received	10-25-21
			Date Reported	
			Test Results	
Natural	Moisture C	ontent	Atterberg Limits	
Test Not Perform			Test Method: AASHTO T 89 & T 90	
Moisture (Content (%):	N/A	Prepared: Dry	
			Liquid Limit:	42
			Plastic Limit:	20
	le Size Ana		Plasticity Index:	
Preparation Met			Activity Index:	0.5
Gradation Metho				
Hydrometer Met	hod: AASH	TO T 88	Maister Densite Datation	- 1-1
Particle	Sizo	%	Moisture-Density Relation Test Not Performed	snip
Sieve Size	(mm)	Passing		N/A
Sieve Size	, ,	Passing	Maximum Dry Density (lb/ft ³):	
	N/A		Maximum Dry Density (kg/m ³):	
	N/A		Optimum Moisture Content (%):	N/A
	N/A		Over Size Correction %:	N/A
	N/A			
	N/A			15
	N/A N/A		California Bearing Rati	<u>o</u>
No. 10	2	100.0	Bearing Ratio (%):	N/A
No. 40	0.425	99.9		
No. 200	0.425	99.9	Compacted Dry Density (lb/ft ³): Compacted Moisture Content (%):	
110.200	0.073	93.6		IN/A
ł	0.005	68.9	, · · ·	
Ì	0.002	48.5	Specific Gravity	
Estimated	0.001	35.5	Test Method: AASHTO T 100	
			Prepared: Dry	
Plus 3 in. Materi	al, Not Inclu	ded: 0 (%)	Particle Size:	
-			Specific Gravity at 20° Celsius:	2.73
	ASTM	AASHTO	1	
Range	(%)	(%)		
Gravel	0.0	0.0	Classification	
Coarse Sand	0.0	0.1	Unified Group Symbol:	
Medium Sand	0.1	1.0	Group Name:	Lean clay
Fine Sand	1.0	1.0		
Silt Clay	30.0 68.9	50.4 48.5	AASHTO Classification:	A 7 6 (04)
	00.9	40.5	AASHTO Classification.	A-7-0 (24)
0 - m - m - t				
Comments:				

HOPKINS COUNTY STP BRZ 9030 (500)

) Stantec

Bridging KY - 054B00009N

Particle-Size Analysis of Soils

AASHTO T 88

Project Name	Bridging KY - 054B				Projec	t Number	178568003
Source	054B00009N-3, 5.0'-7.0'			1350			
	-				-		
	Sieve Analys	s for the Port	ion Coarser t	than the No	. 10 Sieve		
				Sieve	%		
Test Method				Size	Passing		
Prepared Using	AASHTO T 87						
Particle Shape:							
Particle Hardness:	N/A						
Tested By							
	11-01-2021						
Date Received	10-25-2021						
Movimum Dortiolo (Pizo: No. 10 Piovo						
Maximum Particle S	Size: No. 10 Sieve			No. 10	100.0		
				No. 10	100.0		
		for the Portio	n Finer than	t <u>he No. 10 S</u>	Sieve		
Analysis Based on	-3 inch Fraction Only	,		No. 40	99.9		
				No. 200	98.9		
Specific Gravity	2.73			0.02 mm	93.6		
				0.005 mm			
Dispersed Using	Apparatus A - Mech	anical, for 1 Mi	inute	0.002 mm	48.5		
				0.001 mm	35.5		
		Particle Size	Distribution				
ASTM Coarse Gravel		Medium Sand	Fine Sand		Silt	Clay	
AASHTO	0.0 0.0 Gravel	0.1 Coarse Sand	1.0 Fine Sand	3	30.0 Silt	68.9	ay
AASHTO	0.0	0.1	1.0		50.4		3.5
Sieve Size in Inches 3 2 1	3/4 3/8 4	Sieve Size in Sieve N 0 16 30 40	Numbers 100	200			
	<u> </u>				1 1111		100
							90
					A		
			· · · · · · · · · · · · ·				80
		<u> </u>					
							70 50
							as a
							50 H
							A 40 20
					+		
							20
							20
							10
100	10	1 Diam	eter (mm) 0.1		0.01	l	0.001
100	10	Diami	eter (mm)		0.01		0.001
Comments					Rev	iowod By	\mathbb{P}
Comments					nev nev	iewed By_	
							~~

Template: tmp_sum_input_xlsm Version: 20170217 Approved By: RJ

HOPKINS COUNTY

STP BRZ 9030 (500)

ATTERBERG LIMITS

		ing KY - 054B(00009N-3, 5.0				Project No. Lab ID % + No. 40	178568003 1350 0
Tested By		KG/RJ	Test Method	AASHTO T 89 8	х T 90	Date Received	10-25-2021
Test Date	1	1-09-2021	Prepared	Dry	x 1 00	-	10 20 2021
		et Soil and	Dry Soil and				
	Т	are Mass	Tare Mass	Tare Mass	Number of	Water Content	
		(g)	(g)	(g)	Blows	(%)	Liquid Limit
		18,70	16.44	10.97	32	41.3	
		18.78	16.50	11.09	28	42.1	
		20.62	17.81	11.24	22	42.8	42
L					1		
	50			Liquid	Limit		
	50						
	48						
	46						
	40						
~	44						
MOISTURE CONTENT, %							
TEN	42						
NO	40						
E C							
Ĩ,	38						
SIO	36						
Σ							
	34				· · · · · · · · · · · · · · · · ·		
	32						
	-						
	30 - 1	0		20			
		~		20	25	30	40 50

NUMBER OF BLOWS

PLASTIC LIMIT AND PLASTICITY INDEX

ſ	Wet Soil and	Dry Soil and		Water		
	Tare Mass	Tare Mass	Tare Mass	Content		
	(g)	(g)	(g)	(%)	Plastic Limit	Plasticity Index
	18.65	17.46	11.40	19.6	20	22
	18.26	17.11	11.41	20.2		

Remarks:

Reviewed By____

Unconfined Compressive Strength of Cohesive Soil

KM 64-522

Project Name Bridging KY - 054B00009N Source 054B00009N-3, 5.0'-7.0'		umber <u>178568003</u> _ab ID 1350
Visual Description Lean Clay (CL), brown, moist, firm		
	ecovered	1.9'
	st Interval	6.2' - 6.7'
Specimen Type: Undisturbed LL 42 PL 20	<u>, 11</u>	
PI22		truded 10/28/2021
Initial Wet Density (pcf) <u>127.6</u>		ested 10/28/2021
Initial Moisture Content (%) 24.2 Initial MC Taken Before Test, From T	Frimmings	
Initial Dry Density (pcf) 102.7		
At Test Moisture Content (%) N/A At Test MC Taken N/A At Test Dry Density (pcf) N/A		
At Test Dry Density (pcf) N/A Specific Gravity 2.73		
Degree of Saturation (%) 100.1 Unconfined Compressive Stre	anath (tef)	3.05
Average Height (in) 6.039 Undrained Shear Stre		1.52
Average Diameter (in) 2.863 Strain at Maximum S		3.9
Height to Diameter Ratio 2.1 Strain Rate to Failure (0.99
Stress vs. Strain		
2.50		
3.50		
3.00	-	
2.50		
\$ <u>2.00</u>		
\$2.00 \$2		
<u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>		
1.00		
0.50		
0.00	10	
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5	4.0	4.5 5.0
Strain (%)		
		// 5 / .
Failure Sketch Pocket Penetro		
	ne Reading (kg	g/cm²) <u>N/A</u>
	Review	red By RI
		-9-

Stantec Consulting Services Inc. Lexington, Kentucky

AASHTO T 88

Stantec
Stantec

Project Name Bridging KY - 054B00009N	
Source 054B00009N-3, 10.0'-11.5'	
Preparation Method AASHTO T 11 Method A	
Soak Time (min) 210	
Particle Shape Angular	
Particle Hardness Hard and Durable	
Sample Dry Mass (g) 155.76	
Moisture Content (%) 25.3	

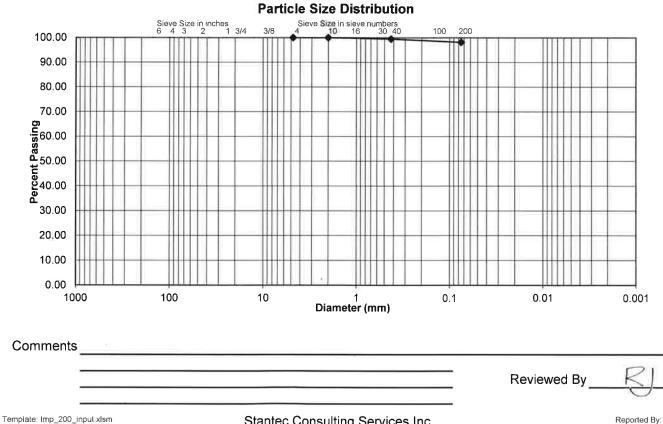
	Grams	%	%
Sieve Size	Retained	Retained	Passing
No. 4	0.00	0.0	100.0
No. 10	0.03	0.0	100.0
No. 40	0.80	0.5	99.5
No. 200	2.05	1.3	98.2
Pan	152.88	98.2	

 Project Number
 178568003

 Lab ID
 1328

 Date Received
 10-25-2021

 Preparation Date
 10-27-2021


 Test Date
 11-02-2021

Analysis Based on Total Sample.

% Gravel	0.0
% Sand	1.8
% Fines	98.2
Fines Classification	N/A
D ₁₀ (mm)	N/A

	11/1
D ₃₀ (mm)	N/A
D ₆₀ (mm)	N/A

Cu	N/A	
Сс	N/A	

Template: tmp_200_input xlsm Version: 20170216 Approved By: RJ Stantec Consulting Services Inc. Lexington, Kentucky

	Bridging KY - 0		Project Number	178568003
urce .	054B00009N-3	, 15.0'-17.0'	Lab ID	135
mple Type	ST		Date Received	10-25-2 ²
			Date Reported	11-11-2′
			Test Results	
	ral Moisture Co	ontent	Atterberg Limits	
Test Not Per		NI/A	Test Method: AASHTO T 89 & T 90	
MOISIU	re Content (%):	N/A	Prepared: Dry Liquid Limit:	39
			Plastic Limit:	22
Ba	rticle Size Anal	veie	Plastic Linit Plasticity Index:	
	Method: AASH1		Activity Index:	0.4
	ethod: AASHTC		Activity index.	0.4
nyurumeter	Method: AASH	0100	Moisture-Density Relation	chin
Darti	cle Size	%	Test Not Performed	snip
Sieve Size				N/A
Sieve Size		Passing	Maximum Dry Density (lb/ft ³):	
	N/A		Maximum Dry Density (kg/m ³):	
	N/A		Optimum Moisture Content (%):	N/A
	N/A		Over Size Correction %:	N/A
	N/A			
	N/A			
	N/A		California Bearing Rati	0
	N/A		Test Not Performed	
No. 10	2	100.0	Bearing Ratio (%):	N/A
No. 40	0.425	99.9	Compacted Dry Density (lb/ft ³):	N/A
No. 200	0.075	98.3	Compacted Moisture Content (%):	N/A
	0.02	92.7		
	0.005	70.2		
	0.002	47.0	Specific Gravity	
Estimated	0.001	33.9	Test Method: AASHTO T 100	
			Prepared: Dry	
Plus 3 in. Ma	iterial, Not Inclu	ded: 0 (%)	Particle Size:	No. 10
			Specific Gravity at 20° Celsius:	2.77
	ASTM	AASHTO		
Range	(%)	(%)		
Gravel	0.0	0.0	<u>Classification</u>	
Coarse San		0.1	Unified Group Symbol:	CL
Medium Sar	nd 0.1		Group Name:	Lean cla
Fine Sand	1.6	1.6		
Silt	28.1	51.3		
Clay	70.2	47.0	AASHTO Classification:	A-6(18)

Particle-Size Analysis of Soils AASHTO T 88

HOPKINS COUNTY STP BRZ 9030 (500)

Stantec

Project Name Source	Bridging KY - 054 054B00009N-3, 1				Projec	t Number_ Lab ID	178568003 1351
	Siovo Analy	sis for the Por	tion Coorcor t	han the No	10 Sieve		
	Sleve Allaly	sis for the Pon	lion Coarser l	Sieve	%		
Test Method	AASHTO T	38		Size	Passing		
Prepared Using				0120	russing		
Particle Shape	: N/A						
Particle Hardness							
		-		1			
Tested By	y DW			-			
	e 11-01-2021						
Date Received	10-25-2021						
Maximum Particle	Size: No. 10 Sieve						
				No. 10	100.0		
	Analysi	s for the Portic	n Einer than t	the No. 10 S	Sieve		
Analysis Based on	-3 inch Fraction Or			No. 40	99.9		
Trialysis Dasca on		iiy		No. 200	98.3		
Specific Gravity	v 277			0.02 mm	92.7		
opeonie oravity				0.005 mm	70.2		
Dispersed Using	Apparatus A - Med	chanical for 1 M	inute	0.002 mm	47.0		
				0.001 mm	33.9		
				0.0011111			
Coarse Grave	I Fine Gravel C Sar		E Distribution	1	2:14	0	
ASTM Coarse Grave	0.0 0.0	0.1	1.6		Silt 8.1	Clay 70.2	
AASHTO	Gravel 0.0	Coarse Sand 0 1	Fine Sand 1.6		Silt 51.3		Clav
Sieve Size in Inches	0.0	Sieve Size in Sieve		1	513		7.0
3 2 1	3/4 3/8 4	10 16 30 4	0 100	200			— 100
							90
					TANT		80
							00
							70
							Percent Passing
							50 🙀
							A 40 E

Diameter (mm)

1

0.1

> 30 20

> 10

0

0.001

t,

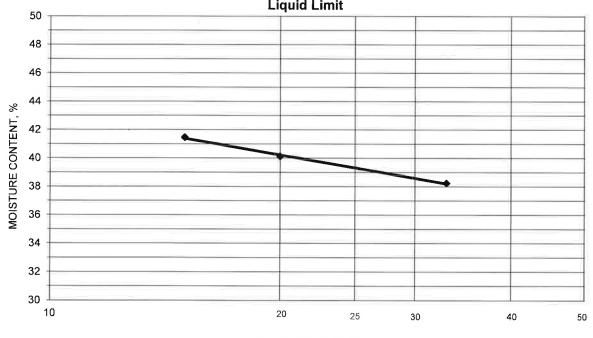
Reviewed By

0.01

Comments

100

10



HOPKINS COUNTY

ATTERBERG LIMITS

Stantec

Project	Bridging KY - 054B	00009N			Project No.	178568003
Source	054B00009N-3, 15.	0'-17.0'		Lab ID	1351	
					% + No. 40	0
Tested By	JMB	Test Method	AASHTO T 89 8	к T 90	Date Received	10-25-2021
Test Date	11-04-2021	Prepared	Dry			
		-				
	Wet Soil and	Dry Soil and				
	Tare Mass	Tare Mass	Tare Mass	Number of	Water Content	
	(g)	(g)	(g)	Blows	(%)	Liquid Limit
	16.51	14.98	10.98	33	38.3	
	16.23	14.83	11.34	20	40.1	
	16.92	15.27	11.29	15	41.5	39
			Liquid	l imit		

NUMBER OF BLOWS

PLASTIC LIMIT AND PLASTICITY INDEX

Wet Soil and	Dry Soil and		Water		
Tare Mass	Tare Mass	Tare Mass	Content		
(g)	(g)	(g)	(%)	Plastic Limit	Plasticity Index
21.01	19.17	10.74	21.8	22	17
20.70	19.02	11.36	21.9		

Remarks:

Reviewed By

Unconfined Compressive Strength of Cohesive Soil

KM 64-522

Project Name Bridging KY - (Source 054B00009N-3, 15.0'-17.)N				Projec	t Number Lab ID	178568003
Visual Description Lean Clay (CL		noist, firm					Labib	
		• 105-54			Reco	vered	1	.8'
					Test In	terval	16.1'	- 16.6'
Specimen Type: Undisturbed	LL_	39	PL_	22				
			PI	17				10/28/2021
Initial Wet Density (pcf)	129.9			· (te Tested	10/28/2021
Initial Moisture Content (%) Initial Dry Density (pcf)	22.9 105.7	Initial MC		efore Test,	From I rim	mings		
At Test Moisture Content (%)	N/A	At Test MC	Takan N	/Δ				
At Test Dry Density (pcf)	N/A	ALTESLING						
Specific Gravity	2.77							
Degree of Saturation (%)	99.6	U	nconfined	Compressi	ve Strenatl	n (tsf)	4.69	
Average Height (in)	6.061			drained She			2.35	
Average Diameter (in)	2.860			ain at Maxi			5.9	
Height to Diameter Ratio	2.1		Stra	in Rate to F	ailure (% /	min.)	0.99	
						_		
		Stress v	/s. Strain					
5.00								
					a _			
4.50	1							
4.00								
3.50					<u> </u>			
(s) 3.00 ss 2.50 2.00								
g 2.50				-				
2.00						_		
1.50								
1.00								
0.50								
0.00	2.0	20 4	0	50	÷ 0	7.0		
0.0 1.0	2.0	3.0 4			6.0	7.0	8.0	9.0
			Strain (%))				
						_		
Failure Sketch					Penetromet			
					Torvane R	eading	(kg/cm ²)	<u>N/A</u>
	C	omments						
	÷		_				_	
$F \setminus [I / I]$	2							
	2							
	-							
	2							
						Rev	iewed By	RI
							,	<u> </u>

Stantec Consulting Services Inc. Lexington, Kentucky

AASHTO T 88

Project Name	e Bridging KY	′ - 054B0000	9N			Project Numbe	r 178568003
	e 054B00009					Lab I	1329
	ation Method		11 Method A			Date Receive	10-25-2021
	k Time (min)					Preparation Date	e 10-27-2021
Pa	article Shape	Angular	-			Test Date	e 11-02-2021
Partie	cle Hardness	Hard and D	urable				
Sample	Dry Mass (g)	213.97			Ana	alysis Based on To	tal Sample.
Moisture	Content (%)	22.8	_				
		Grams	%	%	% (Gravel 0.1	1
	Sieve Size	Retained	Retained	Passing	%	Sand 6.1	1
					%	Fines 93.8	3
					Fines Classi	fication N//	$\overline{\mathbf{x}}$
							-
					D ₁	_{i0} (mm) N/A	4
					Da	₃₀ (mm) N/A	Ā
						_{so} (mm) N/A	7
	· · · · · · · · · · · · · · · · · · ·						<u></u> :
						Cu N/A	
							•
	No. 4	0.00	0.0	100.0			
	No. 10	0.17	0.1	99.9			
	No. 40	2.00	0.9	99.0			
	No. 200	11.13	5.2	93.8			
	Pan	200.67	93.8				
			Darticl	e Size Distribu	ution		
		Sieve Size in inches 6 4 3 2		Sieve Size in sieve numb			
100.00	mm T	6 4 3 2	1 3/4 3/8			 	
90.00							
80,00							
⁼ 70.00							
0.00 4 50.00 4 50.00 4 50.00							
<u>50.00</u>							
240.00							
5 30.00					++-++++		
20.00							
10_00							
0.00							
10	00	100	10	1	0.1	0.01	0.001
				Diameter (mm)		
Comments							
	C						

Stantec Consulting Services Inc. Lexington, Kentucky Reviewed By

roject Name Brid ource 054		54B00009N , 25.0'-27.0'	Project Number Lab ID	178568003 1352
ample Type ST			Date Received	10-25-21
			Date Reported	11-11-21
			Test Results	
	Moisture C	ontent	Atterberg Limits	
Test Not Perform			Test Method: AASHTO T 89 & T 90	
Moisture C	Content (%):	N/A	Prepared: Dry	
			Liquid Limit:	
			Plastic Limit:	17
	le Size Ana		Plasticity Index:	
Preparation Met			Activity Index:	0.6
Gradation Metho				
Hydrometer Met	hod: AASH	ГО Т 88		
			Moisture-Density Relations	ship
Particle	Size	%	Test Not Performed	
Sieve Size	(mm)	Passing	Maximum Dry Density (lb/ft ³):	N/A
	N/A		Maximum Dry Density (kg/m ³):	
	N/A	· · · · · · · · · · · · · · · · · · ·	Optimum Moisture Content (%):	
	N/A		Over Size Correction %:	
	N/A			
	N/A			
	N/A		California Bearing Ratio)
	N/A		Test Not Performed	2
No. 10	2	100.0	Bearing Ratio (%):	N/A
No. 40	0.425	100.0	Compacted Dry Density (lb/ft ³):	
No. 200	0.425	96.9	Compacted Dry Density (ib/it).	N/A
L 110. 200	0.073	66.2		
ŀ	0.02	32.4	L	
ŀ	0.002	23.4	Specific Gravity	
Estimated	0.002	17.4	Test Method: AASHTO T 100	
Edinated	0.001	<u> </u>	Prepared: Dry	
Plus 3 in. Materi	al. Not Inclu	ded: 0 (%)	Particle Size:	No 10
. too o int. Mutoff	, recentoru		Specific Gravity at 20° Celsius:	2.69
Г	ASTM	AASHTO		2.00
Range	(%)	(%)		
Gravel	0.0	0.0	Classification	
Coarse Sand	0.0	0.0	Unified Group Symbol:	CL
Medium Sand	0.0		Group Name:	Lean clay
Fine Sand	3.1	3.1		Lean day
Silt	64.5	73.5	· · · · · · · · · · · · · · · · · · ·	
Clay	32.4	23.4	AASHTO Classification:	A-6 (12)
	JL. T			
Comments:				

Particle-Size Analysis of Soils

Project Number 178568003

AASHTO T 88

HOPKINS COUNTY
STP BRZ 9030 (500)

Stantec

Bridging KY - 054B00009N

Project Name

Source		054B00009	N-3, 25.0	0'-27.0'					Lab ID	1352
								2		
		Sieve	Analvsi	s for the Po	ortion Coa	rser th	nan the No	10 Sieve		
		0.010					Sieve	%		
Т	est Method	AASH	ТО Т 88				Size	Passing		
	ared Using		TO T 87				0120	1 assing		
тер	area obing		1010/							
Darti	icle Shape:	N	I/A							
			I/A							
Particle	Hardness:	N	/A			1				
	T . () D	514/				11				
	Tested By									
. .		11-01-2021								
Date	e Received	10-25-2021								
Maximur	m Particle S	Size: No. 10 S	Sieve							
							No. 10	100.0		
		- 4	nalveie	for the Por	tion Finer	than ti	he No. 10 9	Siovo		
Analysis	Rased on	-3 inch Fract	-				No. 40	100.0		
/ maryoro	Bused on	o mon race	on only				No. 200	96.9		
Snoo	ific Gravity	2 60					0.02 mm			
opec	inc Gravity	2.09	<u>.</u>					66.2		
Diana	rood Lloing		61	aniant for d	Minute		0.005 mm	32.4		
Disper	ised Using	Apparatus A	- wecha	anical, for 1	winute		0.002 mm	23.4		
						1	0.001 mm	17.4		
				Particle Si	ze Distrib	ution				
ASTM	Coarse Gravel	Fine Gravel	C. Sand	Medium Sand	Fine Si			Silt	Clay	1
	0.0	0.0 Gravel	0.0	0.0 Coarse Sand	3.1 Fine S	and	(54.5 Dill	32.4	-
AASHTO		0.0		0.0	3.1			Silt 73.5	Clay 23.4	
Sieve	Size in Inches			Sieve Size in Sie	eve Numbers					
·	3 2 1	3/4 3/8	4 1	0 16 30	40		00			100
							\mathbb{N}			90
							INT			
										80
							A			70
		+						*		
										60 👿
										Percent Passing
										50 H
										40 5
								11		Line a
		1					++++			- 30
111		1 1111						+ ++++		1
										20
										10
L 10		┉┉┉		L						- 0
100		10		1 Dia	imeter (mm)	0.1		0.01	0	.001
C	Comments							Rev	iewed By	KI
	2.									$\overline{\bigcirc}$

HOPKINS COUNTY

ATTERBERG LIMITS

		ing KY - 054B				Project No.	178568003
Source	054B	00009N-3, 25.	.0'-27.0'			Lab ID	1352
Tested By		JMB	Test Method	AASHTO T 89	8 T 00	% + No. 40 Date Received	0 10-25-2021
Test Date	1	1-05-2021	- Prepared	Dry	x 1 30	- Date Necelveu -	10-23-2021
, our Duto		00 2021	-		-0		
ſ	W	et Soil and	Dry Soil and		1		
	Т	are Mass	Tare Mass	Tare Mass	Number of	Water Content	
		(g)	(g)	(g)	Blows	(%)	Liquid Limit
		18.80	17.15	11.40	32	28.7	
[19.40	17.58	11.37	27	29.3	
1		19.09	17.28	11.54	16	31.5	30
	_						
L			3				
	40	· · · · · · · · · · · · · · · · · · ·		Liquid	Limit		1
	38						
	36						
	-						
%	34						
MOISTURE CONTENT, %	32						
NTE			•				
S	30						
JRE	28 -						
STL							
NOI	26						
_	24						
	22						
	20						
		0		20	25	30	40 50
				NUMBER (OF BLOWS		

PLASTIC LIMIT AND PLASTICITY INDEX

ſ	Wet Soil and	Dry Soil and		Water		
	Tare Mass	Tare Mass	Tare Mass	Content		
	(g)	<u>(g)</u>	(g)	(%)	Plastic Limit	Plasticity Index
	20.19	18.82	11.02	17.6	17	13
	19.06	17.91	11.26	17.3		

Remarks:

Reviewed By

Template: tmp_sum_input.xlsm Version: 20170217 Approved By: RJ Stantec Consulting Services Inc. Lexington, Kentucky

Unconfined Compressive Strength of Cohesive Soil

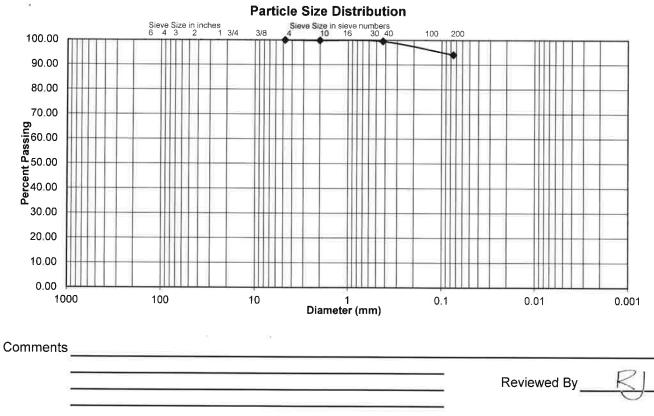
KM 64-522

Project Name Bridging KY - 054B00009N Source 054B00009N-3, 25.0'-27.0'						t Number Lab ID	178568003
Visual Description Lean Clay (CL), gray, moist, firm						-	
					Recovered Test Interval	26.5' -	
Specimen Type: U	ndisturbed	LL_		PL 17 Pl 13	-	Extruded	
Initial Wet Density (pcf) 128		128.2					10/28/2021
· · · · · · · · · · · · · · · · · · ·		21.4	Initial MC Taken Before Test, From Trimmings				
Initial Dry Density (pcf) At Test Moisture Content (%)		105.6 N/A	At Test MC Teken N/A				
		N/A	At Test MC Taken <u>N/A</u>				
		2.69					
Degree of Saturation (%) 97		97.5	Unconfined Compressive Strength (tsf) 1.53				
Average Height (in) 6.018			Undrained Shear Strength (tsf) 0.77				
Average Diameter (in) 2.8			Strain at Maximum Stress (%) 7.7				
Height to Dian	neter Ratio	2.1		Strain Rate to F	=ailure (% / min.)	1.00	
19			Stress vs. St	rain			
1.90							
1.80							
1.60							
1.40							
£ ^{1.20}		/		-			
<u>\$</u> 1.00	/						
(1.20 1.00 0.80							
ت 0.60							
0.40						c	
0.20							
0.00	2.0		4.0 6	.0	8.0 10	.0	12.0
Strain (%)							
Failure Sketo	ch	Pocket Penetrometer Reading (tsf) <u>N/A</u> Torvane Reading (kg/cm ²) <u>N/A</u>					
		C -	comments				
		-					
		-					
]	-			Rev	viewed By	R)

Stantec Consulting Services Inc. Lexington, Kentucky

AASHTO T 88

Project Name Bridging KY - 054B00009N	Project Number	178568003
Source 054B00009N-3, 30.0'-31.5'	Lab ID	1330
Preparation Method AASHTO T 11 Method A	Date Received	10-25-2021
Soak Time (min)240	Preparation Date	10-27-2021
Particle Shape Angular	Test Date	11-02-2021
Particle Hardness Hard and Durable	-	
Sample Dry Mass (g) 279.87	Analysis Based on Tota	I Sample.
Moisture Content (%) 21.4		• • • •


Sieve Size	Grams Retained	%	%
Sieve Size	Retained	Retained	Passing
No. 4	0.00	0.0	100.0
No. 10	0.49	0.2	99.8
No. 40	0.94	0.3	99.5
No. 200	15.13	5.4	94.1
Pan	263.31	94.1	

Analysis E	Based on Total S
% Gravel	0.2
% Sand	5.7
% Fines	94.1
Fines Classification	N/A
D ₁₀ (mm)	N/A
D ₃₀ (mm)	N/A

D₆₀ (mm)

Cu	N/A	
Сс	N/A	

N/A

roject Name Bri ource 054	dging KY - 05 4B00009N-3,		Project Number 178568003 Lab ID 1353
ample Type ST			Date Received 10-25-21 Date Reported 11-11-21
			Test Results
Natural	Moisture Co	ontent	Atterberg Limits
Test Not Perfor	med		Test Method: AASHTO T 89 & T 90
Moisture (Content (%)	N/A	Prepared: Dry
			Liquid Limit: 31
			Plastic Limit: 18
Partic	le Size Analy	/sis	Plasticity Index: 13
Preparation Met	thod: AASHT	ОТ 87	Activity Index: 0.5
Gradation Meth			
Hydrometer Me	thod: AASHT	O T 88	
			Moisture-Density Relationship
Particle	Size	%	Test Not Performed
Sieve Size	(mm)	Passing	Maximum Dry Density (lb/ft ³):N/A
	N/A		
	N/A		
	N/A		Over Size Correction %: N/A
	N/A		
	N/A		
	N/A		California Bearing Ratio
No. 10	N/A 2	100.0	Test Not Performed
No. 10		100.0	Bearing Ratio (%): N/A
No. 40	0.425	100.0	Compacted Dry Density (lb/ft ³): N/A
No. 200	0.075	94.4	Compacted Moisture Content (%): N/A
	0.02	65.8	
	0.005	35.2	
	0.002	25.0	Specific Gravity
Estimated	0.001	18.6	Test Method: AASHTO T 100
Dhua Q in Matari			Prepared: Dry
Plus 3 in. Materi	al, Not Includ	ied: 0 (%)	Particle Size: No. 10
г	ACTM		Specific Gravity at 20° Celsius: 2.70
Bonna	ASTM	AASHTO	L
Range	(%)	(%)	
Gravel	0.0	0.0	Classification
Coarse Sand	0.0	0.0	Unified Group Symbol: CL
Medium Sand	0.0	 E C	Group Name: Lean clay
Fine Sand	5.6	5.6	
Silt	59.2	69.4	
Clay	35.2	25.0	AASHTO Classification: A-6 (12)
Comments:			

Stantec

Particle-Size Analysis of Soils

AASHTO T 88

Project	Name	Bridging KY	(- 054B0	0009N			Proje	ct Number	178568003
Source		054B00009	N-3, 35.0	0'-37.0'			-	Lab ID	1353
							2	1 - 1	
		Siovo	Analyei	s for the Port	ion Coarser	han the No	10 Siovo		
		Sieve	Allalysi		ION COAISEL		. 10 Sleve		
T						Sieve			
	est Method		ITO T 88			Size	Passing		
Prep	pared Using	AASH	ITO T 87						
Part	ticle Shape:		N/A						
Particle	e Hardness:		N/A						
	Tested By	DW							
		11-01-202	1						
Dat		10-25-202							
Dai	e Receiveu	10-25-202							
Maximu	m Particle S	Size: No. 10	Sieve						
						No. 10	100.0		
		^	nalveie f	for the Portio	n Finer than	the No. 10 S	Sieve		
Analysia	Poord on								
Analysis	based on	-3 inch Frac	uon Only			No. 40	100.0		
-						No. 200	94.4		
Spec	cific Gravity	2.7				0.02 mm	65.8		
						0.005 mm	35.2		
Dispe	ersed Using	Apparatus A	A - Mecha	anical, for 1 M	inute	0.002 mm	25.0		
						0.001 mm	18.6		
				Particle Size	Distribution				
ASTM	Coarse Gravel	Fine Gravel	C Sand	Medium Sand	Fine Sand		Silt	Clay	
	Coarse Gravel 0.0	Fine Gravel 0.0 Gravel	<u>C. Sand</u> 0.0	0.0	Fine Sand 5.6 Fine Sand		59.2	35.2	lav
ASTM AASHTO		0.0			5.6			35.2	lay 5.0
AASHTO	0.0 e Size in Inches	0.0 Gravel 0.0	0.0	0.0 Coarse Sand 0.0 Sieve Size in Sieve	5.6 Fine Sand 5.6 Numbers	E	59.2 Silt	35.2	
AASHTO	0.0 e Size in Inches	0.0 Gravel		0.0 Coarse Sand 0.0 Sieve Size in Sieve	5.6 Fine Sand 5.6 Numbers		59.2 Silt	35.2	
AASHTO	0.0 e Size in Inches	0.0 Gravel 0.0	0.0	0.0 Coarse Sand 0.0 Sieve Size in Sieve	5.6 Fine Sand 5.6 Numbers	E	59.2 Silt	35.2	5.0
AASHTO	0.0 e Size in Inches	0.0 Gravel 0.0	0.0	0.0 Coarse Sand 0.0 Sieve Size in Sieve	5.6 Fine Sand 5.6 Numbers	E	59.2 Silt	35.2	5.0
AASHTO	0.0 e Size in Inches	0.0 Gravel 0.0	0.0	0.0 Coarse Sand 0.0 Sieve Size in Sieve	5.6 Fine Sand 5.6 Numbers	E	59.2 Silt	35.2	100 90
AASHTO	0.0 e Size in Inches	0.0 Gravel 0.0	0.0	0.0 Coarse Sand 0.0 Sieve Size in Sieve	5.6 Fine Sand 5.6 Numbers	E	59.2 Silt	35.2	100
AASHTO	0.0 e Size in Inches	0.0 Gravel 0.0	0.0	0.0 Coarse Sand 0.0 Sieve Size in Sieve	5.6 Fine Sand 5.6 Numbers	E	59.2 Silt	35.2	100 90 80
AASHTO	0.0 e Size in Inches	0.0 Gravel 0.0	0.0	0.0 Coarse Sand 0.0 Sieve Size in Sieve	5.6 Fine Sand 5.6 Numbers	200	59.2 <u>Silt</u> 69.4	35.2	100 90 80 70 5
AASHTO	0.0 e Size in Inches	0.0 Gravel 0.0	0.0	0.0 Coarse Sand 0.0 Sieve Size in Sieve	5.6 Fine Sand 5.6 Numbers	200	59.2 Silt	35.2	100 90 80 70 5
AASHTO	0.0 e Size in Inches	0.0 Gravel 0.0	0.0	0.0 Coarse Sand 0.0 Sieve Size in Sieve	5.6 Fine Sand 5.6 Numbers	200	59.2 <u>Silt</u> 69.4	35.2	100 90 80 70 5
AASHTO	0.0 e Size in Inches	0.0 Gravel 0.0	0.0	0.0 Coarse Sand 0.0 Sieve Size in Sieve	5.6 Fine Sand 5.6 Numbers	200	59.2 <u>Silt</u> 69.4	35.2	100 90 80 70 5
AASHTO	0.0 e Size in Inches	0.0 Gravel 0.0	0.0	0.0 Coarse Sand 0.0 Sieve Size in Sieve	5.6 Fine Sand 5.6 Numbers	200	59.2 <u>Silt</u> 69.4	35.2	100 90 80 70 5
AASHTO	0.0 e Size in Inches	0.0 Gravel 0.0	0.0	0.0 Coarse Sand 0.0 Sieve Size in Sieve	5.6 Fine Sand 5.6 Numbers	200	59.2 59.4	35.2	5.0 100 90 80 70 60 sse
AASHTO	0.0 e Size in Inches	0.0 Gravel 0.0	0.0	0.0 Coarse Sand 0.0 Sieve Size in Sieve	5.6 Fine Sand 5.6 Numbers	200	59.2 59.4	35.2	100 90 80 70 60 50 40 40 40
AASHTO	0.0 e Size in Inches	0.0 Gravel 0.0	0.0	0.0 Coarse Sand 0.0 Sieve Size in Sieve	5.6 Fine Sand 5.6 Numbers	200	59.2 59.4	35.2	100 90 80 70 5
AASHTO	0.0 e Size in Inches	0.0 Gravel 0.0	0.0	0.0 Coarse Sand 0.0 Sieve Size in Sieve	5.6 Fine Sand 5.6 Numbers	200	59.2 59.4	35.2	100 90 80 70 60 50 40 40 30
AASHTO	0.0 e Size in Inches	0.0 Gravel 0.0	0.0	0.0 Coarse Sand 0.0 Sieve Size in Sieve	5.6 Fine Sand 5.6 Numbers	200	59.2 59.4	35.2	100 90 80 70 60 50 40 40 40
AASHTO	0.0 e Size in Inches	0.0 Gravel 0.0	0.0	0.0 Coarse Sand 0.0 Sieve Size in Sieve	5.6 Fine Sand 5.6 Numbers	200	59.2 59.4	35.2	100 90 80 70 60 50 40 40 30
AASHTO	0.0 e Size in Inches	0.0 Gravel 0.0	0.0	0.0 Coarse Sand 0.0 Sieve Size in Sieve	5.6 Fine Sand 5.6 Numbers	200	59.2 59.4	35.2	100 90 80 70 60 50 40 40 30 20 10
AASHTO	0.0 = Size in Inches 3 2 1 	3/4 3/8	0.0	0.0 Coarse Sand 0.0 Sieve Size in Sieve 16 30 4	5.6 Fine Sand 5.6 Numbers 0 100 		59.2 <u>SIII</u> 69.4	35.2	100 90 80 70 60 50 40 30 40 30 20 10 0
AASHTO	0.0 = Size in Inches 3 2 1 	0.0 Gravel 0.0	0.0	0.0 Coarse Sand 0.0 Sieve Size in Sieve 16 30 4	5.6 Fine Sand 5.6 Numbers		59.2 59.4	35.2	100 90 80 70 60 50 40 30 20 10
AASHTO	0.0 = Size in Inches 3 2 1 	3/4 3/8	0.0	0.0 Coarse Sand 0.0 Sieve Size in Sieve 16 30 4	5.6 Fine Sand 5.6 Numbers 0 100 		59.2 <u>SIII</u> 69.4	35.2	100 90 80 70 60 50 40 30 40 30 20 10 0
AASHTO	0.0 = Size in Inches 3 2 1 	3/4 3/8 3/4 3/8 3/4 3/8 1		0.0 Coarse Sand 0.0 Sieve Size in Sieve 16 30 4	5.6 Fine Sand 5.6 Numbers 0 100 		59.2 <u>Silt</u> 69.4 0.01		100 90 80 70 60 50 40 30 40 30 20 10 0.001
AASHTO	0.0 = Size in Inches 3 2 1 	3/4 3/8		0.0 Coarse Sand 0.0 Sieve Size in Sieve 16 30 4	5.6 Fine Sand 5.6 Numbers 0 100 		59.2 <u>Silt</u> 69.4 0.01		100 90 80 70 60 50 40 30 40 30 20 10 0.001
AASHTO	0.0 = Size in Inches 3 2 1 	3/4 3/8 3/4 3/8 3/4 3/8 1		0.0 Coarse Sand 0.0 Sieve Size in Sieve 16 30 4	5.6 Fine Sand 5.6 Numbers 0 100 		59.2 <u>Silt</u> 69.4 0.01	35.2	100 90 80 70 60 50 40 30 40 30 20 10 0.001

Template: tmp_sum_input_xlsm Version: 20170217 Approved By: RJ

 $\hat{\mathbf{x}}$

ATTERBERG LIMITS

		ing KY - 054B0 00009N-3, 35.0					Project No. Lab ID	178568003 1353
Source	0040	0000914-3, 35.	0-3120				% + No. 40	0
Tested By		JMB	Test Method		9 & T 90		Date Received	10-25-2021
Test Date	1	1-05-2021	Prepared	Dry				10 10 101
		et Soil and	Dry Soil and					
	Т	are Mass	Tare Mass	Tare Mass		mber of	Water Content	
		(g)	(g)	(g)	B	lows	(%)	Liquid Limit
		16.76	15.44	10.98		35	29.6	
		17.28	15.93	11.64		25	31.5	
		18.82	16.83	10.79		15	32.9	31
L.								
	40			Liqu	uid Limit			
	40							
	38							
						_		
	36							
.0	34					_		
MOISTURE CONTENT, %			-			-		
N U	32							
INO	30							
О Ш	1						•	
UR L	28							
ISIC	26							
Ň								
	24							
	22							
	22							
	20							
	1	0		20		25	_ 30	40 50

NUMBER OF BLOWS

PLASTIC LIMIT AND PLASTICITY INDEX

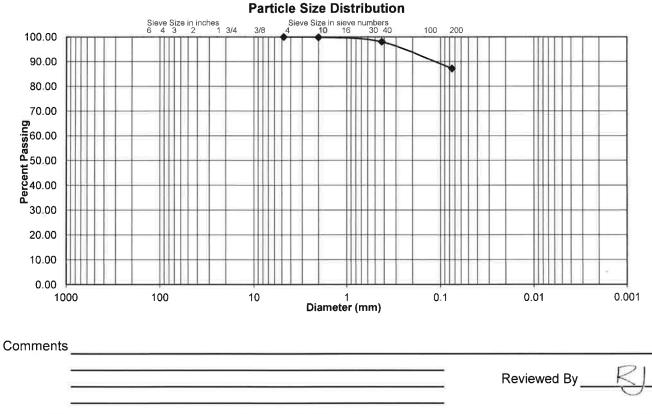
Γ	Wet Soil and	Dry Soil and		Water		
	Tare Mass	Tare Mass	Tare Mass	Content		
	(g)	(g)	(g)	(%)	Plastic Limit	Plasticity Index
	17.24	16.27	10.71	17.4	18	13
	17.16	16.17	10.86	18.6		

Remarks:

Reviewed By _____

AASHTO T 88

Project Name Bridging KY - 054B00009N	_
Source 054B00009N-3, 40.0'-41.5'	
Preparation Method AASHTO T 11 Method A	
Soak Time (min) 300	
Particle Shape Angular	
Particle Hardness Hard and Durable	
Sample Dry Mass (g) 264.37	
Moisture Content (%) 22.1	


	Grams	%	%
Sieve Size	Retained	Retained	Passing
1			
No. 4	0.00	0.0	100.0
No. 10	0.38	0.1	99.9
No. 40	4.89	1.8	98.0
No. 200	28.65	10.8	87.2
Pan	230.45	87.2	

Project Number	178568003
Lab ID	1331
Date Received	10-25-2021
Preparation Date	10-27-2021
Test Date	11-02-2021

Analysis Based on Total Sample,

% Gravel	0.1
% Sand	12.7
% Fines	87.2
Fines Classification	N/A
D ₁₀ (mm)	N/A
D ₁₀ (mm) D ₃₀ (mm)	N/A N/A
10 1 1	

Cu	N/A	
Сс	N/A	

Template: tmp_200_input xlsm Version: 20170216 Approved By: RJ Stantec Consulting Services Inc. Lexington, Kentucky

oject Name Brid			Project Number Lab ID	178568003
	B00009N-3,	45.0-47.0		1354
ample Type ST			Date Received	10-25-21
			Date Received Date Reported	11-11-21
			Test Results	
Natural	Moisture Co	ontent	Atterberg Limits	
Test Not Perform			Test Method: AASHTO T 89 & T 90	
Moisture C	Content (%):	N/A	Prepared: Dry	
			Liquid Limit:	26
			Plastic Limit:	17
Partic	le Size Anal	<u>ysis</u>	Plasticity Index:	9
Preparation Met			Activity Index:	0.5
Gradation Metho				
Hydrometer Met	hod: AASHT	ОТ 88	Moisture-Density Relation	shin
Particle	Size	%	Test Not Performed	
Sieve Size	(mm)	Passing	Maximum Dry Density (lb/ft ³):	N/A
	N/A			
	N/A		Maximum Dry Density (kg/m ³): Optimum Moisture Content (%):	
	N/A			
	N/A		Over Size Correction %:	N/A
	N/A			
	N/A		California Bearing Rati	0
	N/A		Test Not Performed	<u> </u>
No. 10	2	100.0	Bearing Ratio (%):	N/A
No. 40	0.425	100.0	Compacted Dry Density (lb/ft ³):	
No. 200	0.075	82.8	Compacted Moisture Content (%):	
	0.02	50.1		
ľ	0.005	24.5		
	0.002	17.5	Specific Gravity	
Estimated	0.001	12.8	Test Method: AASHTO T 100	
			Prepared: Dry	
Plus 3 in. Materi	al, Not Inclue	ded: 0 (%)	Particle Size: Specific Gravity at 20° Celsius:	No. 10
-			Specific Gravity at 20° Celsius:	2.70
Derrer	ASTM	AASHTO		
Range	(%)	(%)		
Gravel	0.0	0.0	Classification	
Coarse Sand Medium Sand	0.0	0.0	Unified Group Symbol:	
Fine Sand	0.0	17.2	Group Name: Lean c	hay with sand
Silt	58.3	65.3		
Clay	24.5	17.5	AASHTO Classification;	A-4(6)
	21.0			
Comments:				
				\square
			Reviewed By	

Particle-Size Analysis of Soils

AASHTO T 88

HOPKINS COUNTY	
STP BRZ 9030 (500)	

\bigcirc	Stantec
J	Stantec

Project Name	-	Bridgin	ig KY	′ - 054B0	0009N							F	Proje	ect N	lumbe	r 17	8568	003
Source				N-3, 45.											Lab II			354
		S	Sieve	Analysi	s for th	e Por	tion C	oarser						1				
Test Me	othod	٨	лец	то т 88						Sieve Size		% Passi						
Prepared l				TO T 87						Size	_	Passi	ng	1				
Tiepaieu (Jailing		V-OII	1010/										1				
Particle Sh	nape:		١	N/A										1				
Particle Hard				N/A										1				
]				
	ed By	D									_							
		11-01							-			_						
Date Rece	eived	10-25	-202	1						_								
Maximum Par	ticle S	ize [.] No	10 9	Sieve					-		-							
		20. 110		0.070						No: 10		100	0	ł				
				nalysis	for the	Portic	n Eind	or than						1				
Analysis Base	don -	3 inch				Fortic				No. 4		100.	0	1				
		•	1 100							o. 20		82.8		1				
Specific G	ravity	2.	7)2 m		50.		1				
	-								0.0)05 m	۱m	24.	5]				
Dispersed L	Jsing	Appara	atus A	A - Mech	anical, f	or 1 N	linute)02 m		17.						
									0.0)01 m	hm	12.	3					
· · · · · · · · · · · · · · · · · · ·				-34	Particl		e Distr	ibutior										
	e Gravel	Fine G		C. Sand	Medium 0.0			e Sand 17.2			Sill 58.3				Clay 24.5			
AASHTO		Gravel 0.0			Coarse 0.0			e Sand 17.2	_			Silt 65.3				Clay 17.5		
Sieve Size in In	iches	0.0			Sieve Size			11.2				0.5.5				11.5	E	
3 2	1	3/4 3	/8	4	10 16	30	10	100	200								100	
													+++		_			
																	90	
									A	++-			₩	+++	_		80	
																	70	
										X			+++	++	_		C	bu
																	60	assi
				+++-		++++								$\left \right $	_		50	т Р.
															_		12	Percent Passing
												A					40	Ре
<u>}</u>									+++				4				30	
														-	A		20	
									++++				+++	$\left \right $	T			
			1111		1												i 10	

10

Diameter (mm)

1

0.1

10

0.001

0.01

Reviewed By

Ш

100

HOPKINS COUNTY

Project	Brid	ging KY - 054B(00009N				Project No.	178568003
Source	054	300009N-3, 45.	0'-47.0'				Lab ID	1354
							% + No. 40	0
Tested By		JMB	Test Method		89 &	Т 90	Date Received	10-25-2021
Test Date		1-04-2021	Prepared	Dry				
	1	Int Call and	Dev Oell and I				rr	
		/et Soil and Tare Mass	Dry Soil and Tare Mass	Tare Ma		Number of		
					55	Number of	Water Content	Linusial Linuit
	-	(g)	(g)	(g)		Blows	(%)	Liquid Limit
		16.96	15.76	11.07		30	25.6	
		18.76	17.07	10,78		20	26.9	
		17.81	16.42	11.37		15	27.5	26
					1			
	40			Lie	quid l	Limit		
	40							
	38							
	36							
	34							
× 1								
MOISTLIDE CONTENT %	32							
LNC	30							
	00				_			
a a	28		•					
TS								
Q	26	·						
_	24							
					_			
	22							

NUMBER OF BLOWS

25

30

PLASTIC LIMIT AND PLASTICITY INDEX

20

Γ	Wet Soil and	Dry Soil and		Water		
	Tare Mass	Tare Mass	Tare Mass	Content		
	(g)	(g)	(g)	(%)	Plastic Limit	Plasticity Index
	20.36	19.01	11.01	16.9	17	9
	19.13	17.99	11.10	16.5		

Remarks:

20 ⊥ 10

Reviewed By

40

50

Page 1 of 1

Unconfined Compressive Strength of Cohesive Soil

KM 64-522

Project Name Bridging KY - 0 Source 054B00009N-3, 45.0'-47.1					Proje	ct Number Lab ID	178568003
Visual Description Lean Clay with		irav moist f	firm			LabiD	1554
		jray, moloc, i			Recovered	6	2'
					Test Interval	46.4	- 46.9'
Specimen Type: Undisturbed	LL	26	PL	17			
			PI	9	Date	Extruded	10/28/2021
Initial Wet Density (pcf)	127.4						10/28/2021
Initial Moisture Content (%)	20.4	Initial MC T	aken Befo	ore Test, F	rom Trimmings		8
Initial Dry Density (pcf)	105.8						
At Test Moisture Content (%)		t Test MC T	aken N/A				
At Test Dry Density (pcf)	N/A						
Specific Gravity	2.7				· · ·		
Degree of Saturation (%)	92.9	Unc			e Strength (tsf)	0.79	
Average Height (in)	6.027				r Strength (tsf)	0.39	
Average Diameter (in)	2.875				um Stress (%)		
Height to Diameter Ratio	2.1		Strain	Rate to Fa	ilure (% / min.)	1.00	
		Stress vs.	Strain				
		011030 13.	otrain				
0.90	1				1	1	
0.80							
0.70							
C ^{0.60}							
£0.50						_	
(s) 0.50 ssatts 0.40							
tr tr							
0.30							
0.20							
0.10							
0.00							
0.0 2.0	4_0	6.0	8	.0	10.0	12.0	14.0
			Strain (%)				
			Ottain (76)				
Failure Sketch				Pocket Pe	enetrometer Re	ading (tsf)	N/A
					orvane Reading		
	Con	nments				g (ng/onr /	
	0011						
	5						
	9 						
<i>i</i> ~	6 6						
	10						121
					Re	viewed By	<u>K</u>
							\bigcirc
Template: tmp_uc_input.xlsm	Stant	ec Consultir	na Service	e Inc			Reported By: RJ

Version: 20170217 Approved By: RJ Stantec Consulting Services Inc. Lexington, Kentucky

AASHTO T 88

B 1 1 1 B 1 1 2							
Project Name Bridging					Projec	t Number_	178568003
Source 054B00	09 <mark>N-3</mark> , 50.0'-51	.5'				Lab ID	1332
Preparation Mether	od AASHTO T	11 Method A	·		Date	Received	10-25-2021
Soak Time (n	in) 320				Prepara	ation Date	10-27-2021
Particle Sha	pe Rounded					Test Date	11-02-2021
Particle Hardne	ess Hard and Di	urable					
Sample Dry Mass	(g) 316.83		•		Analysis Bas	ed on Total	Sample
Moisture Content (%) 21.8	-			-		
		-					
	Grams	%	%		% Gravel	7.1	
Sieve S	ze Retained	Retained	Passing		% Sand	34.7	
					% Fines	58.2	
Ye.				Fines Cla	assification	N/A	
					-		
				ř.	D ₁₀ (mm)	N/A	
					D (mm)	N1/A	

D ₁₀ (mm)	N/A
D ₃₀ (mm)	N/A
D ₆₀ (mm)	N/A

Cu	N/A	
Сс	N/A	

Sieve Size	Retained	Retained	Passing
10 C			
3/4"	0.00	0.0	100.0
3/8"	2.20	0.7	99.3
No. 4	9.80	3.1	96.2
No. 10	10.40	3.3	92.9
No. 40	12.66	4.0	88.9
No. 200	97.40	30.7	58.2
Pan	184.37	58.2	

Particle Size Distribution Sieve Size in inches 6 4 3 2 1 Sieve Size in sieve numbers 4 10 16 30 40 3/8 3/4 100 200 100.00 90.00 80.00 70.00 Bused 50.00 Bused 30.00 20.00 10.00 0.00 1000 100 10 0.1 0.01 0.001 1 Diameter (mm) Comments Reviewed By

Template: Imp_200_input xlsm Version: 20170216 Approved By: RJ

Stantec Consulting Services Inc. Lexington, Kentucky

1

roject Name Br ource 05	idging KY - 0 4B00009N-3		Project Number Lab ID	178568003 1355
	-		Data Descived	10.05.01
ample Type <u>ST</u>			Date Received Date Reported	10-25-21 11-11-21
			Test Results	
Natural	Moisture C	ontent	Atterberg Limits	
Test Not Perfor	med		Test Method: AASHTO T 89 & T 90	
Moisture	Content (%):	N/A	Prepared: Dry	
			Liquid Limit:	30
			Plastic Limit	19
Partic	le Size Anal	ysis	Plasticity Index:	11
Preparation Me	thod: AASH1	ОТ 87	Activity Index:	0.5
Gradation Meth	od: AASHTC) T 88		
Hydrometer Me	thod: AASH	TO T 88		
-			Moisture-Density Relation	nship
Particle	Size	%	Test Not Performed	
Sieve Size	(mm)	Passing	Maximum Dry Density (lb/ft ³):	N/A
	N/A		Maximum Dry Density (kg/m ³):	
	N/A		Optimum Moisture Content (%):	
	N/A		Over Size Correction %:	
	N/A			
	N/A	†	.L	
	N/A		California Bearing Rat	io
No. 4	4.75	100.0	Test Not Performed	-
No. 10	2	99.8	Bearing Ratio (%):	N/A
No. 40	0.425	99.1	Compacted Dry Density (lb/ft ³):	
No. 200	0.075	90.4	Compacted Moisture Content (%):	
	0.02	67.0		
	0.005	35.2		
	0.002	24.2	Specific Gravity	
Estimated	0.001	19.5	Test Method: AASHTO T 100	
1			Prepared: Dry	
Plus 3 in. Mater	ial, Not Inclu	ded: 0 (%)	Particle Size:	No. 10
			Particle Size: Specific Gravity at 20° Celsius:	2.69
	ASTM	AASHTO		
Range	(%)	(%)		
Gravel	0.0	0.2	Classification	
Coarse Sand	0.2	0.7	Unified Group Symbol:	CL
Medium Sand	0.7		Group Name:	Lean clay
Fine Sand	8.7	8.7		
Silt	55.2	66.2		
Clay	35.2	24.2	AASHTO Classification:	A-6(9)
Comments:				
			Reviewed By	RI

Particle-Size Analysis of Soils

AASHTO T 88

Stantec

Project Na Source	me		Bridging KY - 054B00009N 054B00009N-3, 55.0'-57.0'						Pro	ject		nber b ID	178		003 355					
													(,							
		Si	eve	Analysi	is for f	he F	Portic	on Co	arsei	' tha	n th	e No.	10 S	ieve)					
										Γ	Sie			%						
Tes	t Method	AA	SHT	ГО Т 88							Siz	e	Pas	sing						
Prepare	ed Using	AA	\SH1	ГО Т 87																
														_						
	e Shape:			gular																
Particle H	ardness:	Haro	d and	d Durab	le															
-	a at a d Du		,							-					-					
	ested By	DV		_						-					-					
		10-25-2			5					ŀ					-					
Date		10 20 2	.02.1	-						F				_						
Maximum	Particle S	Size: No.	4 Sie	eve							No	4	10	0.0						
										F	No.		99							
			۵.	nalysis	for th	o Po	rtion	Fine	r thai	h th		10 9	Siovo							
Analysis Ba	ased on	-3 inch E							i tiidi	Г	No.		99) 1	٦					
		0 11011 1									No. 2		90		-					
Specific	c Gravity	2.69	9							t	0.02		67	_						
	,	-									0.005		35							
Disperse	ed Using	Apparate	us A	- Mech	anical,	for	1 Min	ute		Ī	0.002	mm	24	.2						
											0.001	mm	19	9.5						
					Parti	cle \$	Size I	Distri	butio	n										
ASTM	Coarse Gravel	Fine Gra	vel	C. Sand	Media	m San		Fine	Sand	1			Silt				Clay			
	0.0	Gravel		0.2		0.7 se San	d		Sand	-		5	5.2 Sil	,	1		35.2	Clay		
AASHTO		0.2				0.7			3.7				66.		_			24.2		
Sieve Siz 3	e in Inches 2 1	214 219		at s	Sieve S		Sieve Nu 30 40	mbers	100	200										
1 min		3/4 3/8	TTT	Å	4 10	ΠΠ	30 40	-	100	200	, 				TTT				100	
									-										90	
							+++			ΗП	X	_	-		+++		_		21 21	
		+ +																	80	
												A							70	
						₩₩	+++	+ +					\$		+++		_		5	Бц
					-	++++					+++	-	$\left \right\rangle$	-+++					- 60	ISSİ
														A					50	t Pa
+		+			-		+++	+ +							++	+			2	Percent Passing
															A				40	Рег
					-									-111		X			30	
						++++	+++	+ +				-	-		+++	+	4		ec	
																			20	

Comments

100

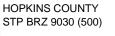
10

Stantec Consulting Services Inc. Lexington, Kentucky

Diameter (mm)

0.1

0.01


Reviewed By

1

10

0

0.001

ATTERBERG LIMITS

		ing KY - 054B				Project No.	178568003
Source	054B	00009N-3, 55.	0'-57.0'			Lab ID	1355
						% + No. 40	1
Tested By		JMB		AASHTO T 89	& T 90	Date Received	10-25-2021
Test Date	1	1-05-2021	Prepared	Dry	_		
1							
		et Soil and	Dry Soil and				
	I	are Mass	Tare Mass	Tare Mass	Number of	Water Content	
		(g)	(g)	(g)	Blows	(%)	Liquid Limit
ļ		17.92	16.37	11.02	35	29.0	
		18.73	16.94	10.96	25	29.9	
		17.48	15.94	11.01	16	31.2	30
[
	40 -			Liquid	Limit		
	-0						
	38 -						
	36 -						
	00						
*	34 -						
MOISTURE CONTENT, %	32 -						
Ë	e.		•				
Ő	30 -						
RE	28 -						
UT:	20						
010	26 -						
2							
	24						
	22 -						
	-						
	20 -	0]
	1	0		20	25	30	40 50

NUMBER OF BLOWS

PLASTIC LIMIT AND PLASTICITY INDEX

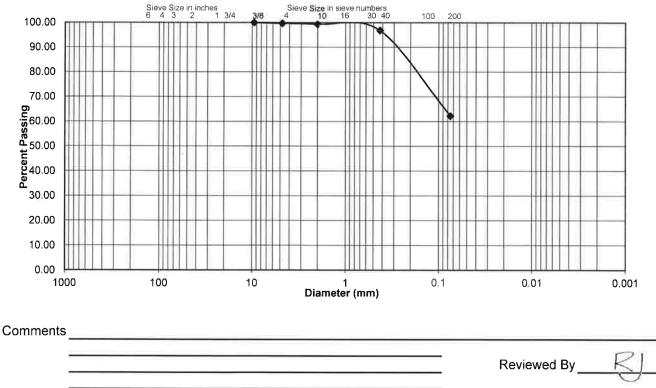
Wet Soil and	Dry Soil and		Water		
Tare Mass	Tare Mass	Tare Mass	Content		
(g)	(g)	(g)	(%)	Plastic Limit	Plasticity Index
17.70	16.62	10.90	18.9	19	11
20.54	19.11	11.52	18.8		2

Remarks:

Reviewed By

Template: tmp_sum_input xlsm Version: 20170217 Approved By: RJ

AASHTO T 88


Project Name Bri	dging KY	- 054B0000	9N			Project	Number	178568003	
Source 054	Source 054B00009N-3, 60.0'-61.5'							1333	
Preparation	Preparation Method AASHTO T 11 Method A						Date Received 10-25		
Soak Tir	ne (min)	330				Prepara	tion Date	10-27-2021	
Particle	e Shape	Rounded				Т	est Date	11-02-2021	
Particle H	ardness	Hard and Du	ırable						
Sample Dry N	Mass (g)	265.33				Analysis Base	ed on Total	l Sample.	
Moisture Con	tent (%)	26.1	·			-			
					Ð				
		Grams	%	%		% Gravel	0.7		
Sie	eve Size	Retained	Retained	Passing		% Sand	37.1		
						% Fines	62.2		
					Fines Cla	assification	N/A		
						-			

D ₁₀ (mm)	N/A
D ₃₀ (mm)	N/A
D ₆₀ (mm)	N/A

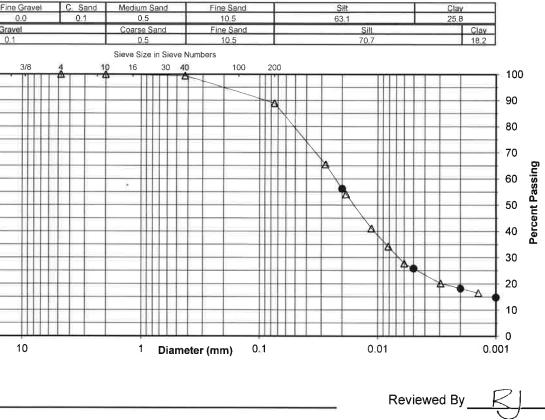
Cu	N/A	
Сс	N/A	

Sieve Size	Grams Retained	% Retained	% Passing
			J
3/8"	0.00	0.0	100.0
No. 4	0.93	0.4	99.6
No. 10	1.01	0.4	99.3
No. 40	6.44	2.4	96.8
No. 200	91.93	34.6	62.2
Pan	165.02	62.2	

Particle Size Distribution

Template: tmp_200_input.xlsm Version: 20170216 Approved By: RJ Stantec Consulting Services Inc. Lexington, Kentucky

roject Name Brid	dging KY - 0 4B00009N-3		Project Number 178568003 Lab ID 1356
ample Type ST			Date Received 10-25-2 Date Reported 11-11-2
			Test Results
	Moisture Co	ontent	Atterberg Limits
Test Not Perform			Test Method: AASHTO T 89 & T 90
Moisture (Content (%):	N/A	Prepared: Dry
<u></u>			Liquid Limit: 25
Deutie	Cine Anal		Plastic Limit: 18 Plasticity Index: 7
Preparation Method: AASHTO T 87			Plasticity Index: 7 Activity Index: 0.4
Gradation Method: AASHTO T 87			
Hydrometer Met			
			Moisture-Density Relationship
Particle	Size	%	Test Not Performed
Sieve Size	(mm)	Passing	Maximum Dry Density (lb/ft ³): N/A
	N/A		Maximum Dry Density (kg/m ³): N/A
	N/A		Optimum Moisture Content (%): N/A
	N/A		Over Size Correction %: N/A
	N/A		
	N/A		
	N/A		California Bearing Ratio
No. 4	4.75	100.0	Test Not Performed
No. 10	2	99.9	Bearing Ratio (%): N/A
No. 40	0.425	99.4	Compacted Dry Density (lb/ft ³): N/A
No. 200	0.075	88.9	Compacted Moisture Content (%): N/A
-	0.02	56.2	
-	0.005	25.8	Creatific Crewity
Estimated	0.002	18.2 14.8	Specific Gravity Test Method: AASHTO T 100
Lotinated	0.001	14.0	Prepared: Dry
Plus 3 in. Materi	al. Not Inclu	ded: 0 (%)	Particle Size: No. 10
			Specific Gravity at 20° Celsius: 2.69
[ASTM	AASHTO	
Range	(%)	(%)	
Gravel	0.0	0.1	Classification
Coarse Sand	0.1	0.5	Unified Group Symbol: CL-ML
Medium Sand	0.5		Group Name:Silty clay
Fine Sand	10.5	10.5	
Silt Clay	63.1 25.8	70.7	
Ciay	20.0	10.2	AASHTO Classification: A-4 (5)
			J L
Comments:			

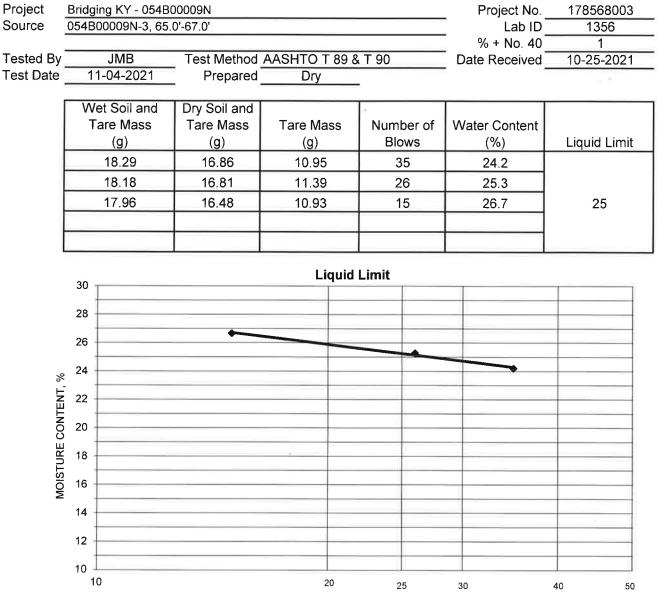

HOPKINS STP BRZ

le-Size Analysis of Soils

Project Number <u>178568003</u> Lab ID <u>1356</u>

AASHTO T 88

COUNTY 9030 (500)								
	Sta	ntec					Pa	rticle-Si
Project N Source	Name	Bridging KY 054B00009						Proj
000100		001000000	10,00.0	01.0				
		Sieve	Analysi	s for the l	Portion	Coarser t	han the No.	10 Sieve
		UICVC	Analysi	S for the i	ortion		Sieve	%
Те	est Method	AASH	TO T 88				Size	Passing
Prep	ared Using	AASH	TO T 87					
	cle Shape:		gular					
Particle	Hardness:	Hard an	d Durabl	e				
	Tested By	DW						
		11-02-2021						
Date		10-25-2021						
			-					
Maximur	n Particle S	Size: No. 4 Si	eve				No. 4	100.0
							No. 10	99.9
		Α	nalysis	for the Po	rtion Fi	ner than t	he No. 10 S	Sieve
Analysis	Based on	-3 inch Fract	-				No. 40	99.4
							No. 200	88.9
Spec	ific Gravity	2.69	_				0.02 mm	56.2
							0.005 mm	25.8
Disper	rsed Using	Apparatus A	- Mecha	anical, for	1 Minute)	0.002 mm	18.2
							0.001 mm	14.8
				Particle \$	Size Dis	tribution		
ASTM	Coarse Gravel 0.0	Fine Gravel 0.0	C Sand 0.1	Medium San 0.5	d	Fine Sand 10.5		Silt 3.1
AASHTO		Gravel	-0.1	Coarse San	4	Fine Sand		Silt
Siova	Size in Inches	0.1		0.5 Sieve Size in 1	Sieve Number	10.5	ļ	70.7
	Size in Inches 3 2 1	3/4 3/8	4 1	Sieve Size in Sieve Size in Sieve Size in Sieve Size in Size i	30 40		200	
		+ +++++			++++-		$H \to $	
							A	
				•				
						+ +		


Comments

100

HOPKINS COUNTY

ATTERBERG LIMITS

NUMBER OF BLOWS

PLASTIC LIMIT AND PLASTICITY INDEX

ſ	Wet Soil and	Dry Soil and		Water		
	Tare Mass	Tare Mass	Tare Mass	Content	9	
	(g)	(g)	(g)	(%)	Plastic Limit	Plasticity Index
	19.02	17.82	11.14	18.0	18	7
	18.59	17.39	10.89	18.5		

Remarks:

Reviewed By

Page 1 of 1

Unconfined Compressive Strength of Cohesive Soil

KM 64-522

Project Name Bridging KY - 054B Source 054B00009N-3, 65.0'-67.0'			Project Number <u>178568003</u> Lab ID <u>1356</u>
Visual Description Silty Clay (CL-ML),	gray, moist to wet, soft		
•		Reco Test Ir	overed 1.7' Interval 66.1' - 66.6'
Specimen Type: Undisturbed	LL 25 PL	18	00.1 - 00.0
opecimen Type. Ondistance	PI	7	Date Extruded 10/28/2021
Initial Wet Density (pcf) 1	29.8		Date Tested 10/28/2021
		Before Test, From Trim	mings
	06.4		
At Test Moisture Content (%)	N/A At Test MC Taken	J/A	
At Test Dry Density (pcf) Specific Gravity	N/A 2.69		
		d Compressive Strengt	h (tsf) 0.34
		drained Shear Strengt	
		train at Maximum Stres	
Height to Diameter Ratio	2.0 Stra	ain Rate to Failure (% /	(min.) <u>1.00</u>
	Stress vs. Strair	1	
0.40			
0.40			
0.35			-
0.30			
<u>ن</u> 20.25			
\$0.20 \$0.15			
້ສັ 0.15			
0.10			
0.05			
0.00			
0.0 2.0 4.0	6.0 8.0	10.0 12.0	14.0 16.0 18.0
	Strain (%)	
Failure Sketch		Pocket Penetrome	ter Reading (tsf) N/A
			Reading (kg/cm ²) N/A
	Comments		
	(
			97.2 <u>~1</u> 7.111.
			Reviewed By
Template: tmp_uc_input_xism	Stanton Conculting Son	vione Inc	Reported By: R I

Version: 20170217 Approved By: RJ Stantec Consulting Services Inc. Lexington, Kentucky

AASHTO T 88

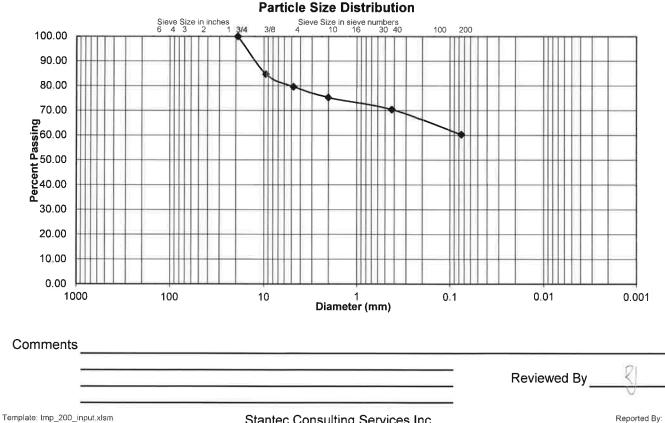
Project Name Bridging KY	′ - 054B00009N	
Source 054B00009	N-3, 70.0'-71.5'	
Preparation Method	AASHTO T 11 Method A	
Soak Time (min)	350	
Particle Shape		
Particle Hardness	Hard and Durable	
Sample Dry Mass (g)	301.24	ŀ
Moisture Content (%)	20.7	
-		

	Grams	%	%
Sieve Size	Retained	Retained	Passing
			5
3/4"	0.00	0.0	100.0
3/8"	46.14	15.3	84.7
No. 4	15.22	5.1	79.6
No. 10	13.14	4.4	75.3
No. 40	14.65	4.9	70.4
No. 200	30.48	10.1	60.3
Pan	181.61	60.3	

 Project Number
 178568003

 Lab ID
 1334

 Date Received
 10-25-2021


 Preparation Date
 10-27-2021

 Test Date
 11-02-2021

Analysis Based on Total Sample.

% Grav % San % Fine	d <u>15.0</u>
Fines Classification	
D ₁₀ (mr	m) N/A
D ₃₀ (mi	m) N/A
D ₆₀ (mi	m) N/A

Cu	N/A	
Сс	N/A	

Version: 20170216 Approved By: RJ Stantec Consulting Services Inc. Lexington, Kentucky

Test Results Test Method: AASHTO T 88 Maistic Hundle: Test Not Performed Moisture Content (%): Mixianum Dry Density (lb/ft ³): Compacted Dry Density (lb/ft ³): Compacted Dry Density (lb/ft ³): Specific Gravity Specific Gravity at 20° Celsius: <t< th=""><th>178568003 1357</th><th>Project Number</th><th></th><th>dging KY - 05 4B00009N-3,</th><th>oject Name Bri</th></t<>	178568003 1357	Project Number		dging KY - 05 4B00009N-3,	oject Name Bri
Date Reported Test Results Atterberg Limits Test Results Atterberg Limits Test Results Atterberg Limits Test Results Atterberg Limits Test Results Date Reported Misture Content (%): N/A Particle Size Analysis Preparation Method: AASHTO T 87 Gradation Method: AASHTO T 88 Mydrometer Method: AASHTO T 88 Moisture-Density Relation Particle Size % Sieve Size (mm) Passing MiA Maximum Dry Density (lb/ft ³): Maximum Dry Density (lb/ft ³): MiA Outon California Bearing Ri MiA Outon California Bearing Ri MiA Outon California Bearing Ri Moisture Content (%): Compacted Dry Density (lb/ft ³): Moisture Content (%): Compacted Dry Density (lb/ft ³): Moisture Content (%): Specific Gravity Moistore Content (%): Specific Gravity					
Test Results Test Results Atterberg Limits Test Method: AASHTO T 89 & T 9 Preparation Method: AASHTO T 87 Gradation Method: AASHTO T 87 Gradation Method: AASHTO T 88 Hydrometer Method: AASHTO T 88 Particle Size % Sieve Size (mm) Passing N/A Moisture Content (%): Particle Size % Sieve Size (mm) Passing N/A Moisture Content (%): N/A Optimum Moisture Content (%): N/A Optimum Moisture Content (%): N/A N/A N/A N/A N/A N/A N/A N/A No. 40 0.425 <th< td=""><td>10-25-21</td><td>Date Received</td><td></td><td>•</td><td>mple Type ST</td></th<>	10-25-21	Date Received		•	mple Type ST
Atterberg Limits Test Not Performed Moisture Content (%): N/A Particle Size Analysis Preparation Method: AASHTO T 87 Gradation Method: AASHTO T 88 Plasticity Index: Particle Size % Sieve Size (mm) N/A Moisture Content (%): N/A Moisture-Density Relati Test Not Performed Maximum Dry Density (lb/ft ³): N/A Maximum Dry Density (lb/ft ³): N/A Optimum Moisture Content (%): Otimus Gravel N/A Optimum Moisture Content (%): Over Size Correction %: Compacted Dry Density (lb/ft ³): Compacted Dry Density (lb/ft ³): Compacted Dry Density (lb/ft ³): No. 40 0.425 98.7 No. 40 0.02 48.8 <t< td=""><td>11-11-21</td><td>Date Reported</td><td></td><td></td><td></td></t<>	11-11-21	Date Reported			
Test Not Performed Moisture Content (%): N/A Particle Size Analysis Preparation Method: AASHTO T 87 Gradation Method: AASHTO T 88 Hydrometer Method: AASHTO T 88 Hydrometer Method: AASHTO T 88 Test Method: AASHTO T 87 Gradation Method: AASHTO T 88 Hydrometer Method: AASHTO T 88 Particle Size % Sieve Size (mm) Passing N/A N/A Moisture-Density Relati N/A N/A Maximum Dry Density (lb/ft ³): Maximum Dry Density (lb/ft ³): Optimum Moisture Content (%): Over Size Correction %: N/A N/A Over Size Correction %: N/A Moisture Content (%): Compacted Dry Density (lb/ft ³): Compacted Moisture Content (%): No. 40 0.425 98.7 4.8 0.005 27.2 0.002 0.002 18.6 0.005 Compacted Dry Density (lb/ft ³): Compacted Moisture Content (%): Compacted Moisture Content (%): Compacted Moisture Content (%): Particle Size: Specific Gravity at 20° Celsius: Plus 3 in. Material, Not Included: 0 (%) Maximum Sand 0.5 Particle Size: Specific Gravity at 20° Celsius: Specific Gravity at 20° Celsius: Sitt Moisture Content (%): 0.0 0.8 Sitt Sitt Sitt		est Results			
Test Not Performed Moisture Content (%): N/A Particle Size Analysis Preparation Method: AASHTO T 87 Gradation Method: AASHTO T 88 Hydrometer Method: AASHTO T 88 Test Method: AASHTO I 87 Gradation Method: AASHTO T 88 Hydrometer Method: AASHTO T 88 Particle Size % Sieve Size (mm) Passing N/A N/A Moisture Content (%): Maximum Dry Density (lb/ft ³): Maximum Dry Density (lb/ft ³): Optimum Moisture Content (%): N/A N/A Over Size Correction %: N/A N/A Over Size Correction %: N/A Over Size Correction %: California Bearing Ri N/A Over Size Correction %: Compacted Dry Density (lb/ft ³): No. 40 0.425 98.7 No. 40 0.425 98.7 0.002 48.8 Over Size Correction %: Compacted Dry Density (lb/ft ³): Compacted Moisture Content (%): 0.002 18.6 Specific Gravity at 20° Celsius: Specific Gravity at 20° Celsius: Specific Gravity at 20° Celsius: Prepared: Dry Particle Size: Specific Gravity at 20° Celsius: Gravel 0.0 0.8 Classification Unified Group Symbol: Group Name: Silt </td <td></td> <td>Atterberg Limits</td> <td>ntent</td> <td>Moisture Co</td> <td>Natural</td>		Atterberg Limits	ntent	Moisture Co	Natural
Particle Size Analysis Liquid Limit: Preparation Method: AASHTO T 87 Plasticity Index: Gradation Method: AASHTO T 88 Activity Index: Particle Size % Sieve Size (mm) N/A Moisture-Density Relatine N/A Maximum Dry Density (lb/ft ³): N/A Maximum Dry Density (lb/ft ³): N/A Maximum Dry Density (lb/ft ³): N/A Over Size Correction %: No. 4 4.75<100.0		Test Method: AASHTO T 89 & T 90			
Plastic Limit:Plastic Limit:Plus 3 in. Material, Not Included: 0 (%)Specific GravityASTM AASHTORange(%)(%)ClassificationUnified Group Symbol:Group Name:Silt47Plastic Limit:Plastic Limit:Plastic Limit:Plastic Limit:Plastic Limit:Plastic Limit:Plastic Limit:Plastic Limit:Plastic Limit: <td></td> <td>Prepared: Dry</td> <td>N/A</td> <td>Content (%):</td> <td>Moisture (</td>		Prepared: Dry	N/A	Content (%):	Moisture (
Particle Size AnalysisPreparation Method: AASHTO T 87Gradation Method: AASHTO T 88Hydrometer Method: AASHTO T 88Image: Size Size (mm)PassingN/AOptimum Moisture Content (%):Over Size Correction %:No. 44.75No. 400.42598.7No. 400.020.0218.6Estimated0.00113.2Plus 3 in. Material, Not Included: 0 (%)GravelCoarse Sand0.80.5Medium Sand0.5Fine Sand24.3Silt47.255.8		Liquid Limit:			
Preparation Method: AASHTO T 87 Activity Index: Gradation Method: AASHTO T 88 Moisture-Density Relati Particle Size % Sieve Size (mm) N/A Maximum Dry Density (lb/ft ³): Optimum Moisture Content (%): Over Size Correction %: N/A Maximum Dry Density (lb/ft ³): Onoo 2 99.2 No. 40 0.425 98.7 No. 200 0.075 74.4 0.002 18.6 Specific Gravity Estimated 0.001 13.2 Plus 3 in. Material, Not Included: 0 (%) Particle Size: Gravel 0.0					
Gradation Method: AASHTO T 88 Moisture-Density Relati Moisture-Density Relati Particle Size % Moisture-Density Relati Test Not Performed Maximum Dry Density (lb/ft ³): Optimum Moisture Content (%): Optimum Moisture Content (%): Over Size Correction %: Maximum Dry Density (lb/ft ³): Maximum Dry Density (lb/ft ³): Optimum Moisture Content (%): Over Size Correction %: Mox 4 Mox 4 No. 4 A.75 No. 200 0.075 7.4.4 Oncol Bearing Ratio (%): Specific Gravity Specific Gravity Plus 3 in. Material, Not Included: 0 (%) Range (%) Classification		Plasticity Index:			
Moisture-Density Relation Moisture-Density Relation Particle Size % Sieve Size (mm) Passing N/A Maximum Dry Density (lb/ft ³): Maximum Dry Density (lb/ft ³): N/A Optimum Moisture Content (%): Over Size Correction %: N/A Over Size Correction %: Over Size Correction %: N/A Over Size Correction %: California Bearing Ri No. 4 4.75 100.0 California Bearing Ri No. 40 0.425 98.7 Compacted Dry Density (lb/ft ³): Compacted Dry Density (lb/ft ³): No. 40 0.425 98.7 Compacted Dry Density (lb/ft ³): Compacted Dry Density (lb/ft ³): No. 40 0.425 98.7 Compacted Dry Density (lb/ft ³): Compacted Moisture Content (%): Estimated 0.001 13.2 Plus 3 in. Material, Not Included: 0 (%) Particle Size: Specific Gravity Range (%) (%) Gravel 0.0 0.8 Classification Nocares Sand 0.8 0.5 Silt Silt Silt Silt	0.4	Activity Index:			•
Moisture-Density Relation Particle Size % Sieve Size (mm) Passing N/A Passing Maximum Dry Density (lb/ft ³): N/A Maximum Dry Density (lb/ft ³): Maximum Dry Density (lb/ft ³): N/A Maximum Dry Density (lb/ft ³): Optimum Moisture Content (%): Over Size Correction %: N/A Mixa Maximum Dry Density (lb/ft ³): Over Size Correction %: Over Size Correction %: N/A Mixa Maximum Dry Density (lb/ft ³): Over Size Correction %: Over Size Correction %: N/A Mixa Maximum Dry Density (lb/ft ³): Over Size Correction %: Over Size Correction %: No. 40 0.425 98.7 Compacted Dry Density (lb/ft ³): Compacted Moisture Content (%): No. 200 0.075 74.4 Specific Gravity Specific Gravity District Mathematical Mot Included: 0 (%) Specific Gravity at 20° Celsius: Specific Gravity at 20° Celsius: Plus 3 in. Material, Not Included: 0 (%) Gravel 0.0 Gravel O.0 Gravel Gravel 0.0 0.5 Group Name					
Particle Size % Sieve Size (mm) Passing N/A Maximum Dry Density (lb/ft ³): N/A Maximum Dry Density (kg/m ³): Over Size Correction %: Detimum Moisture Content (%): N/A Maximum Dry Density (lb/ft ³): Over Size Correction %: Detimum Moisture Content (%): No. 40 0.425 98.7 No. 200 0.075 74.4 0.002 48.8 0.002 18.6 0.002 18.6 0.002 18.6 0.002 Specific Gravity Plus 3 in. Material, Not Included: 0 (%) Particle Size: Specific Gravity at 20° Celsius: Specific Gravity at 20° Celsius: Medium Sand <t< td=""><td>onchin</td><td>Mointure Density Polation</td><td>0 1 88</td><td>thod: AASHT</td><td>Hydrometer Me</td></t<>	onchin	Mointure Density Polation	0 1 88	thod: AASHT	Hydrometer Me
Sieve Size (mm) Passing N/A N/A N/A N/A N/A Optimum Moisture Content (%): Over Size Correction %: Over Size Correction %: Over Size Correction %: N/A Test Not Performed Bearing Ratio (%): Compacted Dry Density (lb/ft ³): Optimum Moisture Content (%): Over Size Correction %: No. 4 4.75 100.0 No. 4 4.75 100.0 No. 40 0.425 98.7 No. 200 0.075 74.4 0.002 48.8 0.005 27.2 0.002 18.6 0.002 18.6 0.002 18.6 0.002 18.6 O.002 18.6 O.002 18.6 Plus 3 in. Material, Not Included: 0 (%) Particle Size: Specific Gravity at 20° Celsius: Plus 3 in. Material, Not Included: 0 (%) Classification Unified Group Symbol: Group Name: Maximum Dry Density (lb/ft ³) Group Name: Silt 47.2	onsnip		%	Size	Particle
N/A Maximum Dry Density (kg/m ³): N/A Maximum Dry Density (kg/m ³): N/A Maximum Dry Density (kg/m ³): N/A Optimum Moisture Content (%): N/A Over Size Correction %: N/A Test Not Performed No. 4 4.75 No. 4 4.75 No. 4 4.75 No. 40 0.425 0.02 48.8 0.005 27.2 0.002 18.6 0.002 18.6 0.002 18.6 0.002 18.6 0.002 18.6 Ocorse Sand 0.8 Coarse Sand 0.8 0.5 Fine Sand 24.3 Silit 47.2	N/A				
N/A Optimum Moisture Content (%): N/A Over Size Correction %: No. 4 4.75 No. 40 0.425 0.02 98.7 No. 200 0.075 0.002 48.8 0.002 18.6 0.002 18.6 0.002 18.6 0.002 18.6 0.002 18.6 0.002 18.6 0.001 13.2 Plus 3 in. Material, Not Included: 0 (%) Particle Size: Specific Gravity at 20° Celsius: Specific Gravity at 20° Celsius: Classification Unified Group Symbol: Group Name: Silt You A 24.3 Silt 47.2			T dooling	. ,	
N/A Over Size Correction %: N/A N/A 3/8" 9.5 100.0 No. 4 4.75 100.0 No. 4 4.75 100.0 No. 40 0.425 98.7 No. 200 0.075 74.4 0.02 48.8 0.005 27.2 0.002 18.6 Compacted Dry Density (lb/ft ³): Compacted Moisture Content (%): Compacted Moisture Content (%): Plus 3 in. Material, Not Included: 0 (%) Particle Size: Specific Gravity at 20° Celsius: Specific Gravity at 20° Celsius: Medium Sand 0.5 Fine Sand 24.3 24.3 Silt 47.2 55.8		Maximum Dry Density (kg/m ⁻):			
N/A California Bearing Ratio 3/8" 9.5 100.0 No. 4 4.75 100.0 No. 10 2 99.2 No. 40 0.425 98.7 No. 200 0.075 74.4 0.02 48.8 0.002 48.8 0.002 18.6 0.002 18.6 0.002 18.6 0.002 18.6 0.002 18.6 0.001 13.2 Plus 3 in. Material, Not Included: 0 (%) Particle Size: Specific Gravity at 20° Celsius: Specific Gravity at 20° Celsius: Coarse Sand 0.8 0.5 Fine Sand 24.3 Silt 47.2					
N/A California Bearing Ri 3/8" 9.5 100.0 No. 4 4.75 100.0 No. 10 2 99.2 No. 40 0.425 98.7 No. 200 0.075 74.4 0.02 48.8 0.002 48.8 0.002 18.6 0.002 18.6 0.002 18.6 0.002 18.6 0.002 18.6 0.002 18.6 Plus 3 in. Material, Not Included: 0 (%) Particle Size: Specific Gravity at 20° Celsius: Specific Gravity at 20° Celsius: Coarse Sand 0.8 0.5 Fine Sand 24.3 Silt 47.2	N/A	Over Size Correction %:			
3/8" 9.5 100.0 No. 4 4.75 100.0 No. 10 2 99.2 No. 40 0.425 98.7 No. 200 0.075 74.4 0.02 48.8 0.005 27.2 0.002 18.6 Specific Gravity Estimated 0.001 13.2 Plus 3 in. Material, Not Included: 0 (%) Particle Size: _ Specific Gravity at 20° Celsius: _ ASTM AASHTO Range (%) (%) Gravel 0.0 0.8 O.05 Silt Classification Group Name: Silt Silt					
No. 4 4.75 100.0 No. 10 2 99.2 No. 40 0.425 98.7 No. 200 0.075 74.4 0.02 48.8 0.005 27.2 0.002 18.6 Estimated 0.001 13.2 Plus 3 in. Material, Not Included: 0 (%) Test Method: AASHTO T 100 Range (%) (%) Gravel 0.0 0.8 Coarse Sand 0.8 0.5 Medium Sand 0.5 Fine Sand 24.3 24.3 Silit 47.2 55.8	atio	California Bearing Ratio	100.0		3/8"
No. 10 2 99.2 No. 40 0.425 98.7 No. 200 0.075 74.4 0.02 48.8 0.005 27.2 0.002 18.6 Estimated 0.001 13.2 Plus 3 in. Material, Not Included: 0 (%) Particle Size: _ ASTM AASHTO Range (%) (%) Gravel 0.0 0.8 Coarse Sand 0.8 0.5 Medium Sand 0.5 Fine Sand 24.3 24.3 Silt 47.2 55.8	utio				
No. 40 0.425 98.7 No. 200 0.075 74.4 0.02 48.8 0.005 27.2 0.002 18.6 0.002 18.6 0.001 13.2 Plus 3 in. Material, Not Include: 0 (%) Test Method: AASHTO T 100 Range (%) (%) Gravel 0.0 0.8 Coarse Sand 0.8 0.5 Medium Sand 0.5 Fine Sand 24.3 24.3 Silt 47.2 55.8	N/A				
No. 200 0.075 74.4 0.02 48.8 0.005 27.2 0.002 18.6 Estimated 0.001 13.2 Plus 3 in. Material, Not Included: 0 (%) Test Method: AASHTO T 100 Prepared: Dry Particle Size: _ Specific Gravity at 20° Celsius: _ Specific Gravity at 20° Celsius: _ Coarse Sand 0.8 0.5 Medium Sand 0.5 Fine Sand 24.3 24.3 Silt 47.2 55.8			98.7	0.425	No. 40
0.02 48.8 0.005 27.2 0.002 18.6 Estimated 0.001 13.2 Plus 3 in. Material, Not Included: 0 (%) Test Method: AASHTO T 100 Prepared: Dry Particle Size: Specific Gravity at 20° Celsius: Specific Gravity at 20° Celsius: Carsee 0.0 0.8 Coarse Sand 0.8 0.5 Medium Sand 0.5 Fine Sand 24.3 24.3 Silt 47.2 55.8	N/A	Compacted Moisture Content (%):	74.4		
0.00218.6Estimated0.00113.2Plus 3 in. Material, Not Included: 0 (%)Test Method: AASHTO T 100 Prepared: DryASTMAASHTO (%)Gravel0.00.00.8Coarse Sand0.80.5Fine Sand24.3Silt47.20.00255.8			48.8	0.02	
Estimated0.00113.2Test Method: AASHTO T 100 Prepared: DryPlus 3 in. Material, Not Included: 0 (%)Particle Size: Specific Gravity at 20° Celsius:Specific Gravity at 20° Celsius:ASTMAASHTORange(%)(%)Gravel0.00.8Coarse Sand0.80.5Medium Sand0.5Fine Sand24.324.3Silt47.255.8			27.2	0.005	[
Plus 3 in. Material, Not Included: 0 (%)Prepared: Dry Particle Size: _ Specific Gravity at 20° Celsius: _ Specific Gravity at 20° Celsius					
Plus 3 in. Material, Not Included: 0 (%)Particle Size: _ Specific Gravity at 20° Celsius: _ Specific G			13.2	0.001	Estimated
ASTMAASHTORange(%)(%)Gravel0.00.8Coarse Sand0.80.5Medium Sand0.5Fine Sand24.324.3Silt47.255.8	NI- 40 *			al Netherstor	Dive 2 in Meteri
ASTMAASHTORange(%)(%)Gravel0.00.8Coarse Sand0.80.5Medium Sand0.5Fine Sand24.324.3Silt47.255.8	NO. 10	Particle Size:	ed. U (%)	al, Not includ	Plus 5 maivialen
Range (%) (%) Gravel 0.0 0.8 Coarse Sand 0.8 0.5 Medium Sand 0.5 Fine Sand 24.3 24.3 Silt 47.2 55.8	2.00	Greenic Gravity at 20 Ceisius.	AASHTO	ASTM	ſ
Gravel0.00.8Coarse Sand0.80.5Medium Sand0.5Fine Sand24.3Silt47.255.8		L			Range
Coarse Sand0.80.5Medium Sand0.5Fine Sand24.3Silt47.255.8		Classification			
Medium Sand 0.5 Group Name: Silt Silt <thsilt< th=""> Silt Silt</thsilt<>	CL-ML	Unified Group Symbol:			
Fine Sand 24.3 24.3 Silt 47.2 55.8					
	· · · · · · · · · · · · · · · · · · ·		24.3	24.3	Fine Sand
Clav 27.2 186 AASHTO Classification			55.8		
	A-4 (3)	AASHTO Classification:	18.6	27.2	Clay
					Commonte
Comments:					Comments:

Particle-Size Analysis of Soils

AASHTO T 88

Project Number 178568003

Stantec

Bridging KY - 054B00009N

Project Name

Source			054	B00	008)N-	3, 75.	0'-77.0)'			_											L	ab I	D		1357
				Si	eve	e Ai	nalysi	is for	the	e Po	ortic	on C	oars	er t	ha	_					/e	_					
_																	iev			%							
	est M				_) T 88		3						-	5	Size	<u> </u>	Pas	ssir	ıg						
Prep	ared	Using		AP		110	D T 87		2						-						_						
Parti	icle S	hape			Ar	ngu	lar								F					(Å)	_						
Particle				Hard			Durab	le							F						_	1					
			-						•																		
	Test			DW]					
			∋ <u>11-</u>			_																					
Date	e Rec	eiveo	10-	25-2	202	1												_	40		_						
Maximur	n Dai	tiala	Cizo:	2/0"	Qir.										⊢	_	8/8' 0			0.0	_	-					
Maximu	IIFai	licie	Size.	3/0	SIE	eve									⊢	_	0. 5. 1			9.2	_	1					
								£ 41.					- 41-								_						
Analysis	Race	d on	3 in	ch E			-	for th	e F	on	tion	Fin	er th	an	the		o. 5. 4			8.7	_	1					
Analysis	Dase	u un	-5 110		Tac		1 Only	·							F	No				4.4	_	1					
Spec	ific G	ravity	/	2.68	3													nm		8.8	_	1					
						-											_	nm		7.2	_	1					
Dispe	rsed	Using	g Appa	aratı	us /	A -	Mech	anical	, fo	r 1	Min	ute			0	.00)2 r	nm		8.6	_]					
															0	.00)1 I	mm	1:	3.2							
								Part	icle	e Si	ze l	Disti	ibut	ion													
ASTM		e Grave 0.0	l Fir	ne Grav	/el	-	0.8	Med	um S 0.5	and	-	Fir	ne Sanc 24.3		-				Silt 7.2	_	_	_		CI 27		-	
AASHTO				avel			0,0	Coa	rse S	and		Fi	ne Sano						S						Cla		
Sieve	Size in li	nches	0	8				Sieve	0.5 Size	in Sie	eve Nu	mbers	24.3		_	_			55	8			_		18.0	2_]	
	3 2		3/4	3/8		4		10 16	5	30	40		100		200												0
		++-	+		₩			-			4	$\mathbf{+}$	-		++	+	+	+	-		+	++	+	-	-	-	
															Ħ	Ħ										90)
			-	_	$\left \right $	-		-				-		V		+	-	-	-	_	+	+		-		- 80)
															4		t									70	
				$-\parallel$		+					++	_	_			A	-	-		_			-	-	-	- "	
			-		Ht	+			Ħ	++	+	-	-	-11	+	Ħ	X		-		t		+	+	-	- 60	ssi
															П				_							50	tPa
				+	+++	+		-	+		+	_	-		+	+	+	+				+	+	-	-		Ser
															Ħ	Ħ										40	Per
	+++			+	₩	+				++	++	+	-	-++	++	+	+	+	-		4	4	-	-	+	- 30	
																								A		1 20	
					##	_				+						+		-							1	20	,
							1 II.	11					10			1 I.										- *	
					+++										$^{++}$	Ħ	+				Ħ		1		-	- T 10)

Template: tmp_sum_input.xlsm

10

100

Version: 20170217

Approved By: RJ

Diameter (mm)

1

0.1

0.001

0.01

Reviewed By

HOPKINS COUNTY

ATTERBERG LIMITS

		ing KY - 054B 00009N-3, 75				Project No. Lab ID	178568003 1357
						% + No. 40	1
Tested By		JMB		AASHTO T 89 8	k Τ 90	Date Received	10-25-2021
Test Date	1	1-05-2021	Prepared	Dry	-	2 16-	
		et Soil and are Mass (g)	Dry Soil and Tare Mass (g)	Tare Mass (g)	Number of Blows	Water Content (%)	Liquid Limit
1		18.99	17.41	10.67	35	23.4	
ľ		17.56	16.26	11.03	22	24.9	
ŀ	_	16.92	15.73	11.10	17	25.7	24
ł		10.02	10.70	11.10		20.1	27
ŀ							
			11				
				Liquid	Limit		
	30						
	28						
	26			-			
~	24						
, F	22						
MOISTURE CONTENT, %	22						
8	20						
JRE	18						
ISTU	40						
QM	16						
	14						
	12						
	12						
	10						
	1	0		20	25	30	40 50

NUMBER OF BLOWS

PLASTIC LIMIT AND PLASTICITY INDEX

Wet Soil and	Dry Soil and		Water		
Tare Mass	Tare Mass	Tare Mass	Content		
(g)	(g)	(g)	(%)	Plastic Limit	Plasticity Index
21.03	19.84	12.64	16.5	17	7
22.00	20.72	13.03	16.6		

Remarks:

Reviewed By

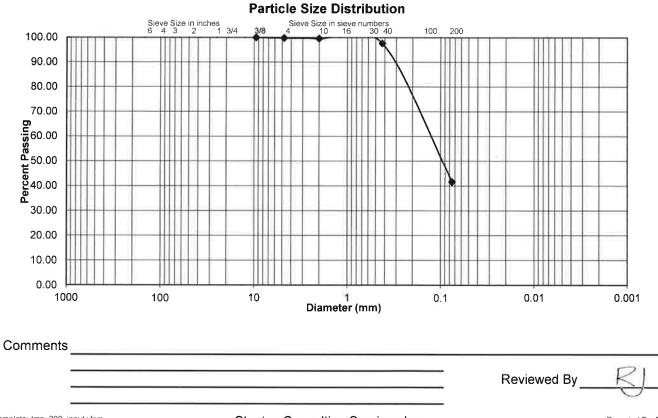
Page 1 of 1

Unconfined Compressive Strength of Cohesive Soil

KM 64-522

Project Name Bridging KY Source 054B00009N-3, 75.0'-7)N				Project N	Number _ Lab ID	178568003 1357
Visual Description Silty Clay wit	h Sand (CL-	ML), gray, m	oist, soft			% •		
						vered	2	- 76.9'
Specimen Type: Undisturbed	LL	24	PL	17	Test In	terval	/0.4 -	- 76.9
opeointen Type. <u>Ondistarbed</u>		27	РІ –	7		Date E	xtruded	10/28/2021
Initial Wet Density (pcf)	128.8		-					10/28/2021
Initial Moisture Content (%)		Initial MC	Taken Be	fore Test,	From Trim	mings		
Initial Dry Density (pcf)								
At Test Moisture Content (%)		At Test MC	Taken N/	А				
At Test Dry Density (pcf) Specific Gravity								
Degree of Saturation (%)		U	nconfined	Compress	ive Strengt	h (tsf)	0.56	
Average Height (in)					ear Strengt		0.28	
Average Diameter (in)					imum Stres		14.9	
Height to Diameter Ratio	2.1		Strai	n Rate to I	-ailure (% /	min.)	0.99	
		Strace V	vs. Strain					
		SU635 V	s. Strain					
0.70				-	1	1		
0.60								
0.00								
0.50								
5040								
SS SS								
(s) 0.40 set 0.30								
0.20								
0.20								
0.10							-	
0.00								
0.0 2.0	4.0	6.0 8.	0 10).0 ·	12.0 1	4.0	16,0	18.0
			Strain (%)	•				
Failure Sketch				Pocket	Penetrome			
					Torvane R	eading (k	(g/cm²) <u></u>	√A
		omments						
	-							
	<u> </u>							
	-							
	-							
							_	
						Povie	wed By	RI
						I/EVIE	weu by_	-9-
Tomplato: tmp. up. input vlam	0						-	Reported Dut D I

Stantec Consulting Services Inc. Lexington, Kentucky



AASHTO T 88

Project Name	Bridging KY	- 054B0000	9N			Project Number	178568003
Source	054B00009	Lab ID	1335				
Prepara	ation Method	AASHTO T	11 Method A	l		Date Received	10-25-2021
Soal	(Time (min)	360				Preparation Date	10-27-2021
Pa	rticle Shape	Rounded				Test Date	11-02-2021
Partic	le Hardness	Hard and Du	ırable			-	×
Sample [Dry Mass (g)	254.25				Analysis Based on Tota	I Sample.
Moisture	Content (%)	23.7	-				
	3						
		Grams	%	%		% Gravel 0.4	
	Sieve Size	Retained	Retained	Passing		% Sand 57.9	
						% Fines 41.7	
					Fines Cl	assification N/A	
				-			
						D ₁₀ (mm) N/A	
						D ₃₀ (mm) N/A	
						D ₆₀ (mm) N/A	
				· · · · · · · · · · · · · · · · · · ·			

	Grams	%	%
Sieve Size	Retained	Retained	Passing
3/8"	0.00	0.0	100.0
No. 4	0.60	0.2	99.8
No. 10	0.52	0.2	99.6
No. 40	4.92	1.9	97.6
No. 200	142.31	56.0	41.7
Pan	105.90	41.7	

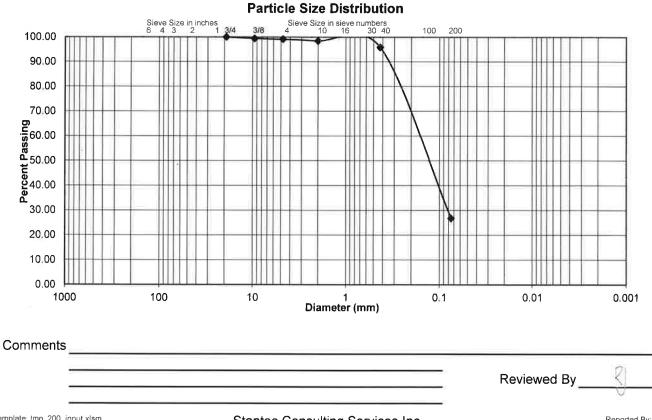
Cu	N/A	
Сс	N/A	

Template: tmp_200_input.xlsm Version: 20170216 Approved By: RJ

Stantec Consulting Services Inc. Lexington, Kentucky

AASHTO T 88

Project Name E	Bridging KY	- 054B0000	9N			Project Nur
Source 054B00009N-3, 87.0'-88.5'						La La
Preparation Method AASHTO T 11 Method A					14	Date Rece
Soak Time (min) 380						Preparation
Particle Shape Angular					Test	
Particle	Hardness	Hard and Du	ırable			
Sample Dry Mass (g) 282.09					Analysis Based or	
Moisture C	ontent (%)	22.2				
Γ		Grams	%	%		% Gravel
5	Sieve Size	Retained	Retained	Passing		% Sand


	Grams	%	%
Sieve Size	Retained	Retained	Passing
3/4"	0.00	0.0	100.0
3/8"	1.70	0.6	99.4
No. 4	0.77	0.3	99.1
No. 10	1.93	0.7	98.4
No. 40	7.19	2.5	95.9
No. 200	195.10	69.2	26.7
Pan	75.40	26.7	

Project Number	178568003
Lab ID	1336
Date Received	10-25-2021
Preparation Date	10-27-2021
Test Date	11-02-2021

Analysis Based on Total Sample.

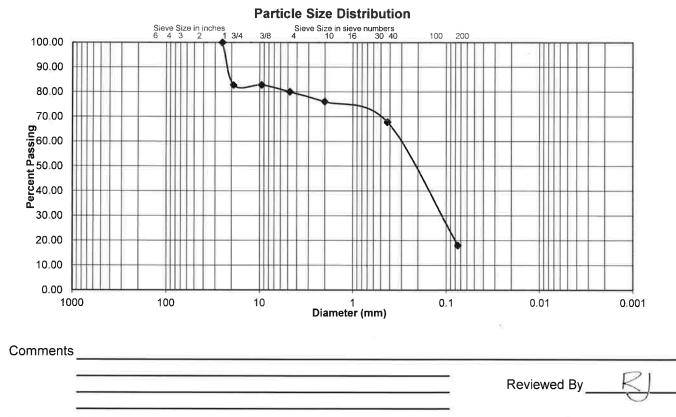
% Gravel	1.6
% Sand	71.7
% Fines	26.7
Fines Classification	N/A
D ₁₀ (mm)	N/A
D ₃₀ (mm)	N/A
D ₆₀ (mm)	N/A

Cu	N/A	
Cc	N/A	

Template: tmp_200_input.xlsm Version: 20170216 Approved By: RJ Stantec Consulting Services Inc. Lexington, Kentucky

Gradation Analysis

AASHTO T 88


Project Name Bridging KY - 054B00009N	Project Number	17
Source 054B00009N-3, 90.0'-91.5'	Lab ID	
Preparation Method AASHTO T 11 Method A	Date Received	10
Soak Time (min) 390	Preparation Date	10
Particle Shape Rounded	Test Date	11
Particle Hardness Hard and Durable		
Sample Dry Mass (g) 252.95	Analysis Based on Total S	Sar
Moisture Content (%) 17.5		

Sieve Size	Grams Retained	% Retained	% Passing
0.010 0.20	rtotaniou	riotairiou	- r ubbing
1"	0.00	0.0	100.0
3/4"	43.65	17.3	82.7
3/8"	0.00	0.0	<u></u> 82.7
No. 4	6.94	2.7	80.0
No. 10	10.07	4.0	76.0
No. 40	20.84	8.2	67.8
No. 200	125.86	49.8	18.0
Pan	45.59	18.0	

Project Number	178568003
Lab ID	1337
Date Received	10-25-2021
Preparation Date	10-27-2021
Test Date	11-02-2021

ample.

% Gravel	24.0
% Sand	58.0
% Fines	18.0
Fines Classification	N/A
D ₁₀ (mm)	N/A
D ₃₀ (mm)	N/A
D ₆₀ (mm)	N/A
Cu	N/A
Cc	N/A

Template: tmp_200_input xIsm Version: 20170216 Approved By: RJ

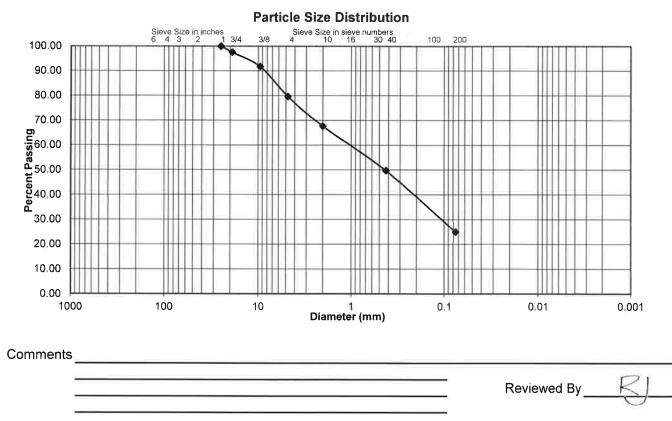
Stantec Consulting Services Inc. Lexington, Kentucky

Stantec

Gradation Analysis

AASHTO T 88

Project Name	Bridging KY	′ - 054B0000	ЭN		Project
Source	054B00009	N-3, 95.2'-96	.7'		
Prepara	ation Method	AASHTO T	11 Method A		Date R
Soal	< Time (min)	410	-		Preparat
Pa	article Shape	Rounded	•		Т
Partic	le Hardness	Hard and Du	ırable		
Sample I	Dry Mass (g)	328.15			Analysis Base
Moisture	Content (%)	20.0			
			•		
		Grams	%	%	% Gravel
	Sieve Size	Retained	Retained	Passing	% Sand


	oranio	/0	/0
Sieve Size	Retained	Retained	Passing
1"	0.00	0.0	100.0
3/4"	8.06	2.5	97.5
3/8"	18.96	5.8	91.8
No. 4	39.92	12.2	79.6
No. 10	39.32	12.0	67.6
No. 40	58.93	18.0	49.7
No. 200	81.10	24.7	24.9
Pan	81.86	24.9	

Project Number	178568003
Lab ID	1338
Date Received	10-25-2021
Preparation Date	10-27-2021
Test Date	11-02-2021

Analysis Based on Total Sample.

% Gravel	32.4
% Sand	42.7
% Fines	24.9
Fines Classification	N/A
D ₁₀ (mm)	N/A
D ₁₀ (mm) D ₃₀ (mm)	N/A N/A
10 ()	

Cu	N/A	
Сс	N/A	

Template: tmp_200_input.xlsm Version: 20170216 Approved By: RJ Stantec Consulting Services Inc. Lexington, Kentucky

	L)	Ċ.	
	d	D	n.	
•	t			
	2	R		
	Ļ	د		
(J)		
1	-			
				ľ.

Project Name Bridging KY - 054B00009N

AASHTO T 265 **Moisture Content of Soil**

Project Number 178568003 Tested By DW

2

-

1/2"

No. 4

No. 40

Maximum Particle Size in Sample

10	100	300	500	1,000					-	Test Method AASHTO	AASHTO
Material Type: <u>Stratified</u> , <u>Lam</u> inated, <u>Len</u> sed, <u>Hom</u> ogeneous, <u>Dist</u> urbed	isturbed										
				Maximum	Material	erial	Pass Min.		Wet Soil &	Dry Soil &	
		Date	Material	Particle	Excluded	Ided	Mass?	Can Weight	Can Weight	Can Weight	Moisture
	Lab ID	Tested	Type	Size	Amount	Size	(V/N)	(B)	(B)	(6)	Content (%)
	1327	10/27/21	Hom	1/2"			No	300.01	519.58	478.11	23.3
	1328	10/27/21	Hom	No. 4			Yes	308.37	503.47	464.13	25.3
	1329	10/27/21	Hom	No. 4			Yes	310.39	573.13	524.36	22.8
	1330	10/27/21	Hom	No. 4			Yes	306.81	646.54	586.68	21.4
	1331	10/27/21	Hom	No. 4			Yes	299.31	621.99	563.68	22.1
	1332	10/27/21	Hom	1"			No	299.65	685.46	616.48	21.8
	1333	10/27/21	Hom	1/2"			No	299.45	633.95	564.78	26.1
	1334	10/27/21	Dist	1.			No	286.18	649.92	587.42	20.7
	1335	10/27/21	Dist	1/2"			No	309.10	623.59	563.35	23.7
-	1336	10/27/21	Dist	1"			No	300.17	644.89	582.26	22.2
	1337	10/27/21	Dist	1"			No	310.18	607.42	563.13	17.5
	1338	10/27/21	Dist	1"			No	283.89	677.52	612.04	20.0
	1339	10/27/21	Dist	÷.			No	31.43	87.63	78.24	20.1

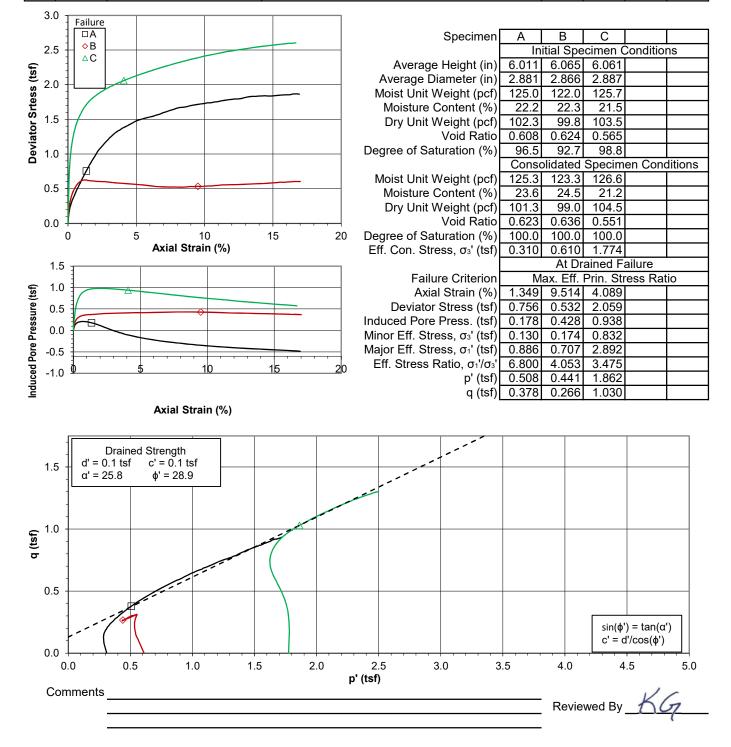
Comments

Reviewed By

Reported By: RJ Report Date: 11/08/2021

Page 1 of 1

HOPKINS COUNTY STP BRZ 9030 (500)



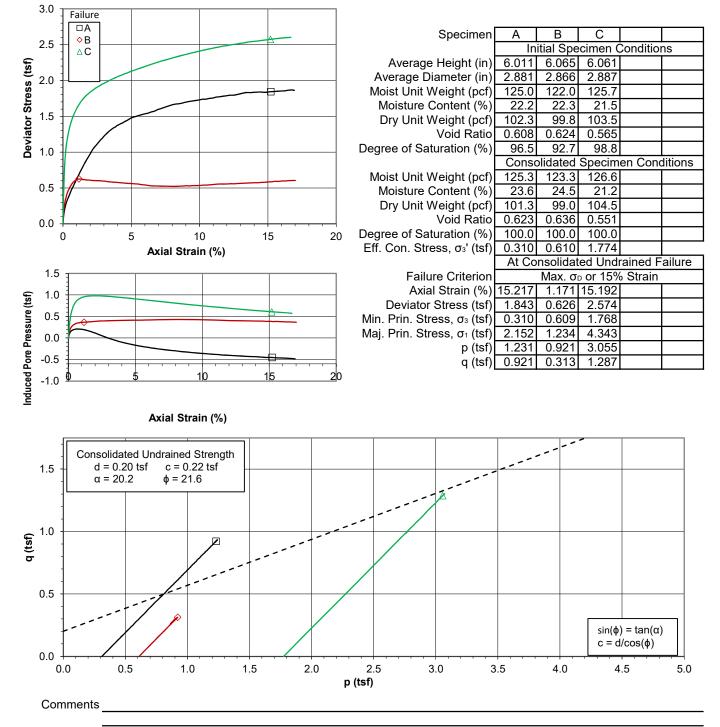
AASHTO T 297

Project Name Bridging KY - 054B00009N

Project	178568003
Set ID	1

Test	Lab ID	Source	Description	Gs	LL	PL	PI
Α	1340B	054B00009N-2, 5.6'-6.1'	Lean Clay (CL), brown, moist, firm	2.64	32	18	14
В	1341A	054B00009N-2, 15.1'-15.6'	Lean Clay with Sand (CL), brown, moist, firm	2.60	36	19	17
С	1341B	054B00009N-2, 15.6'-16.2'	Lean Clay with Sand (CL), brown, moist, firm	2.60	36	19	17

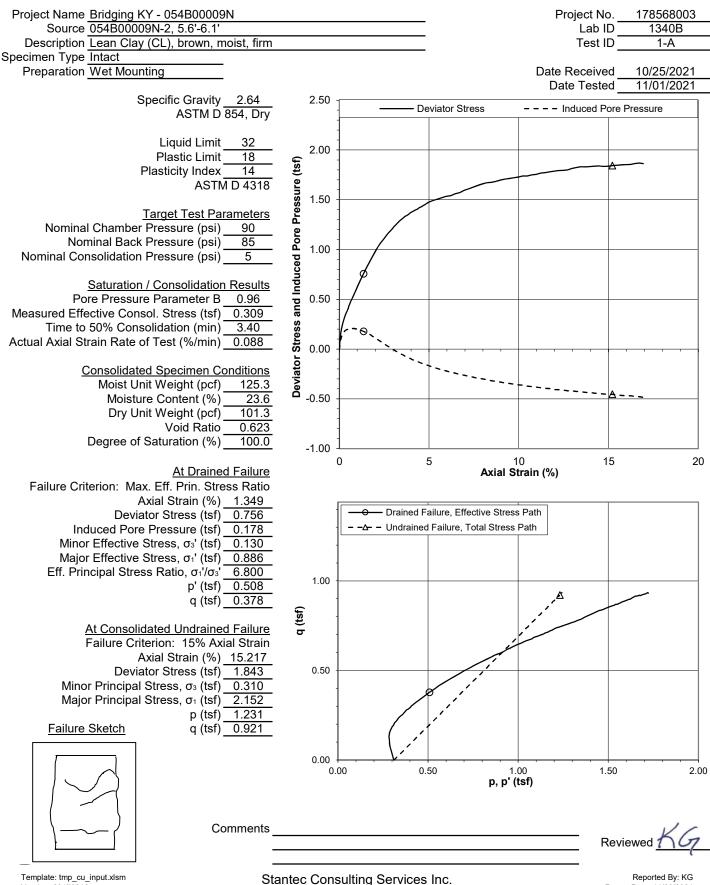
Template: tmp_cu_input.xlsm Version: 20170216 Approved By: RJ



AASHTO T 297

Project Name Bridging KY - 054B00009N

Project <u>178568003</u> Set ID 1


Test		Source	Description	Gs	LL	PL	PI
Α	1340B	054B00009N-2, 5.6'-6.1'	Lean Clay (CL), brown, moist, firm	2.64	32	18	14
В	1341A	054B00009N-2, 15.1'-15.6'	Lean Clay with Sand (CL), brown, moist, firm	2.60	36	19	17
С	1341B	054B00009N-2, 15.6'-16.2'	Lean Clay with Sand (CL), brown, moist, firm	2.60	36	19	17

Template: tmp_cu_input.xlsm Version: 20170216 Approved By: RJ

AASHTO T 297

Version: 20170216 Approved By: RJ

Lexington, Kentucky

Report Date: 11/23/2021

Consolidated Undrained	Triaxial Compression
	ASTM D 4767

Project Name Bridging KY - 054B00009N Source 054B00009N-2, 5.6'-6.1'

Description Lean Clay (CL), brown, moist, firm

Initial Specimen Co	onditions
Average Height (in)	6.011
Average Diameter (in)	2.881
Calculated Area (in ²)	6.520
Moist Weight (Ib)	2.836
Moist Unit Weight (pcf)	125.0
Moisture Content (%)	22.2
Dry Weight (lb)	2.320
Dry Unit Weight (pcf)	102.3
Void Ratio	0.608
Degree of Saturation (%)	96.5

Consolidated Specimen ConditionsCalculated Height (in)6.004Calculated Diameter (in)2.897Calculated Area (in²)6.590Moist Weight (lb)2.868Moist Unit Weight (pcf)125.3Moist Unit Weight (pcf)123.6Dry Weight (lb)2.320Dry Unit Weight (pcf)101.3Void Ratio0.623Degree of Saturation (%)100.0

Project No.	178568003
Lab ID	1340B
Test ID	1-A

Specific Gravity <u>2.64</u> ASTM D 854, Dry

Liquid Limit <u>32</u> Plastic Limit <u>18</u> Plasticity Index <u>14</u> ASTM D 4318

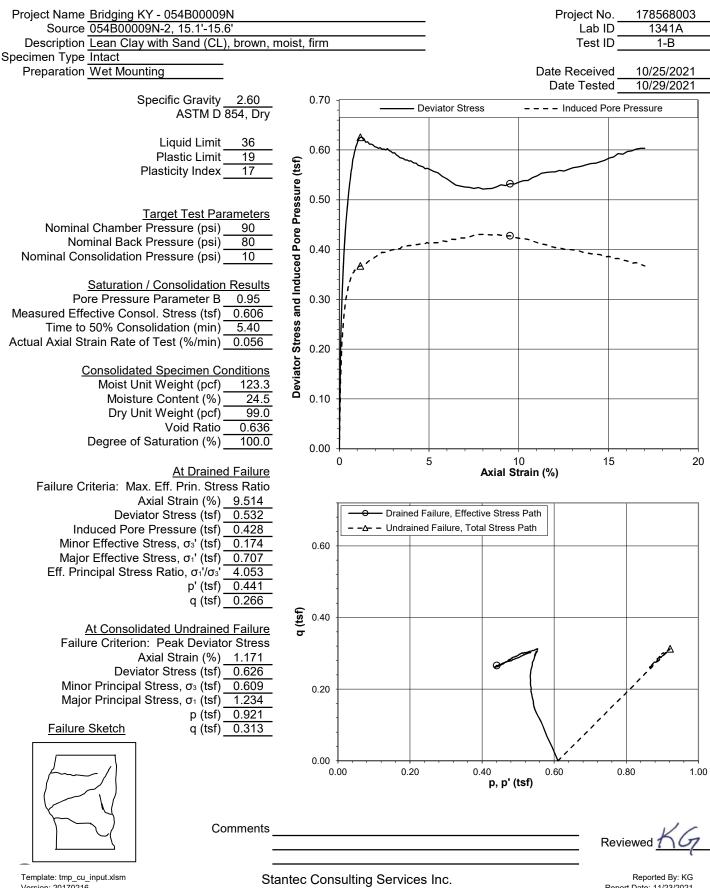
> Confining Stress σ₃ (tsf) <u>0.310</u>

Effective Consolidation Stress σ_3' (tsf) 0.310

Moisture contents obtained using partial specimen. Specimen consolidated cross-sectional area determined using method B. Membrane corrections have been applied,where Em = 200 lbf/in and t = 0.012 in. All other tests performed in association with this specimen are reported separately.

Project:	17856800)3	Source:	054B00009	N-2, 5.6'-6.1	•					Lab ID:	1340B		Test ID	
Test Time	Corr. Axial Load	Axial Deform.	Axial Strain	Corr. Area	Deviator Stress	Corr. Deviator Stress	Pore Pressure	Induced Pore Pressure	σ1	σ1'	σ3'	р	р'	q	Eff. Princ. Stress Ratio
(min)	(lbf)	(in)	(%)	(in ⁴)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	σ ₁ '/σ ₃ '
0.0	0.0	0.000	0.00	6.590	0.000	0.000	6.170	0.000	0.310	0.310	0.310	0.310	0.310	0.000	1.000
0.3	5.3	0.001	0.02	6.591	0.058	0.058	6.208	0.038	0.368	0.330	0.273	0.339	0.302	0.029	1.212
0.6	9.5	0.003	0.05	6.593	0.103	0.103	6.237	0.067	0.415	0.348	0.245	0.363	0.296	0.052	1.422
0.9	13.0	0.004	0.07	6.594	0.142	0.141	6.261	0.091	0.452	0.361	0.220	0.381	0.290	0.071	1.644
1.2	15.7	0.006	0.09	6.596	0.171	0.171	6.280	0.110	0.482	0.372	0.201	0.396	0.287	0.085	1.849
1.4	17.9	0.007	0.11	6.597	0.196	0.195	6.293	0.123	0.506	0.384	0.188	0.409	0.286	0.098	2.037
1.7	19.8	0.008	0.14	6.599	0.216	0.216	6.303	0.133	0.527	0.394	0.178	0.419	0.286	0.108	2.214
2.0	21.6	0.010		6.600	0.236	0.236	6.314	0.143	0.546	0.403	0.167	0.428	0.285	0.118	2.409
2.3	23.2	0.011	0.19	6.602	0.253	0.252	6.322	0.152	0.561	0.409	0.157	0.435	0.283	0.126	2.610
2.6	24.8	0.013	0.21	6.603	0.270	0.270	6.331	0.160	0.579	0.419	0.149	0.444	0.284	0.135	2.812
2.9	26.3	0.014	0.24	6.605	0.286	0.286	6.338	0.167	0.597	0.429	0.144	0.454	0.286	0.143	2.991
3.1	27.5	0.016		6.607	0.300	0.299	6.344	0.174	0.609	0.435	0.136	0.459	0.285	0.150	3.202
3.4	28.8	0.017	0.29	6.608	0.314	0.313	6.348	0.178	0.623	0.445	0.132	0.466	0.289	0.157	3.375
3.7	30.1	0.019		6.610	0.328	0.328	6.354	0.183	0.637	0.454	0.126	0.473	0.290	0.164	3.595
4.0	31.3	0.020	0.33	6.612	0.341	0.340	6.358	0.187	0.650	0.463	0.123	0.480	0.293	0.170	3.764
4.3	32.5	0.022	0.37	6.614	0.353	0.352	6.362	0.191	0.664	0.473	0.120	0.488	0.296	0.176	3.935
4.6	33.5	0.024	0.39	6.616	0.365	0.364	6.365	0.195	0.676	0.481	0.117	0.494	0.299	0.182	4.112
4.9	34.6	0.025	0.42	6.617	0.376	0.375	6.367	0.196	0.686	0.489	0.114	0.498	0.302	0.188	4.280
5.1	35.5	0.026		6.619	0.387	0.386	6.367	0.197	0.697	0.501	0.115	0.504	0.308	0.193	4.352
5.4	36.5	0.028	0.47	6.620	0.397	0.396	6.369	0.198	0.706	0.508	0.112	0.509	0.310	0.198	4.526
5.7	37.5	0.030		6.622	0.408	0.407	6.370	0.200	0.716	0.516	0.109	0.512	0.312	0.203	4.729
6.0	38.5	0.031	0.51	6.623	0.419	0.418	6.374	0.203	0.727	0.524	0.106	0.518	0.315	0.209	4.927
6.3	39.6	0.032		6.624	0.431	0.430	6.374	0.203	0.740	0.536	0.107	0.525	0.321	0.215	5.029
6.6	40.7	0.033		6.626	0.442	0.441	6.375	0.205	0.752	0.547	0.106	0.531	0.326	0.220	5.158
6.9	41.7	0.035		6.628	0.453	0.451	6.377	0.207	0.762	0.556	0.104	0.537	0.330	0.226	5.331
7.1	42.7	0.036	0.60	6.629	0.464	0.462	6.378	0.208	0.772	0.565	0.103	0.541	0.334	0.231	5.507
7.4	43.6	0.037	0.62	6.631	0.474	0.472	6.379	0.208	0.782	0.574	0.102	0.546	0.338	0.236	5.642
7.7	44.7	0.039		6.633	0.485	0.483	6.379	0.209	0.794	0.585	0.102	0.552	0.344	0.242	5.743
8.0	45.6	0.041	0.67	6.634	0.494	0.493	6.378	0.208	0.804	0.596	0.103	0.557	0.349	0.246	5.794
8.3	46.5	0.042	0.70	6.636	0.504	0.503	6.378	0.208	0.814	0.606	0.104	0.563	0.355	0.251	5.856
8.6	47.3	0.044	0.73	6.638	0.513	0.512	6.377	0.207	0.823	0.616	0.104	0.567	0.360	0.256	5.908
8.8	48.2	0.045	0.75	6.640	0.523	0.521	6.376	0.206	0.831	0.625	0.104	0.571	0.365	0.260	6.005
9.1	49.2	0.047	0.78	6.641	0.534	0.532	6.377	0.206	0.842	0.635	0.104	0.576	0.369	0.266	6.136
9.4	50.2	0.048	0.80	6.643	0.544	0.542	6.378	0.208	0.851	0.644	0.102	0.580	0.373	0.271	6.340
9.7	51.1	0.050		6.645	0.554	0.552	6.377	0.206	0.860	0.653	0.102	0.584	0.378	0.276	6.419
10.0	52.1	0.051	0.85	6.646	0.564	0.562	6.376	0.206	0.871	0.665	0.103	0.590	0.384	0.281	6.451
10.3	52.9	0.053	0.88	6.648	0.573	0.571	6.374	0.203	0.880	0.677	0.106	0.595	0.392	0.285	6.368
10.6	53.8	0.054	0.90	6.649	0.583	0.581	6.373	0.203	0.890	0.687	0.107	0.600	0.397	0.290	6.435
10.8	54.6	0.056	0.93	6.651	0.591	0.588	6.374	0.203	0.900	0.696	0.108	0.606	0.402	0.294	6.454

Template: tmp_cu_input.xlsm Version: 20170216 Approved By: RJ


Project:	17856800	3	Source:	054B00009	N-2, 5.6'-6.1	'					Lab ID:	1340B		Test ID	
Test Time	Corr. Axial Load	Axial Deform.	Axial Strain	Corr. Area	Deviator Stress	Corr. Deviator Stress	Pore Pressure	Induced Pore Pressure	σ1	σ ₁ '	σ3'	р	р'	q	Eff. Princ. Stress Ratio
(min)	(lbf)	(in)	(%)	(in ⁺)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	۹ (tsf)	σ_1'/σ_3'
11.1	55.7	0.057	0.95	6.652	0.603	0.600	6.374	0.204	0.910	0.706	0.106	0.610	0.406	0.300	6.66
12.3	59.6	0.063	1.05	6.659	0.645	0.642	6.369	0.199	0.952	0.753	0.111	0.631	0.432	0.321	6.78
13.4	63.3	0.069	1.15	6.666	0.684	0.681	6.364	0.193	0.992	0.799	0.118	0.652	0.458	0.340	6.77
14.5	66.8	0.075	1.25	6.673	0.721	0.718	6.357	0.186	1.028	0.842	0.124	0.669	0.483	0.359	6.78
15.7	70.4	0.081	1.35	6.680	0.759	0.756	6.349	0.178	1.065	0.886	0.130	0.687	0.508	0.378	6.80
16.8	74.1	0.087	1.45	6.687	0.798	0.794	6.340	0.170	1.104	0.934	0.140	0.707	0.537	0.397	6.67
18.0	77.7	0.093	1.55	6.694	0.836	0.832	6.333	0.163	1.141	0.979	0.146	0.725	0.562	0.416	6.68
19.1 20.2	80.7 84.4	0.099	1.66 1.76	6.700 6.708	0.867 0.906	0.863	6.322 6.312	0.151 0.142	1.171 1.212	1.020	0.156 0.169	0.739 0.761	0.588 0.620	0.432 0.451	6.52 6.35
20.2	87.2	0.100	1.70	6.714	0.900	0.902	6.299	0.142	1.240	1.111	0.189	0.774	0.620	0.451	6.16
22.5	90.4	0.118	1.96	6.721	0.968	0.963	6.290	0.120	1.274	1.155	0.100	0.793	0.673	0.482	6.02
23.6	93.7	0.124	2.07	6.729	1.002	0.997	6.277	0.107	1.306	1.200	0.202	0.808	0.701	0.499	5.93
24.8	96.6	0.129	2.15	6.734	1.033	1.028	6.264	0.094	1.339	1.245	0.217	0.825	0.731	0.514	5.74
25.9	99.4	0.136	2.26	6.742	1.061	1.056	6.252	0.081	1.365	1.284	0.227	0.837	0.756	0.528	5.64
27.1	101.7	0.142	2.36	6.749	1.085	1.079	6.240	0.069	1.388	1.318	0.239	0.848	0.779	0.540	5.51
28.2	103.8	0.147	2.46	6.755	1.106	1.101	6.229	0.059	1.410	1.351	0.251	0.860	0.801	0.550	5.38
29.3	106.2	0.153	2.56	6.762	1.131	1.125	6.217	0.047	1.434	1.387	0.263	0.872	0.825	0.562	5.28
30.5	108.7	0.160	2.66	6.770	1.156	1.150	6.204	0.033	1.461	1.428	0.278	0.886	0.853	0.575	5.13
31.6	110.8	0.166	2.76	6.776 6.783	1.178	1.171	6.194 6.179	0.024	1.480	1.457	0.286	0.895	0.871	0.586	5.10 4.94
32.7 33.9	112.5 114.6	0.171 0.177	2.85 2.95	6.783	1.195 1.215	1.188 1.208	6.179	0.009	1.498 1.518	1.489	0.301	0.904 0.914	0.895 0.916	0.594 0.604	4.94
35.0	117.0	0.183	3.05	6.797	1.239	1.200	6.161	-0.002	1.543	1.552	0.320	0.927	0.936	0.616	4.84
36.2	117.0	0.183	3.05	6.804	1.256	1.232	6.148	-0.009	1.543	1.580	0.320	0.927	0.955	0.624	4.04
37.3	120.9	0.196	3.26	6.811	1.278	1.270	6.141	-0.029	1.581	1.610	0.341	0.946	0.975	0.635	4.72
38.4	122.6	0.202	3.36	6.819	1.295	1.287	6.129	-0.042	1.594	1.636	0.349	0.951	0.993	0.643	4.68
39.6	124.3	0.208	3.46	6.826	1.311	1.303	6.118	-0.052	1.613	1.666	0.363	0.962	1.014	0.652	4.59
40.7	125.6	0.213	3.55	6.832	1.324	1.316	6.111	-0.059	1.625	1.684	0.369	0.967	1.026	0.658	4.57
41.8	127.3	0.219	3.66	6.840	1.340	1.332	6.100	-0.070	1.640	1.710	0.378	0.975	1.044	0.666	4.51
43.0	128.5	0.226	3.76	6.847	1.351	1.342	6.091	-0.079	1.652	1.731	0.389	0.980	1.060	0.671	4.45
44.1 45.3	129.7 131.4	0.231 0.237	3.85 3.95	6.854 6.861	1.362 1.379	1.353 1.369	6.081 6.076	-0.090 -0.095	1.663 1.678	1.753	0.400	0.987	1.076 1.088	0.676	4.38
45.3	131.4	0.237	4.06	6.868	1.388	1.309	6.066	-0.095	1.687	1.792	0.403	0.994	1.102	0.689	4.39
47.5	133.5	0.243	4.16	6.875	1.398	1.388	6.059	-0.103	1.699	1.811	0.413	1.005	1.117	0.694	4.33
48.7	134.6	0.255	4.25	6.882	1.408	1.398	6.051	-0.119	1.708	1.827	0.429	1.009	1.128	0.699	4.26
49.8	135.6	0.262	4.36	6.890	1.417	1.406	6.044	-0.126	1.717	1.843	0.437	1.014	1.140	0.703	4.22
50.9	137.0	0.267	4.45	6.897	1.430	1.420	6.038	-0.132	1.729	1.861	0.442	1.019	1.152	0.710	4.21
52.1	138.0	0.274	4.56	6.904	1.439	1.428	6.029	-0.141	1.738	1.879	0.451	1.024	1.165	0.714	4.16
53.2	139.3	0.280	4.66	6.911	1.451	1.440	6.025	-0.146	1.749	1.895	0.455	1.029	1.175	0.720	4.16
54.4	140.3	0.286	4.76	6.919	1.460	1.449	6.016	-0.154	1.757	1.912	0.463	1.033	1.187	0.725	4.13
55.5	141.7	0.292	4.86	6.926	1.473	1.461	6.011	-0.159	1.770	1.929	0.468	1.039 1.044	1.198	0.731 0.737	4.12
56.6 59.5	143.0 145.1	0.298 0.313	4.96 5.21	6.933 6.952	1.485 1.503	1.473 1.490	6.005 5.990	-0.165 -0.180	1.781 1.800	1.946 1.981		1.044	1.210 1.236	0.737	4.11
62.3	146.9	0.313	5.46	6.970	1.518	1.490	5.975	-0.100	1.813	2.008	0.430	1.061	1.256	0.743	3.99
65.1	148.8	0.343	5.71	6.988	1.533	1.520	5.962	-0.208	1.831	2.039	0.519	1.071	1.279	0.760	3.92
68.0	150.6	0.358	5.96	7.007	1.548	1.534	5.951	-0.220	1.842	2.062	0.528	1.075	1.295	0.767	3.90
70.8	151.8	0.373	6.21	7.026	1.556	1.541	5.937	-0.233	1.848	2.081	0.540	1.078	1.311	0.771	3.85
73.7	154.1	0.388	6.46	7.045	1.575	1.560	5.928	-0.243	1.868	2.111	0.551	1.088	1.331	0.780	3.83
76.5	155.8	0.403	6.71	7.063	1.588	1.572	5.916	-0.254	1.881	2.135	0.563	1.095	1.349	0.786	3.79
79.3	158.5	0.418	6.97	7.083	1.612	1.595	5.907	-0.263	1.904	2.167	0.572	1.107	1.370	0.798	3.78
82.2	160.4	0.433	7.21	7.101	1.626	1.609	5.897	-0.274	1.916	2.189	0.580	1.111	1.385	0.805	3.77
85.0 87.8	162.7 164.6	0.448	7.47 7.71	7.121 7.140	1.645 1.660	1.627 1.641	5.888 5.878	-0.282 -0.293	1.937 1.949	2.219 2.241	0.592 0.600	1.123 1.128	1.406 1.421	0.814 0.821	3.74 3.73
87.8 90.7	164.6	0.463	7.71	7.140	1.660	1.641	5.878	-0.293	1.949	2.241	0.600	1.128	1.421	0.821	3.7
93.5	168.5	0.478	8.21	7.179	1.690	1.670	5.863	-0.298	1.909	2.207	0.608	1.140	1.452	0.835	3.72
96.4	169.4	0.508	8.46	7.198	1.695	1.674	5.853	-0.317	1.982	2.300	0.625	1.145	1.463	0.837	3.6
99.2	170.9	0.523	8.71	7.218	1.704	1.684	5.847	-0.323	1.992	2.315	0.632	1.150	1.474	0.842	3.60
102.0	172.7	0.538	8.96	7.238	1.718	1.696	5.840	-0.330	2.008	2.338	0.642	1.160	1.490	0.848	3.64
104.9	174.2	0.553	9.21	7.258	1.728	1.706	5.830	-0.340	2.014	2.355	0.649	1.161	1.502	0.853	3.62
107.7	175.4	0.568	9.47	7.279	1.735	1.713	5.826	-0.344	2.023	2.367	0.654	1.166	1.511	0.856	3.6
110.5	176.8	0.583	9.71	7.298	1.744	1.721	5.819	-0.351	2.029	2.381	0.660	1.169	1.520	0.860	3.60
113.4	178.0	0.598	9.97	7.319	1.751	1.727	5.811	-0.359	2.037	2.397	0.669	1.174	1.533	0.864	3.5
116.2 119.1	179.7 180.3	0.613	10.22 10.47	7.339 7.360	1.763 1.764	1.739 1.739	5.808 5.798	-0.363 -0.372	2.047 2.049	2.410 2.421	0.671 0.682	1.178	1.540 1.552	0.869	3.5
121.9	181.9	0.629	10.47	7.380	1.764	1.739	5.796	-0.372	2.049	2.421	0.685	1.183	1.552	0.875	3.5
121.9	183.1	0.659	10.72	7.402	1.781	1.749	5.789	-0.377	2.058	2.434	0.691	1.187	1.568	0.873	3.5
127.6	184.9	0.673	11.21	7.422	1.793	1.767	5.783	-0.388	2.004	2.461	0.695	1.190	1.578	0.883	3.54
130.4	186.0	0.689	11.47	7.443	1.800	1.772	5.775	-0.395	2.080	2.475	0.702	1.194	1.589	0.886	3.52
133.2	187.5	0.703	11.72	7.464	1.809	1.781	5.773	-0.397	2.092	2.489	0.708	1.202	1.598	0.890	3.51
136.1	188.6	0.718	11.96	7.485	1.815	1.786	5.765	-0.405	2.095	2.500	0.714	1.202	1.607	0.893	3.50

Template: tmp_cu_input.xlsm Version: 20170216 Approved By: RJ

Project:	17856800	3	Source:	054B00009	N-2, 5.6'-6.1	•			Lab ID:	1340B	Test ID				
Test Time	Corr. Axial Load	Axial Deform.	Axial Strain	Corr. Area	Deviator Stress	Corr. Deviator Stress	Pore Pressure	Induced Pore Pressure	σ ₁	σ ₁ '	σ₃'	р	р'	q	Eff. Princ. Stress Ratio
(min)	(lbf)	(in)	(%)	(in ⁻)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	σ ₁ '/σ ₃ '
138.9	190.1	0.733	12.21	7.506	1.823	1.794	5.763	-0.407	2.102	2.510	0.716	1.205	1.613	0.897	3.505
141.8	190.7	0.748	12.46	7.527	1.824	1.794	5.759	-0.411	2.105	2.516	0.722	1.208	1.619	0.897	3.486
144.6	191.9	0.764	12.72	7.550	1.830	1.800	5.752	-0.418	2.108	2.526	0.726	1.208	1.626	0.900	3.480
147.4	194.0	0.778	12.96	7.571	1.845	1.814	5.749	-0.421	2.123	2.543	0.729	1.215	1.636	0.907	3.489
150.3	195.7	0.793	13.21	7.593	1.856	1.824	5.745	-0.425	2.133	2.558	0.734	1.221	1.646	0.912	3.484
153.1	197.1	0.808	13.46	7.614	1.863	1.831	5.741	-0.429	2.139	2.568	0.736	1.223	1.652	0.916	3.488
156.0	197.5	0.824	13.72	7.637	1.862	1.829	5.736	-0.434	2.137	2.571	0.742	1.222	1.656	0.915	3.466
158.8	198.6	0.838	13.97	7.659	1.867	1.834	5.735	-0.436	2.145	2.581	0.747	1.228	1.664	0.917	3.455
161.6	199.6	0.853	14.21	7.681	1.871	1.837	5.728	-0.442	2.144	2.587	0.750	1.226	1.668	0.919	3.451
164.5	200.5	0.868	14.46	7.704	1.874	1.839	5.726	-0.444	2.148	2.592	0.752	1.228	1.672	0.920	3.445
167.3	200.7	0.884	14.72	7.727	1.870	1.835	5.719	-0.451	2.143	2.594	0.759	1.225	1.676	0.918	3.419
170.2	201.6	0.899	14.97	7.749	1.873	1.837	5.716	-0.454	2.144	2.598	0.760	1.225	1.679	0.919	3.416
173.0	202.8	0.914	15.22	7.772	1.879	1.843	5.717	-0.454	2.152	2.606	0.764	1.231	1.685	0.921	3.413
175.8	203.8	0.929	15.47	7.795	1.882	1.846	5.711	-0.460	2.153	2.613	0.767	1.230	1.690	0.923	3.406
178.7	205.0	0.944	15.72	7.818	1.888	1.850	5.706	-0.464	2.159	2.624	0.773	1.234	1.699	0.925	3.392
181.5	205.9	0.959	15.98	-	1.891	1.852	5.702	-0.468	2.159	2.627	0.775	1.233	1.701	0.926	3.391
184.3	206.8	0.974	16.23	7.866	1.893	1.854	5.701	-0.469	2.165	2.634	0.780	1.238	1.707	0.927	3.378
187.2	208.5	0.989	16.48	7.890	1.903	1.864	5.695	-0.475	2.170	2.646	0.782	1.238	1.714	0.932	3.384
190.0	209.8	1.004	16.72	7.913	1.909	1.869	5.692	-0.478	2.177	2.655	0.786	1.242	1.720	0.935	3.380
192.7	209.6	1.017	16.94	7.934	1.902	1.862	5.686	-0.484	2.169	2.653	0.791	1.238	1.722	0.931	3.353

AASHTO T 297

Version: 20170216 Approved By: RJ

Lexington, Kentucky

Report Date: 11/23/2021

Consolidated Undrained	Triaxial Compression
	ASTM D 4767

Project Name	Bridging KY - 054B00009N
Source	054B00009N-2, 15.1'-15.6'
Description	Lean Clay with Sand (CL), brown, moist, firm
•	

Initial Specimen Conditions									
Height (in)	6.065								
Diameter (in)	2.866								
Area (in ²)	6.450								
Moist Weight (lb)	2.761								
Moist Unit Weight (pcf)	122.0								
Moisture Content (%)	22.3								
Dry Weight (lb)	2.258								
Dry Unit Weight (pcf)	99.8								
Void Ratio	0.624								
Degree of Saturation (%)	92.7								

Consolidated Specimen Conditions
Height (in)6.035Calculated Diameter (in)2.883Calculated Area (in²)6.528Moist Weight (lb)2.810Moist Unit Weight (pcf)123.3Moisture Content (%)24.5Dry Weight (lb)2.258Dry Unit Weight (pcf)99.0Void Ratio0.636Degree of Saturation (%)100.0

Project No.	178568003
Lab ID	1341A
Test ID	1-B

Specific Gravity <u>2.60</u> ASTM D 854, Dry

Liquid Limit <u>36</u> Plastic Limit <u>19</u> Plasticity Index <u>17</u>

Confining Stress σ_3 (tsf) 0.610

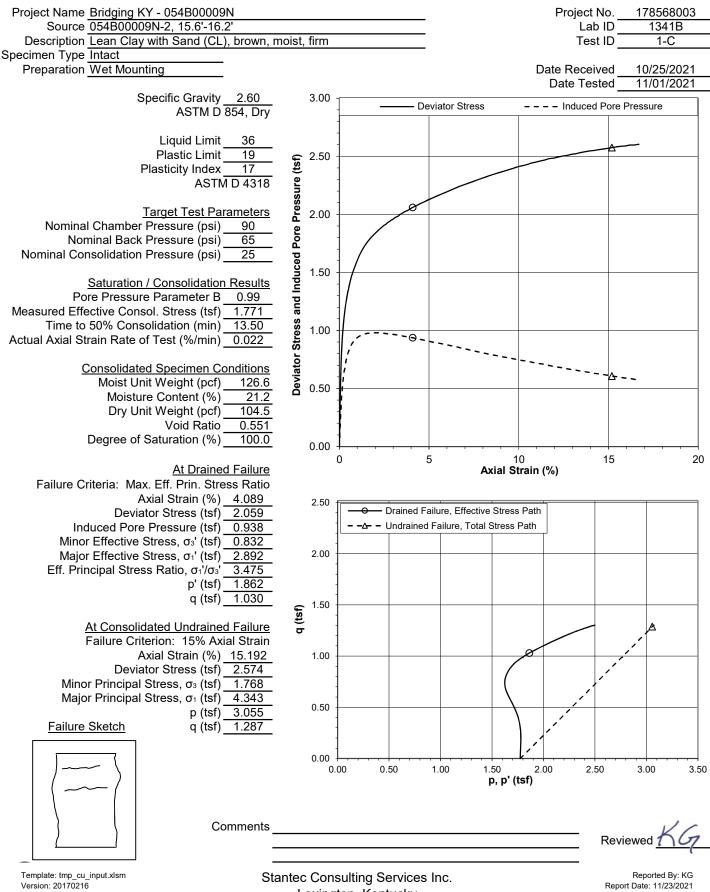
Effective Consolidation Stress σ_3' (tsf) 0.610

Moisture contents obtained using partial specimen. Specimen consolidated cross-sectional area determined using method B. Membrane corrections have been applied,where Em = 200 lbf/in and t = 0.012 in. All other tests performed in association with this specimen are reported separately.

Project:	178568003		Source:	054B00009	54B00009N-2, 15.1'-15.6'							1341A	Test ID		
	Corr.					Corr.		Induced							Eff. Princ.
Test	Axial	Axial	Axial	Corr.	Deviator	Deviator	Pore	Pore							Stress
Time	Load	Deform.	Strain	Area	Stress	Stress	Pressure	Pressure	σ1	σ ₁ '	σ3'	р	р'	q	Ratio
(min)	(lbf)	(in)	(%)	(in²)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	σ ₁ '/σ ₃ '
0.0	0.0	0.000	0.00	6.528	0.000	0.000	5.870	0.000	0.610	0.610	0.610	0.610	0.610	0.000	1.000
0.5	7.0	0.001	0.02	6.529	0.078	0.078	5.925	0.055	0.688	0.633	0.555	0.649	0.594	0.039	1.14(
0.9	12.4	0.003	0.05	6.531	0.137	0.137	5.968	0.098	0.747	0.649	0.511	0.678	0.580	0.069	1.26
1.4	16.8	0.004	0.06	6.532	0.185	0.185	6.002	0.132	0.795	0.663	0.478	0.703	0.570	0.092	1.38
1.8	20.3	0.005	0.08	6.533	0.224	0.224	6.028	0.158	0.832	0.674	0.451	0.721	0.563	0.112	1.49
2.3	23.2	0.007	0.11	6.535	0.255	0.255	6.054	0.184	0.865	0.681	0.426	0.737	0.554	0.127	1.59
2.7	25.8	0.008	0.14	6.537	0.284	0.284	6.074	0.204	0.893	0.689	0.405	0.751	0.547	0.142	1.70
3.2	28.2	0.010	0.16	6.538	0.311	0.310	6.091	0.221	0.919	0.698	0.388	0.763	0.543	0.155	1.800
3.7	30.3	0.011	0.18	6.540	0.334	0.333	6.104	0.234	0.943	0.709	0.375	0.776	0.542	0.167	1.887
4.1	32.4	0.013	0.21	6.542	0.356	0.356	6.118	0.248	0.965	0.717	0.361	0.787	0.539	0.178	1.98
4.6	33.9	0.014	0.23	6.543	0.373	0.373	6.129	0.259	0.983	0.724	0.351	0.797	0.538	0.186	2.06
5.0	35.4	0.016	0.26	6.545	0.390	0.389	6.138	0.268	0.998	0.730	0.341	0.803	0.535	0.194	2.142
5.5	37.0	0.017	0.28	6.546	0.407	0.407	6.147	0.277	1.016	0.739	0.333	0.813	0.536	0.203	2.222
5.9	38.2	0.019	0.31	6.548	0.421	0.420	6.155	0.285	1.030	0.744	0.325	0.820	0.535	0.210	2.29
6.4	39.6	0.020	0.33	6.550	0.436	0.435	6.163	0.293	1.044	0.752	0.317	0.827	0.534	0.217	2.373
6.8	40.8	0.021	0.35	6.551	0.448	0.448	6.168	0.298	1.056	0.758	0.311	0.833	0.534	0.224	2.44
7.3	41.9	0.023	0.38	6.553	0.460	0.459	6.174	0.304	1.068	0.764	0.305	0.838	0.534	0.230	2.50
7.7	42.9	0.025	0.41	6.555	0.471	0.470	6.179	0.309	1.077	0.769	0.298	0.842	0.534	0.235	2.57
8.2	43.7	0.026	0.43	6.556	0.480	0.479	6.185	0.315	1.088	0.773	0.294	0.848	0.533	0.240	2.63
8.7	44.5	0.028	0.46	6.558	0.489	0.488	6.187	0.317	1.096	0.778	0.291	0.852	0.534	0.244	2.67
9.1	45.4	0.029	0.48	6.559	0.499	0.498	6.193	0.323	1.106	0.784	0.286	0.858	0.535	0.249	2.73
9.6	46.4	0.031	0.51	6.561	0.509	0.508	6.196	0.326	1.115	0.789	0.282	0.862	0.535	0.254	2.802
10.0	47.3	0.032	0.53	6.563	0.519	0.518	6.201	0.331	1.127	0.796	0.278	0.869	0.537	0.259	2.86
10.5	48.1	0.034	0.56	6.565	0.527	0.526	6.204	0.334	1.135	0.801	0.275	0.872	0.538	0.263	2.914
10.9	48.9	0.035	0.59	6.566	0.536	0.535	6.206	0.336	1.143	0.807	0.272	0.875	0.539	0.268	2.969
11.4 11.9	49.5 50.3	0.037	0.61 0.64	6.568 6.570	0.543 0.551	0.541 0.550	6.209 6.213	0.339 0.343	1.149 1.157	0.810 0.814	0.269	0.878 0.882	0.539 0.540	0.271	3.014 3.07
12.3	50.3	0.038	0.64	6.570	0.551	0.550	6.213	0.343	1.157	0.814	0.265	0.002	0.540	0.275	3.07
12.3	51.0	0.040	0.60	6.573	0.559	0.557	6.218	0.340	1.172	0.824	0.264	0.880	0.542	0.279	3.14
13.2	51.5	0.042	0.09	6.575	0.504	0.569	6.210	0.348	1.172	0.824	0.262	0.891	0.543	0.281	3.14
13.2	52.1	0.043	0.72	6.575	0.571	0.509	6.2219	0.349	1.178	0.833	0.200	0.893	0.544	0.285	3.19
14.1	53.4	0.043	0.74	6.578	0.578	0.570	6.221	0.354	1.104	0.838	0.257	0.890	0.545	0.200	3.24
14.1	53.6	0.040	0.70	6.580	0.585	0.585	6.224	0.354	1.191	0.838	0.253	0.900	0.545	0.291	3.31
14.0	54.2	0.048	0.79	6.582	0.587	0.585	6.224	0.354	1.200	0.838	0.253	0.899	0.545	0.292	3.33
15.0	54.2	0.050	0.82	6.583	0.595	0.591	6.228	0.358	1.200	0.843	0.233	0.904	0.546	0.290	3.37
15.5	54.4	0.051	0.84	6.585	0.595	0.593	6.228	0.358	1.201	0.849	0.249	0.904	0.540	0.297	3.39
16.4	54.9	0.052	0.87	6.585	0.601	0.599	6.220	0.358	1.206	0.849	0.250	0.908	0.550	0.299	3.39
16.9	55.7	0.054	0.89	6.588	0.603	0.601	6.229	0.359	1.207	0.855	0.247	0.907	0.540	0.300	3.43
17.3	55.9	0.055	0.91	6.500	0.608	0.608	6.230	0.360	1.215	0.853	0.249	0.912	0.552	0.303	3.430

Template: tmp_cu_input.xlsm Version: 20170216 Approved By: RJ

Project: "	17856800	3	Source:	054B00009	N-2, 15.1'-1	5 6'					Lab ID:	1341Δ		Test ID	
Test Time	Corr. Axial Load	Axial Deform.	Axial Strain	Corr. Area	Deviator Stress	Corr. Deviator Stress	Pore Pressure	Induced Pore Pressure	σ1	σ,'	σ ₃ '	р	р'	q	Eff. Princ. Stress Ratio
(min)	(lbf)	(in)	(%)	(in ⁴)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	۹ (tsf)	σ1'/σ3'
17.8	56.1	0.058	0.97	6.591	0.613	0.610	6.232	0.362	1.219	0.858	0.247	0.914	0.553	0.305	3.466
19.6	57.2	0.064	1.06	6.598	0.624	0.621	6.236	0.366	1.230	0.864	0.242	0.919	0.553	0.311	3.563
21.4	57.6	0.071	1.17	6.605	0.628	0.626	6.237	0.367	1.234	0.867	0.242	0.921	0.554	0.313	3.590
23.2	57.7	0.077	1.27	6.612	0.628	0.625	6.238	0.368	1.234	0.866	0.241	0.921	0.553	0.313	3.597
25.0	57.5	0.083	1.37	6.619	0.626	0.623	6.240	0.370	1.231	0.861	0.238	0.920	0.550	0.311	3.612
26.8	57.0	0.089	1.47	6.625	0.619	0.616	6.241	0.371	1.222	0.851	0.235	0.914	0.543	0.308	3.614
28.6	57.1	0.095	1.58	6.632	0.620	0.617	6.245	0.375	1.224	0.849	0.233	0.916	0.541	0.308	3.650
30.4 32.3	56.8 56.9	0.102	1.68 1.78	6.640 6.646	0.616 0.616	0.612 0.612	6.248 6.250	0.378	1.220 1.220	0.842	0.230 0.228	0.914 0.914	0.536 0.534	0.306	3.661 3.682
34.0	56.8	0.108	1.78	6.653	0.615	0.612	6.250	0.380	1.220	0.835	0.226	0.914	0.534	0.305	3.002
35.9	56.5	0.119	1.00	6.659	0.611	0.607	6.255	0.385	1.217	0.830	0.223	0.912	0.530	0.303	3.710
37.7	56.5	0.125	2.07	6.666	0.610	0.605	6.257	0.387	1.213	0.826	0.221	0.910	0.523	0.303	3.744
39.5	56.4	0.132	2.18	6.673	0.608	0.603	6.261	0.391	1.212	0.822	0.218	0.911	0.520	0.302	3.762
41.3	56.6	0.137	2.28	6.680	0.610	0.605	6.262	0.392	1.212	0.821	0.216	0.910	0.518	0.302	3.800
43.1	56.4	0.144	2.38	6.687	0.607	0.601	6.265	0.395	1.210	0.815	0.214	0.909	0.515	0.301	3.813
44.9	56.5	0.150	2.48	6.694	0.608	0.602	6.264	0.394	1.209	0.815	0.213	0.908	0.514	0.301	3.827
46.7	56.4	0.156	2.58	6.701	0.606	0.600	6.265	0.395	1.208	0.813	0.213	0.908	0.513	0.300	3.821
48.5	56.7	0.162	2.68	6.707	0.609	0.603	6.267	0.397	1.210	0.813	0.211	0.909	0.512	0.301	3.858
50.3	56.5	0.168	2.78	6.715	0.606	0.599	6.268	0.398	1.205	0.808	0.209	0.906	0.508	0.299	3.871
52.1	56.4	0.174	2.88	6.721	0.604	0.597	6.269	0.399	1.204	0.805	0.208	0.905	0.506	0.299	3.874
53.9	56.2	0.180	2.98	6.728	0.601	0.594	6.270	0.400	1.200	0.801	0.207	0.903	0.504	0.297	3.877
55.7	56.3 55.9	0.186	3.08	6.735	0.602	0.594	6.271 6.270	0.401 0.400	1.201 1.195	0.800 0.795	0.206	0.904	0.503 0.500	0.297	3.884
57.6 59.4	55.9	0.192	3.19 3.28	6.743 6.749	0.597 0.596	0.590 0.588	6.270	0.400	1.195	0.795	0.205	0.900	0.500	0.295 0.294	3.871 3.870
61.2	55.6	0.198	3.38	6.756	0.593	0.584	6.272	0.402	1.193	0.788	0.203	0.898	0.499	0.294	3.870
63.0	55.6	0.204	3.48	6.763	0.592	0.584	6.272	0.402	1.190	0.785	0.204	0.899	0.493	0.292	3.901
64.8	55.6	0.216	3.58	6.770	0.591	0.583	6.275	0.405	1.189	0.785	0.201	0.898	0.493	0.202	3.884
66.6	55.4	0.222	3.68	6.777	0.589	0.580	6.276	0.406	1.186	0.780	0.200	0.896	0.490	0.290	3.902
68.4	55.5	0.228	3.79	6.785	0.589	0.580	6.278	0.408	1.187	0.779	0.199	0.897	0.489	0.290	3.906
70.2	55.4	0.234	3.88	6.791	0.587	0.578	6.278	0.408	1.184	0.775	0.198	0.895	0.487	0.289	3.922
72.0	55.5	0.240	3.98	6.799	0.588	0.578	6.278	0.408	1.183	0.774	0.196	0.893	0.485	0.289	3.946
73.8	55.3	0.246	4.08	6.805	0.585	0.575	6.279	0.409	1.180	0.771	0.196	0.893	0.484	0.288	3.934
75.6	55.2	0.252	4.18	6.813	0.584	0.574	6.279	0.409	1.178	0.769	0.196	0.892	0.483	0.287	3.931
77.4	55.3	0.258	4.28	6.820	0.584	0.573	6.280	0.410	1.180	0.770	0.196	0.893	0.483	0.287	3.925
79.2	55.0	0.265	4.39	6.828	0.580	0.569	6.280	0.410	1.176	0.766	0.196	0.891	0.481	0.285	3.902
81.1 82.9	55.0 54.9	0.271	4.48 4.59	6.834 6.842	0.579 0.578	0.568 0.567	6.281 6.281	0.411 0.411	1.175 1.172	0.764 0.761	0.196 0.194	0.891 0.888	0.480 0.477	0.284 0.283	3.906
84.7	54.9	0.277	4.69	6.849	0.578	0.566	6.281	0.411	1.172	0.761	0.194	0.889	0.477	0.283	3.899
86.5	54.6	0.289	4.79	6.856	0.574	0.562	6.282	0.412	1.167	0.755	0.193	0.886	0.474	0.281	3.916
88.3	54.8	0.295	4.88	6.863	0.575	0.563	6.284	0.414	1.170	0.755	0.192	0.888	0.474	0.282	3.934
90.1	54.8	0.302	5.00	6.871	0.574	0.562	6.283	0.413	1.167	0.754	0.192	0.886	0.473	0.281	3.920
94.6	54.5	0.317	5.25	6.889	0.570	0.557	6.284		1.164	0.750	0.193	0.885	0.471	0.279	3.891
99.1	54.4	0.332	5.50	6.908	0.567	0.554	6.284	0.414	1.160	0.746	0.192	0.883	0.469	0.277	3.885
103.6	53.9	0.347	5.75	6.926	0.561	0.547	6.288	0.418	1.153	0.735	0.188	0.879	0.461	0.273	3.910
108.1	53.7	0.362	5.99	6.944	0.556	0.542	6.286	0.416	1.147	0.730	0.189	0.876	0.459	0.271	3.875
112.6	53.2	0.377	6.25	6.963	0.550	0.535	6.291	0.421	1.141	0.720	0.184	0.873	0.452	0.268	3.906
117.1	52.8	0.392	6.50	6.981	0.545	0.529	6.291	0.420	1.133	0.713	0.183	0.869	0.448	0.265	3.885
121.7 126.2	52.9 52.9	0.407	6.75 7.00	7.000 7.019	0.544 0.542	0.528 0.526	6.294 6.293	0.423	1.132 1.129	0.708	0.181 0.180	0.868	0.445 0.443	0.264 0.263	3.916 3.922
130.7 135.2	53.0 53.0	0.438	7.25 7.51	7.038 7.057	0.542 0.541	0.525 0.523	6.296 6.299	0.426 0.429	1.128 1.127	0.702	0.178 0.176	0.866	0.440 0.437	0.262 0.261	3.954 3.974
139.7	53.0	0.453	7.75	7.037	0.541	0.525	6.300	0.429	1.127	0.698	0.175	0.867	0.437	0.261	4.005
144.2	53.3	0.483	8.00	7.096	0.540	0.523	6.301	0.430	1.126	0.695	0.173	0.865	0.437	0.202	4.003
148.7	53.6	0.499	8.26	7.116	0.542	0.521	6.300	0.430	1.126	0.696	0.174	0.865	0.435	0.261	4.012
153.2	53.8	0.513	8.50	7.134	0.543	0.523	6.300	0.430	1.126	0.696	0.173	0.864	0.435	0.261	4.012
157.7	54.3	0.528	8.76	7.154	0.547	0.526	6.300	0.430	1.130	0.699	0.173	0.867	0.436	0.263	4.032
162.2	55.0	0.544	9.01	7.174	0.552	0.530	6.299	0.429	1.133	0.704	0.174	0.868	0.439	0.265	4.041
166.7	55.0	0.559	9.26	7.194	0.551	0.528	6.297	0.427	1.130	0.703	0.175	0.866	0.439	0.264	4.023
171.2	55.6	0.574	9.51	7.214	0.555	0.532	6.298	0.428	1.134	0.707	0.174	0.868	0.441	0.266	4.053
175.8	55.8	0.590	9.77	7.234	0.555	0.532	6.295	0.425	1.134	0.709	0.177	0.868	0.443	0.266	3.998
180.3	56.4	0.605	10.02	7.255	0.560	0.536	6.293	0.423	1.137	0.715	0.179	0.870	0.447	0.268	3.987
184.8	56.9	0.620	10.27	7.275	0.563	0.539	6.292	0.422	1.142	0.720	0.181	0.873	0.451	0.269	3.967
189.3	57.1	0.635	10.52	7.295	0.564	0.539	6.291	0.421	1.142	0.721	0.183	0.873	0.452	0.269	3.950
193.8	57.9	0.650	10.77	7.315	0.570	0.545	6.287	0.417	1.147	0.730	0.185	0.875	0.457	0.272	3.940
198.3 202.8	58.5 59.3	0.665	11.03 11.27	7.337 7.357	0.574 0.580	0.548 0.553	6.284 6.281	0.414 0.411	1.150 1.155	0.736 0.744	0.188 0.191	0.876 0.878	0.462 0.467	0.274 0.277	3.919 3.903
202.8	59.3	0.695	11.27	7.378	0.580	0.555	6.280	0.411	1.155	0.744	0.191	0.880	0.407	0.277	3.903
201.0		0.000	11.77	7.399	0.584	0.556	6.276	0.406	1.159	0.753	0.197	0.881	0.475	0.278	3.822
211.8	60.0	0.710													


Template: tmp_cu_input.xlsm Version: 20170216 Approved By: RJ Stantec Consulting Services Inc. Lexington, Kentucky

Project:	17856800	3	Source:	054B00009	N-2, 15.1'-1	5.6'					Lab ID:	1341A		Test ID	
Test Time	Corr. Axial Load	Axial Deform.	Axial Strain	Corr. Area	Deviator Stress	Corr. Deviator Stress	Pore Pressure	Induced Pore Pressure	σ ₁	σ ₁ '	σ3'	р	р'	q	Eff. Princ. Stress Ratio
(min)	(lbf)	(in)	(%)	(in ⁺)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	σ ₁ '/σ ₃ '
220.8	60.8	0.741	12.28	7.441	0.588	0.559	6.274	0.404	1.161	0.758	0.199	0.882	0.478	0.279	3.811
225.3	60.9	0.756	12.53	7.463	0.588	0.558	6.271	0.401	1.160	0.759	0.202	0.881	0.481	0.279	3.766
229.9	61.5	0.771	12.78	7.484	0.592	0.561	6.270	0.400	1.164	0.764	0.202	0.883	0.483	0.281	3.774
234.4	62.1	0.787	13.03	7.506	0.596	0.564	6.270	0.400	1.167	0.767	0.202	0.884	0.485	0.282	3.789
238.9	62.5	0.801	13.28	7.527	0.598	0.566	6.269	0.399	1.168	0.769	0.204	0.885	0.487	0.283	3.776
243.4	62.9	0.817	13.53	7.549	0.600	0.568	6.265	0.395	1.169	0.774	0.207	0.885	0.490	0.284	3.749
247.9	63.5	0.832	13.79	7.572	0.604	0.571	6.264	0.394	1.172	0.778	0.207	0.886	0.493	0.285	3.751
252.4	63.9	0.847	14.03	7.593	0.606	0.573	6.262	0.391	1.174	0.782	0.210	0.888	0.496	0.286	3.730
256.9	64.3	0.862	14.29	7.616	0.608	0.573	6.261	0.391	1.176	0.785	0.211	0.889	0.498	0.287	3.715
261.4	64.8	0.877	14.54	7.638	0.611	0.576	6.260	0.390	1.179	0.789	0.213	0.891	0.501	0.288	3.705
265.9	65.4	0.893	14.79	7.661	0.615	0.579	6.256	0.386	1.181	0.795	0.216	0.891	0.505	0.290	3.687
270.4	66.1	0.907	15.04	7.683	0.620	0.584	6.257	0.387	1.186	0.799	0.215	0.894	0.507	0.292	3.710
275.0	66.6	0.923	15.29	7.706	0.623	0.586	6.252	0.382	1.186	0.804	0.218	0.893	0.511	0.293	3.687
279.5	67.6	0.938	15.54	7.728	0.630	0.593	6.252	0.382	1.195	0.813	0.220	0.899	0.516	0.296	3.698
284.0	67.8	0.953	15.79	7.752	0.629	0.591	6.249	0.379	1.192	0.812	0.221	0.896	0.517	0.296	3.676
288.5	68.6	0.969	16.05	7.776	0.635	0.597	6.247	0.377	1.197	0.820	0.223	0.898	0.521	0.298	3.680
293.0	69.0	0.983	16.30	7.799	0.637	0.598	6.243	0.373	1.198	0.825	0.227	0.898	0.526	0.299	3.641
297.5	69.7	0.998	16.54	7.821	0.641	0.602	6.244	0.374	1.204	0.830	0.228	0.903	0.529	0.301	3.636
302.0	70.1	1.014			0.644	0.603	6.240	0.370	1.204	0.834	0.231	0.903	0.532	0.302	3.616
306.1	70.4	1.027	17.02	7.867	0.644	0.603	6.237	0.367	1.204	0.837	0.234	0.903	0.535	0.302	3.582

Consolidated Undrained Triaxial Compression

AASHTO T 297

Approved By: RJ

Lexington, Kentucky

Consolidated Undrained	Triaxial	Compression
		ASTM D 4767

Project Name Bridging KY - 054B00009N Source 054B00009N-2, 15.6'-16.2' Description Lean Clay with Sand (CL), brown, moist, firm

Initial Specimen Co	<u>nditions</u>
Height (in)	6.061
Diameter (in)	2.887
Area (in ²)	6.548
Moist Weight (Ib)	2.888
Moist Unit Weight (pcf)	125.7
Moisture Content (%)	21.5
Dry Weight (lb)	2.377
Dry Unit Weight (pcf)	103.5
Void Ratio	0.565
Degree of Saturation (%)	98.8

Consolidated Specimen Conditions
Height (in)6.000Calculated Diameter (in)2.888Calculated Area (in²)6.553Moist Weight (lb)2.881Moist Unit Weight (pcf)126.6Moist ure Content (%)21.2Dry Weight (lb)2.377Dry Unit Weight (pcf)104.5Void Ratio0.551Degree of Saturation (%)100.0

Project No.	178568003
Lab ID	1341B
Test ID	1-C

Specific Gravity <u>2.60</u> ASTM D 854, Dry

Liquid Limit <u>36</u> Plastic Limit <u>19</u> Plasticity Index <u>17</u> ASTM D 4318

> Confining Stress σ₃ (tsf) <u>1.774</u>

Effective Consolidation Stress σ_3' (tsf) 1.774

Moisture contents obtained using whole specimen. Specimen consolidated cross-sectional area determined using method B. Membrane corrections have been applied,where Em = 200 lbf/in and t = 0.012 in. All other tests performed in association with this specimen are reported separately.

Project:	17856800	3	Source:	054B00009	N-2, 15.6'-10	6.2'					Lab ID:	1341B	Test ID		
	Corr.					Corr.		Induced							Eff. Princ.
Test	Axial	Axial	Axial	Corr.	Deviator	Deviator	Pore	Pore							Stress
Time	Load	Deform.	Strain	Area	Stress	Stress	Pressure	Pressure	σ1	σ ₁ '	σ3'	р	р'	q	Ratio
(min)	(lbf)	(in)	(%)	(in ⁻)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	σ ₁ '/σ ₃ '
0.0	0.0	0.000	0.00	6.553	0.000	0.000	4.706	0.000	1.774	1.774	1.774	1.774	1.774	0.000	1.00
1.1	14.9	0.001	0.02	6.554	0.163	0.163	4.785	0.079	1.938	1.859	1.696	1.856	1.777	0.082	1.096
2.3	31.9	0.003	0.04	6.556	0.351	0.351	4.875	0.168	2.124	1.956	1.605	1.949	1.781	0.175	1.218
3.4	47.9	0.004	0.07	6.557	0.526	0.526	4.965	0.259	2.299	2.041	1.515	2.036	1.778	0.263	1.34
4.5	60.9	0.006	0.10	6.559	0.669	0.669	5.045	0.339	2.443	2.104	1.435	2.108	1.769	0.334	1.466
5.7	71.0	0.007	0.12	6.560	0.780	0.779	5.112	0.406	2.553	2.147	1.367	2.163	1.757	0.390	1.570
6.8	78.9	0.008	0.14	6.562	0.865	0.865	5.169	0.463	2.639	2.176	1.311	2.206	1.743	0.433	1.660
7.9	84.9	0.010	0.17	6.564	0.931	0.931	5.216	0.509	2.705	2.195	1.264	2.239	1.730	0.465	1.73
9.0	90.2	0.012	0.20	6.566	0.989	0.988	5.257	0.550	2.762	2.212	1.223	2.268	1.718	0.494	1.808
10.2	94.8	0.013	0.22	6.567	1.039	1.038	5.294	0.587	2.812	2.225	1.187	2.293	1.706	0.519	1.875
11.3	98.5	0.015	0.24	6.569	1.080	1.080	5.324	0.617	2.853	2.236	1.156	2.313	1.696	0.540	1.934
12.4	102.1	0.016	0.27	6.570	1.118	1.118	5.353	0.647	2.891	2.244	1.126	2.332	1.685	0.559	1.993
13.6	105.2	0.018	0.30	6.572	1.152	1.151	5.377	0.671	2.925	2.254	1.102	2.349	1.678	0.576	2.044
14.7	108.0	0.019	0.32	6.574	1.183	1.182	5.400	0.694	2.955	2.261	1.079	2.364	1.670	0.591	2.09
15.8	110.4	0.021	0.34	6.575	1.209	1.208	5.420	0.714	2.981	2.267	1.059	2.377	1.663	0.604	2.14
16.9	112.8	0.022	0.36	6.577	1.235	1.234	5.440	0.734	3.007	2.274	1.040	2.390	1.657	0.617	2.18
18.1	115.0	0.023	0.39	6.578	1.258	1.257	5.457	0.751	3.031	2.280	1.023	2.402	1.651	0.629	2.22
19.2	116.9	0.025	0.42	6.580	1.279	1.278	5.473	0.766	3.051	2.285	1.007	2.412	1.646	0.639	2.269
20.3	119.0	0.027	0.44	6.582	1.301	1.300	5.487	0.781	3.073	2.292	0.992	2.423	1.642	0.650	2.31
21.4	120.8	0.027	0.46	6.583	1.321	1.320	5.500	0.794	3.093	2.298	0.978	2.433	1.638	0.660	2.350
22.6	122.5	0.029	0.48	6.584	1.340	1.338	5.513	0.807	3.111	2.304	0.966	2.442	1.635	0.669	2.380
23.7	124.1	0.031	0.51	6.586	1.357	1.356	5.525	0.818	3.129	2.311	0.955	2.451	1.633	0.678	2.419
24.9	125.7	0.032	0.53	6.588	1.374	1.373	5.535	0.829	3.146	2.317	0.944	2.459	1.630	0.686	2.454
26.0	127.3	0.033	0.56	6.589	1.391	1.390	5.545	0.839	3.162	2.323	0.933	2.467	1.628	0.695	2.48
27.1	128.8	0.035	0.58	6.591	1.407	1.406	5.555	0.849	3.179	2.330	0.924	2.476	1.627	0.703	2.52
28.2	130.4	0.036	0.60	6.593	1.424	1.422	5.564	0.858	3.195	2.337	0.915	2.484	1.626	0.711	2.55
29.3	131.8	0.038	0.63	6.594	1.439	1.438	5.572	0.866	3.210	2.344	0.906	2.491	1.625	0.719	2.586
30.5	133.0	0.039	0.66	6.596	1.452	1.451	5.580	0.874	3.223	2.349	0.899	2.498	1.624	0.725	2.614
31.6	134.3	0.040	0.67	6.597	1.465	1.464	5.586	0.880	3.236	2.356	0.892	2.504	1.624	0.732	2.640
36.1	139.0	0.047	0.78	6.604	1.515	1.513	5.611	0.905	3.286	2.381	0.867	2.529	1.624	0.757	2.744
40.6	143.2	0.053	0.88	6.611	1.560	1.558	5.630	0.923	3.330	2.406	0.848	2.551	1.627	0.779	2.836
45.2	147.1	0.059	0.98	6.618	1.600	1.598	5.644	0.938	3.370	2.432	0.834	2.571	1.633	0.799	2.91
49.7	150.7	0.065	1.08	6.625	1.638	1.635	5.655	0.949	3.407	2.458	0.823	2.589	1.640	0.817	2.987
54.2	153.7	0.071	1.18	6.631	1.669	1.666	5.664	0.957	3.437	2.479	0.814	2.604	1.647	0.833	3.04
58.7	156.7	0.077	1.29	6.638	1.699	1.696	5.670	0.964	3.467	2.503	0.807	2.619	1.655	0.848	3.10
63.2	159.3	0.083	1.39	6.645	1.726	1.722	5.675	0.969	3.493	2.524	0.802	2.632	1.663	0.861	3.14
67.7	161.6	0.089	1.49	6.652	1.749	1.745	5.680	0.973	3.516	2.543	0.797	2.643	1.670	0.873	3.188
72.2	163.7	0.095	1.59	6.658	1.770	1.766	5.682	0.976	3.537	2.561	0.795	2.654	1.678	0.883	3.223
76.7	165.8	0.101	1.69	6.665	1.791	1.787	5.684	0.977	3.557	2.579	0.792	2.663	1.686	0.893	3.255

Template: tmp_cu_input.xlsm Version: 20170216 Approved By: RJ Stantec Consulting Services Inc. Lexington, Kentucky

r roject.	17856800	3	Source:	054B00009	N-2, 15.6'-1			lu el contra	1		Lab ID:	1341B		Test ID	F# P ·
Test	Corr. Axial	Axial	Axial	Corr.	Deviator	Corr. Deviator	Pore	Induced Pore							Eff. Princ. Stress
Test Time	Load	Deform.	Strain	Area	Stress	Stress	Pressure	Pressure	σı	σ ₁ '	σ3'	р	p'	q	Ratio
(min)	(lbf)	(in)	(%)	(in ⁺)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	۹ (tsf)	σ1'/σ3'
81.2	167.5	0.107	1.78	6.672	1.808	1.803	5.685	0.979	3.573	2.594	0.791	2.672	1.693	0.902	3.280
85.8	169.2	0.113	1.89	6.679	1.823	1.819	5.686	0.979	3.589	2.610	0.791	2.680	1.700	0.909	3.300
90.3	170.9	0.120	1.99	6.686	1.841	1.836	5.687	0.981	3.606	2.625	0.790	2.688	1.707	0.918	3.325
94.8	172.4	0.126	2.09	6.693	1.855	1.850	5.687	0.980	3.620	2.639	0.790	2.695	1.715	0.925	3.342
99.3	173.9	0.131	2.18	6.699	1.869	1.864	5.687	0.981	3.634	2.654	0.789	2.702	1.721	0.932	3.362
103.8	175.4	0.137	2.28	6.706	1.883	1.878	5.685	0.979	3.647	2.668	0.790	2.708	1.729	0.939	3.375
108.3	176.9	0.143	2.38	6.713	1.897	1.892	5.684	0.978	3.661	2.683	0.791	2.715	1.737	0.946	3.390
112.8	178.4	0.150	2.50	6.721	1.911	1.905	5.683	0.977	3.674	2.698	0.793	2.722	1.745	0.953	3.404
117.4	179.3	0.155	2.59	6.727	1.919	1.913	5.680	0.974	3.682	2.708	0.795	2.726	1.752	0.957	3.406
121.9	181.0	0.162	2.69	6.734	1.935	1.929	5.679	0.973	3.698	2.726	0.797	2.734	1.761	0.964	3.420
126.4	182.1	0.168	2.79	6.741	1.945	1.938	5.676	0.970	3.707	2.737	0.799	2.738	1.768	0.969	3.425
130.9	183.3	0.173	2.88	6.747	1.956	1.950	5.676	0.969	3.720	2.750	0.801	2.745	1.776	0.975	3.434
135.4	184.4	0.180	3.00	6.755	1.965	1.958	5.673	0.967	3.728	2.762	0.804	2.750	1.783	0.979	3.436
139.9	185.7	0.185	3.08	6.761	1.977	1.970	5.671	0.965	3.740	2.775	0.805	2.755	1.790	0.985	3.446
144.4	186.6	0.191	3.19	6.768	1.985	1.978	5.669	0.963	3.756	2.793 2.796	0.816	2.767	1.805	0.989	3.424
149.0	187.6	0.197	3.29	6.776	1.993	1.985	5.666	0.960	3.756		0.811	2.763	1.803	0.993	3.449
153.4	189.1 190.1	0.203	3.39 3.49	6.783	2.007	1.999 2.007	5.663	0.957	3.770	2.813	0.813	2.770	1.813 1.820	1.000	3.458
158.0 162.5	190.1	0.209	3.49	6.790 6.797	2.016 2.026	2.007	5.660 5.657	0.954 0.951	3.778 3.788	2.824 2.837	0.817 0.820	2.774 2.779	1.820	1.004	3.458 3.462
162.5	191.3	0.215	3.69	6.804	2.026	2.018	5.655	0.951	3.796	2.848	0.820	2.779	1.834	1.009	3.462
171.5	192.3	0.221	3.80	6.811	2.035	2.020	5.651	0.949	3.802	2.857	0.825	2.785	1.841	1.013	3.46
176.0	194.2	0.233	3.89	6.818	2.041	2.002	5.650	0.944	3.811	2.867	0.826	2.790	1.847	1.010	3.472
180.5	195.2	0.239	3.98	6.824	2.059	2.050	5.647	0.940	3.820	2.880	0.830	2.795	1.855	1.025	3.470
185.0	196.4	0.245	4.09	6.832	2.069	2.059	5.644	0.938	3.830	2.892	0.832	2.800	1.862	1.030	3.475
189.6	197.4	0.251	4.19	6.839	2.078	2.068	5.640	0.934	3.838	2.904	0.836	2.804	1.870	1.034	3.473
194.1	198.2	0.258	4.29	6.847	2.085	2.074	5.637	0.931	3.845	2.914	0.840	2.808	1.877	1.037	3.469
198.6	199.3	0.263	4.39	6.854	2.093	2.083	5.634	0.928	3.855	2.927	0.844	2.813	1.885	1.041	3.469
203.1	200.2	0.269	4.49	6.861	2.101	2.091	5.631	0.925	3.862	2.937	0.847	2.817	1.892	1.045	3.469
207.6	201.1	0.275	4.59	6.868	2.109	2.098	5.628	0.922	3.869	2.947	0.849	2.820	1.898	1.049	3.470
212.1	201.9	0.281	4.69	6.875	2.115	2.103	5.625	0.919	3.874	2.955	0.852	2.823	1.904	1.052	3.469
223.4	204.5	0.296	4.94	6.893	2.136	2.124	5.616	0.910	3.894	2.984	0.860	2.832	1.922	1.062	3.469
234.7	206.6	0.311	5.19	6.912	2.153	2.140	5.607	0.901	3.910	3.009	0.869	2.840	1.939	1.070	3.462
246.0	209.0	0.327	5.45	6.930	2.171	2.158	5.600	0.894	3.929	3.036	0.877	2.850	1.956	1.079	3.460
257.2	211.1	0.341	5.69	6.948	2.187	2.174	5.593	0.886	3.945	3.058	0.885	2.858	1.971	1.087	3.457
268.5	213.3	0.357	5.94	6.967	2.204	2.190	5.585	0.878	3.961	3.083	0.893	2.866	1.988	1.095	3.452
279.8	215.5	0.371	6.18	6.985	2.222	2.207	5.576	0.870	3.978	3.108	0.901	2.875	2.005	1.103	3.448
291.1	217.7	0.386	6.44	7.004	2.238	2.223	5.570	0.863	3.995	3.132	0.909	2.884	2.020	1.111	3.445
302.3	219.9	0.401	6.68	7.022	2.255	2.239	5.560	0.853	4.011	3.157	0.918	2.891	2.038	1.120	3.439
313.6	222.1	0.416	6.94	7.041	2.271	2.254	5.551	0.844	4.026	3.182	0.928	2.899	2.055	1.127	3.430
324.9	224.2	0.431	7.19	7.060	2.287	2.269	5.543	0.836	4.040	3.204	0.934	2.906	2.069	1.135	3.429
336.2	226.0 228.2	0.446	7.44	7.079	2.299	2.281	5.533	0.827	4.052	3.225	0.944	2.911	2.084	1.140	3.417
347.5	220.2	0.461	7.69	7.099	2.315	2.296	5.525	0.819 0.810			0.951		2.099 2.113		3.414 3.411
358.8 370.0	230.3	0.477	7.94 8.19	7.118 7.137	2.329 2.342	2.310 2.322	5.517 5.508	0.810	4.079 4.090	3.268 3.288	0.958	2.924 2.929	2.113	1.155	3.41
381.3	232.1	0.491	8.43	7.137	2.342	2.322	5.500	0.802	4.090	3.311	0.966	2.929	2.127	1.161	3.397
392.6	234.2	0.500	8.69	7.176	2.337	2.330	5.492	0.786	4.103	3.331	0.973	2.937	2.143	1.175	3.393
403.9	238.0	0.536	8.93	7.196	2.370	2.343	5.485	0.778	4.128	3.350	0.992		2.170	1.180	3.385
403.9	238.0	0.550	9.19	7.190	2.301	2.300	5.465	0.778	4.120	3.369	0.990	2.940	2.170	1.180	3.379
426.4	241.9	0.566	9.43	7.235	2.407	2.384	5.471	0.765	4.154	3.389	1.005		2.103	1.192	3.373
437.7	243.7	0.581	9.68	7.255	2.419	2.396	5.463	0.757	4.165	3.408	1.003		2.210	1.198	3.366
449.0	245.9	0.596	9.94	7.276	2.433	2.409	5.455	0.749	4.178	3.429	1.020		2.225	1.205	3.361
460.3	247.5	0.611	10.18	7.296	2.442	2.403	5.448	0.743	4.187	3.445	1.020	2.978	2.236	1.209	3.354
471.5	249.2	0.626	10.44	7.317	2.452	2.427	5.443	0.737	4.197	3.460	1.033	2.984	2.247	1.214	3.350
482.8	251.3	0.641	10.68	7.336	2.466	2.440	5.435	0.729	4.211	3.482	1.042	2.991	2.262	1.220	3.343
494.1	252.9	0.657	10.95	7.358	2.475	2.449	5.426	0.720	4.219	3.499	1.050	2.994	2.275	1.224	3.332
505.4	254.7	0.671	11.18	7.378	2.486	2.459	5.421	0.715	4.229	3.515	1.056	3.000	2.285	1.229	3.32
516.7	256.4	0.686	11.44	7.399	2.495	2.467	5.415	0.709	4.237	3.528	1.061	3.003	2.295	1.234	3.32
528.0	258.3	0.701	11.68	7.420	2.507	2.479	5.406	0.700	4.248	3.548	1.069	3.008	2.309	1.239	3.318
539.2	259.7	0.717	11.94	7.442	2.513	2.484	5.397	0.691	4.254	3.563	1.079	3.012	2.321	1.242	3.30
550.5	261.4	0.731	12.19	7.462	2.522	2.493	5.391	0.685	4.262	3.577	1.084	3.015	2.330	1.246	3.300
561.8	263.1	0.746	12.44	7.484	2.531	2.501	5.385	0.678	4.270	3.592	1.091	3.020	2.341	1.251	3.29
573.1	264.5	0.762	12.69	7.505	2.538	2.507	5.377	0.671	4.275	3.605	1.097	3.022	2.351	1.254	3.28
584.3	266.3	0.776	12.93	7.526	2.548	2.517	5.370	0.664	4.285	3.621	1.104	3.026	2.362	1.258	3.28
595.6	267.8	0.791	13.19	7.548	2.554	2.523	5.365	0.659	4.292	3.633	1.111	3.031	2.372	1.261	3.27
606.9	269.6	0.806	13.44	7.570	2.564	2.532	5.358	0.652	4.302	3.650	1.118	3.036	2.384	1.266	3.264
618.2	271.2	0.821	13.69	7.592	2.572	2.539	5.352	0.646	4.309	3.663	1.124	3.039	2.393	1.270	3.259
629.4	272.7	0.836	13.93	7.614	2.579	2.545	5.346	0.639	4.314	3.675	1.130		2.402	1.273	3.253
640.7	274.1	0.852	14.20	7.637	2.584	2.550	5.338	0.632	4.319	3.687	1.137		2.412	1.275	3.243
652.0	275.6	0.867	14.45	7.659	2.591	2.556	5.333	0.627	4.326	3.699	1.142	3.048	2.421	1.278	3.238

Template: tmp_cu_input.xlsm Version: 20170216 Approved By: RJ Stantec Consulting Services Inc. Lexington, Kentucky

Project:	17856800)3	Source:	054B00009	N-2, 15.6'-10	6. 2'					Lab ID:	1341B		Test ID	
Test Time	Corr. Axial Load	Axial Deform.	Axial Strain	Corr. Area	Deviator Stress	Corr. Deviator Stress	Pore Pressure	Induced Pore Pressure	σ ₁	σ ₁ '	σ3'	р	p'	q	Eff. Princ. Stress Ratio
(min)	(lbf)	(in)	(%)	(in ⁺)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	(tsf)	σ₁'/σ₃'
663.3	277.1	0.882	14.69	7.681	2.598	2.562	5.327	0.620	4.331	3.711	1.148	3.050	2.429	1.281	3.232
674.6	278.6	0.897	14.95	7.704	2.603	2.568	5.321	0.615	4.337	3.722	1.154	3.053	2.438	1.284	3.225
685.9	280.2	0.912	15.19	7.727	2.611	2.574	5.314	0.608	4.343	3.735	1.160	3.055	2.448	1.287	3.218
697.1	281.8	0.927	15.45	7.750	2.618	2.581	5.309	0.603	4.350	3.747	1.166	3.059	2.457	1.290	3.213
708.4	283.2	0.941	15.69	7.772	2.623	2.586	5.303	0.597	4.354	3.758	1.172	3.061	2.465	1.293	3.207
719.7	284.4	0.957	15.95	7.796	2.627	2.589	5.297	0.591	4.357	3.766	1.177	3.063	2.472	1.294	3.199
731.0	286.1	0.971	16.18	7.818	2.635	2.596	5.295	0.588	4.365	3.777	1.181	3.067	2.479	1.298	3.199
742.3	287.2	0.987	16.44	7.842	2.637	2.597	5.286	0.580	4.367	3.787	1.190	3.068	2.488	1.299	3.183
753.5	288.8	1.001	16.69	7.865	2.644	2.604	5.278	0.572	4.373	3.801	1.197	3.071	2.499	1.302	3.176
753.6	288.7	1.001	16.69	7.865	2.642	2.603	5.277	0.570	4.370	3.800	1.198	3.069	2.499	1.301	3.173

HOPKINS COUNTY STP BRZ 9030 (500)

One Dimensional Consolidation of Soils Using Incremental Loading ASTM D 2435

Project No. 178568003 Project Name Bridging KY - 054B00009N Source 054B00009N-2, 16.2'-16.5' Lab ID 1341 Description Lean Clay with Sand (CL), brown and gray, moist, firm, Mn Date Received 10/25/2021 Specimen Type Undisturbed Specific Gravity 2.7 ASTM D 854, Dry Prepared Using Cutting Ring LL B - for 30 min. PL 19 Test Method ΡI Test Condition Inundated at 0.05 tsf **Initial Specimen Conditions Final Specimen Conditions** Moisture Content (%) Moisture Content (%) 21.8 19.9 104.8 Dry Unit Weight (pcf) Dry Unit Weight (pcf) 111.2 0.605 Void Ratio Void Ratio 0.513 Degree of Saturation (%) Degree of Saturation (%) 97.3 104.7 Initial Specimen Height (in) 1.0007 Final Specimen Height (in) 0.9433 Equivalent Height of Solids (in) 0.624 Preconsolidation Pressure* (tsf) Void Ratio @ Preconsolidation Pressure Seating Load 0 Void Ratio at d₁₀₀ vs. Stress Initial Loading 0.700 Δ 0 Unload @ dmax ۸ Recompression Final Unload @ dmax Apparent Max. Curvature 0 0.650 + Preconsolidation Pressure 0.600 Ratio, 0.550 Void I 0.500 0.450 0.400 0.350 0.300 1.00 100.00 1000.00 10000.00 0.01 0.10 10.00 Vertical Effective Stress (tsf) **Coefficient of Consolidation** Initial Loading 6.000 Recompression 4.000 ft²/Day 2.000 2 \diamond 0.000 0.01 0.10 1.00 10.00 100.00 1000.00 10000.00 Vertical Effective Stress (tsf) Comments Reviewed By

ASTM D 2435

Pro	oject Name	Bridging KY			Proj	ect No.	178568003			
	Source	054B00009	N-2, 16.2'-1	6.5'					Lab ID	1341
	Description	Lean Clay w	vith Sand (C	CL), brown a	nd gray, mo	oist, firm, Mr	1	Date R	eceived	10/25/2021
		Undisturbed		,,		. ,			-	
Load	Specimen			Specimen			Specimen	Fitt	ing	
Increment	Height	Height	Void Ratio	Height	Void Ratio	Load At	Height	Tim	ne**	
tsf	(in)	(in)	е	(in)	е	Cv	(in)	(m	in)	Cv
σ_v	(\mathbf{d}_0)	@ d ₁₀₀	@ d ₁₀₀	@ d _{max}	@ d _{max}	tsf	@ d ₅₀	@ t ₅₀	@ t ₉₀	ft ² /day
0.06	1.0007									
0.27	0.9975	0.9963	0.598	0.9959	0.597	0.16	0.9969		0.5	4.362
0.52	0.9934	0.9914	0.590	0.9905	0.589	0.39	0.9924		1.7	1.255
1.02	0.9856	0.9825	0.576	0.9813	0.574	0.77	0.9841		2.6	0.802
2.02	0.9755	0.9716	0.558	0.9699	0.555	1.52	0.9736		1.8	1.103
4.02	0.9610	0.9542	0.530	0.9523	0.527	3.02	0.9576		3.2	0.600
8.04	0.9416	0.9306	0.492	0.9274	0.487	6.03	0.9361		3.2	0.573
16.06	0.9115	0.8954	0.436	0.8911	0.429	12.05	0.9035		3.0	0.572
25.93	0.8710	0.8561	0.373	0.8545	0.371	20.99	0.8635		0.4	4.391
16.07	0.8643			0.8699	0.395					
4.03	0.8786			0.8951	0.436					
1.02	0.8998			0.9145	0.467					
0.27	0.9179			0.9327	0.496					
0.07	0.9346			0.9433	0.513					

Testing Details:

Consolidation Press ID CON-5 Trimming Ring ID GS-86 Initial MC from Trimmings (%) 21.8

Test Start Date <u>11/01/2021</u> Technician <u>KG</u>

Final Differential Height (in) _____0.015

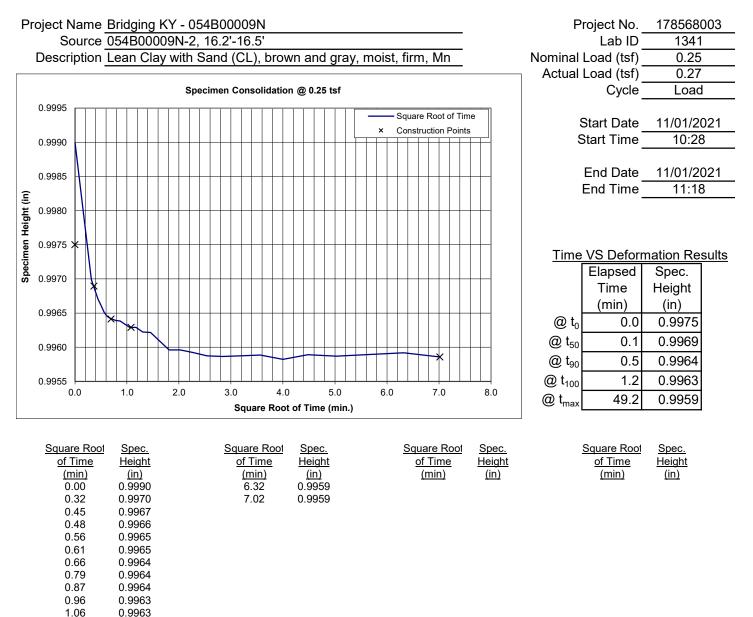
Test End Date 11/05/2021

Test End Date <u>11/05/2021</u> Technician <u>KG</u>

When available, all other tests performed in association with this specimen are reported separately.

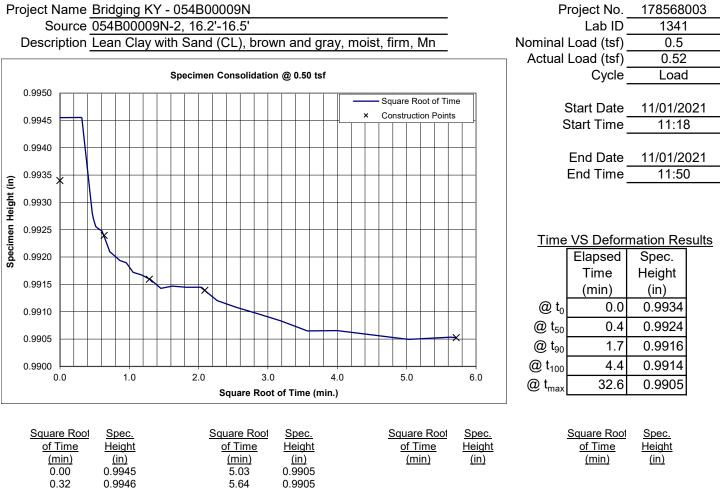
* When presented, The preconsolidation pressure evaluated using the Casagrande Method, as per ASTM D 2435.

** Cv Computation Methods:


0 t_{50}, Cv calculated using Log Time Method.

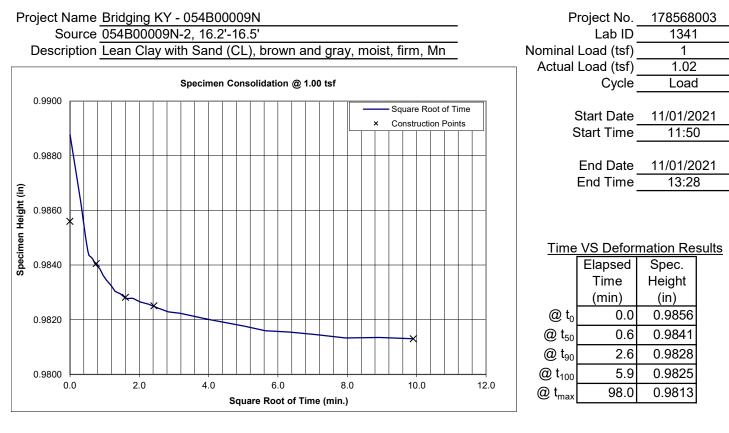
0 $t_{90},$ Cv calculated using Square Root of Time Method.

Stantec Consulting Services Inc. Lexington, Kentucky


ASTM D 2435

1.18	0.9963
1.30	0.9962
1.45	0.9962
1.62	0.9961
1.81	0.9960
2.02	0.9960
2.27	0.9959
2.54	0.9959
2.84	0.9959
3.18	0.9959
3.57	0.9959
4.00	0.9958
4.48	0.9959
5.02	0.9959
5.6	0.9959

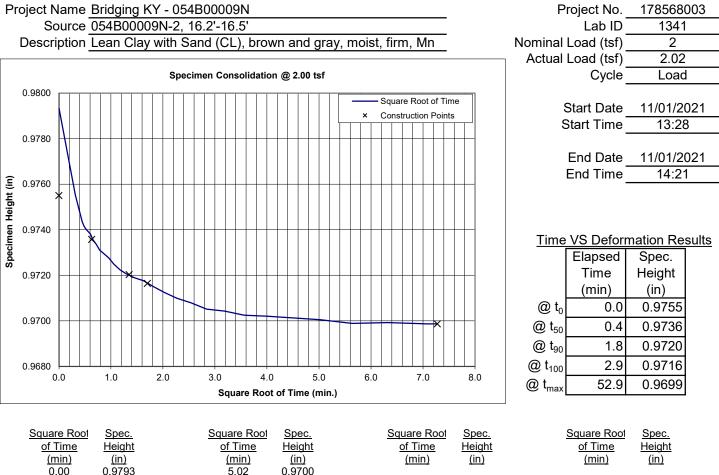
ASTM D 2435


0.32	0.9946
0.47	0.9928
0.48	0.9927
0.52	0.9926
0.56	0.9925
0.61	0.9925
0.66	0.9923
0.72	0.9921
0.79	0.9920
0.87	0.9919
0.96	0.9919
1.06	0.9917
1.18	0.9917
1.31	0.9916
1.45	0.9914
1.62	0.9915
1.82	0.9914
2.03	0.9914
2.27	0.9912
2.54	0.9911
2.84	0.9910
3.18	0.9908
3.57	0.9906
4.00	0.9907
4.5	0.9906

5.03	0.9905
5.64	0.9905
5.71	0.9905

of Time	Hei
<u>(min)</u>	<u>(ir</u>

ASTM D 2435


Square Root	Spec.					
of Time	Height					
<u>(min)</u>	<u>(in)</u>					
5.02	0.9818					
5.64	0.9816					
6.32	0.9816					
7.09	0.9815					
7.95	0.9813					
8.92	0.9813					
9.90	0.9813					

Square Root	Spec.
of Time	Height
<u>(min)</u>	<u>(in)</u>

Square Root	Spec.
of Time	Height
<u>(min)</u>	<u>(in)</u>

ASTM D 2435

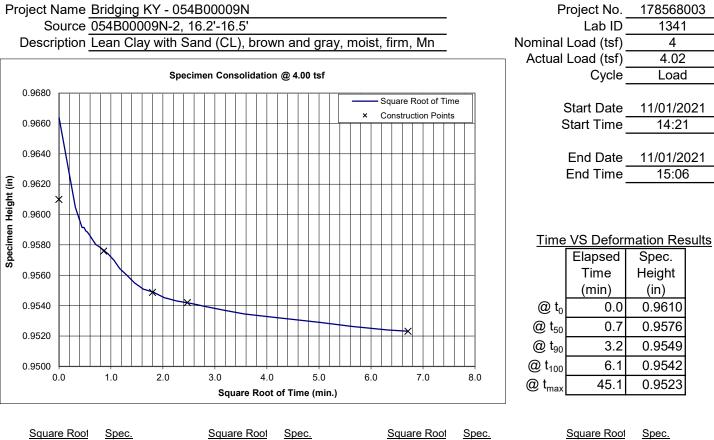
5.64

6.32 7.09

7.28

0.9699 0.9699

0.9699


0.9699

<u>(mm)</u>	<u>(iii)</u>
0.00	0.9793
0.32	0.9755
0.45	0.9744
0.48	0.9742
0.52	0.9740
0.56	0.9739
0.61	0.9738
0.66	0.9736
0.72	0.9734
0.79	0.9731
0.87	0.9729
0.96	0.9728
1.06	0.9725
1.18	0.9722
1.30	0.9721
1.45	0.9719
1.62	0.9718
1.81	0.9715
2.03	0.9712
2.27	0.9710
2.54	0.9708
2.84	0.9705
3.18	0.9704
3.57	0.9702
4.00	0.9702
4.5	0.9701

Template: tmp_cons_input.xlsm
Version: 20170216
Approved By: RJ

ASTM D 2435

quare Root	Spec.
of Time	Height
<u>(min)</u>	<u>(in)</u>
0.00	0.9664
0.32	0.9605
0.45	0.9591
0.48	0.9592
0.52	0.9589
0.55	0.9588
0.59	0.9586
0.65	0.9584
0.71	0.9580
0.79	0.9579
0.86	0.9577
0.95	0.9574
1.06	0.9570
1.17	0.9564
1.30	0.9560
1.45	0.9555
1.62	0.9551
1.81	0.9549
2.02	0.9545
2.27	0.9543
2.54	0.9541
2.84	0.9539
3.18	0.9537
3.57	0.9535
4.00	0.9533
4.5	0.9530

quare Root	Spec.
of Time	<u>Height</u>
<u>(min)</u>	<u>(in)</u>
5.02	0.9529
5.63	0.9526
6.32	0.9524
6.71	0.9523

Square Root	Spec.
of Time	Height
<u>(min)</u>	<u>(in)</u>

quare Root	Spec.
of Time	Height
<u>(min)</u>	<u>(in)</u>

ASTM D 2435

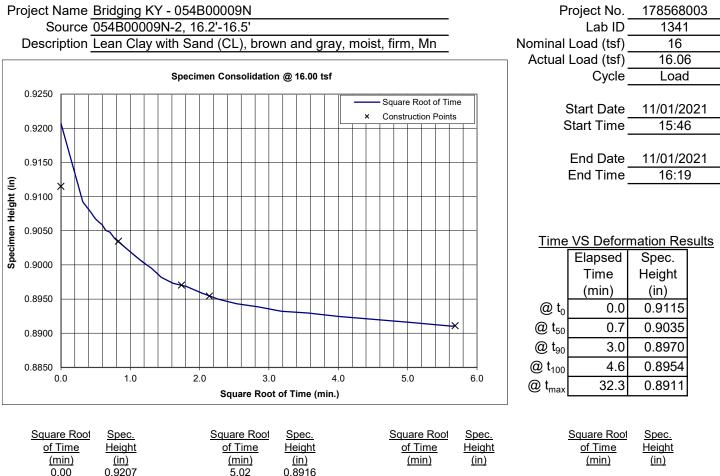
Project Name <u>Bridging KY - 054B00009N</u> Source 054B00009N-2, 16.2'-16.5'								Pi	roject No Lab ID	1785680 1341	003			
	Description Lean Clay with Sand (CL), brown and gray, moist, firm, Mn									Load (tsf)	8			
	Specimen Consolidation @ 8.00 tsf									Actual	Load (tsf) _ Cycle _	8.04 Load		
	0.9500							×	Square Root of Tin Construction Point			Start Date _ Start Time	11/01/20 15:06	
(0.9450											- _End Date _End Time	11/01/20 15:46	
n Height (i	0.9400	\mathbb{H}										_		
Specimen Height (in)	0.9350										<u>Time</u>	<u>VS Deforn</u> Elapsed Time	<u>nation Res</u> Spec. Height	<u>sults</u>
	0.9300				*	*					@ t ₀	(min) 0.0	(in) 0.9416	
	0.9250								×		@ t ₅₀ @ t ₉₀ @ t ₁₀₀	0.7 3.2 6.0	0.9361 0.9317 0.9306	
0.0 1.0 2.0				3.0 Square R	4.0 oot of Time (m	5.0 1 in.)	6.0	7.0	@ t _{max}	40.2	0.9274			
<u>Square Root</u> <u>Spec.</u> <u>of Time Height</u> <u>(min) (in)</u> 0.00 0.9486 0.32 0.9397						<u>Square Ro</u> <u>of Time</u> <u>(min)</u> 5.02 5.63	ot <u>Spec.</u> <u>Height</u> (in) 0.9279 0.9277		<u>Square Root</u> of Time (min)	<u>Spec.</u> <u>Height</u> <u>(in)</u>	<u> </u>	<u>Square Root</u> <u>of Time</u> (<u>min)</u>	<u>Spec.</u> <u>Height</u> (in)	

0.9275

0.9274

6.32

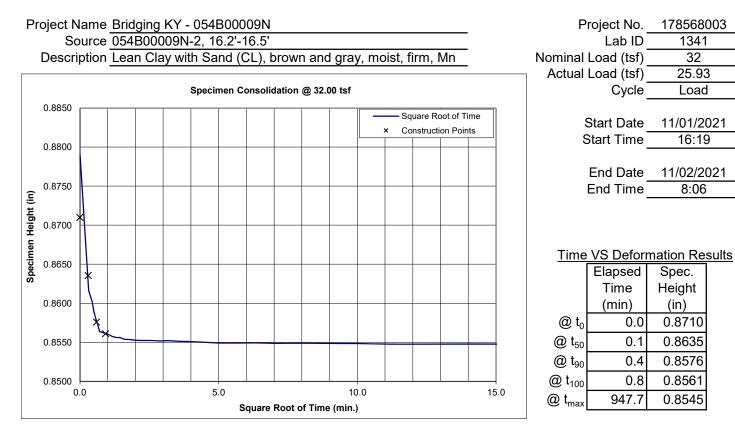
6.34


0.40	0.0000
0.48	0.9386
0.52	0.9383
0.56	0.9381
0.61	0.9378
0.66	0.9372
0.72	0.9366
0.79	0.9365
0.87	0.9359
0.96	0.9354
1.06	0.9348
1.18	0.9339
1.30	0.9335
1.45	0.9329
1.62	0.9322
1.81	0.9316
2.02	0.9312
2.27	0.9308
2.54	0.9304
2.84	0.9300
3.18	0.9294
3.57	0.9287
4.00	0.9285
4.5	0.9282
Comments	

0.45

Template: tmp_cons_input.xlsm
Version: 20170216
Approved By: RJ

ASTM D 2435



(min)	<u>(in)</u>
0.00	0.9207
0.32	0.9092
0.45	0.9075
0.47	0.9072
0.50	0.9067
0.55	0.9063
0.59	0.9059
0.65	0.9051
0.71	0.9048
0.77	0.9039
0.86	0.9032
0.95	0.9023
1.06	0.9015
1.17	0.9005
1.30	0.8995
1.45	0.8982
1.62	0.8973
1.81	0.8968
2.02	0.8959
2.27	0.8950
2.54	0.8943
2.84	0.8939
3.18	0.8932
3.57	0.8929
4.00	0.8925
4.5	0.8920

Spec.
<u>Height</u>
<u>(in)</u>
0.8916
0.8910
0.8911

ASTM D 2435

<u>Square Root</u> <u>of Time</u> (min)	<u>Spec.</u> <u>Height</u> (in)	uare Root of Time (min)	<u>Spec.</u> <u>Height</u> <u>(in)</u>
0.00	0.8790	5.02	0.8549
0.32	0.8616	5.63	0.8549
0.45 0.47	0.8601 0.8597	6.32 7.09	0.8549 0.8549
0.47	0.8597	7.09	0.8549
0.50	0.8584	7.95 8.92	0.8549
0.55		8.92 10.01	0.8549
0.65	0.8577 0.8572	11.23	0.8548
0.65	0.8564	12.59	0.8548
0.77	0.8563	12.59	0.8548
0.86	0.8562	14.13	0.8548
0.80	0.8561	17.79	0.8548
1.05	0.8560	19.96	0.8548
1.05	0.8558	22.39	0.8548
1.30	0.8556	25.12	0.8545
1.45	0.8556	28.19	0.8545
1.62	0.8554	30.78	0.8545
1.81	0.8554	50.70	0.0040
2.02	0.8553		
2.26	0.8552		
2.53	0.8552		
2.84	0.8552		
3.18	0.8552		
3.56	0.8551		
4.00	0.8551		
4.5	0.8551		

Square RoolSpec.of TimeHeight(min)(in)

Square Root	Spec.
of Time	Height
<u>(min)</u>	<u>(in)</u>

ASTM D 2435

Pr	oject l																												Proj	ect No		178568	
	Descr					000											nd	arc			iot	firr	~ ^	In	_		No	mina		Lab I	_	<u>134</u> 16	I
	Desci	npt	ION	Le	an	Ula	ay v	witt	n c	Sai	lu	(C	∟),	bic	0	I a	nu	yra	iy, i	110	151,	1111	п, г	VIII	_					ad (ts ad (ts		16.0	7
												<u> </u>				~ 1	c	4-5									一 ′	ACIUZ		•	· · -	Unloa	
									spe	cin	ien	0	ISOI	iuati	on	@ 1	6.00	tsi												Cycl	e -	Unio	au
	0.8710	Γ						Т	Τ	Τ	Π				Τ	Π		\top	\square		S	iqua	re Ro	ot o	f Tim	ie			C+-	art Dat	~	11/00/0	0004
																				×	< C	ons	tructio	on P	oints	6					_	11/02/2	
	0.8700								-									+	++	+		+		×					Sla	rt Tim	e _	8:06	2
			Т	\neg																									-		L .	44/00/0	004
	0.8690									-	\square				+			+	\vdash	-		-								nd Dat	_	11/02/2	
Ē																													En	d Tim	e_	8:46	Ĵ.
Ţ	0.8680	\vdash	+	_		_	\vdash	+		-	\vdash	_			+			+	\vdash	+	+	-		_									
leig																																	
Specimen Height (in)	0.8670	H	\square	_				_		_	$\left \right $	_			_			+	\vdash	_	\square	-		_									
cim																												<u>Tim</u>				nation Re	<u>sults</u>
Spe	0.8660	H						\square		_								\perp	\square	_										lapse	d	Spec.	
																														Time		Height	
	0.8650																													(min)		(in)	
	0.0000																											@ t	0	0.	0	0.8643	
	0 00 10	*																										@ t ₅					1
	0.8640								-																			@ t ₉			-		-
																															_		-
	0.8630	⊢ 0.0			1.				2.0	_			3.0			4.				5.0			6.0	<u> </u>		 7.0		@ t ₁₀					
		0.0			1.	0			2.0					Ro	ot o		 me (min		0.0			0.0	,		7.0		@ t _{ma}	ıх	39.	6	0.8699	
												94	uure	- 110					.,														
	Squa	are l	Roo	1	Spe	20					s	aus	are I	200	1	Sp	ec					Sa	uare	Ro		Spec.			Sa	uare Ro		Spec.	
		Tim				ght					<u> </u>		Tim				ight						of Ti			Height				of Time		Height	
	(1	min)	-	<u>(ir</u>								min				<u>n)</u>					-	<u>(mi</u>			<u>(in)</u>			_	<u>(min)</u>		<u>(in)</u>	
		0.00				643							5.02				699																
).32).45).86) 86	597 596							5.64 5.29				698 699																
).48				596							5.23			0.0	033																
).52				696																											
).55				696																											
).59).66).86).86																												
).00).72).80).86																												
	C).79)	().86	696																											
).87				696																											
).95 1.06				696 696																											
		1.06 1.18).80).86																												
	1	1.30)			696																											
	1	1.45	;			697																											
		1.62				697 806																											
	1	1.81		(J.86	696																											

Template: tmp_cons_input.xlsm Version: 20170216 Approved By: RJ

0.8697

0.8697

0.8696 0.8697

0.8697 0.8697

0.8697

0.8697

2.02

2.27 2.54

2.84 3.18

3.57

4.00 4.5

ASTM D 2435

Ρ	roject Name	Bridging KY -	- 054B00009N			Project No.	178568003				
	Source 054B00009N-2, 16.2'-16.5'										
	Description Lean Clay with Sand (CL), brown and gray, moist, firm, Mn Nominal Load (tsf)										
		•	× /			Actual Load (tsf)	4.03				
			Specimen Consolidatio	n @ 4.00 tsf		Cycle	Unload				
	0.9000					-					
						Start Date	11/02/2021				
					× Construction Points	Start Time	8:46				
						-	0.10				
	0.8950			╆┾┿┿┿┿┿	<u>+ </u>	End Date	11/02/2021				
						End Time	10:13				
Ē							10.15				
Specimen Height (in)	0.8900										
Hei											
en											
cim						Time VS Deform					
Spe	0.8850					Elapsed	Spec.				
						Time	Height				
						(min)	(in)				
	0.8800					@ t ₀ 0.0	0.8786				
	*					@ t ₅₀					
						@ t ₉₀					
	0.8750					@ t ₁₀₀					
	0.0	1.0 2.0	3.0 4.0 5.0		7.0 8.0 9.0 10.0	@ t _{max} 86.8	0.8951				
			Square Roo	t of Time (min.)							
	Square Root	Spec.	Square Root	Spec.	Square Root Spec.	Square Root	Spec.				
	of Time	Height	of Time	Height	<u>of Time</u> <u>Height</u>	of Time	Height				
	(min)	(in)	<u>(min)</u>	(in)	<u>(min) (in)</u>	<u>(min)</u>	<u>(in)</u>				
	0.00 0.32	0.8786 0.8902	5.02 5.64	0.8947 0.8949							
	0.32	0.8912	6.32	0.8949							
	0.48	0.8913	7.09	0.8950							
	0.52	0.8913	7.95	0.8951							

0.01	0.0515
0.66	0.8917
0.72	0.8918
0.79	0.8921
0.87	0.8922
0.96	0.8924
1.06	0.8926
1.18	0.8927
1.30	0.8928
1.45	0.8929
1.62	0.8932
1.81	0.8933
2.02	0.8935
2.27	0.8935
2.54	0.8937
2.84	0.8938
3.18	0.8940
3.57	0.8941
4.00	0.8943
4.5	0.8944

0.55

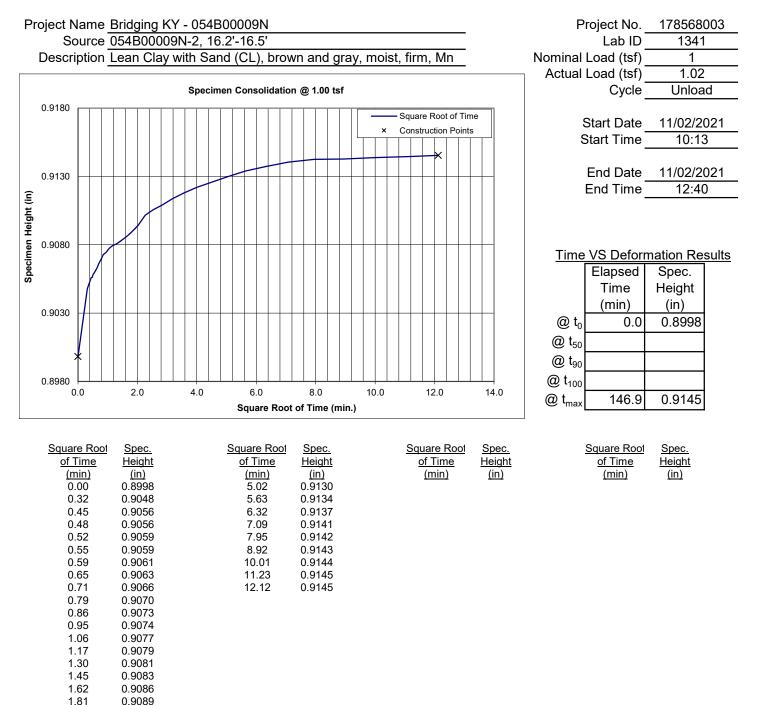
0.61

0.8914

0.8915

8.92

9.32


0.8951

0.8951

Template: tmp_cons_input.xlsm Version: 20170216 Approved By: RJ

ASTM D 2435

Comments

2.02

2.27

2.54

2.84 3.18

3.57

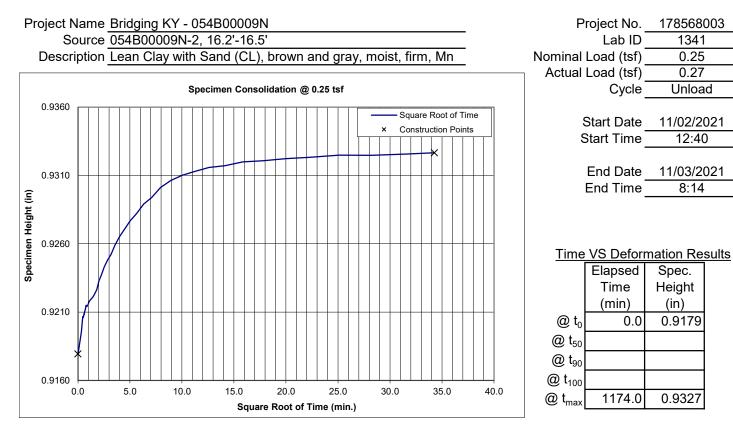
4.00

4.5

0.9094

0.9102

0.9106 0.9109

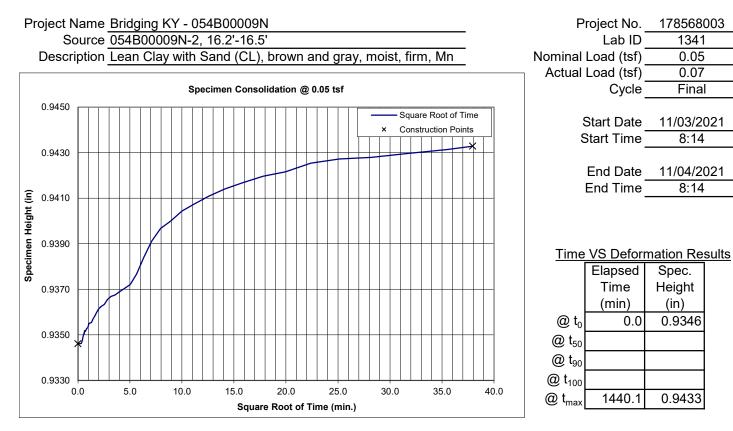

0.9114

0.9118

0.9122

ASTM D 2435

<u>Square Root</u> <u>of Time</u> <u>(min)</u>	<u>Spec.</u> <u>Height</u> (in)	<u>Square Roo</u> <u>of Time</u> (min)	<u>I Spec.</u> <u>Height</u> (in)
0.00	0.9179	5.03	0.9277
0.34	0.9196	5.64	0.9282
0.47	0.9206	6.32	0.9289
0.48	0.9207	7.09	0.9294
0.52	0.9206	7.95	0.9301
0.56	0.9208	8.92	0.9306
0.61	0.9208	10.01	0.9310
0.66	0.9210	11.23	0.9313
0.72	0.9212	12.60	0.9316
0.79	0.9215	14.13	0.9317
0.87	0.9214	15.85	0.9320
0.96	0.9215	17.79	0.9321
1.06	0.9217	19.96	0.9322
1.18	0.9219	22.39	0.9323
1.31	0.9220	25.12	0.9325
1.45	0.9221	28.19	0.9325
1.63	0.9224	31.63	0.9326
1.82	0.9226	34.26	0.9327
2.03	0.9233		
2.27	0.9238		
2.54	0.9243		
2.84	0.9248		
3.18	0.9252		
3.57	0.9259		
4.00	0.9265		
4.5	0.9271		


Square RootSpec.of TimeHeight(min)(in)

Square Root	Spec.
of Time	Height
<u>(min)</u>	<u>(in)</u>

Contract ID: 255382 Page 15 oPage 273 of 372

One Dimensional Consolidation of Soils Using Incremental Loading

ASTM D 2435

<u>Square Root</u> of Time	<u>Spec.</u> Height	<u>Square Root</u> <u>of Time</u>	<u>Spec.</u> Height
<u>(min)</u>	(in)	<u>(min)</u>	(in)
0.00	0.9346	5.02	0.9372
0.32	0.9346	5.64	0.9377
0.45	0.9348	6.32	0.9384
0.48	0.9349	7.09	0.9391
0.52	0.9350	7.95	0.9397
0.56	0.9350	8.92	0.9400
0.61	0.9350	10.01	0.9404
0.66	0.9352	11.23	0.9408
0.72	0.9352	12.59	0.9411
0.79	0.9352	14.13	0.9414
0.87	0.9353	15.85	0.9417
0.96	0.9353	17.79	0.9420
1.06	0.9355	19.96	0.9422
1.18	0.9355	22.39	0.9425
1.31	0.9355	25.12	0.9427
1.45	0.9357	28.19	0.9428
1.62	0.9358	31.63	0.9430
1.81	0.9360	35.48	0.9431
2.03	0.9362	37.95	0.9433
2.27	0.9363		
2.54	0.9363		
2.84	0.9366		
3.18	0.9367		
3.57	0.9368		
4.00	0.9369		
4.5	0.9370		

Square RootSpec.of TimeHeight(min)(in)

Square Root	Spec.
of Time	Height
<u>(min)</u>	<u>(in)</u>

Project Name Bridging KY - 054B00009N

HOPKINS COUNTY STP BRZ 9030 (500)

One Dimensional Consolidation of Soils Using Incremental Loading ASTM D 2435

Project No. 178568003

Source 054B00009N-2, 26.4'-26.7' Lab ID 1342 Description Lean Clay (CL), brown, moist, firm, Mn Date Received 10/25/2021 Specimen Type Undisturbed Specific Gravity 2.69 ASTM D 854, Dry Prepared Using Cutting Ring LL B - for 30 min. PL 18 Test Method ΡI Test Condition Inundated at 0.05 tsf 18 **Initial Specimen Conditions Final Specimen Conditions** Moisture Content (%) Moisture Content (%) 22.6 20.5 104.0 Dry Unit Weight (pcf) 110.9 Dry Unit Weight (pcf) Void Ratio Void Ratio 0.611 0.511 Degree of Saturation (%) Degree of Saturation (%) 99.6 107.8 Initial Specimen Height (in) 0.9984 Final Specimen Height (in) 0.9365 Equivalent Height of Solids (in) 0.620 Preconsolidation Pressure* (tsf) Void Ratio @ Preconsolidation Pressure Seating Load 0 Void Ratio at d₁₀₀ vs. Stress Initial Loading 0.700 Δ 0 Unload @ dmax ۸ Recompression Final Unload @ dmax Apparent Max. Curvature 0 0.650 ÷ Preconsolidation Pressure 0.600 Ratio, 0.550 Void I 0.500 0.450 0.400 0.350 0.300 1.00 100.00 1000.00 10000.00 0.01 0.10 10.00 Vertical Effective Stress (tsf) **Coefficient of Consolidation** Initial Loading 15.000 Recompression \diamond 000.01 مر لل²/Day 10.000 Ś \diamond 0.000 0.01 0.10 1.00 10.00 100.00 1000.00 10000.00 Vertical Effective Stress (tsf) Comments Reviewed By

ASTM D 2435

Project Name Bridging KY - 054B00009N			_			178568003				
Source 054B00009N-2, 26.4'-26.7'					_		Lab ID			
	Description Lean Clay (CL), brown, moist, firm, Mn					_	Date R	eceived	10/25/2021	
Specimen Type Undisturbed						-				
Load	Specimen	Specimen		Specimen			Specimen	Fitt	ing	
Increment	Height	Height	Void Ratio	Height	Void Ratio	Load At	Height		ne**	
tsf	(in)	(in)	е	(in)	е	Cv	(in)	(m		Cv
σν	$\mathbf{Q} \mathbf{d}_0$	@ d ₁₀₀	@ d ₁₀₀	@ d _{max}	@ d _{max}	tsf	@ d ₅₀	@ t ₅₀	@ t ₉₀	ft ² /day
0.07	0.9984									
0.27	0.9945	0.9912	0.599	0.9910	0.599	0.17	0.9928		0.2	12.431
0.51	0.9875	0.9868	0.592	0.9863	0.592	0.39	0.9871		1.2	1.707
1.02	0.9821	0.9805	0.582	0.9796	0.581	0.77	0.9813		1.3	1.627
2.02	0.9742	0.9717	0.568	0.9708	0.567	1.52	0.9730		1.2	1.659
4.02	0.9640	0.9610	0.551	0.9597	0.549	3.02	0.9625		1.0	1.888
8.01	0.9500	0.9436	0.523	0.9393	0.516	6.01	0.9468		1.1	1.724
16.02	0.9250	0.9039	0.459	0.9008	0.454	12.01	0.9144		5.4	0.329
32.07	0.8720	0.8430	0.360	0.8365	0.350	24.04	0.8575		9.0	0.173
4.03	0.8705			0.8875	0.432					
1.02	0.8922			0.9063	0.463					
0.27	0.9087			0.9249	0.493					
0.07	0.9269			0.9365	0.511					

Testing Details:

Consolidation Press ID CON-6 Trimming Ring ID _____ GS-82 Initial MC from Trimmings (%) 22.3

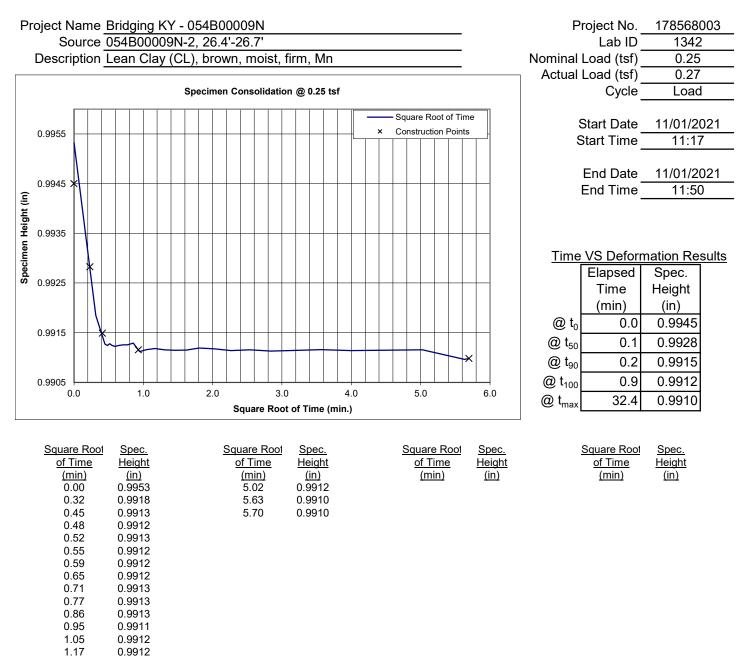
Test Start Date <u>11/01/2021</u> Technician <u>KG</u>

Final Differential Height (in) -0.022

Test End Date <u>11/05/2021</u> Technician <u>KG</u>

When available, all other tests performed in association with this specimen are reported separately.

* When presented, The preconsolidation pressure evaluated using the Casagrande Method, as per ASTM D 2435.


** Cv Computation Methods:

@ t₅₀, Cv calculated using Log Time Method.

@ t₉₀, Cv calculated using Square Root of Time Method.

Stantec Consulting Services Inc. Lexington, Kentucky

ASTM D 2435

Comments

1.30

1.45 1.62

1.81

2.02

2.27

2.54

2.84 3.18

3.56

4.00

4.5

0.9912

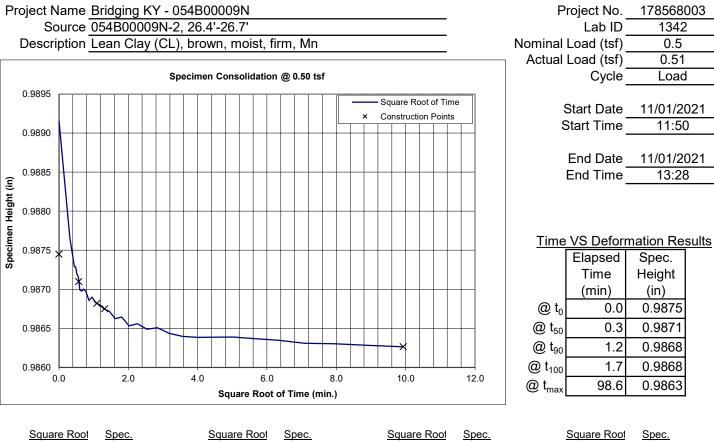
0.9911

0.9912

0.9912

0.9912

0.9911

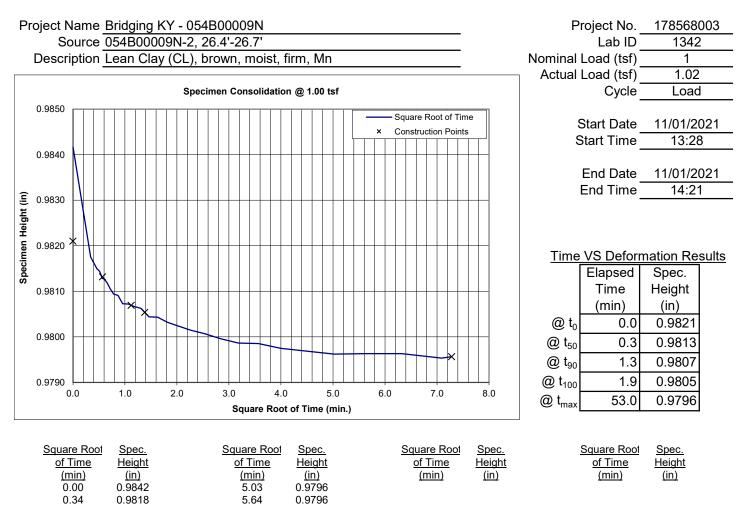

0.9912 0.9911

0.9911

0.9912

0.9911

ASTM D 2435


quare Root	Spec.	
<u>of Time</u>	<u>Height</u>	
<u>(min)</u>	<u>(in)</u>	
0.00	0.9892	
0.32	0.9877	
0.45	0.9873	
0.48	0.9873	
0.52	0.9872	
0.56	0.9872	
0.61	0.9870	
0.66	0.9870	
0.72	0.9870	
0.79	0.9870	
0.87	0.9869	
0.96	0.9869	
1.06	0.9868	
1.18	0.9868	
1.30	0.9867	
1.45	0.9867	
1.62	0.9866	
1.81	0.9866	
2.02	0.9865	
2.27	0.9866	
2.54	0.9865	
2.84	0.9865	
3.18	0.9864	
3.57	0.9864	
4.00	0.9864	
4.5	0.9864	

<u>quare Root</u>	<u>Spec.</u>
of Time	<u>Height</u>
<u>(min)</u>	<u>(in)</u>
5.02	0.9864
5.63	0.9864
6.32	0.9863
7.09	0.9863
7.95	0.9863
8.92	0.9863
9.93	0.9863

quare Root	Spec.
of Time	Height
<u>(min)</u>	<u>(in)</u>

quare Root	Spec.
of Time	Height
<u>(min)</u>	<u>(in)</u>

ASTM D 2435

Template: tmp_cons_input.xlsm
Version: 20170216
Approved By: RJ

0.47

0.48

0.52

0.56

0.61

0.66

0.72

0.79

0.87 0.96

1.06

1.18

1.31

1.46 1.63

1.82

2.03

2.27

2.54

2.84

3.18

3.57

4.00

4.5

Comments

0.9815

0.9815

0.9814

0.9813

0.9813

0.9812

0.9811

0.9809 0.9809

0.9807

0.9807

0.9807 0.9806

0.9804

0.9804

0.9803

0.9802

0.9801

0.9801

0.9800

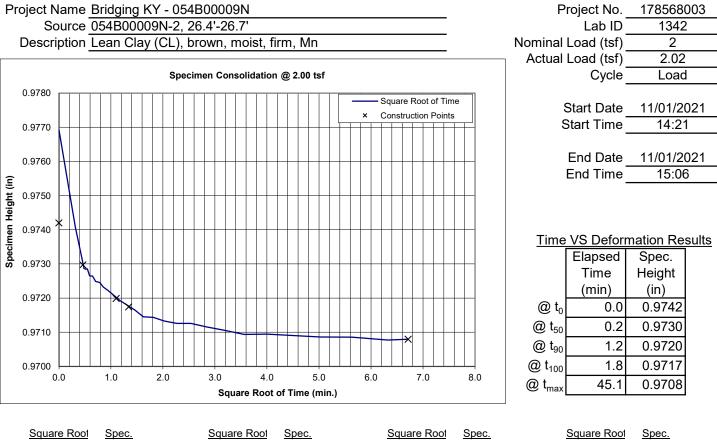
0.9799

0.9799

0.9797

0.9798

6.32

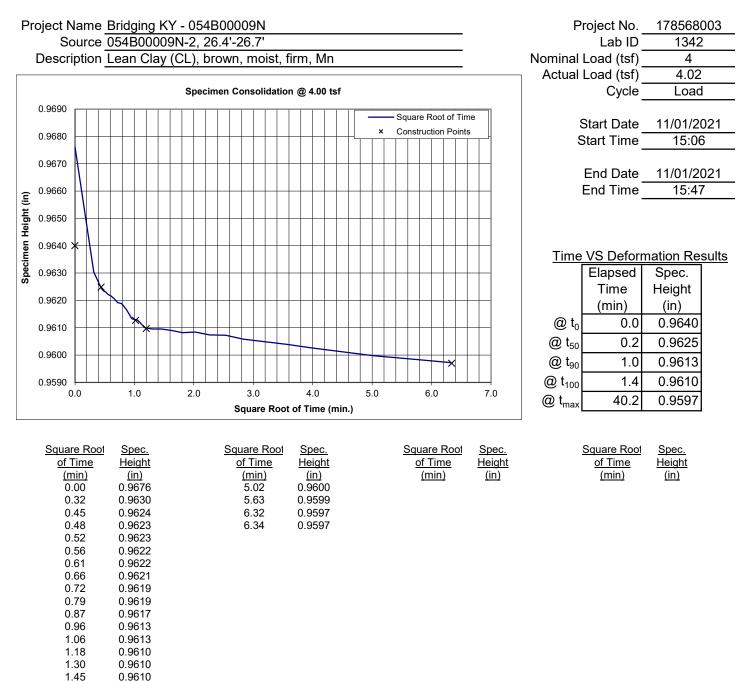

7.09

7.28

0.9796

0.9795

ASTM D 2435


quare ritoor	opee.
<u>of Time</u>	Height
<u>(min)</u>	<u>(in)</u>
0.00	0.9769
0.32	0.9741
0.45	0.9731
0.48	0.9729
0.52	0.9728
0.55	0.9729
0.59	0.9726
0.65	0.9726
0.71	0.9725
0.79	0.9725
0.86	0.9723
0.95	0.9722
1.06	0.9721
1.17	0.9719
1.30	0.9718
1.45	0.9717
1.62	0.9714
1.81	0.9714
2.02	0.9713
2.27	0.9713
2.54	0.9713
2.84	0.9712
3.18	0.9711
3.57	0.9709
4.00	0.9709
4.5	0.9708

Spec.
<u>Height</u>
<u>(in)</u>
0.9709
0.9709
0.9708
0.9708

quare Root	Spec.
of Time	Height
<u>(min)</u>	<u>(in)</u>

quare Root	Spec.
of Time	Height
<u>(min)</u>	<u>(in)</u>

ASTM D 2435

Comments

1.62

1.81

2.02

2.27

2.54

2.84 3.18

3.57

4.00

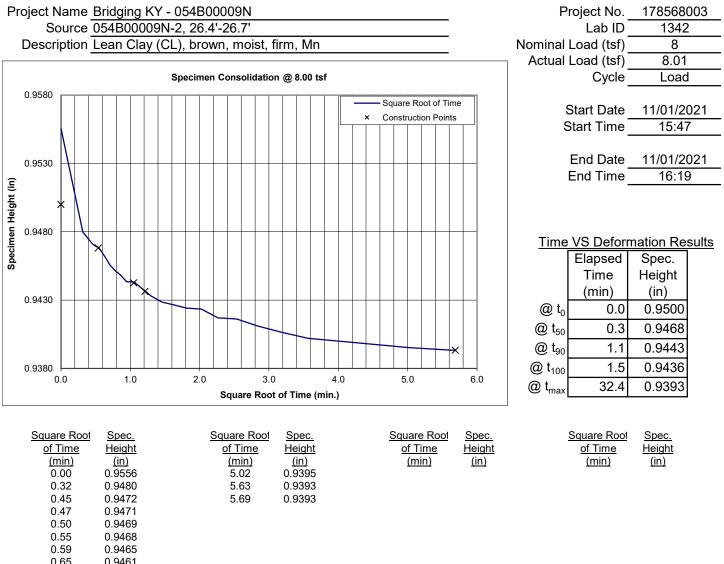
4.5

0.9609

0.9608

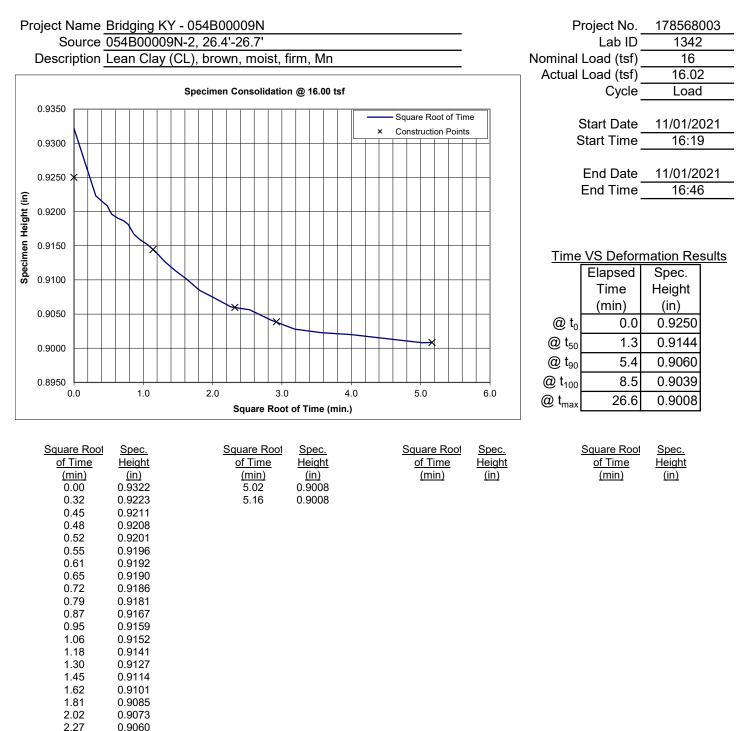
0.9608

0.9607


0.9607 0.9606

0.9605

0.9604


0.9603

ASTM D 2435

0.59	0.9465
0.65	0.9461
0.71	0.9456
0.79	0.9451
0.86	0.9448
0.95	0.9443
1.06	0.9443
1.17	0.9438
1.30	0.9433
1.45	0.9429
1.62	0.9427
1.81	0.9424
2.02	0.9423
2.27	0.9417
2.54	0.9416
2.84	0.9411
3.18	0.9406
3.57	0.9402
4.00	0.9400
4.5	0.9396

ASTM D 2435

Comments _____

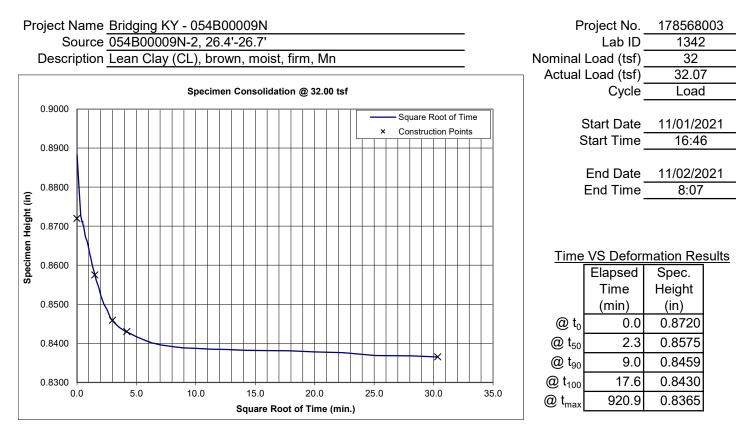
2.54

2.84 3.18

3.57

4.00

4.5

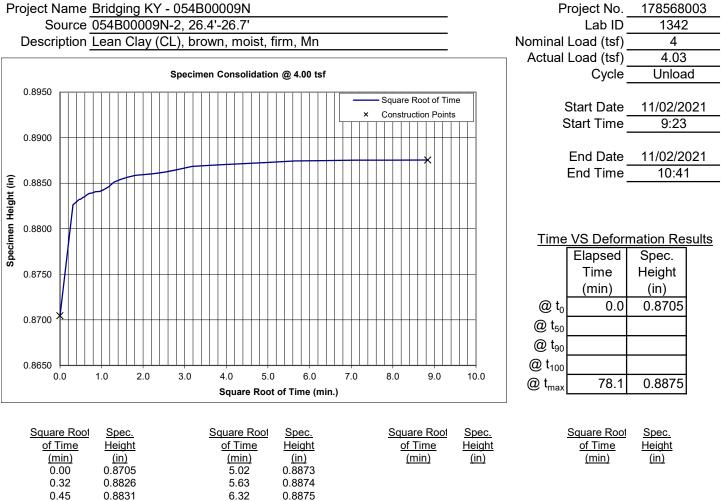

0.9056 0.9041

0.9028

0.9023

0.9020

ASTM D 2435



Square Root of Time (min) 0.00 0.32 0.45 0.48 0.52 0.56 0.61 0.66	<u>Spec.</u> <u>Height</u> (in) 0.8883 0.8727 0.8710 0.8712 0.8704 0.8701 0.8692 0.8684	<u>Square Root</u> <u>of Time</u> (<u>min)</u> 5.03 5.64 6.32 7.09 7.95 8.92 10.01 11.23	<u>Spec.</u> <u>Height</u> (in) 0.8417 0.8409 0.8401 0.8396 0.8392 0.8388 0.8387 0.8385
0.72	0.8673	12.60	0.8384
0.79	0.8668	14.13	0.8382
0.87	0.8661	15.85	0.8381
0.96	0.8649	17.79	0.8381
1.06	0.8632	19.96	0.8378
1.18	0.8619	22.39	0.8376
1.31	0.8598	25.12	0.8369
1.45	0.8584	28.19	0.8368
1.62	0.8561	30.35	0.8365
1.82	0.8545		
2.03	0.8521		
2.27	0.8500		
2.54	0.8486		
2.84	0.8463		
3.19	0.8451		
3.57	0.8441		
4.00	0.8432		
4.5	0.8424		

Square RootSpec.of TimeHeight(min)(in)

Square Root	Spec.
of Time	Height
<u>(min)</u>	<u>(in)</u>

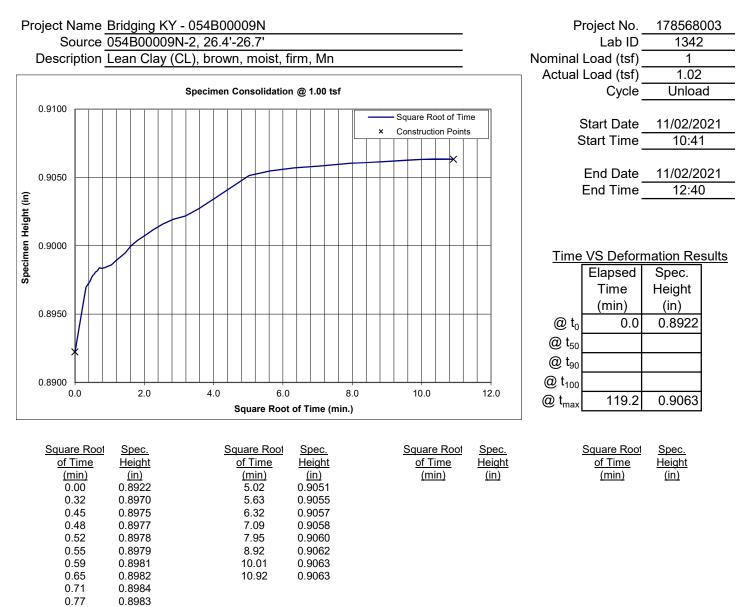
ASTM D 2435

7.09

7.95

8.84

0.8875


0.8875

0.8875

0.45	0.8831
0.47	0.8832
0.50	0.8832
0.55	0.8834
0.59	0.8835
0.65	0.8837
0.71	0.8839
0.77	0.8839
0.86	0.8841
0.95	0.8841
1.06	0.8843
1.17	0.8846
1.30	0.8851
1.45	0.8854
1.62	0.8856
1.81	0.8859
2.02	0.8859
2.27	0.8860
2.54	0.8862
2.84	0.8865
3.18	0.8868
3.57	0.8869
4.00	0.8871
4.5	0.8871

Template: tmp_cons_input.xlsm		
Version: 20170216		
Approved By: RJ		

ASTM D 2435

Comments
Template: tmp_cons_input.x

0.8984

0.8985

0.8986

0.8989 0.8992

0.8995

0.9000

0.9004

0.9008

0.9012

0.9016 0.9019

0.9022

0.9027

0.9034

0.9041

0.86 0.95

1.06

1.17

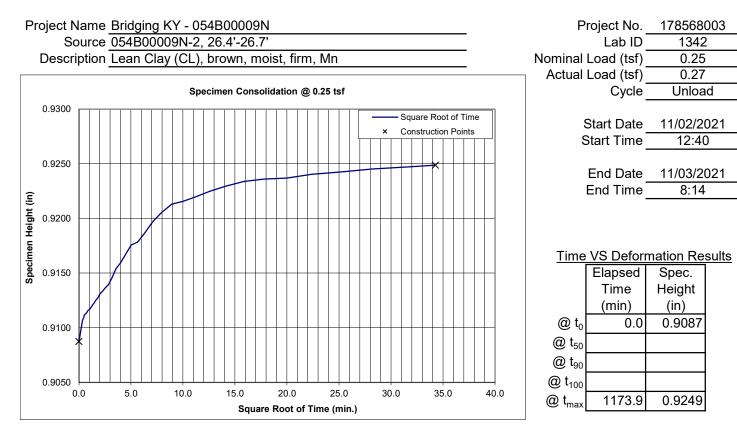
1.30

1.45 1.62

1.81

2.02

2.27

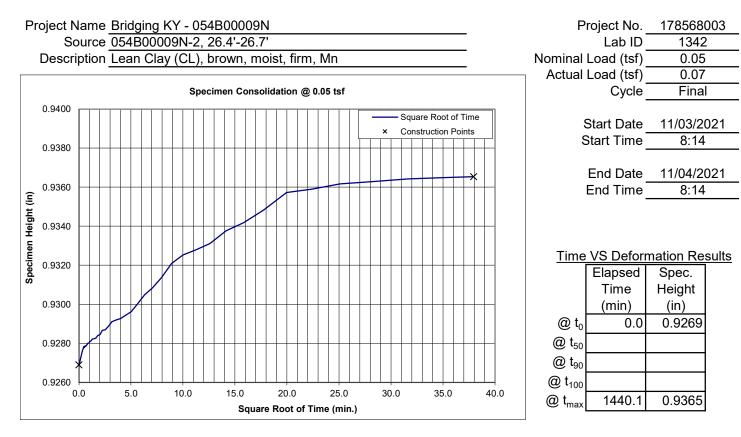

2.54

2.84 3.18

3.57

4.00

ASTM D 2435


Spec.	Square Root	Spec.
<u>Height</u>	<u>of Time</u>	Height
<u>(in)</u>	<u>(min)</u>	<u>(in)</u>
0.9087	5.03	0.9176
0.9106	5.64	0.9178
0.9109	6.32	0.9186
0.9110	7.09	0.9197
0.9111	7.95	0.9205
0.9112	8.92	0.9213
0.9112	10.01	0.9216
0.9113	11.23	0.9220
0.9114	12.60	0.9225
0.9114	14.13	0.9230
0.9116	15.85	0.9234
0.9116	17.79	0.9236
0.9117	19.96	0.9237
0.9119	22.39	0.9240
0.9121	25.12	0.9242
0.9123	28.19	0.9245
0.9125	31.63	0.9247
0.9127	34.26	0.9249
0.9131		
0.9133		
0.9136		
0.9139		
0.9146		
0.9154		
0.9159		
0.9170		
	Height (in) 0.9087 0.9106 0.9109 0.9110 0.9111 0.9112 0.9112 0.9113 0.9114 0.9114 0.9114 0.9116 0.9116 0.9117 0.9121 0.9123 0.9125 0.9127 0.9131 0.9133 0.9136 0.9139 0.9146 0.9159	$\begin{array}{c c} \mbox{Height} & \mbox{of Time} \\ \hline (in) & \mbox{(min)} \\ 0.9087 & 5.03 \\ 0.9106 & 5.64 \\ 0.9109 & 6.32 \\ 0.9110 & 7.09 \\ 0.9111 & 7.95 \\ 0.9112 & 8.92 \\ 0.9112 & 10.01 \\ 0.9113 & 11.23 \\ 0.9114 & 12.60 \\ 0.9114 & 14.13 \\ 0.9116 & 15.85 \\ 0.9116 & 17.79 \\ 0.9117 & 19.96 \\ 0.9119 & 22.39 \\ 0.9121 & 25.12 \\ 0.9123 & 28.19 \\ 0.9125 & 31.63 \\ 0.9127 & 34.26 \\ 0.9131 \\ 0.9136 \\ 0.9139 \\ 0.9154 \\ 0.9159 \\ \end{array}$

Square RootSpec.of TimeHeight(min)(in)

Square Root	Spec.
of Time	Height
<u>(min)</u>	<u>(in)</u>

ASTM D 2435

<u>Square Root</u> of Time	<u>Spec.</u> Hoight	Square Root	<u>Spec.</u> Hoight
	Height	of Time (min)	Height
<u>(min)</u> 0.00	<u>(in)</u> 0.9269	<u>(min)</u> 5.02	<u>(in)</u> 0.9296
0.00	0.9269	5.63	0.9296
0.32	0.9270	6.32	0.9305
0.45	0.9278	7.09	0.9305
0.48	0.9278	7.09	0.9308
0.52	0.9278	8.92	0.9314
0.55	0.9278	0.92 10.01	0.9321
		11.23	
0.65	0.9278	12.59	0.9328 0.9331
0.71	0.9279		
0.79	0.9279	14.13	0.9338
0.86	0.9280	15.85	0.9342
0.95	0.9280	17.79	0.9348
1.06	0.9281	19.96	0.9357
1.17	0.9281	22.39	0.9359
1.30	0.9282	25.12	0.9362
1.45	0.9282	28.19	0.9363
1.62	0.9283	31.63	0.9364
1.81	0.9284	35.48	0.9365
2.02	0.9284	37.95	0.9365
2.27	0.9287		
2.54	0.9287		
2.84	0.9289		
3.18	0.9291		
3.57	0.9292		
4.00	0.9293		
4.5	0.9294		

Square RootSpec.of TimeHeight(min)(in)

Square Root	Spec.
of Time	Height
<u>(min)</u>	<u>(in)</u>

0.700

0.650

0.600

0.550

0.500

0.450

0.400

0.350

0.300

8.000

6.000

4.000 2.000

0.000 0.01

Cv ft2/Day

Comments

0.01

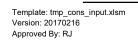
Ratio,

Void I

LL

PL

ΡI


HOPKINS COUNTY STP BRZ 9030 (500)

One Dimensional Consolidation of Soils Using Incremental Loading ASTM D 2435

Project Name Bridging KY - 054B00009N Project No. 178568003 Source 054B00009N-2, 46.4'-46.7' Lab ID 1344 Description Silt with Sand (ML), gray, moist, soft Date Received 10/25/2021 Specimen Type Undisturbed Specific Gravity 2.67 ASTM D 854, Dry Prepared Using Cutting Ring NP B - for 30 min. Test Method NP Test Condition Inundated at 0.05 tsf **Initial Specimen Conditions Final Specimen Conditions** Moisture Content (%) Moisture Content (%) 24.6 20.0 100.1 Dry Unit Weight (pcf) Dry Unit Weight (pcf) 110.3 Void Ratio Void Ratio 0.662 0.508 Degree of Saturation (%) Degree of Saturation (%) 99.1 105.3 Initial Specimen Height (in) 0.9956 Final Specimen Height (in) 0.9033 Equivalent Height of Solids (in) 0.599 Preconsolidation Pressure* (tsf) Void Ratio @ Preconsolidation Pressure Seating Load 0 Void Ratio at d₁₀₀ vs. Stress Initial Loading Δ 0 Unload @ dmax ۸ Recompression Final Unload @ dmax Apparent Max. Curvature 0 ÷ Preconsolidation Pressure 1000.00 1.00 100.00 0.10 10.00 10000.00 Vertical Effective Stress (tsf) **Coefficient of Consolidation** Initial Loading Recompression

Reviewed By

1000.00

Stantec Consulting Services Inc. Lexington, Kentucky

10.00

Vertical Effective Stress (tsf)

100.00

⋔

1.00

 \diamond

0.10

ASTM D 2435

Project Name Bridging KY - 054B00009N					_			178568003		
Source 054B00009N-2, 46.4'-46.7'					-		Lab ID	1344		
Description Silt with Sand (ML), gray, moist, soft					-	Date R	eceived	10/25/2021		
Specimen Type Undisturbed					-		-			
Load	Specimen	Specimen		Specimen			Specimen	Fitt	ting	
Increment	Height	Height	Void Ratio	Height	Void Ratio	Load At	Height		ne**	
tsf	(in)	(in)	e	(in)	e	Cv	(in)	(m		Cv
σν	$\hat{\mathbf{Q}} \mathbf{d}_0$	@ d ₁₀₀	@ d ₁₀₀	@ d _{max}	@ d _{max}	tsf	@ d ₅₀	@ t ₅₀	, @ t ₉₀	ft ² /day
0.05	0.9956							0 30		
0.00	0.9850	0.9761	0.629	0.9752	0.627	0.16	0.9806		1.9	1.070
0.52	0.9712	0.9673	0.614	0.9652	0.611	0.39	0.9692		1.0	2.074
1.02	0.9592	0.9554	0.595	0.9530	0.590	0.77	0.9573		0.9	2.153
2.02	0.9440	0.9398	0.568	0.9375	0.565	1.52	0.9419		0.9	2.175
4.02	0.9296	0.9231	0.541	0.9195	0.535	3.02	0.9263		0.3	5.226
8.04	0.9100	0.9021	0.506	0.8989	0.500	6.03	0.9060		0.4	4.385
16.07	0.8820	0.8752	0.461	0.8702	0.452	12.06	0.8786		0.8	2.113
32.13	0.8480	0.8427	0.406	0.8385	0.399	24.10	0.8453		0.3	6.060
16.07	0.8443			0.8513	0.421					
4.03	0.8579			0.8682	0.449					
1.02	0.8721			0.8795	0.468					
0.27	0.8821			0.8899	0.485					
0.07	0.8932			0.9033	0.508					

Testing Details:

Consolidation Press ID CON-9 Trimming Ring ID GS-85 Initial MC from Trimmings (%) 24.3

Test Start Date <u>11/01/2021</u> Technician <u>KG</u>

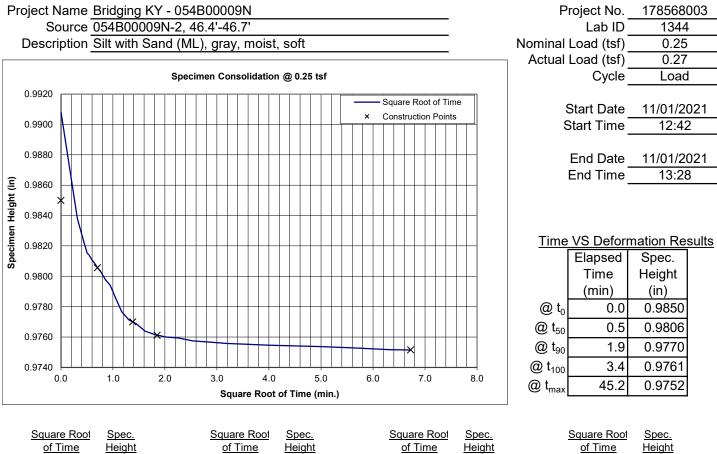
Final Differential Height (in) -0.024

Test End Date <u>11/05/2021</u> Technician <u>KG</u>

When available, all other tests performed in association with this specimen are reported separately.

* When presented, The preconsolidation pressure evaluated using the Casagrande Method, as per ASTM D 2435.

** Cv Computation Methods:


@ t₅₀, Cv calculated using Log Time Method.

@ t₉₀, Cv calculated using Square Root of Time Method.

Stantec Consulting Services Inc. Lexington, Kentucky

ASTM D 2435

quare Root	Spec.
<u>of Time</u>	<u>Height</u>
<u>(min)</u>	<u>(in)</u>
0.00	0.9908
0.32	0.9838
0.45	0.9822
0.47	0.9820
0.50	0.9816
0.55	0.9814
0.59	0.9811
0.65	0.9809
0.71	0.9806
0.77	0.9803
0.86	0.9798
0.95	0.9794
1.05	0.9786
1.17	0.9777
1.30	0.9771
1.45	0.9769
1.62	0.9764
1.81	0.9762
2.02	0.9760
2.26	0.9759
2.53	0.9757
2.84	0.9757
3.18	0.9756
3.56	0.9755
4.00	0.9755
4.5	0.9753

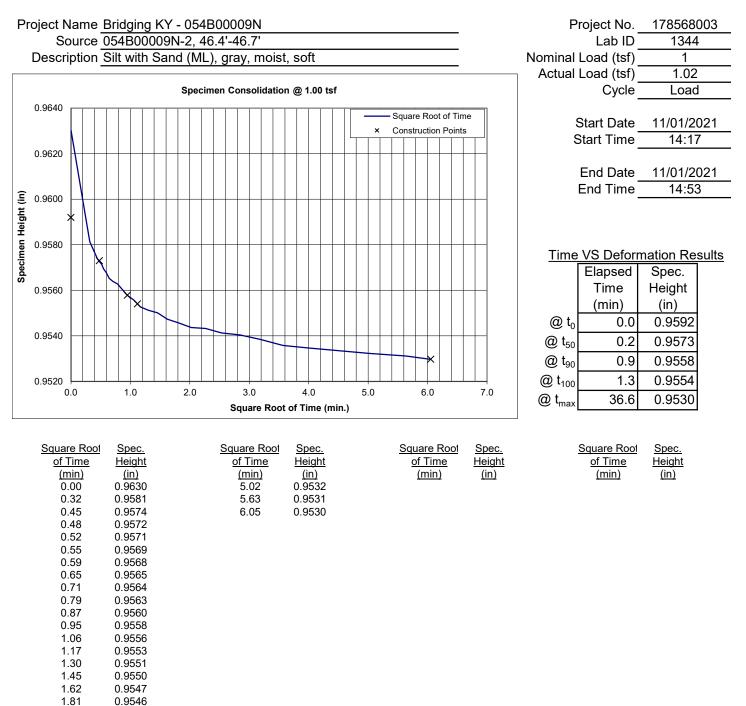
quare Root	Spec.
of Time	<u>Height</u>
<u>(min)</u>	<u>(in)</u>
5.02	0.9754
5.63	0.9753
6.32	0.9752
6.72	0.9752

Square Root	Spec.
of Time	Heigh
<u>(min)</u>	<u>(in)</u>

uare Root	Spec
of Time	Heig
<u>(min)</u>	(in)

ASTM D 2435

uare Root	Spec.
of Time	Height
<u>(min)</u>	<u>(in)</u>
0.00	0.9732
0.32	0.9699
0.45	0.9695
0.48	0.9693
0.52	0.9692
0.55	0.9690
0.59	0.9687
0.66	0.9683
0.72	0.9681
0.79	0.9680
0.87	0.9679
0.96	0.9678
1.06	0.9676
1.18	0.9675
1.30	0.9673
1.45	0.9672
1.62	0.9670
1.81	0.9667
2.02	0.9666
2.27	0.9665
2.54	0.9664
2.84	0.9662
3.18	0.9661
3.57	0.9661
4.00	0.9659
4.5	0.9657


uare Root	Spec.
<u>of Time</u>	Height
<u>(min)</u>	<u>(in)</u>
5.02	0.9656
5.64	0.9654
6.32	0.9653
7.01	0.9652

Square Root	Spec.
of Time	Heigh
<u>(min)</u>	<u>(in)</u>

uare Root	Spec
of Time	Heig
(min)	<u>(in)</u>

ASTM D 2435

Comments

2.02

2.27

2.54

2.84 3.18

3.57

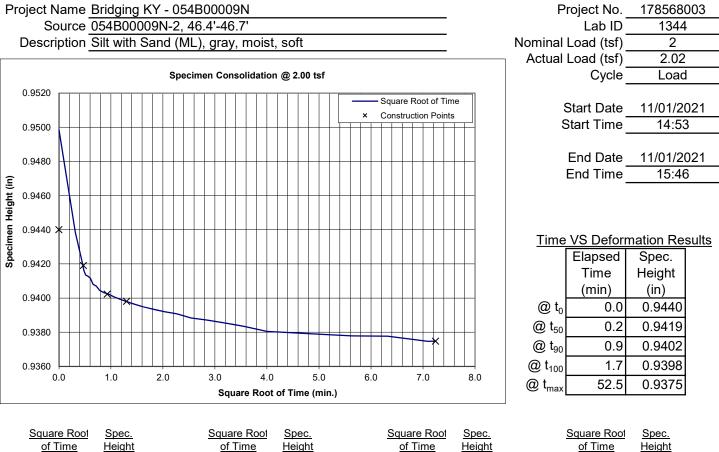
4.00

4.5

0.9544

0.9543

0.9541 0.9540

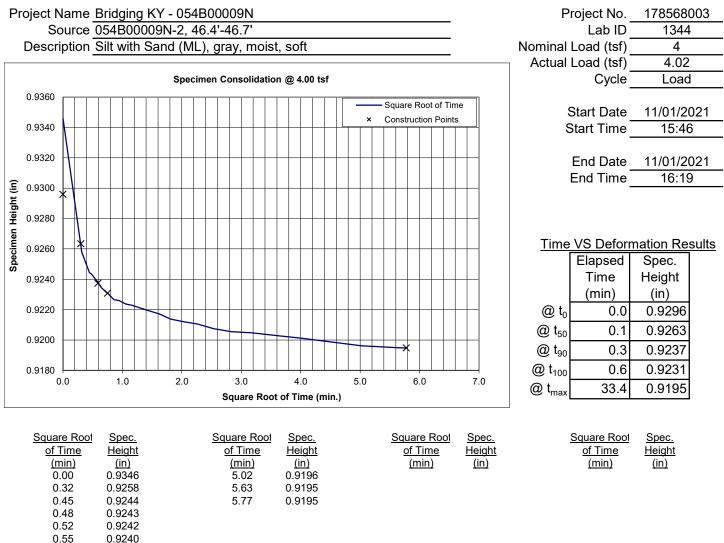

0.9538

0.9536

0.9535

ASTM D 2435

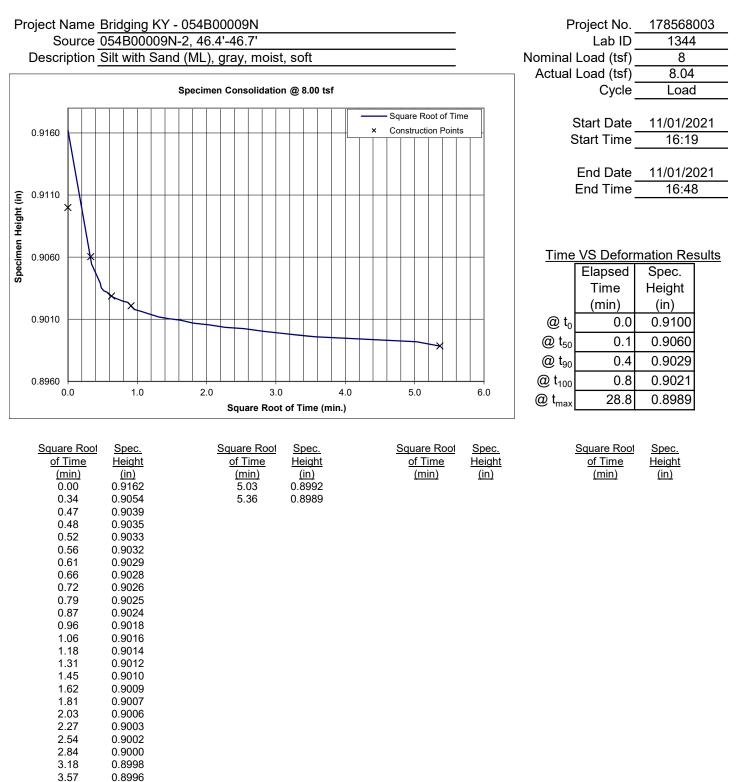
Ji Time	Height
<u>(min)</u>	<u>(in)</u>
0.00	0.9498
0.32	0.9438
0.45	0.9421
0.48	0.9416
0.52	0.9413
0.56	0.9413
0.61	0.9412
0.66	0.9408
0.72	0.9407
0.79	0.9404
0.87	0.9403
0.96	0.9402
1.06	0.9401
1.18	0.9399
1.30	0.9398
1.45	0.9396
1.62	0.9395
1.81	0.9394
2.03	0.9392
2.27	0.9391
2.54	0.9388
2.84	0.9387
3.18	0.9385
3.57	0.9383
4.00	0.9380
4.5	0.9380


uare Root	Spec.
of Time	Height
(min)	<u>(in)</u>
5.02	0.9379
5.64	0.9378
6.32	0.9378
7.09	0.9375
7.24	0.9375

Square Root	Spec.
of Time	Heigh
<u>(min)</u>	<u>(in)</u>

uare Root	Spec.
of Time	Heigh
<u>(min)</u>	<u>(in)</u>

ASTM D 2435

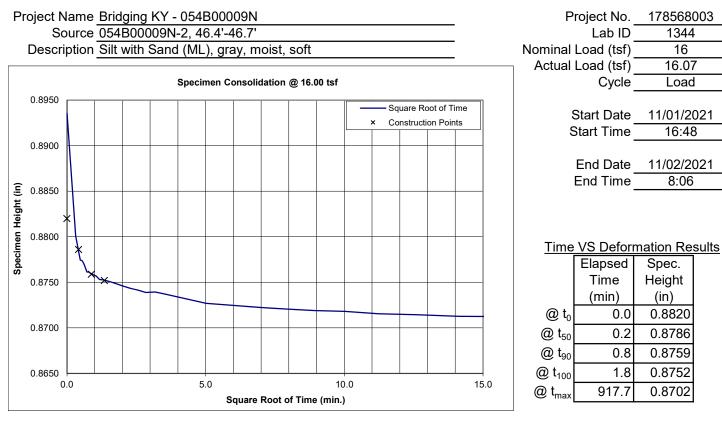


0.59 0.9238 0.65 0.9235 0.71 0.9232 0.77 0.9230 0.86 0.9227 0.95 0.9226 1.06 0.9224 1.17 0.9231 1.30 0.9221 1.45 0.9219 1.62 0.9212 2.27 0.9212 2.27 0.9211 2.54 0.9205 3.18 0.9205 3.57 0.9203 4.00 0.9201 4.5 0.9198	0.55	0.9240
$\begin{array}{ccccc} 0.71 & 0.9232 \\ 0.77 & 0.9230 \\ 0.86 & 0.9227 \\ 0.95 & 0.9226 \\ 1.06 & 0.9224 \\ 1.17 & 0.9223 \\ 1.30 & 0.9221 \\ 1.45 & 0.9219 \\ 1.62 & 0.9217 \\ 1.81 & 0.9214 \\ 2.02 & 0.9212 \\ 2.27 & 0.9211 \\ 2.54 & 0.9207 \\ 2.84 & 0.9205 \\ 3.18 & 0.9205 \\ 3.57 & 0.9203 \\ 4.00 & 0.9201 \\ 4.5 & 0.9198 \\ \end{array}$	0.59	0.9238
$\begin{array}{ccccc} 0.77 & 0.9230 \\ 0.86 & 0.9227 \\ 0.95 & 0.9226 \\ 1.06 & 0.9224 \\ 1.17 & 0.9223 \\ 1.30 & 0.9221 \\ 1.45 & 0.9219 \\ 1.62 & 0.9217 \\ 1.81 & 0.9214 \\ 2.02 & 0.9212 \\ 2.27 & 0.9211 \\ 2.54 & 0.9207 \\ 2.84 & 0.9205 \\ 3.18 & 0.9205 \\ 3.57 & 0.9203 \\ 4.00 & 0.9201 \\ 4.5 & 0.9198 \\ \end{array}$	0.65	0.9235
$\begin{array}{ccccc} 0.86 & 0.9227 \\ 0.95 & 0.9226 \\ 1.06 & 0.9224 \\ 1.17 & 0.9223 \\ 1.30 & 0.9221 \\ 1.45 & 0.9219 \\ 1.62 & 0.9217 \\ 1.81 & 0.9214 \\ 2.02 & 0.9212 \\ 2.27 & 0.9211 \\ 2.54 & 0.9207 \\ 2.84 & 0.9205 \\ 3.18 & 0.9205 \\ 3.57 & 0.9203 \\ 4.00 & 0.9201 \\ 4.5 & 0.9198 \\ \end{array}$	0.71	0.9232
$\begin{array}{ccccc} 0.95 & 0.9226 \\ 1.06 & 0.9224 \\ 1.17 & 0.9223 \\ 1.30 & 0.9221 \\ 1.45 & 0.9219 \\ 1.62 & 0.9217 \\ 1.81 & 0.9214 \\ 2.02 & 0.9212 \\ 2.27 & 0.9211 \\ 2.54 & 0.9207 \\ 2.84 & 0.9205 \\ 3.18 & 0.9205 \\ 3.57 & 0.9203 \\ 4.00 & 0.9201 \\ 4.5 & 0.9198 \\ \end{array}$	0.77	0.9230
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.86	0.9227
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.95	0.9226
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.06	0.9224
$\begin{array}{ccccccc} 1.45 & 0.9219 \\ 1.62 & 0.9217 \\ 1.81 & 0.9214 \\ 2.02 & 0.9212 \\ 2.27 & 0.9211 \\ 2.54 & 0.9207 \\ 2.84 & 0.9205 \\ 3.18 & 0.9205 \\ 3.57 & 0.9203 \\ 4.00 & 0.9201 \\ 4.5 & 0.9198 \end{array}$	1.17	0.9223
1.620.92171.810.92142.020.92122.270.92112.540.92072.840.92053.180.92053.570.92034.000.92014.50.9198	1.30	0.9221
1.81 0.9214 2.02 0.9212 2.27 0.9211 2.54 0.9207 2.84 0.9205 3.18 0.9205 3.57 0.9203 4.00 0.9201 4.5 0.9198	1.45	0.9219
2.020.92122.270.92112.540.92072.840.92053.180.92053.570.92034.000.92014.50.9198	1.62	0.9217
2.270.92112.540.92072.840.92053.180.92053.570.92034.000.92014.50.9198	1.81	0.9214
2.540.92072.840.92053.180.92053.570.92034.000.92014.50.9198	2.02	0.9212
2.84 0.9205 3.18 0.9205 3.57 0.9203 4.00 0.9201 4.5 0.9198	2.27	0.9211
3.18 0.9205 3.57 0.9203 4.00 0.9201 4.5 0.9198	2.54	0.9207
3.570.92034.000.92014.50.9198	2.84	0.9205
4.000.92014.50.9198	3.18	0.9205
4.5 0.9198	3.57	0.9203
	4.00	0.9201
mments	4.5	0.9198
mments		
	mmonte	
	initients .	

Co

ASTM D 2435

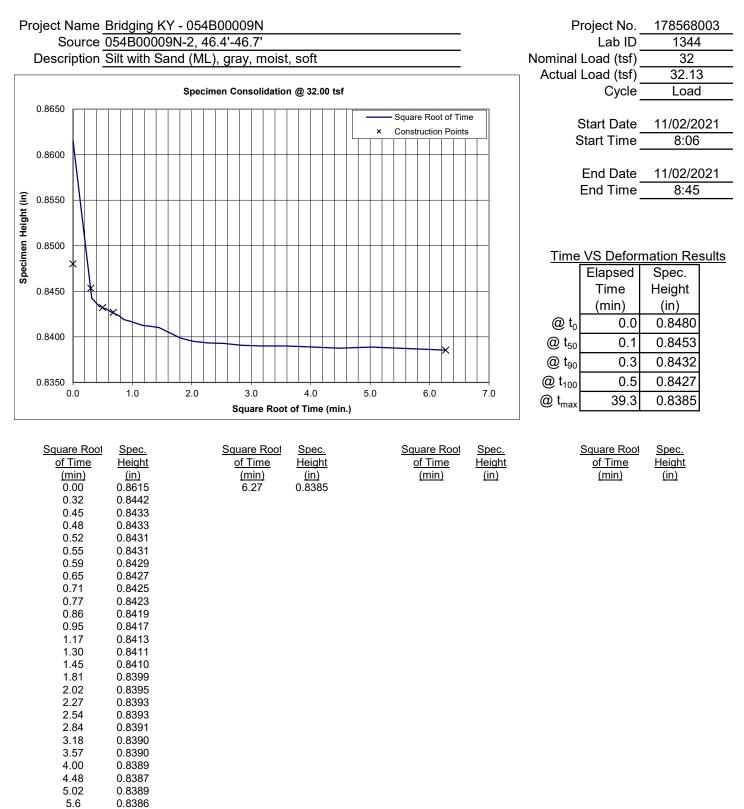
Comments


4.00

4.5

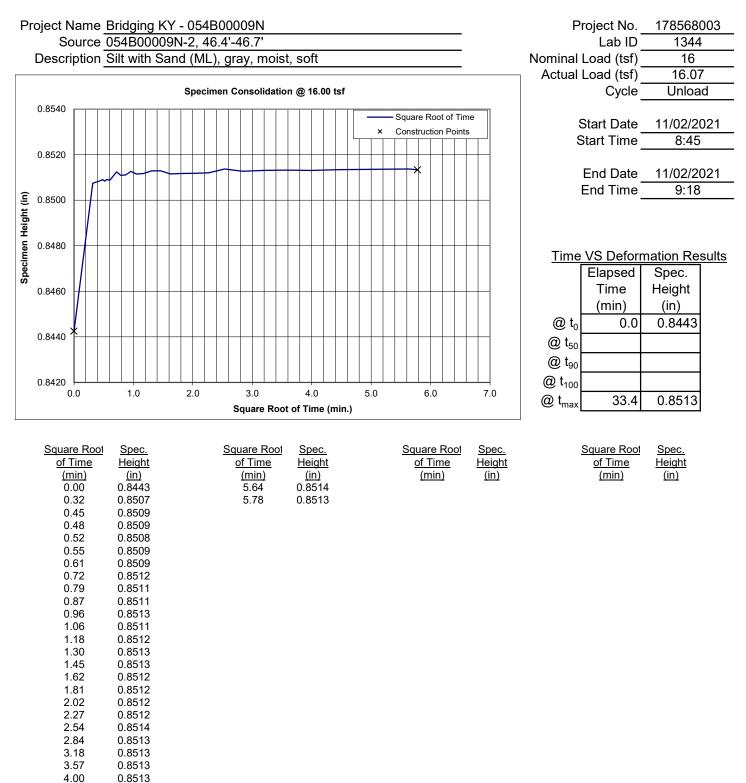
0.8995

ASTM D 2435


Square Root	Spec.	Square Root	Spec.
of Time	Height	of Time	Height
(min)	(in)	<u>(min)</u>	(in)
0.00	0.8936	5.02	0.8727
0.32	0.8801	5.63	0.8725
0.45	0.8779	6.32	0.8723
0.45	0.8779	7.09	0.8722
0.48	0.8774	7.09	0.8722
0.55	0.8774	8.92	0.8719
0.61	0.8771	10.01	0.8718
0.66	0.8767	11.23	0.8715
0.72	0.8761	12.59	0.8714
0.79	0.8761	14.13	0.8713
0.87	0.8760	15.85	0.8712
0.95	0.8758	17.79	0.8710
1.06	0.8757	19.96	0.8708
1.18	0.8753	22.39	0.8706
1.30	0.8753	25.12	0.8702
1.45	0.8751	28.19	0.8706
1.62	0.8750	30.29	0.8702
1.81	0.8748		
2.02	0.8746		
2.27	0.8743		
2.54	0.8742		
2.84	0.8739		
3.18	0.8739		
3.57	0.8737		
4.00	0.8734		
4.5	0.8728		

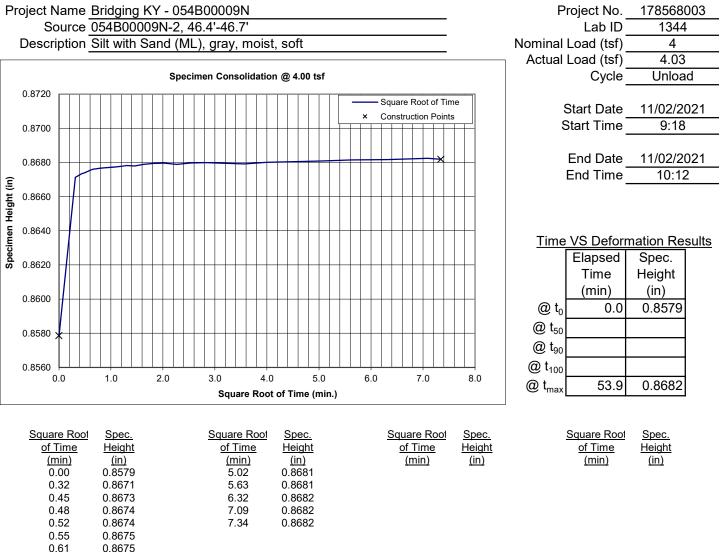
Square RootSpec.of TimeHeight(min)(in)

Square Root	Spec.
of Time	Height
<u>(min)</u>	<u>(in)</u>



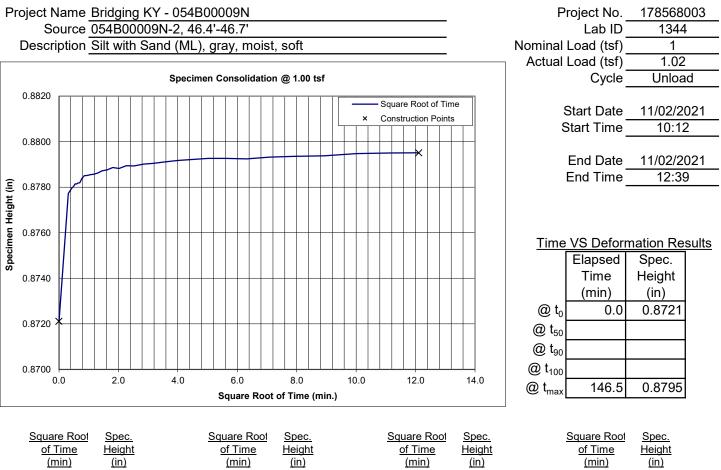
ASTM D 2435

ASTM D 2435


Comments

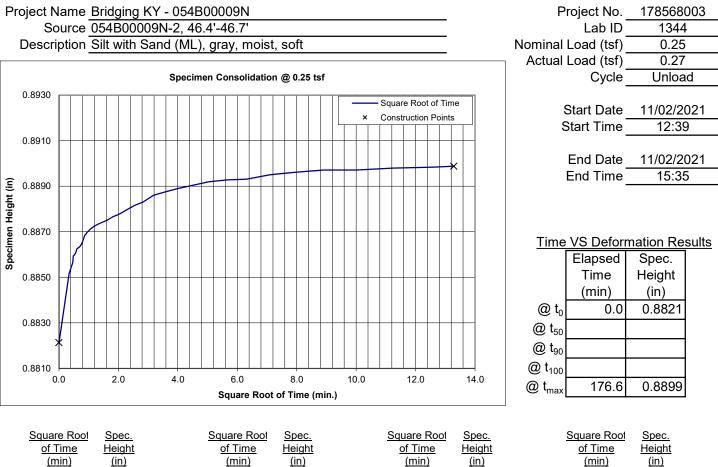
4.48

5.0


0.8513

ASTM D 2435

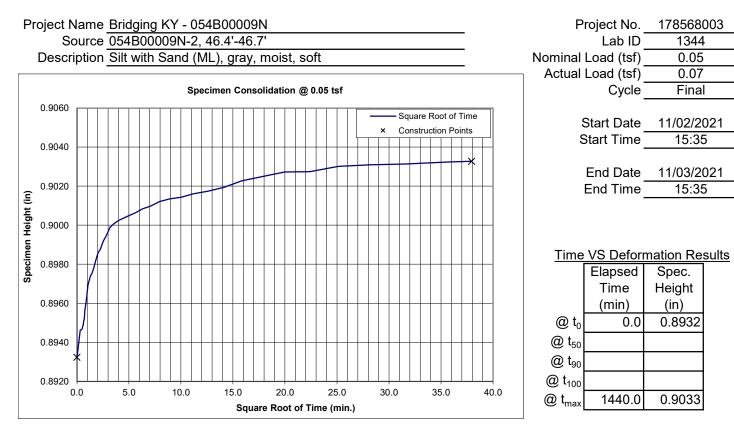
0.52	0.8674
0.55	0.8675
0.61	0.8675
0.66	0.8676
0.71	0.8676
0.79	0.8677
0.87	0.8677
0.96	0.8677
1.06	0.8677
1.18	0.8678
1.30	0.8678
1.45	0.8678
1.62	0.8679
1.81	0.8679
2.02	0.8680
2.27	0.8679
2.54	0.8680
2.84	0.8680
3.18	0.8680
3.57	0.8679
4.00	0.8680
4.5	0.8681


ASTM D 2435

of Time	Height	
<u>(min)</u>	<u>(in)</u>	
0.00	0.8721	
0.32	0.8777	
0.45	0.8780	
0.48	0.8780	
0.52	0.8781	
0.55	0.8781	
0.59	0.8781	
0.65	0.8782	
0.71	0.8782	
0.77	0.8784	
0.86	0.8785	
0.95	0.8785	
1.06	0.8785	
1.17	0.8786	
1.30	0.8786	
1.45	0.8787	
1.62	0.8788	
1.81	0.8789	
2.02	0.8788	
2.27	0.8789	
2.53	0.8789	
2.84	0.8790	
3.18	0.8790	
3.56	0.8791	
4.00	0.8792	
4.5	0.8792	

Square Root	Spec.
of Time	Height
<u>(min)</u>	(in)
5.02	0.8793
5.63	0.8793
6.32	0.8792
7.09	0.8793
7.95	0.8794
8.92	0.8794
10.01	0.8795
11.23	0.8795
12.10	0.8795
	0.0.00

ASTM D 2435


0.8892 0.8893 0.8893 0.8895 0.8896 0.8897 0.8897 0.8898 0.8898 0.8899

uare Root	Spec.	Square Ro
of Time	Height	<u>of Time</u>
<u>(min)</u>	<u>(in)</u>	<u>(min)</u>
0.00	0.8821	5.02
0.34	0.8852	5.64
0.47	0.8857	6.32
0.48	0.8859	7.09
0.52	0.8860	7.95
0.56	0.8861	8.92
0.61	0.8863	10.01
0.66	0.8863	11.23
0.72	0.8864	12.59
0.79	0.8865	13.29
0.87	0.8868	
0.96	0.8870	
1.06	0.8871	
1.18	0.8872	
1.31	0.8873	
1.45	0.8874	
1.62	0.8875	
1.81	0.8877	
2.03	0.8878	
2.27	0.8880	
2.54	0.8881	
2.84	0.8883	
3.18	0.8886	
3.57	0.8887	
4.00	0.8889	
4.5	0.8891	

<u>(min)</u> <u>(in)</u>

<u>(min)</u> <u>(in)</u>

ASTM D 2435

Square Root of Time (min) 0.00 0.32 0.45 0.48 0.52 0.55 0.59 0.65 0.71 0.77 0.86 0.95 1.06	<u>Spec.</u> <u>Height</u> (in) 0.8932 0.8946 0.8946 0.8947 0.8947 0.8947 0.8948 0.8949 0.8951 0.8952 0.8955 0.8956 0.8960 0.8964 0.8969	Square Root of Time (min) 5.02 5.63 6.32 7.09 7.95 8.92 10.01 11.23 12.59 14.13 15.85 17.79 19.96	<u>Spec.</u> <u>Height</u> (in) 0.9005 0.9006 0.9008 0.9010 0.9012 0.9013 0.9014 0.9016 0.9017 0.9019 0.9023 0.9025 0.9027
1.17 1.30 1.45	0.8971 0.8974 0.8975	22.39 25.12 28.19	0.9027 0.9030 0.9031
1.62 1.81 2.02 2.27 2.54	0.8978 0.8982 0.8986 0.8988 0.8992	31.63 35.50 37.95	0.9031 0.9032 0.9033
2.34 2.84 3.18 3.57 4.00 4.5	0.8995 0.8999 0.9001 0.9002 0.9004		

Square RootSpec.of TimeHeight(min)(in)

Square Root	Spec.
of Time	Height
<u>(min)</u>	<u>(in)</u>

HOPKINS COUNTY STP BRZ 9030 (500)

One Dimensional Consolidation of Soils Using Incremental Loading ASTM D 2435

Project No. 178568003 Project Name Bridging KY - 054B00009N Source 054B00009N-2, 77.0'-77.3' Lab ID 1347 Description Sandy Silty Clay (CL-ML), gray, moist, soft Date Received 10/25/2021 Specimen Type Undisturbed Specific Gravity 2.65 ASTM D 854, Dry Prepared Using Cutting Ring LL 17 B - for 30 min. PL Test Method ΡI Test Condition Inundated at 0.05 tsf **Initial Specimen Conditions Final Specimen Conditions** Moisture Content (%) Moisture Content (%) 20.7 16.3 107.1 Dry Unit Weight (pcf) 119.6 Dry Unit Weight (pcf) 0.541 Void Ratio 0.381 Void Ratio Degree of Saturation (%) Degree of Saturation (%) 101.4 113.1 Initial Specimen Height (in) 0.9945 Final Specimen Height (in) 0.8911 Equivalent Height of Solids (in) 0.645 Preconsolidation Pressure* (tsf) Void Ratio @ Preconsolidation Pressure Seating Load 0 Void Ratio at d₁₀₀ vs. Stress Initial Loading 0.600 Δ 0 Unload @ dmax ۸ Recompression Final Unload @ dmax Apparent Max. Curvature 0 0.550 ÷ Preconsolidation Pressure 0.500 Ratio, 0.450 Void I 0.400 0.350 0.300 0.250 0.200 1000.00 1.00 100.00 0.01 0.10 10.00 10000.00 Vertical Effective Stress (tsf) **Coefficient of Consolidation** Initial Loading 8.000 Recompression \diamond 6.000 Cv ft2/Day 4.000 2.000 \diamond 0.000 0.01 0.10 1.00 10.00 100.00 1000.00 10000.00 Vertical Effective Stress (tsf) Comments Reviewed By

Stantec Consulting Services Inc. Lexington, Kentucky

Project Name Bridging KY - 054B00009N Project No. 178568003 Source 054B00009N-2, 77.0'-77.3' Lab ID 1347 Description Sandy Silty Clay (CL-ML), gray, moist, soft Date Received 10/25/2021 Specimen Type Undisturbed Specimen Load Specimen Specimen Specimen Fitting Height Height Void Ratio Void Ratio Time** Increment Height Load At Height Cv tsf (in) (in) (in) Cv (min) е е (in) @ d_{max} @ d_{max} ft²/day @ d₁₀₀ @ t₉₀ $@ d_0$ @ t₅₀ @ d₁₀₀ tsf @ d₅₀ σ_v 0.06 0.9945 ____ ----0.9771 0.514 0.9737 0.509 0.16 0.9821 0.27 0.9870 0.3 6.759 0.51 0.9702 0.9671 0.498 0.9663 0.497 0.39 0.9686 3.6 0.551 1.02 0.9623 0.9588 0.486 0.9572 0.483 0.77 0.9606 0.6 3.387 2.02 0.9500 0.9442 0.463 0.9413 0.458 1.52 0.9471 1.321 1.4 4.03 0.9340 0.9288 0.439 0.9243 0.432 3.02 0.9314 0.6 3.023 8.03 0.9160 0.9025 0.398 0.8979 0.391 6.03 0.9092 1.1 1.531 0.8775 16.07 0.8850 0.8700 0.348 0.8644 0.339 12.05 1.1 1.453 32.09 0.8480 0.8279 0.283 0.8235 0.276 24.08 0.8379 0.9 1.632 16.06 0.8305 0.8393 0.300 4.03 0.8461 0.8558 0.326 0.344 1.02 0.8592 0.8676 0.27 0.8702 0.8786 0.361 0.07 0.8818 0.8911 0.381

Testing Details:

Consolidation Press ID CON-10 Trimming Ring ID GS-81 Initial MC from Trimmings (%) 19.2

Test Start Date <u>11/01/2021</u> Technician KG

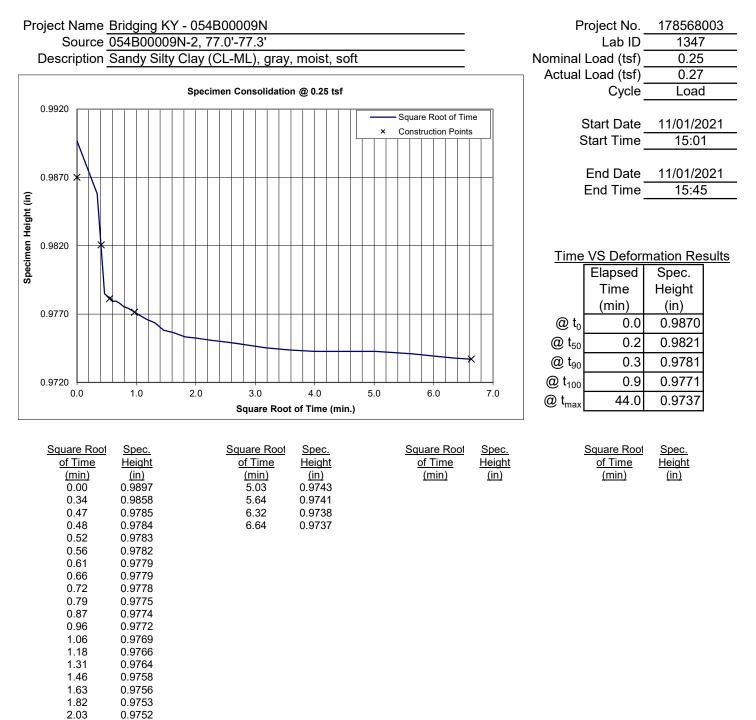
Final Differential Height (in) -0.026

Test End Date 11/05/2021

Technician KG

When available, all other tests performed in association with this specimen are reported separately.

* When presented, The preconsolidation pressure evaluated using the Casagrande Method, as per ASTM D 2435.


** Cv Computation Methods:

0 t_{50}, Cv calculated using Log Time Method.

@ t_{90} , Cv calculated using Square Root of Time Method.

Stantec Consulting Services Inc. Lexington, Kentucky

ASTM D 2435

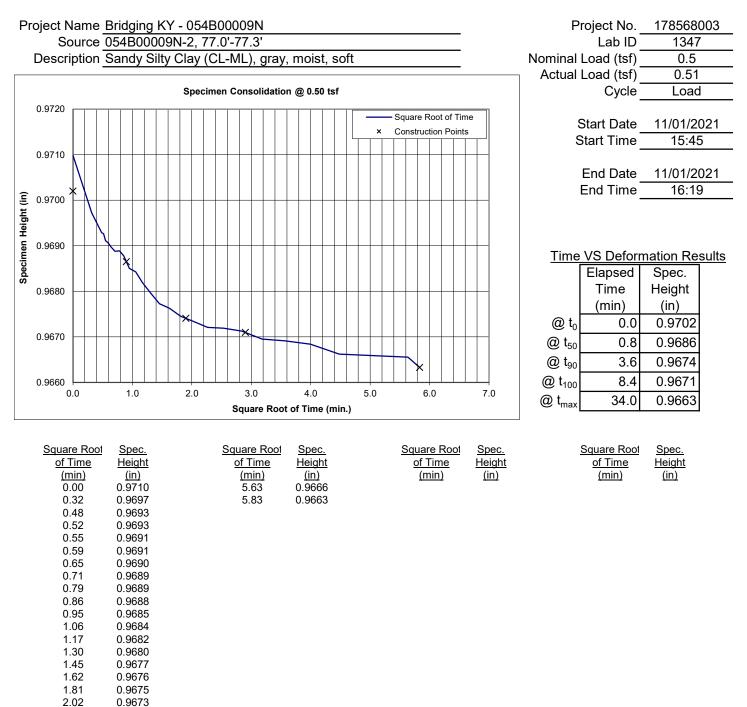
Comments

2.27

2.54

2.84 3.19

3.57


4.00 4.5 0.9751

0.9749 0.9747

0.9745

0.9744 0.9743

ASTM D 2435

Comments

2.27

2.54

2.84

3.18 3.57

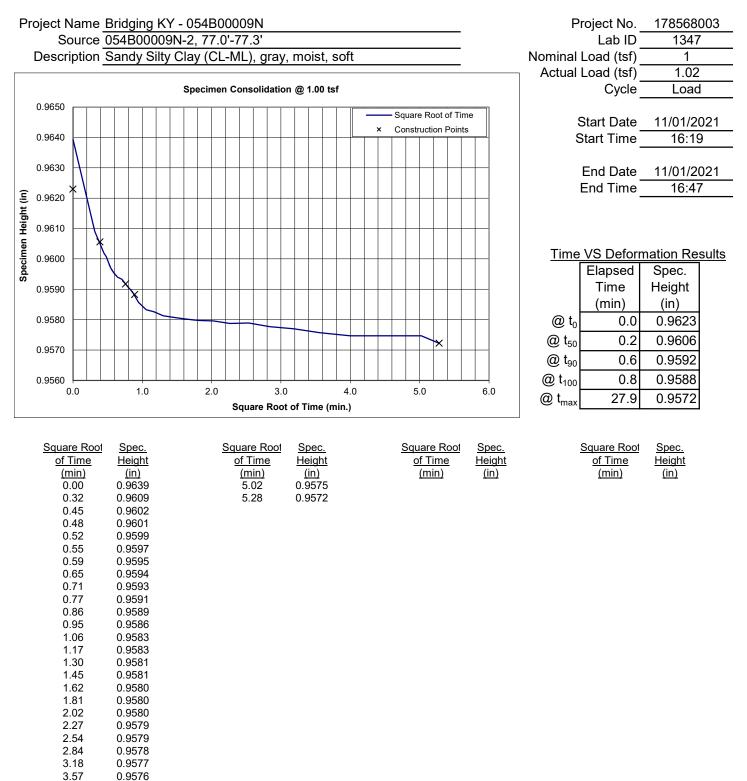
4.00

4.48

5.0

0.9672

0.9672


0.9671 0.9669

0.9669

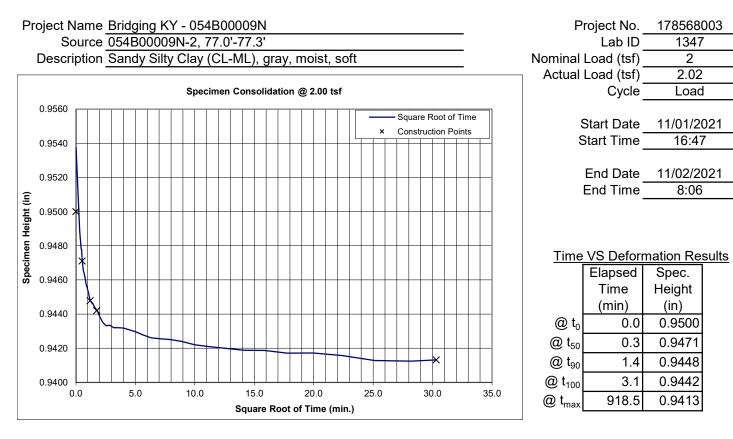
0.9668

0.9666

ASTM D 2435



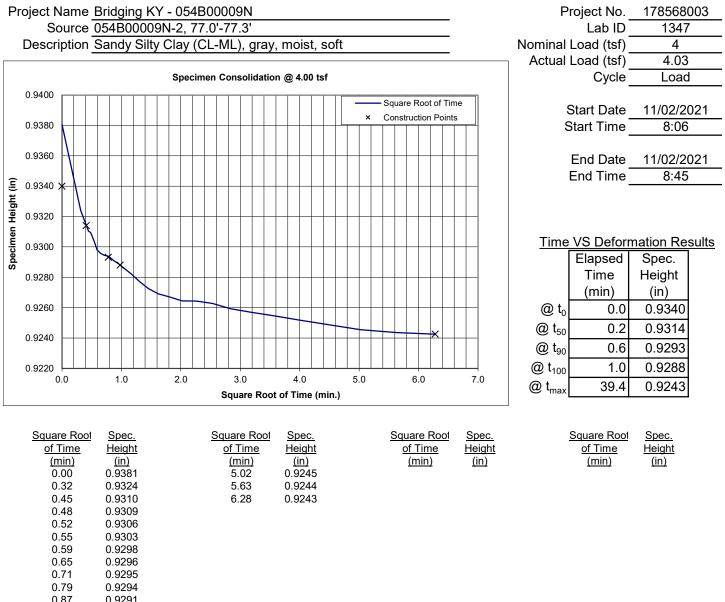
Comments


4.00

4.5

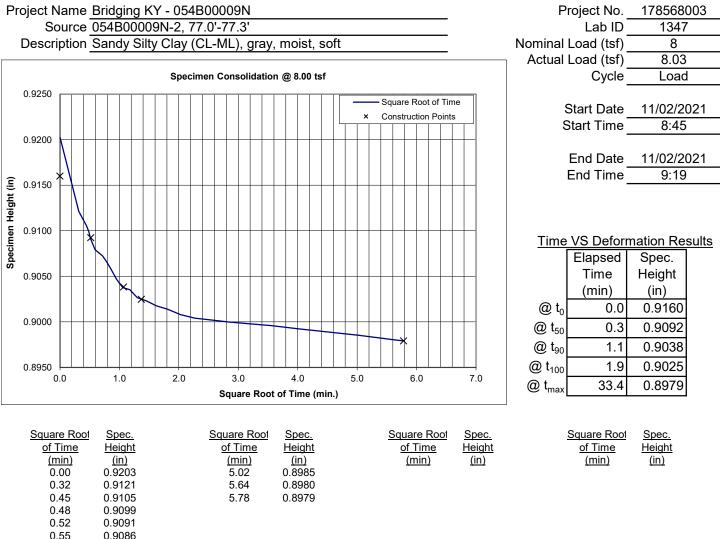
0.9575

ASTM D 2435

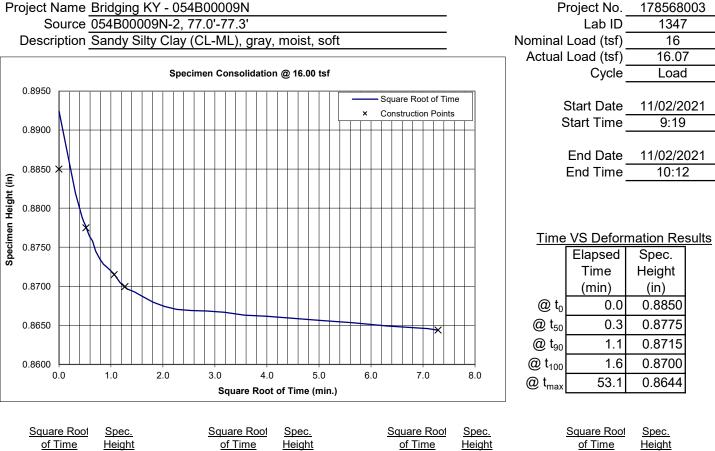

	~		•
Square Root	Spec.	Square Root	Spec.
<u>of Time</u>	<u>Height</u>	<u>of Time</u>	<u>Height</u>
<u>(min)</u>	<u>(in)</u>	<u>(min)</u>	<u>(in)</u>
0.00	0.9538	5.02	0.9430
0.32	0.9488	5.63	0.9428
0.45	0.9478	6.32	0.9426
0.48	0.9478	7.09	0.9426
0.52	0.9474	7.95	0.9425
0.55	0.9471	8.92	0.9424
0.59	0.9467	10.01	0.9422
0.65	0.9465	11.23	0.9421
0.71	0.9463	12.59	0.9420
0.79	0.9461	14.13	0.9419
0.86	0.9457	15.85	0.9419
0.95	0.9455	17.79	0.9417
1.06	0.9452	19.96	0.9417
1.17	0.9449	22.39	0.9416
1.30	0.9447	25.12	0.9413
1.45	0.9446	28.19	0.9412
1.62	0.9443	30.31	0.9413
1.81	0.9442		
2.02	0.9438		
2.27	0.9435		
2.54	0.9433		
2.84	0.9433		
3.18	0.9432		
3.57	0.9432		
4.00	0.9432		
4.5	0.9430		

Square RootSpec.of TimeHeight(min)(in)

Square Root	Spec.
of Time	Height
<u>(min)</u>	<u>(in)</u>


ASTM D 2435

0.79	0.9294
0.87	0.9291
0.96	0.9289
1.06	0.9286
1.18	0.9282
1.30	0.9277
1.45	0.9273
1.62	0.9269
1.81	0.9267
2.02	0.9264
2.27	0.9264
2.54	0.9263
2.84	0.9259
3.18	0.9257
3.57	0.9255
4.00	0.9252
4.5	0.9249


Template: tmp_cons_input.xlsm Version: 20170216 Approved By: RJ

ASTM D 2435

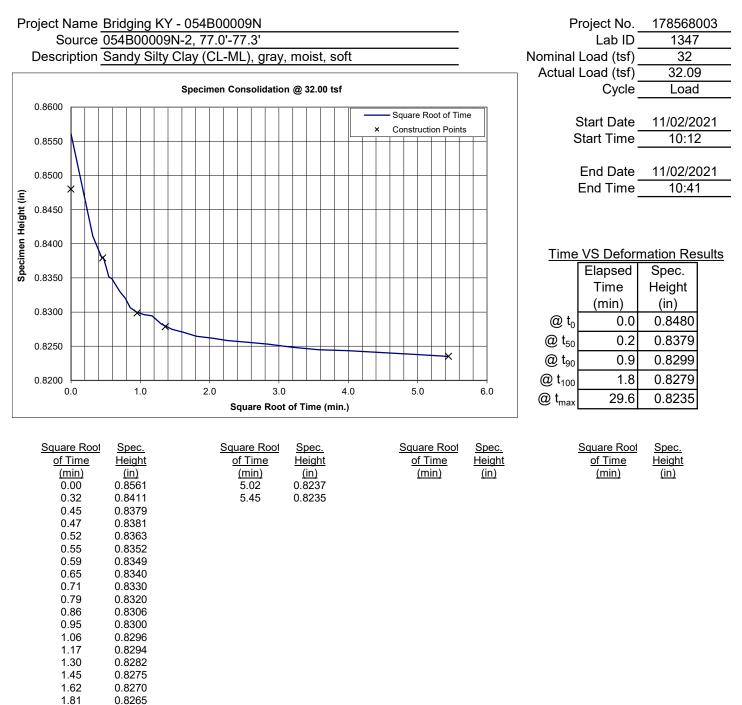
0.55	0.9086
0.59	0.9079
0.65	0.9076
0.72	0.9072
0.79	0.9066
0.87	0.9057
0.95	0.9047
1.06	0.9038
1.18	0.9035
1.30	0.9026
1.45	0.9023
1.62	0.9017
1.81	0.9014
2.03	0.9008
2.27	0.9004
2.54	0.9002
2.84	0.9000
3.18	0.8998
3.57	0.8996
4.00	0.8992
4.5	0.8990

ASTM D 2435

<u>are Root</u>	<u>Spec.</u>
of Time	<u>Height</u>
<u>(min)</u>	<u>(in)</u>
0.00	0.8924
0.32	0.8820
0.45	0.8788
0.48	0.8782
0.52	0.8778
0.55	0.8771
0.59	0.8764
0.65	0.8758
0.71	0.8745
0.79	0.8735
0.86	0.8728
0.95	0.8723
1.06	0.8716
1.18	0.8705
1.30	0.8697
1.45	0.8693
1.62	0.8686
1.81	0.8680
2.02	0.8674
2.27	0.8670
2.54	0.8669
2.84	0.8668
3.18	0.8667
3.57	0.8663
4.00	0.8662
4.5	0.8659

<u>(11111)</u>	<u>(III)</u>
5.02	0.8656
5.64	0.8653
6.32	0.8649
7.09	0.8646
7.29	0.8644

(in)


(min)

quare Root	Spec.
of Time	Height
<u>(min)</u>	<u>(in)</u>

uare Root	Spec.
of Time	Heigh
<u>(min)</u>	<u>(in)</u>

ASTM D 2435

Comments

2.02

2.27

2.54

2.84

3.18

3.57

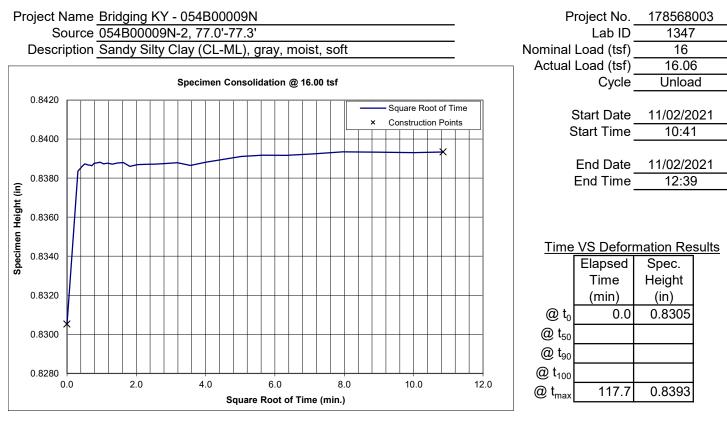
4.00

4.5

0.8262

0.8258

0.8256


0.8253

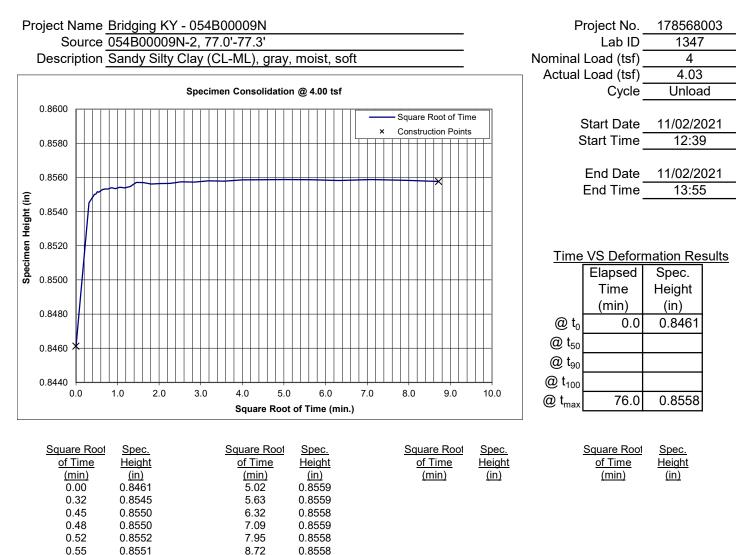
0.8249

0.8245

0.8243

ASTM D 2435

Square Root	Spec.	
<u>of Time</u>	<u>Height</u>	
<u>(min)</u>	<u>(in)</u>	
0.00	0.8305	
0.32	0.8384	
0.45	0.8386	
0.48	0.8387	
0.52	0.8387	
0.56	0.8387	
0.61	0.8387	
0.66	0.8387	
0.72	0.8386	
0.79	0.8388	
0.87	0.8388	
0.96	0.8388	
1.06	0.8387	
1.18	0.8388	
1.31	0.8387	
1.45	0.8388	
1.63	0.8388	
1.82	0.8386	
2.03	0.8387	
2.27	0.8387	
2.54	0.8387	
2.84	0.8388	
3.18	0.8388	
3.57	0.8387	
4.00	0.8388	
4.5	0.8389	


Square Root of Time (min) 5.03 5.64 6.32 7.09 7.95 8.92 10.01 10.85	<u>Spec.</u> <u>Height</u> (in) 0.8391 0.8392 0.8392 0.8393 0.8393 0.8393 0.8393

Square Root	Spec.
of Time	Height
<u>(min)</u>	<u>(in)</u>

Square Root	Spec.
of Time	Height
<u>(min)</u>	<u>(in)</u>

ASTM D 2435

3.18	0.8558
3.57	0.8558
4.00	0.8559
4.5	0.8558
Comments	

0.59

0.65

0.71

0.77 0.86

0.95

1.06

1.17

1.30

1.45 1.62

1.81

2.02

2.27

2.54

2.84

0.8552

0.8553

0.8553 0.8553

0.8554

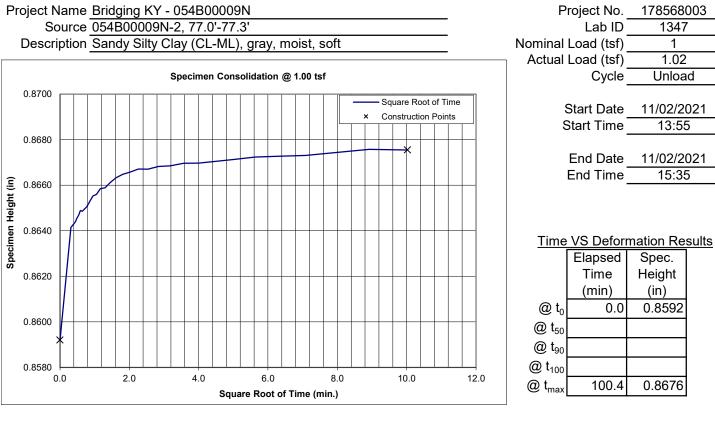
0.8553

0.8554

0.8554 0.8555

0.8557

0.8557

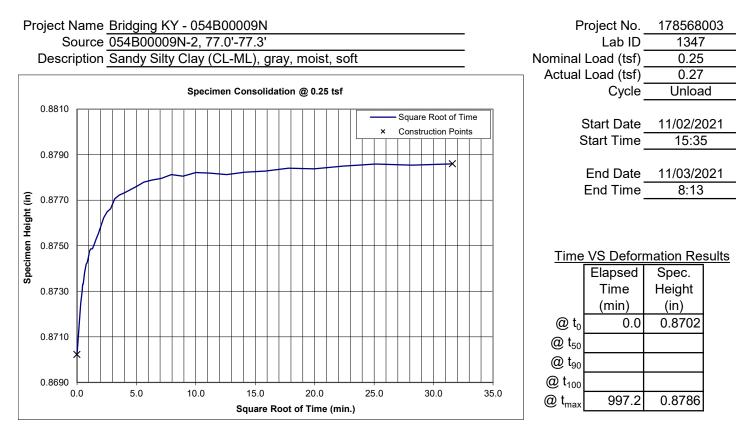

0.8556

0.8556

0.8556

0.8557 0.8557

ASTM D 2435

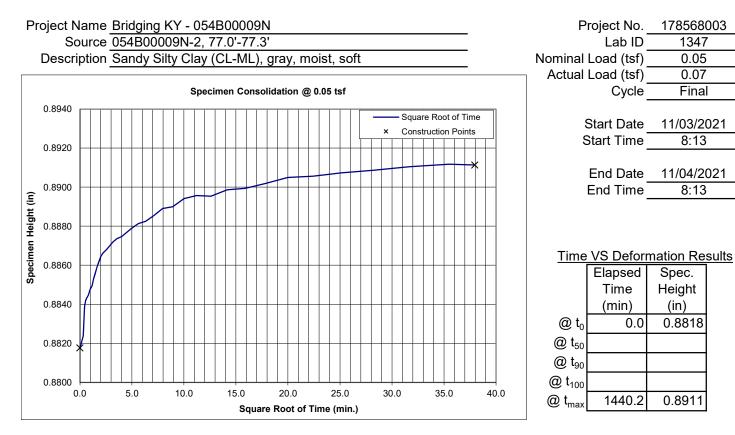


Square Root Spec. of Time Height (min) (in) 5.02 0.8671 5.64 0.8672 6.32 0.8673 7.09 0.8673 7.95 0.8674 8.92 0.8676 10.01 0.8675 10.02 0.8676	

Square Root	Spec.
of Time	Height
<u>(min)</u>	<u>(in)</u>

Square Root	Spec.
of Time	Height
<u>(min)</u>	<u>(in)</u>

ASTM D 2435

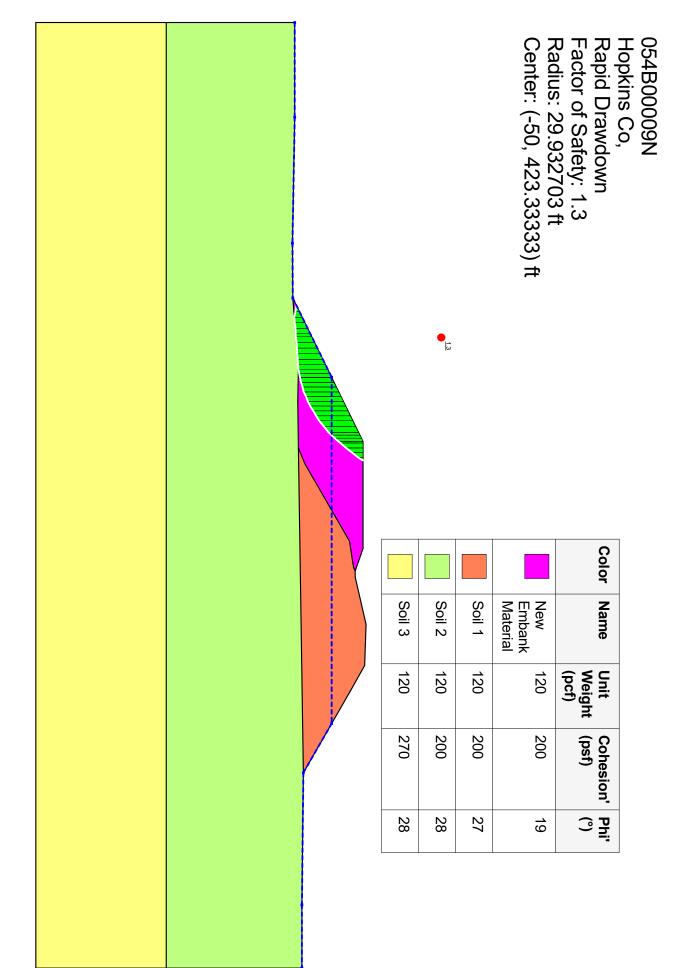


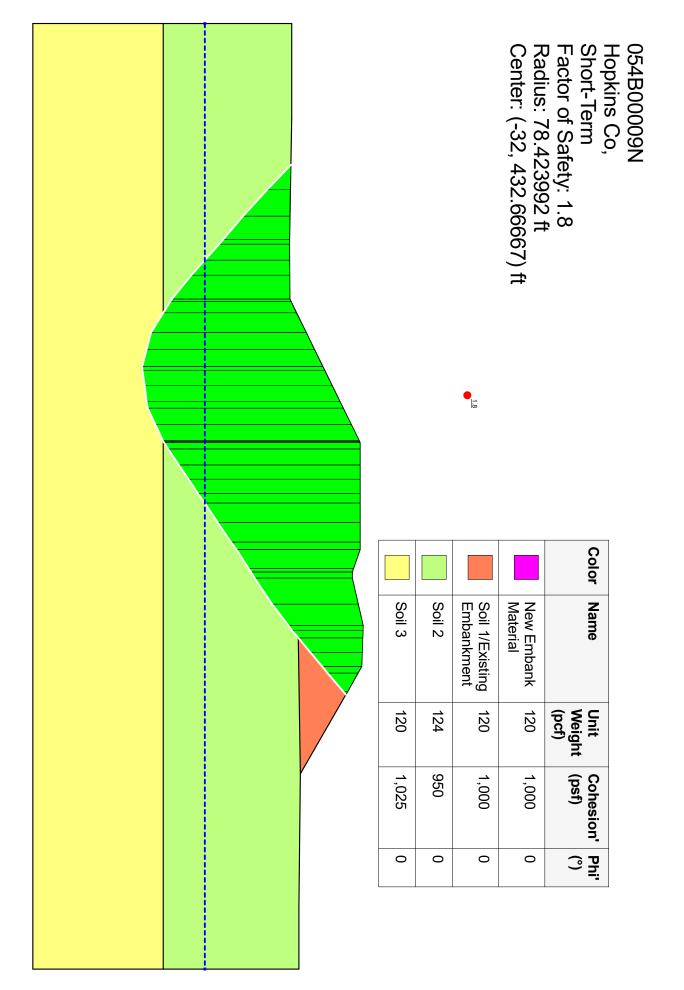
Square Root	Spec.	Square I	
<u>of Time</u>	<u>Height</u>	<u>of Tim</u>	
<u>(min)</u>	<u>(in)</u>	<u>(min</u>	
0.00	0.8702	5.02	
0.32	0.8725	5.63	
0.45	0.8730	6.32	
0.48	0.8733	7.09	
0.52	0.8733	7.95	
0.55	0.8734	8.92	
0.59	0.8736	10.0 ⁻	1 0.8782
0.65	0.8738	11.23	
0.71	0.8740	12.59	9 0.8781
0.79	0.8742	14.13	3 0.8782
0.86	0.8742	15.8	5 0.8783
0.95	0.8745	17.79	9 0.8784
1.06	0.8748	19.90	6 0.8784
1.18	0.8749	22.3	9 0.8785
1.30	0.8749	25.12	2 0.8786
1.45	0.8750	28.19	9 0.8785
1.62	0.8753	31.58	3 0.8786
1.81	0.8755		
2.02	0.8759		
2.27	0.8762		
2.54	0.8765		
2.84	0.8766		
3.18	0.8771		
3.57	0.8772		
4.00	0.8773		
4.5	0.8775		

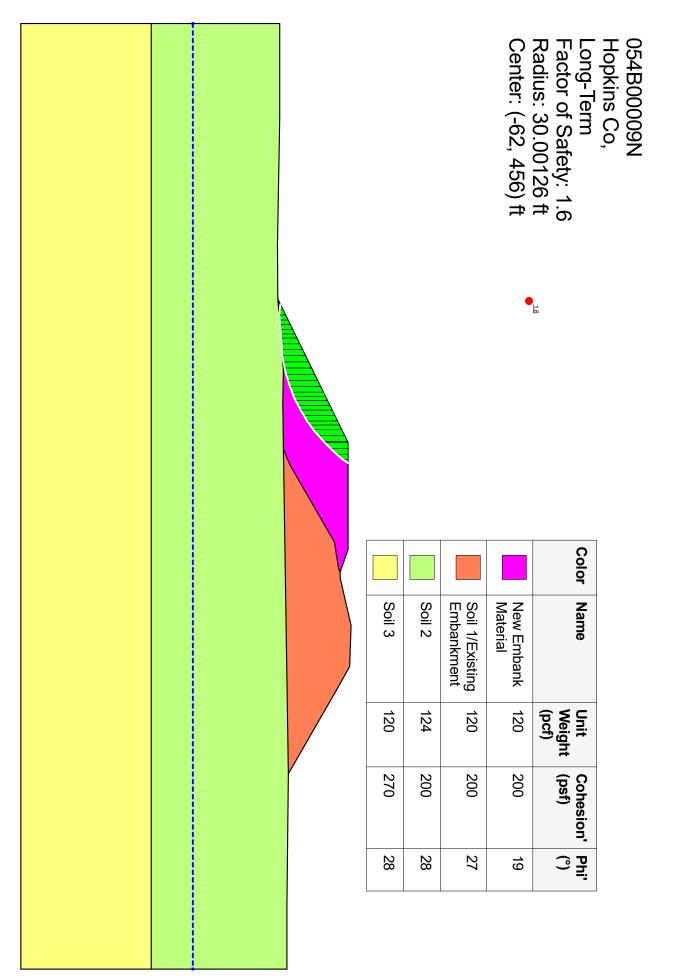
Square RootSpec.of TimeHeight(min)(in)

Square Root	Spec.
of Time	Height
<u>(min)</u>	<u>(in)</u>

ASTM D 2435


Square Root	Spec.	Square Root	Spec.
<u>of Time</u>	<u>Height</u>	<u>of Time</u>	<u>Height</u>
<u>(min)</u>	<u>(in)</u>	<u>(min)</u>	<u>(in)</u>
0.00	0.8818	5.02	0.8879
0.32	0.8824	5.63	0.8881
0.45	0.8838	6.32	0.8883
0.48	0.8840	7.09	0.8885
0.50	0.8840	7.95	0.8889
0.55	0.8842	8.92	0.8890
0.59	0.8842	10.01	0.8894
0.65	0.8843	11.23	0.8896
0.71	0.8844	12.59	0.8895
0.77	0.8844	14.17	0.8899
0.86	0.8845	15.89	0.8899
0.95	0.8847	17.82	0.8902
1.06	0.8848	19.98	0.8905
1.17	0.8849	22.41	0.8906
1.30	0.8853	25.14	0.8907
1.45	0.8855	28.20	0.8909
1.62	0.8859	31.64	0.8910
1.81	0.8862	35.50	0.8912
2.02	0.8865	37.95	0.8911
2.27	0.8866		
2.54	0.8868		
2.84	0.8870		
3.18	0.8872		
3.57	0.8874		
4.00	0.8875		
4.5	0.8877		


Square RootSpec.of TimeHeight(min)(in)


Square RootSpec.of TimeHeight(min)(in)

HOPKINS COUNTY STP BRZ 9030 (500) Contract ID: 255382 Page 318 of 372

APPENDIX D STABILITY ANALYSES

HOPKINS COUNTY STP BRZ 9030 (500) Contract ID: 255382 Page 322 of 372

APPENDIX E IDEALIZED SOIL PROFILE

Idealized Subsurface Profiles.xls 1/25/2022

GENERAL SOIL PROFILE LEGEND SHEET

KY138 over Pond River

SUMMARY OF PARAMETERS DEVELOPED FOR SOIL PROFILES			
Par	ameter	Units	Description
	γt	lb/ft ³	Total Unit Weight
	γ _e	lb/ft ³	Effective Unit Weight
	q _U	lb/ft ²	Unconfined Compressive Strength (soil)
	q _U	ton/ft ²	Unconfined Compressive Strength (rock)
	C _U	lb/ft ²	Undrained Shear Strength
F	RQD	%	Rock Quality Designation
	φ	(°)	Angle of Internal Friction
	с	lb/ft ²	Effective stress cohesion
	Ks	lb/in ³	Soil Secant Modulus - Static (computer program LPILE2016)
	Em	ksi	Rock Modulus
	ν		Poisson's Ratio
(GSI		Geological Strength Index

GENERAL SOIL PROFILE

KY138 over Pond River

Based on Boring 054B00009N-2

			Descript	ion
Approximate		STRATA		
Elevation	Depth			
(ft)	(ft)	Description	Par	rameters
		(USCS Classification)		
374.7	0.0			
		Lean Clay	$\gamma_{t} (lb/ft^{3}) = 124$	above the water table
359.7	15.0	(CL)	$\gamma \epsilon (\text{lb/ft}^3) = 61.6$	below the water table
			Cu (lb/ft ²) = 950	
			K _S (lb/in ³) = 100	
334.7	40.0		E ₅₀ = 0.010	
		Silty Clay with Sand	$\gamma_{t} (lb/ft^{3}) = 57.6$	below the water table
		(CL-ML, CL)	Cu (lb/ft ²) = 1025	
			K _S (lb/in ³) = 100	
			E ₅₀ = 0.010	
279.7	95.0	Bottom of Hole		
		Silty Sand	$\gamma_{t} (\text{lb/ft}^{3}) = 57.6$	below the water table
		(SM)	$\phi(^{\rm o}) = 34$	
			k _s (lb/in ³) = 125	Below water table
275.2	99.5	Bottom of Hole		

GUARDRAIL DELIVERY VERIFICATION SHEET

Contract Id:		Contractor:	
Section Engineer:		_ District & County:	
DESCRIPTION	<u>UNIT</u>	OTY LEAVING PROJECT	<u>QTY RECEIVED@BB YARD</u>
GUARDRAIL (Includes	LF		
End treatments & crash cushions) STEEL POSTS	EACH		
STEEL BLOCKS	EACH		
WOOD OFFSET BLOCKS	EACH		
BACK UP PLATES	EACH		
CRASH CUSHION	EACH		
NUTS, BOLTS, WASHERS	BAG/BCKT		
DAMAGED RAIL TO MAINT. FACILI	TY LF		
DAMAGED POSTS TO MAINT. FACI	LITY EACH		
* <u>Required Signatures before</u>	e Leaving Proje	ect Site	
Printed Section Engineer's Re	epresentative_		& Date
Signature Section Engineer's	Representativ	e	_& Date
Printed Contractor's Represe	entative		_& Date
Signature Contractor's Repre	esentative		_& Date
*Required Signatures after	Arrival at Baile	y Bridge Yard (All material d	on truck must be counted & the
quantity received column co	mpleted befor	<u>re signatures)</u>	
Printed Bailey Bridge Yard Re	epresentative_		& Date
Signature Bailey Bridge Yard	Representative	e	_& Date
Printed Contractor's Represe	entative		_& Date
Signature Contractor's Repre	esentative		_& Date

**Payment for the bid item remove guardrail will be based upon the quantities shown in the Bailey Bridge Yard received column. Payment will not be made for guardrail removal until the guardrail verification sheets are electronically submitted to the Section Engineer by the Bailey Bridge Yard Representative.

Completed Form Submitted to Section Engineer Date: _____

Ву:_____

PART II

SPECIFICATIONS AND STANDARD DRAWINGS

STANDARD SPECIFICATIONS

Any reference in the plans or proposal to previous editions of the *Standard Specifications* for Road and Bridge Construction and Standard Drawings are superseded by Standard Specifications for Road and Bridge Construction, Edition of 2019 and Standard Drawings, Edition of 2020.

SUPPLEMENTAL SPECIFICATIONS

The contractor shall use the Supplemental Specifications that are effective at the time of letting. The Supplemental Specifications can be found at the following link: http://transportation.ky.gov/Construction/Pages/Kentucky-Standard-Specifications.aspx

SPECIAL NOTE FOR PORTABLE CHANGEABLE MESSAGE SIGNS

This Special Note will apply when indicated on the plans or in the proposal.

1.0 DESCRIPTION. Furnish, install, operate, and maintain variable message signs at the locations shown on the plans or designated by the Engineer. Remove and retain possession of variable message signs when they are no longer needed on the project.

2.0 MATERIALS.

2.1 General. Use LED Variable Message Signs Class I, II, or III, as appropriate, from the Department's List of Approved Materials.

Unclassified signs may be submitted for approval by the Engineer. The Engineer may require a daytime and nighttime demonstration. The Engineer will make a final decision within 30 days after all required information is received.

2.2 Sign and Controls. All signs must:

- 1) Provide 3-line messages with each line being 8 characters long and at least 18 inches tall. Each character comprises 35 pixels.
- Provide at least 40 preprogrammed messages available for use at any time. Provide for quick and easy change of the displayed message; editing of the message; and additions of new messages.
- 3) Provide a controller consisting of:
 - a) Keyboard or keypad.
 - b) Readout that mimics the actual sign display. (When LCD or LCD type readout is used, include backlighting and heating or otherwise arrange for viewing in cold temperatures.)
 - c) Non-volatile memory or suitable memory with battery backup for storing pre-programmed messages.
 - d) Logic circuitry to control the sequence of messages and flash rate.
- 4) Provide a serial interface that is capable of supporting complete remote control ability through land line and cellular telephone operation. Include communication software capable of immediately updating the message, providing complete sign status, and allowing message library queries and updates.
- 5) Allow a single person easily to raise the sign to a satisfactory height above the pavement during use, and lower the sign during travel.
- 6) Be Highway Orange on all exterior surfaces of the trailer, supports, and controller cabinet.
- 7) Provide operation in ambient temperatures from -30 to + 120 degrees Fahrenheit during snow, rain and other inclement weather.
- 8) Provide the driver board as part of a module. All modules are interchangeable, and have plug and socket arrangements for disconnection and reconnection. Printed circuit boards associated with driver boards have a conformable coating to protect against moisture.
- Provide a sign case sealed against rain, snow, dust, insects, etc. The lens is UV stabilized clear plastic (polycarbonate, acrylic, or other approved material) angled to prevent glare.
- 10) Provide a flat black UV protected coating on the sign hardware, character PCB, and appropriate lens areas.
- 11) Provide a photocell control to provide automatic dimming.

- 12) Allow an on-off flashing sequence at an adjustable rate.
- 13) Provide a sight to aim the message.
- 14) Provide a LED display color of approximately 590 nm amber.
- 15) Provide a controller that is password protected.
- 16) Provide a security device that prevents unauthorized individuals from accessing the controller.
- 17) Provide the following 3-line messages preprogrammed and available for use when the sign unit begins operation:

/KEEP/RIGHT/⇒⇒⇒/ /KEEP/LEFT/⇐⇐⇐/ /LOOSE/GRAVEL/AHEAD/ /RD WORK/NEXT/**MILES/ /TWO WAY/TRAFFIC/AHEAD/ /PAINT/CREW/AHEAD/ /REDUCE/SPEED/**MPH/ /BRIDGE/WORK/***0 FT/ /MAX/SPEED/**MPH/ /SURVEY/PARTY/AHEAD/ /MIN/SPEED/**MPH/ /ICY/BRIDGE/AHEAD/ /ONE LANE/BRIDGE/AHEAD/ /ROUGH/ROAD/AHEAD/ /MERGING/TRAFFIC/AHEAD/ /NEXT/***/MILES/ /HEAVY/TRAFFIC/AHEAD/ /SPEED/LIMIT/**MPH/ /BUMP/AHEAD/ /TWO/WAY/TRAFFIC/

*Insert numerals as directed by the Engineer. Add other messages during the project when required by the Engineer.

- 2.3 Power.
- Design solar panels to yield 10 percent or greater additional charge than sign consumption. Provide direct wiring for operation of the sign or arrow board from an external power source to provide energy backup for 21 days without sunlight and an on-board system charger with the ability to recharge completely discharged batteries in 24 hours.

3.0 CONSTRUCTION. Furnish and operate the variable message signs as designated on the plans or by the Engineer. Ensure the bottom of the message panel is a minimum of 7 feet above the roadway in urban areas and 5 feet above in rural areas when operating. Use Class I, II, or III signs on roads with a speed limit less than 55 mph. Use Class I or II signs on roads with speed limits 55 mph or greater.

Maintain the sign in proper working order, including repair of any damage done by others, until completion of the project. When the sign becomes inoperative, immediately repair or replace the sign. Repetitive problems with the same unit will be cause for rejection and replacement.

Use only project related messages and messages directed by the Engineer, unnecessary messages lessen the impact of the sign. Ensure the message is displayed in either one or 2 phases with each phase having no more than 3 lines of text. When no message is needed, but it is necessary to know if the sign is operable, flash only a pixel.

When the sign is not needed, move it outside the clear zone or where the Engineer directs. Variable Message Signs are the property of the Contractor and shall be removed from the project when no longer needed. The Department will not assume ownership of these signs.

4.0 MEASUREMENT. The final quantity of Variable Message Sign will be

1I

the actual number of individual signs acceptably furnished and operated during the project. The Department will not measure signs replaced due to damage or rejection.

5.0 PAYMENT. The Department will pay for the Variable Message Signs at the unit price each. The Department will not pay for signs replaced due to damage or rejection. Payment is full compensation for furnishing all materials, labor, equipment, and service necessary to, operate, move, repair, and maintain or replace the variable message signs. The Department will make payment for the completed and accepted quantities under the following:

CodePay Item02671Portable Changeable Message Sign

Effective June 15, 2012

Pay Unit

Each

SPECIAL PROVISION FOR EMBANKMENT AT BRIDGE END BENT STRUCTURES

This Special Provision will apply when indicated on the plans or in the proposal. Section references herein are to the Department's Standard Specifications for Road and Bridge Construction, Current Edition.

1.0 DESCRIPTION. Construct a soil, granular, or rock embankment with soil, granular or cohesive pile core and place structure granular backfill, as the Plans require. Construct the embankment according to the requirements of this Special Provision, the Plans, Standard Drawing RGX 100 and 105, and the Standard Specifications, Current Edition.

2.0 MATERIALS.

2.1 Granular Embankment. Conform to Subsection 805.10. When Granular Embankment materials are erodible or unstable according to Subsection 805.03.04, use the Special Construction Methods found in 3.2 of the Special Provision.

2.2 Rock Embankment. Provide durable rock from roadway excavation that consists principally of Unweathered Limestone, Durable Shale (SDI equal to or greater than 95 according to KM 64-513), or Durable Sandstone.

2.3 Pile Core. Provide a pile core in the area of the embankments where deep foundations are to be installed unless otherwise specified. The Pile Core is the zone indicated on Standard Drawings RGX 100 and 105 designated as Pile Core. Material control of the pile core area during embankment construction is always required. Proper Pile Core construction is required for installation of foundation elements such as drilled or driven piles or drilled shafts. The type of material used to construct the pile core is as directed in the plans or below. Typically, the pile core area will be constructed from the same material used to construct the surrounding embankment. Pile Core can be classified as one of three types:

A) Pile Core - Conform to Section 206 of the Standard Specifications. Provide pile core material consisting of the same material as the adjacent embankment except the material in the pile core area shall be free of boulders or particle sizes larger than 4 inches in any dimension or any other obstructions that may hinder pile driving operations. If the pile core material hinders pile driving operations, take the appropriate means necessary to reach the required pile tip elevation, at no expense to the Department.

B) Granular Pile Core. Granular pile core is required only when specified in the plans. Select a gradation of durable rock to facilitate pile driving that conforms to Subsection 805.11. If granular pile core material hinders pile driving operations, take appropriate means necessary to reach the required pile tip elevation, at no expense to the Department.

C) Cohesive Pile Core. Cohesive Pile Core is required only when specified in the plans. Conform to Section 206 of the Standard Specifications and use soil with at least 50 percent passing a No. 4 sieve having a minimum Plasticity Index (PI) of 10. In addition, keep the cohesive pile core free of boulders, larger than 4 inches in any dimension, or any other obstructions, which would interfere with drilling operations. If cohesive pile core material interferes with drilling operations, take appropriate means necessary to maintain excavation stability, at no expense to the Department.

2.4 Structure Granular Backfill. Conform to Subsection 805.11

2.5 Geotextile Fabric. Conform to Class 1 or Class 2 in Section 214 and 843.

3.0 CONSTRUCTION.

3.1 General. Construct roadway embankments at end bents according to Section 206 and in accordance with the Special Provision, the Plans, and Standard Drawings for the full embankment section. In some instances, granular or rock embankment will be required for embankment construction for stability purposes, but this special provision does not prevent the use of soil when appropriate. Refer to the plans for specific details regarding material requirements for embankment construction. Place and compact the pile core and structure granular backfill according to the applicable density requirements for the project. If the embankment and pile core are dissimilar materials (i.e., a granular pile core is used with a soil embankment or a cohesive pile core is used with a granular embankment), a Geotextile Fabric, will be required between the pile core and embankment in accordance with Sections 214 and 843 of the Standard Specifications.

When granular or rock embankment is required for embankment construction, conform to the general requirements of Subsection 206.03.02 B. In addition, place the material in no greater than 2-foot loose lifts and compact with a vibrating smooth wheel roller capable of producing a minimum centrifugal force of 15 tons. Apply these requirements to the full width of the embankment for a distance of half the embankment height or 50 feet, whichever is greater, as shown on Standard Drawing RGX-105.

When using granular pile core, install 8-inch perforated underdrain pipe at or near the elevation of the original ground in the approximate locations depicted on the standard drawing, and as the Engineer directs, to ensure positive drainage of the embankment. Wrap the perforated pipe with a fabric of a type recommended by the pipe manufacturer.

After constructing the embankment, excavate for the end bent cap, drive piling, install shafts or other foundation elements, place the mortar bed, construct the end bent, and complete the embankment to finish grade according to the construction sequence shown on the Plans or Standard Drawings and as specified hereinafter.

Certain projects may require widening of existing embankments and the removal of substructures. Construct embankment according to the plans. Substructure removal shall be completed according to the plans and Section 203. Excavation may be required at the existing embankment in order to place the structure granular backfill as shown in the Standard Drawings. After piles are driven or shafts installed (see design drawings), slope the bottom of the excavation towards the ends of the trench as noted on the plans for drainage. Using a separate pour, place concrete mortar, or any class concrete, to provide a base for forming and placing the cap. Place side forms for the end bent after the mortar has set sufficiently to support workmen and forms without being disturbed.

Install 4-inch perforated pipe in accordance with the plans and Standard Drawings. In the event slope protection extends above the elevation of the perforated pipe, extend the pipe through the slope protection.

After placing the end bent cap and achieving required concrete cylinder strengths, remove adjacent forms and fill the excavation with compacted structure granular backfill material (maximum 1' loose lifts) to the level of the berm prior to placing beams for the bridge. Place a geotextile fabric between embankment material and structure granular backfill. After completing the end bent backwall, or after completing the span end wall, place the compacted structure granular backfill (maximum 1' loose lifts) to subgrade elevation. If the original excavation is enlarged, fill the entire volume with compacted structure granular backfill (maximum 1' loose lifts) at no expense to the Department. Do not place backfill before removing adjacent form work. Place structure granular backfill material in trench ditches at the ends of the excavation. Place Geotextile Fabric, over the surface of the compacted structure granular backfill prior to placing aggregate base course.

Tamp the backfill with hand tampers, pneumatic tampers, or other means approved by the Engineer. Thoroughly compact the backfill under the overhanging portions of the structure to ensure that the backfill is in intimate contact with the sides of the structure.

Do not apply seeding, sodding, or other vegetation to the exposed granular embankment.

3.2 Special Construction Methods. Erodible or unstable materials may erode even when protected by riprap or channel lining; use the special construction method described below when using these materials.

Use fine aggregates or friable sandstone granular embankment at "dry land" structures only. Do not use them at stream crossings or locations subject to flood waters.

For erodible or unstable materials having 50 percent or more passing the No. 4 sieve, protect with geotextile fabric. Extend the fabric from the original ground to the top of slope over the entire area of the embankment slopes on each side of, and in front of, the end bent. Cover the fabric with at least 12 inches of non-erodible material.

For erodible or unstable materials having less than 50 percent passing a No. 4 sieve, cover with at least 12 inches of non-erodible material.

Where erodible or unstable granular embankment will be protected by riprap or channel lining, place a geotextile fabric between the embankment and the specified slope protection.

4.0 MEASUREMENT.

4.1 Granular Embankment. The Department will measure the quantity in cubic yards using the plan quantity, increased or decreased by authorized adjustments as specified in Section 204. The Department will not measure for payment any Granular Embankment that is not called for in the plans.

The Department will not measure for payment any special construction caused by using erodible or unstable materials and will consider it incidental to the Granular Embankment regardless of whether the erodible or unstable material was specified or permitted.

4.2 Rock Embankment. The Department will not measure for payment any rock embankment and will consider it incidental to roadway excavation or embankment in place, as applicable. Rock embankments will be constructed using granular embankment on projects where there is no available rock present within the excavation limits of the project.

4.3 Pile Core. Pile core will be measured and paid under roadway excavation or embankment in place, as applicable. The Department will not measure the pile core for separate payment. The Department will not measure for payment the 8-inch perforated underdrain pipe and will consider it incidental to the Pile Core.

4.4 Structure Granular Backfill. The Department will measure the quantity in cubic yards using the plan quantity, increased or decreased by authorized adjustments as specified in Section 204. The

Department will not measure any additional material required for backfill outside the limits shown on the Plans and Standard Drawings for payment and will consider it incidental to the work.

The Department will not measure for payment the 4-inch perforated underdrain pipe and will consider it incidental to the Structure Granular Backfill.

4.5 Geotextile Fabric. The Department will not measure the quantity of fabric used for separating dissimilar materials when constructing the embankment and pile core and will consider it incidental to embankment construction.

The Department will not measure for payment the Geotextile Fabric used to separate the Structure Granular Backfill from the embankment and aggregate base course and will consider it incidental to Structure Granular Backfill.

The Department will not measure for payment the Geotextile Fabric required for construction with erodible or unstable materials and will consider it incidental to embankment construction.

4.6 End Bent. The Department will measure the quantities according to the Contract. The Department will not measure furnishing and placing the 2-inch mortar or concrete bed for payment and will consider it incidental to the end bent construction.

4.7 Structure Excavation. The Department will not measure structure excavation on new embankments for payment and will consider it incidental to the Structure Granular Backfill or Concrete as applicable.

5.0 PAYMENT. The Department will make payment for the completed and accepted quantities under the following:

<u>Code</u>	Pay Item	<u>Pay Unit</u>
02223	Granular Embankment	Cubic Yards
02231	Structure Granular Backfill	Cubic Yards

The Department will consider payment as full compensation for all work required in this provision.

August 5, 2019

PART III

EMPLOYMENT, WAGE AND RECORD REQUIREMENTS

FHWA-1273 - Revised October 23, 2023

REQUIRED CONTRACT PROVISIONS FEDERAL-AID CONSTRUCTION CONTRACTS

- I. General
- II. Nondiscrimination
- III. Non-segregated Facilities
- IV. Davis-Bacon and Related Act Provisions
- V. Contract Work Hours and Safety Standards Act Provisions
- VI. Subletting or Assigning the Contract
- VII. Safety: Accident Prevention
- VIII. False Statements Concerning Highway Projects
- IX. Implementation of Clean Air Act and Federal Water Pollution Control Act
- X. Certification Regarding Debarment, Suspension, Ineligibility and Voluntary Exclusion
- XI. Certification Regarding Use of Contract Funds for Lobbying
- XII. Use of United States-Flag Vessels:

ATTACHMENTS

A. Employment and Materials Preference for Appalachian Development Highway System or Appalachian Local Access Road Contracts (included in Appalachian contracts only)

I. GENERAL

1. Form FHWA-1273 must be physically incorporated in each construction contract funded under title 23, United States Code, as required in 23 CFR 633.102(b) (excluding emergency contracts solely intended for debris removal). The contractor (or subcontractor) must insert this form in each subcontract and further require its inclusion in all lower tier subcontracts (excluding purchase orders, rental agreements and other agreements for supplies or services). 23 CFR 633.102(e).

The applicable requirements of Form FHWA-1273 are incorporated by reference for work done under any purchase order, rental agreement or agreement for other services. The prime contractor shall be responsible for compliance by any subcontractor, lower-tier subcontractor or service provider. 23 CFR 633.102(e).

Form FHWA-1273 must be included in all Federal-aid designbuild contracts, in all subcontracts and in lower tier subcontracts (excluding subcontracts for design services, purchase orders, rental agreements and other agreements for supplies or services) in accordance with 23 CFR 633.102. The design-builder shall be responsible for compliance by any subcontractor, lower-tier subcontractor or service provider.

Contracting agencies may reference Form FHWA-1273 in solicitation-for-bids or request-for-proposals documents, however, the Form FHWA-1273 must be physically incorporated (not referenced) in all contracts, subcontracts and lower-tier subcontracts (excluding purchase orders, rental agreements and other agreements for supplies or services related to a construction contract). 23 CFR 633.102(b).

2. Subject to the applicability criteria noted in the following sections, these contract provisions shall apply to all work

performed on the contract by the contractor's own organization and with the assistance of workers under the contractor's immediate superintendence and to all work performed on the contract by piecework, station work, or by subcontract. 23 CFR 633.102(d).

3. A breach of any of the stipulations contained in these Required Contract Provisions may be sufficient grounds for withholding of progress payments, withholding of final payment, termination of the contract, suspension / debarment or any other action determined to be appropriate by the contracting agency and FHWA.

4. Selection of Labor: During the performance of this contract, the contractor shall not use convict labor for any purpose within the limits of a construction project on a Federal-aid highway unless it is labor performed by convicts who are on parole, supervised release, or probation. 23 U.S.C. 114(b). The term Federal-aid highway does not include roadways functionally classified as local roads or rural minor collectors. 23 U.S.C. 101(a).

II. NONDISCRIMINATION (23 CFR 230.107(a); 23 CFR Part 230, Subpart A, Appendix A; EO 11246)

The provisions of this section related to 23 CFR Part 230, Subpart A, Appendix A are applicable to all Federal-aid construction contracts and to all related construction subcontracts of \$10,000 or more. The provisions of 23 CFR Part 230 are not applicable to material supply, engineering, or architectural service contracts.

In addition, the contractor and all subcontractors must comply with the following policies: Executive Order 11246, 41 CFR Part 60, 29 CFR Parts 1625-1627, 23 U.S.C. 140, Section 504 of the Rehabilitation Act of 1973, as amended (29 U.S.C. 794), Title VI of the Civil Rights Act of 1964, as amended (42 U.S.C. 2000d et seq.), and related regulations including 49 CFR Parts 21, 26, and 27; and 23 CFR Parts 200, 230, and 633.

The contractor and all subcontractors must comply with: the requirements of the Equal Opportunity Clause in 41 CFR 60-1.4(b) and, for all construction contracts exceeding \$10,000, the Standard Federal Equal Employment Opportunity Construction Contract Specifications in 41 CFR 60-4.3.

Note: The U.S. Department of Labor has exclusive authority to determine compliance with Executive Order 11246 and the policies of the Secretary of Labor including 41 CFR Part 60, and 29 CFR Parts 1625-1627. The contracting agency and the FHWA have the authority and the responsibility to ensure compliance with 23 U.S.C. 140, Section 504 of the Rehabilitation Act of 1973, as amended (29 U.S.C. 794), and Title VI of the Civil Rights Act of 1964, as amended (42 U.S.C. 2000d et seq.), and related regulations including 49 CFR Parts 21, 26, and 27; and 23 CFR Parts 200, 230, and 633.

The following provision is adopted from 23 CFR Part 230, Subpart A, Appendix A, with appropriate revisions to conform to the U.S. Department of Labor (US DOL) and FHWA requirements. **1. Equal Employment Opportunity:** Equal Employment Opportunity (EEO) requirements not to discriminate and to take affirmative action to assure equal opportunity as set forth under laws, executive orders, rules, regulations (see 28 CFR Part 35, 29 CFR Part 1630, 29 CFR Parts 1625-1627, 41 CFR Part 60 and 49 CFR Part 27) and orders of the Secretary of Labor as modified by the provisions prescribed herein, and imposed pursuant to 23 U.S.C. 140, shall constitute the EEO and specific affirmative action standards for the contractor's project activities under this contract. The provisions of the Americans with Disabilities Act of 1990 (42 U.S.C. 12101 et seq.) set forth under 28 CFR Part 35 and 29 CFR Part 1630 are incorporated by reference in this contract. In the execution of this contract, the contractor agrees to comply with the following minimum specific requirement activities of EEO:

a. The contractor will work with the contracting agency and the Federal Government to ensure that it has made every good faith effort to provide equal opportunity with respect to all of its terms and conditions of employment and in their review of activities under the contract. 23 CFR 230.409 (g)(4) & (5).

b. The contractor will accept as its operating policy the following statement:

"It is the policy of this Company to assure that applicants are employed, and that employees are treated during employment, without regard to their race, religion, sex, sexual orientation, gender identity, color, national origin, age or disability. Such action shall include: employment, upgrading, demotion, or transfer; recruitment or recruitment advertising; layoff or termination; rates of pay or other forms of compensation; and selection for training, including apprenticeship, pre-apprenticeship, and/or on-the-job training."

2. EEO Officer: The contractor will designate and make known to the contracting officers an EEO Officer who will have the responsibility for and must be capable of effectively administering and promoting an active EEO program and who must be assigned adequate authority and responsibility to do so.

3. Dissemination of Policy: All members of the contractor's staff who are authorized to hire, supervise, promote, and discharge employees, or who recommend such action or are substantially involved in such action, will be made fully cognizant of and will implement the contractor's EEO policy and contractual responsibilities to provide EEO in each grade and classification of employment. To ensure that the above agreement will be met, the following actions will be taken as a minimum:

a. Periodic meetings of supervisory and personnel office employees will be conducted before the start of work and then not less often than once every six months, at which time the contractor's EEO policy and its implementation will be reviewed and explained. The meetings will be conducted by the EEO Officer or other knowledgeable company official.

b. All new supervisory or personnel office employees will be given a thorough indoctrination by the EEO Officer, covering all major aspects of the contractor's EEO obligations within thirty days following their reporting for duty with the contractor.

c. All personnel who are engaged in direct recruitment for the project will be instructed by the EEO Officer in the contractor's procedures for locating and hiring minorities and women. d. Notices and posters setting forth the contractor's EEO policy will be placed in areas readily accessible to employees, applicants for employment and potential employees.

e. The contractor's EEO policy and the procedures to implement such policy will be brought to the attention of employees by means of meetings, employee handbooks, or other appropriate means.

4. Recruitment: When advertising for employees, the contractor will include in all advertisements for employees the notation: "An Equal Opportunity Employer." All such advertisements will be placed in publications having a large circulation among minorities and women in the area from which the project work force would normally be derived.

a. The contractor will, unless precluded by a valid bargaining agreement, conduct systematic and direct recruitment through public and private employee referral sources likely to yield qualified minorities and women. To meet this requirement, the contractor will identify sources of potential minority group employees and establish with such identified sources procedures whereby minority and women applicants may be referred to the contractor for employment consideration.

b. In the event the contractor has a valid bargaining agreement providing for exclusive hiring hall referrals, the contractor is expected to observe the provisions of that agreement to the extent that the system meets the contractor's compliance with EEO contract provisions. Where implementation of such an agreement has the effect of discriminating against minorities or women, or obligates the contractor to do the same, such implementation violates Federal nondiscrimination provisions.

c. The contractor will encourage its present employees to refer minorities and women as applicants for employment. Information and procedures with regard to referring such applicants will be discussed with employees.

5. Personnel Actions: Wages, working conditions, and employee benefits shall be established and administered, and personnel actions of every type, including hiring, upgrading, promotion, transfer, demotion, layoff, and termination, shall be taken without regard to race, color, religion, sex, sexual orientation, gender identity, national origin, age or disability. The following procedures shall be followed:

a. The contractor will conduct periodic inspections of project sites to ensure that working conditions and employee facilities do not indicate discriminatory treatment of project site personnel.

b. The contractor will periodically evaluate the spread of wages paid within each classification to determine any evidence of discriminatory wage practices.

c. The contractor will periodically review selected personnel actions in depth to determine whether there is evidence of discrimination. Where evidence is found, the contractor will promptly take corrective action. If the review indicates that the discrimination may extend beyond the actions reviewed, such corrective action shall include all affected persons.

d. The contractor will promptly investigate all complaints of alleged discrimination made to the contractor in connection with its obligations under this contract, will attempt to resolve such complaints, and will take appropriate corrective action within a reasonable time. If the investigation indicates that the discrimination may affect persons other than the complainant, such corrective action shall include such other persons. Upon completion of each investigation, the contractor will inform every complainant of all of their avenues of appeal.

6. Training and Promotion:

a. The contractor will assist in locating, qualifying, and increasing the skills of minorities and women who are applicants for employment or current employees. Such efforts should be aimed at developing full journey level status employees in the type of trade or job classification involved.

b. Consistent with the contractor's work force requirements and as permissible under Federal and State regulations, the contractor shall make full use of training programs (i.e., apprenticeship and on-the-job training programs for the geographical area of contract performance). In the event a special provision for training is provided under this contract, this subparagraph will be superseded as indicated in the special provision. The contracting agency may reserve training positions for persons who receive welfare assistance in accordance with 23 U.S.C. 140(a).

c. The contractor will advise employees and applicants for employment of available training programs and entrance requirements for each.

d. The contractor will periodically review the training and promotion potential of employees who are minorities and women and will encourage eligible employees to apply for such training and promotion.

7. Unions: If the contractor relies in whole or in part upon unions as a source of employees, the contractor will use good faith efforts to obtain the cooperation of such unions to increase opportunities for minorities and women. 23 CFR 230.409. Actions by the contractor, either directly or through a contractor's association acting as agent, will include the procedures set forth below:

a. The contractor will use good faith efforts to develop, in cooperation with the unions, joint training programs aimed toward qualifying more minorities and women for membership in the unions and increasing the skills of minorities and women so that they may qualify for higher paying employment.

b. The contractor will use good faith efforts to incorporate an EEO clause into each union agreement to the end that such union will be contractually bound to refer applicants without regard to their race, color, religion, sex, sexual orientation, gender identity, national origin, age, or disability.

c. The contractor is to obtain information as to the referral practices and policies of the labor union except that to the extent such information is within the exclusive possession of the labor union and such labor union refuses to furnish such information to the contractor, the contractor shall so certify to the contracting agency and shall set forth what efforts have been made to obtain such information.

d. In the event the union is unable to provide the contractor with a reasonable flow of referrals within the time limit set forth in the collective bargaining agreement, the contractor will, through independent recruitment efforts, fill the employment vacancies without regard to race, color, religion, sex, sexual orientation, gender identity, national origin, age, or disability; making full efforts to obtain qualified and/or qualifiable minorities and women. The failure of a union to provide sufficient referrals (even though it is obligated to provide exclusive referrals under the terms of a collective bargaining agreement) does not relieve the contractor from the requirements of this paragraph. In the event the union referral practice prevents the contractor from meeting the obligations pursuant to Executive Order 11246, as amended, and these special provisions, such contractor shall immediately notify the contracting agency.

8. Reasonable Accommodation for Applicants /

Employees with Disabilities: The contractor must be familiar with the requirements for and comply with the Americans with Disabilities Act and all rules and regulations established thereunder. Employers must provide reasonable accommodation in all employment activities unless to do so would cause an undue hardship.

9. Selection of Subcontractors, Procurement of Materials

and Leasing of Equipment: The contractor shall not discriminate on the grounds of race, color, religion, sex, sexual orientation, gender identity, national origin, age, or disability in the selection and retention of subcontractors, including procurement of materials and leases of equipment. The contractor shall take all necessary and reasonable steps to ensure nondiscrimination in the administration of this contract.

a. The contractor shall notify all potential subcontractors, suppliers, and lessors of their EEO obligations under this contract.

b. The contractor will use good faith efforts to ensure subcontractor compliance with their EEO obligations.

10. Assurances Required:

a. The requirements of 49 CFR Part 26 and the State DOT's FHWA-approved Disadvantaged Business Enterprise (DBE) program are incorporated by reference.

b. The contractor, subrecipient or subcontractor shall not discriminate on the basis of race, color, national origin, or sex in the performance of this contract. The contractor shall carry out applicable requirements of 49 CFR part 26 in the award and administration of DOT-assisted contracts. Failure by the contractor to carry out these requirements is a material breach of this contract, which may result in the termination of this contract or such other remedy as the recipient deems appropriate, which may include, but is not limited to:

- (1) Withholding monthly progress payments;
- (2) Assessing sanctions;
- (3) Liquidated damages; and/or

(4) Disqualifying the contractor from future bidding as non-responsible.

c. The Title VI and nondiscrimination provisions of U.S. DOT Order 1050.2A at Appendixes A and E are incorporated by reference. 49 CFR Part 21.

11. Records and Reports: The contractor shall keep such records as necessary to document compliance with the EEO requirements. Such records shall be retained for a period of three years following the date of the final payment to the contractor for all contract work and shall be available at reasonable times and places for inspection by authorized representatives of the contracting agency and the FHWA.

a. The records kept by the contractor shall document the following:

(1) The number and work hours of minority and nonminority group members and women employed in each work classification on the project;

(2) The progress and efforts being made in cooperation with unions, when applicable, to increase employment opportunities for minorities and women; and

(3) The progress and efforts being made in locating, hiring, training, qualifying, and upgrading minorities and women.

b. The contractors and subcontractors will submit an annual report to the contracting agency each July for the duration of the project indicating the number of minority, women, and nonminority group employees currently engaged in each work classification required by the contract work. This information is to be reported on Form FHWA-1391. The staffing data should represent the project work force on board in all or any part of the last payroll period preceding the end of July. If on-the-job training is being required by special provision, the contractor will be required to collect and report training data. The employment data should reflect the work force on board during all or any part of the last payroll period preceding the end of July.

III. NONSEGREGATED FACILITIES

This provision is applicable to all Federal-aid construction contracts and to all related construction subcontracts of more than \$10,000. 41 CFR 60-1.5.

As prescribed by 41 CFR 60-1.8, the contractor must ensure that facilities provided for employees are provided in such a manner that segregation on the basis of race, color, religion, sex, sexual orientation, gender identity, or national origin cannot result. The contractor may neither require such segregated use by written or oral policies nor tolerate such use by employee custom. The contractor's obligation extends further to ensure that its employees are not assigned to perform their services at any location under the contractor's control where the facilities are segregated. The term "facilities" includes waiting rooms, work areas, restaurants and other eating areas, time clocks, restrooms, washrooms, locker rooms and other storage or dressing areas, parking lots, drinking fountains, recreation or entertainment areas, transportation, and housing provided for employees. The contractor shall provide separate or single-user restrooms and necessary dressing or sleeping areas to assure privacy between sexes.

IV. DAVIS-BACON AND RELATED ACT PROVISIONS

This section is applicable to all Federal-aid construction projects exceeding \$2,000 and to all related subcontracts and lower-tier subcontracts (regardless of subcontract size), in accordance with 29 CFR 5.5. The requirements apply to all projects located within the right-of-way of a roadway that is functionally classified as Federal-aid highway. 23 U.S.C. 113. This excludes roadways functionally classified as local roads or rural minor collectors, which are exempt. 23 U.S.C. 101. Where applicable law requires that projects be treated as a project on a Federal-aid highway, the provisions of this subpart will apply regardless of the location of the project. Examples include: Surface Transportation Block Grant Program projects funded under 23 U.S.C. 133 [excluding recreational trails projects], the Nationally Significant Freight and Highway Projects funded under 23 U.S.C. 117, and National Highway Freight Program projects funded under 23 U.S.C. 167.

The following provisions are from the U.S. Department of Labor regulations in 29 CFR 5.5 "Contract provisions and related matters" with minor revisions to conform to the FHWA-1273 format and FHWA program requirements.

1. Minimum wages (29 CFR 5.5)

a. Wage rates and fringe benefits. All laborers and mechanics employed or working upon the site of the work (or otherwise working in construction or development of the project under a development statute), will be paid unconditionally and not less often than once a week, and without subsequent deduction or rebate on any account (except such payroll deductions as are permitted by regulations issued by the Secretary of Labor under the Copeland Act (29 CFR part 3)), the full amount of basic hourly wages and bona fide fringe benefits (or cash equivalents thereof) due at time of payment computed at rates not less than those contained in the wage determination of the Secretary of Labor which is attached hereto and made a part hereof, regardless of any contractual relationship which may be alleged to exist between the contractor and such laborers and mechanics. As provided in paragraphs (d) and (e) of 29 CFR 5.5, the appropriate wage determinations are effective by operation of law even if they have not been attached to the contract. Contributions made or costs reasonably anticipated for bona fide fringe benefits under the Davis-Bacon Act (40 U.S.C. 3141(2)(B)) on behalf of laborers or mechanics are considered wages paid to such laborers or mechanics, subject to the provisions of paragraph 1.e. of this section; also, regular contributions made or costs incurred for more than a weekly period (but not less often than quarterly) under plans, funds, or programs which cover the particular weekly period, are deemed to be constructively made or incurred during such weekly period. Such laborers and mechanics must be paid the appropriate wage rate and fringe benefits on the wage determination for the classification(s) of work actually performed, without regard to skill, except as provided in paragraph 4. of this section. Laborers or mechanics performing work in more than one classification may be compensated at the rate specified for each classification for the time actually worked therein: Provided, That the employer's payroll records accurately set forth the time spent in each classification in which work is performed. The wage determination (including any additional classifications and wage rates conformed under paragraph 1.c. of this section) and the Davis-Bacon poster (WH-1321) must be posted at all times by the contractor and its subcontractors at the site of the work in a prominent and accessible place where it can be easily seen by the workers.

b. Frequently recurring classifications. (1) In addition to wage and fringe benefit rates that have been determined to be prevailing under the procedures set forth in <u>29 CFR part 1</u>, a wage determination may contain, pursuant to § 1.3(f), wage and fringe benefit rates for classifications of laborers and mechanics for which conformance requests are regularly submitted pursuant to paragraph 1.c. of this section, provided that:

(i) The work performed by the classification is not performed by a classification in the wage determination for which a prevailing wage rate has been determined; (ii) The classification is used in the area by the construction industry; and

(iii) The wage rate for the classification bears a reasonable relationship to the prevailing wage rates contained in the wage determination.

(2) The Administrator will establish wage rates for such classifications in accordance with paragraph 1.c.(1)(iii) of this section. Work performed in such a classification must be paid at no less than the wage and fringe benefit rate listed on the wage determination for such classification.

c. Conformance. (1) The contracting officer must require that any class of laborers or mechanics, including helpers, which is not listed in the wage determination and which is to be employed under the contract be classified in conformance with the wage determination. Conformance of an additional classification and wage rate and fringe benefits is appropriate only when the following criteria have been met:

(i) The work to be performed by the classification requested is not performed by a classification in the wage determination; and

(ii) The classification is used in the area by the construction industry; and

(iii) The proposed wage rate, including any bona fide fringe benefits, bears a reasonable relationship to the wage rates contained in the wage determination.

(2) The conformance process may not be used to split, subdivide, or otherwise avoid application of classifications listed in the wage determination.

(3) If the contractor and the laborers and mechanics to be employed in the classification (if known), or their representatives, and the contracting officer agree on the classification and wage rate (including the amount designated for fringe benefits where appropriate), a report of the action taken will be sent by the contracting officer by email to <u>DBAconformance@dol.gov</u>. The Administrator, or an authorized representative, will approve, modify, or disapprove every additional classification action within 30 days of receipt and so advise the contracting officer or will notify the contracting officer within the 30–day period that additional time is necessary.

(4) In the event the contractor, the laborers or mechanics to be employed in the classification or their representatives, and the contracting officer do not agree on the proposed classification and wage rate (including the amount designated for fringe benefits, where appropriate), the contracting officer will, by email to <u>DBAconformance@dol.gov</u>, refer the questions, including the views of all interested parties and the recommendation of the contracting officer, to the Administrator for determination. The Administrator, or an authorized representative, will issue a determination within 30 days of receipt and so advise the contracting officer or will notify the contracting officer within the 30–day period that additional time is necessary.

(5) The contracting officer must promptly notify the contractor of the action taken by the Wage and Hour Division

under paragraphs 1.c.(3) and (4) of this section. The contractor must furnish a written copy of such determination to each affected worker or it must be posted as a part of the wage determination. The wage rate (including fringe benefits where appropriate) determined pursuant to paragraph 1.c.(3) or (4) of this section must be paid to all workers performing work in the classification under this contract from the first day on which work is performed in the classification.

d. *Fringe benefits not expressed as an hourly rate.* Whenever the minimum wage rate prescribed in the contract for a class of laborers or mechanics includes a fringe benefit which is not expressed as an hourly rate, the contractor may either pay the benefit as stated in the wage determination or may pay another bona fide fringe benefit or an hourly cash equivalent thereof.

e. Unfunded plans. If the contractor does not make payments to a trustee or other third person, the contractor may consider as part of the wages of any laborer or mechanic the amount of any costs reasonably anticipated in providing bona fide fringe benefits under a plan or program, *Provided*, That the Secretary of Labor has found, upon the written request of the contractor, in accordance with the criteria set forth in § 5.28, that the applicable standards of the Davis-Bacon Act have been met. The Secretary of Labor may require the contractor to set aside in a separate account assets for the meeting of obligations under the plan or program.

f. *Interest.* In the event of a failure to pay all or part of the wages required by the contract, the contractor will be required to pay interest on any underpayment of wages.

2. Withholding (29 CFR 5.5)

a. Withholding requirements. The contracting agency may, upon its own action, or must, upon written request of an authorized representative of the Department of Labor, withhold or cause to be withheld from the contractor so much of the accrued payments or advances as may be considered necessary to satisfy the liabilities of the prime contractor or any subcontractor for the full amount of wages and monetary relief, including interest, required by the clauses set forth in this section for violations of this contract, or to satisfy any such liabilities required by any other Federal contract, or federally assisted contract subject to Davis-Bacon labor standards, that is held by the same prime contractor (as defined in § 5.2). The necessary funds may be withheld from the contractor under this contract, any other Federal contract with the same prime contractor, or any other federally assisted contract that is subject to Davis-Bacon labor standards requirements and is held by the same prime contractor, regardless of whether the other contract was awarded or assisted by the same agency, and such funds may be used to satisfy the contractor liability for which the funds were withheld. In the event of a contractor's failure to pay any laborer or mechanic, including any apprentice or helper working on the site of the work all or part of the wages required by the contract, or upon the contractor's failure to submit the required records as discussed in paragraph 3.d. of this section, the contracting agency may on its own initiative and after written notice to the contractor. take such action as may be necessary to cause the suspension of any further payment, advance, or guarantee of funds until such violations have ceased.

b. *Priority to withheld funds.* The Department has priority to funds withheld or to be withheld in accordance with paragraph

2.a. of this section or Section V, paragraph 3.a., or both, over claims to those funds by:

(1) A contractor's surety(ies), including without limitation performance bond sureties and payment bond sureties;

(2) A contracting agency for its reprocurement costs;

(3) A trustee(s) (either a court-appointed trustee or a U.S. trustee, or both) in bankruptcy of a contractor, or a contractor's bankruptcy estate;

(4) A contractor's assignee(s);

(5) A contractor's successor(s); or

(6) A claim asserted under the Prompt Payment Act, <u>31</u> U.S.C. 3901–3907.

3. Records and certified payrolls (29 CFR 5.5)

a. Basic record requirements (1) Length of record retention. All regular payrolls and other basic records must be maintained by the contractor and any subcontractor during the course of the work and preserved for all laborers and mechanics working at the site of the work (or otherwise working in construction or development of the project under a development statute) for a period of at least 3 years after all the work on the prime contract is completed.

(2) *Information required*. Such records must contain the name; Social Security number; last known address, telephone number, and email address of each such worker; each worker's correct classification(s) of work actually performed; hourly rates of wages paid (including rates of contributions or costs anticipated for bona fide fringe benefits or cash equivalents thereof of the types described in <u>40 U.S.C.</u> <u>3141(2)(B)</u> of the Davis-Bacon Act); daily and weekly number of hours actually worked in total and on each covered contract; deductions made; and actual wages paid.

(3) Additional records relating to fringe benefits. Whenever the Secretary of Labor has found under paragraph 1.e. of this section that the wages of any laborer or mechanic include the amount of any costs reasonably anticipated in providing benefits under a plan or program described in <u>40 U.S.C.</u> <u>3141(2)(B)</u> of the Davis-Bacon Act, the contractor must maintain records which show that the commitment to provide such benefits is enforceable, that the plan or program has been communicated in writing to the laborers or mechanics affected, and records which show the costs anticipated or the actual cost incurred in providing such benefits.

(4) Additional records relating to apprenticeship. Contractors with apprentices working under approved programs must maintain written evidence of the registration of apprenticeship programs, the registration of the apprentices, and the ratios and wage rates prescribed in the applicable programs.

b. Certified payroll requirements (1) Frequency and method of submission. The contractor or subcontractor must submit weekly, for each week in which any DBA- or Related Actscovered work is performed, certified payrolls to the contracting agency. The prime contractor is responsible for the submission of all certified payrolls by all subcontractors. A contracting agency or prime contractor may permit or require contractors to submit certified payrolls through an electronic system, as long as the electronic system requires a legally valid electronic signature; the system allows the contractor, the contracting agency, and the Department of Labor to access the certified payrolls upon request for at least 3 years after the work on the prime contract has been completed; and the contracting agency or prime contractor permits other methods of submission in situations where the contractor is unable or limited in its ability to use or access the electronic system.

(2) Information required. The certified payrolls submitted must set out accurately and completely all of the information required to be maintained under paragraph 3.a.(2) of this section, except that full Social Security numbers and last known addresses, telephone numbers, and email addresses must not be included on weekly transmittals. Instead, the certified payrolls need only include an individually identifying number for each worker (e.g., the last four digits of the worker's Social Security number). The required weekly certified payroll information may be submitted using Optional Form WH-347 or in any other format desired. Optional Form WH-347 is available for this purpose from the Wage and Hour Division website at https://www.dol.gov/sites/dolgov/files/WHD/ legacy/files/wh347/.pdf or its successor website. It is not a violation of this section for a prime contractor to require a subcontractor to provide full Social Security numbers and last known addresses, telephone numbers, and email addresses to the prime contractor for its own records, without weekly submission by the subcontractor to the contracting agency.

(3) Statement of Compliance. Each certified payroll submitted must be accompanied by a "Statement of Compliance," signed by the contractor or subcontractor, or the contractor's or subcontractor's agent who pays or supervises the payment of the persons working on the contract, and must certify the following:

(i) That the certified payroll for the payroll period contains the information required to be provided under paragraph 3.b. of this section, the appropriate information and basic records are being maintained under paragraph 3.a. of this section, and such information and records are correct and complete;

(ii) That each laborer or mechanic (including each helper and apprentice) working on the contract during the payroll period has been paid the full weekly wages earned, without rebate, either directly or indirectly, and that no deductions have been made either directly or indirectly from the full wages earned, other than permissible deductions as set forth in <u>29 CFR part 3</u>; and

(iii) That each laborer or mechanic has been paid not less than the applicable wage rates and fringe benefits or cash equivalents for the classification(s) of work actually performed, as specified in the applicable wage determination incorporated into the contract.

(4) Use of Optional Form WH–347. The weekly submission of a properly executed certification set forth on the reverse side of Optional Form WH–347 will satisfy the requirement for submission of the "Statement of Compliance" required by paragraph 3.b.(3) of this section.

(5) *Signature*. The signature by the contractor, subcontractor, or the contractor's or subcontractor's agent must be an original handwritten signature or a legally valid electronic signature.

(6) *Falsification.* The falsification of any of the above certifications may subject the contractor or subcontractor to civil or criminal prosecution under <u>18 U.S.C. 1001</u> and <u>31</u> <u>U.S.C. 3729</u>.

(7) *Length of certified payroll retention.* The contractor or subcontractor must preserve all certified payrolls during the course of the work and for a period of 3 years after all the work on the prime contract is completed.

c. Contracts, subcontracts, and related documents. The contractor or subcontractor must maintain this contract or subcontract and related documents including, without limitation, bids, proposals, amendments, modifications, and extensions. The contractor or subcontractor must preserve these contracts, subcontracts, and related documents during the course of the work and for a period of 3 years after all the work on the prime contract is completed.

d. Required disclosures and access (1) Required record disclosures and access to workers. The contractor or subcontractor must make the records required under paragraphs 3.a. through 3.c. of this section, and any other documents that the contracting agency, the State DOT, the FHWA, or the Department of Labor deems necessary to determine compliance with the labor standards provisions of any of the applicable statutes referenced by § 5.1, available for inspection, copying, or transcription by authorized representatives of the contracting agency, the State DOT, the FHWA, or the Department of Labor, and must permit such representatives to interview workers during working hours on the job.

(2) Sanctions for non-compliance with records and worker access requirements. If the contractor or subcontractor fails to submit the required records or to make them available, or refuses to permit worker interviews during working hours on the job, the Federal agency may, after written notice to the contractor, sponsor, applicant, owner, or other entity, as the case may be, that maintains such records or that employs such workers, take such action as may be necessary to cause the suspension of any further payment, advance, or guarantee of funds. Furthermore, failure to submit the required records upon request or to make such records available, or to permit worker interviews during working hours on the job, may be grounds for debarment action pursuant to § 5.12. In addition, any contractor or other person that fails to submit the required records or make those records available to WHD within the time WHD requests that the records be produced will be precluded from introducing as evidence in an administrative proceeding under 29 CFR part 6 any of the required records that were not provided or made available to WHD. WHD will take into consideration a reasonable request from the contractor or person for an extension of the time for submission of records. WHD will determine the reasonableness of the request and may consider, among other things, the location of the records and the volume of production.

(3) *Required information disclosures.* Contractors and subcontractors must maintain the full Social Security number and last known address, telephone number, and email address

of each covered worker, and must provide them upon request to the contracting agency, the State DOT, the FHWA, the contractor, or the Wage and Hour Division of the Department of Labor for purposes of an investigation or other compliance action.

4. Apprentices and equal employment opportunity (29 CFR 5.5)

a. Apprentices (1) Rate of pay. Apprentices will be permitted to work at less than the predetermined rate for the work they perform when they are employed pursuant to and individually registered in a bona fide apprenticeship program registered with the U.S. Department of Labor, Employment and Training Administration, Office of Apprenticeship (OA), or with a State Apprenticeship Agency recognized by the OA. A person who is not individually registered in the program, but who has been certified by the OA or a State Apprenticeship Agency (where appropriate) to be eligible for probationary employment as an apprentice, will be permitted to work at less than the predetermined rate for the work they perform in the first 90 days of probationary employment as an apprentice in such a program. In the event the OA or a State Apprenticeship Agency recognized by the OA withdraws approval of an apprenticeship program, the contractor will no longer be permitted to use apprentices at less than the applicable predetermined rate for the work performed until an acceptable program is approved.

(2) *Fringe benefits.* Apprentices must be paid fringe benefits in accordance with the provisions of the apprenticeship program. If the apprenticeship program does not specify fringe benefits, apprentices must be paid the full amount of fringe benefits listed on the wage determination for the applicable classification. If the Administrator determines that a different practice prevails for the applicable apprentice classification, fringe benefits must be paid in accordance with that determination.

(3) Apprenticeship ratio. The allowable ratio of apprentices to journeyworkers on the job site in any craft classification must not be greater than the ratio permitted to the contractor as to the entire work force under the registered program or the ratio applicable to the locality of the project pursuant to paragraph 4.a.(4) of this section. Any worker listed on a payroll at an apprentice wage rate, who is not registered or otherwise employed as stated in paragraph 4.a.(1) of this section, must be paid not less than the applicable wage rate on the wage determination for the classification of work actually performed. In addition, any apprentice performing work on the job site in excess of the ratio permitted under this section must be paid not less than the applicable wage rate on the wage determination for the work actually performed.

(4) Reciprocity of ratios and wage rates. Where a contractor is performing construction on a project in a locality other than the locality in which its program is registered, the ratios and wage rates (expressed in percentages of the journeyworker's hourly rate) applicable within the locality in which the construction is being performed must be observed. If there is no applicable ratio or wage rate for the locality of the project, the ratio and wage rate specified in the contractor's registered program must be observed.

b. *Equal employment opportunity*. The use of apprentices and journeyworkers under this part must be in conformity with

the equal employment opportunity requirements of Executive Order 11246, as amended, and <u>29 CFR part 30</u>.

c. Apprentices and Trainees (programs of the U.S. DOT).

Apprentices and trainees working under apprenticeship and skill training programs which have been certified by the Secretary of Transportation as promoting EEO in connection with Federal-aid highway construction programs are not subject to the requirements of paragraph 4 of this Section IV. 23 CFR 230.111(e)(2). The straight time hourly wage rates for apprentices and trainees under such programs will be established by the particular programs. The ratio of apprentices and trainees to journeyworkers shall not be greater than permitted by the terms of the particular program.

5. Compliance with Copeland Act requirements. The contractor shall comply with the requirements of 29 CFR part 3, which are incorporated by reference in this contract as provided in 29 CFR 5.5.

6. Subcontracts. The contractor or subcontractor must insert FHWA-1273 in any subcontracts, along with the applicable wage determination(s) and such other clauses or contract modifications as the contracting agency may by appropriate instructions require, and a clause requiring the subcontractors to include these clauses and wage determination(s) in any lower tier subcontracts. The prime contractor is responsible for the compliance by any subcontract clauses in this section. In the event of any violations of these clauses, the prime contractor and any subcontractor(s) responsible will be liable for any unpaid wages and monetary relief, including interest from the date of the underpayment or loss, due to any workers of lower-tier subcontractors, and may be subject to debarment, as appropriate. 29 CFR 5.5.

7. Contract termination: debarment. A breach of the contract clauses in 29 CFR 5.5 may be grounds for termination of the contract, and for debarment as a contractor and a subcontractor as provided in 29 CFR 5.12.

8. Compliance with Davis-Bacon and Related Act requirements. All rulings and interpretations of the Davis-Bacon and Related Acts contained in 29 CFR parts 1, 3, and 5 are herein incorporated by reference in this contract as provided in 29 CFR 5.5.

9. Disputes concerning labor standards. As provided in 29 CFR 5.5, disputes arising out of the labor standards provisions of this contract shall not be subject to the general disputes clause of this contract. Such disputes shall be resolved in accordance with the procedures of the Department of Labor set forth in 29 CFR parts 5, 6, and 7. Disputes within the meaning of this clause include disputes between the contractor (or any of its subcontractors) and the contracting agency, the U.S. Department of Labor, or the employees or their representatives.

10. Certification of eligibility. a. By entering into this contract, the contractor certifies that neither it nor any person or firm who has an interest in the contractor's firm is a person or firm ineligible to be awarded Government contracts by virtue of $\underline{40}$ U.S.C. 3144(b) or § 5.12(a).

b. No part of this contract shall be subcontracted to any person or firm ineligible for award of a Government contract by virtue of $\frac{40 \text{ U.S.C. } 3144(b)}{40 \text{ U.S.C. } 3144(b)}$ or § 5.12(a).

c. The penalty for making false statements is prescribed in the U.S. Code, Title 18 Crimes and Criminal Procedure, $\underline{18}$ $\underline{U.S.C.\,1001}$.

11. Anti-retaliation. It is unlawful for any person to discharge, demote, intimidate, threaten, restrain, coerce, blacklist, harass, or in any other manner discriminate against, or to cause any person to discharge, demote, intimidate, threaten, restrain, coerce, blacklist, harass, or in any other manner discriminate against, any worker or job applicant for:

a. Notifying any contractor of any conduct which the worker reasonably believes constitutes a violation of the DBA, Related Acts, this part, or $\frac{29 \text{ CFR part 1}}{29 \text{ CFR part 1}}$ or $\frac{3}{2}$;

b. Filing any complaint, initiating or causing to be initiated any proceeding, or otherwise asserting or seeking to assert on behalf of themselves or others any right or protection under the DBA, Related Acts, this part, or <u>29 CFR part 1</u> or <u>3</u>;

c. Cooperating in any investigation or other compliance action, or testifying in any proceeding under the DBA, Related Acts, this part, or $\underline{29 \ CFR \ part 1}$ or $\underline{3}$; or

d. Informing any other person about their rights under the DBA, Related Acts, this part, or $\underline{29\ CFR\ part\ 1}$ or $\underline{3}.$

V. CONTRACT WORK HOURS AND SAFETY STANDARDS ACT

Pursuant to 29 CFR 5.5(b), the following clauses apply to any Federal-aid construction contract in an amount in excess of \$100,000 and subject to the overtime provisions of the Contract Work Hours and Safety Standards Act. These clauses shall be inserted in addition to the clauses required by 29 CFR 5.5(a) or 29 CFR 4.6. As used in this paragraph, the terms laborers and mechanics include watchpersons and guards.

1. Overtime requirements. No contractor or subcontractor contracting for any part of the contract work which may require or involve the employment of laborers or mechanics shall require or permit any such laborer or mechanic in any workweek in which he or she is employed on such work to work in excess of forty hours in such workweek unless such laborer or mechanic receives compensation at a rate not less than one and one-half times the basic rate of pay for all hours worked in excess of forty hours in such workweek. 29 CFR 5.5.

2. Violation; liability for unpaid wages; liquidated

damages. In the event of any violation of the clause set forth in paragraph 1. of this section the contractor and any subcontractor responsible therefor shall be liable for the unpaid wages and interest from the date of the underpayment. In addition, such contractor and subcontractor shall be liable to the United States (in the case of work done under contract for the District of Columbia or a territory, to such District or to such territory), for liquidated damages. Such liquidated damages shall be computed with respect to each individual laborer or mechanic, including watchpersons and guards, employed in violation of the clause set forth in paragraph 1. of this section, in the sum currently provided in 29 CFR $5.5(b)(2)^*$ for each calendar day on which such individual was required or permitted to work in excess of the standard workweek of forty hours without payment of the overtime wages required by the clause set forth in paragraph 1. of this section.

* \$31 as of January 15, 2023 (See 88 FR 88 FR 2210) as may be adjusted annually by the Department of Labor, pursuant to the Federal Civil Penalties Inflation Adjustment Act of 1990.

3. Withholding for unpaid wages and liquidated damages

a. Withholding process. The FHWA or the contracting agency may, upon its own action, or must, upon written request of an authorized representative of the Department of Labor, withhold or cause to be withheld from the contractor so much of the accrued payments or advances as may be considered necessary to satisfy the liabilities of the prime contractor or any subcontractor for any unpaid wages; monetary relief, including interest; and liquidated damages required by the clauses set forth in this section on this contract, any other Federal contract with the same prime contractor, or any other federally assisted contract subject to the Contract Work Hours and Safety Standards Act that is held by the same prime contractor (as defined in § 5.2). The necessary funds may be withheld from the contractor under this contract, any other Federal contract with the same prime contractor, or any other federally assisted contract that is subject to the Contract Work Hours and Safety Standards Act and is held by the same prime contractor, regardless of whether the other contract was awarded or assisted by the same agency, and such funds may be used to satisfy the contractor liability for which the funds were withheld.

b. *Priority to withheld funds.* The Department has priority to funds withheld or to be withheld in accordance with Section IV paragraph 2.a. or paragraph 3.a. of this section, or both, over claims to those funds by:

(1) A contractor's surety(ies), including without limitation performance bond sureties and payment bond sureties;

(2) A contracting agency for its reprocurement costs;

(3) A trustee(s) (either a court-appointed trustee or a U.S. trustee, or both) in bankruptcy of a contractor, or a contractor's bankruptcy estate;

(4) A contractor's assignee(s);

(5) A contractor's successor(s); or

(6) A claim asserted under the Prompt Payment Act, <u>31</u> U.S.C. 3901–3907.

4. Subcontracts. The contractor or subcontractor must insert in any subcontracts the clauses set forth in paragraphs 1. through 5. of this section and a clause requiring the subcontractors to include these clauses in any lower tier subcontracts. The prime contractor is responsible for compliance by any subcontractor or lower tier subcontractor with the clauses set forth in paragraphs 1. through 5. In the

event of any violations of these clauses, the prime contractor and any subcontractor(s) responsible will be liable for any unpaid wages and monetary relief, including interest from the date of the underpayment or loss, due to any workers of lowertier subcontractors, and associated liquidated damages and may be subject to debarment, as appropriate.

5. Anti-retaliation. It is unlawful for any person to discharge, demote, intimidate, threaten, restrain, coerce, blacklist, harass, or in any other manner discriminate against, or to cause any person to discharge, demote, intimidate, threaten, restrain, coerce, blacklist, harass, or in any other manner discriminate against, any worker or job applicant for:

a. Notifying any contractor of any conduct which the worker reasonably believes constitutes a violation of the Contract Work Hours and Safety Standards Act (CWHSSA) or its implementing regulations in this part;

b. Filing any complaint, initiating or causing to be initiated any proceeding, or otherwise asserting or seeking to assert on behalf of themselves or others any right or protection under CWHSSA or this part;

c. Cooperating in any investigation or other compliance action, or testifying in any proceeding under CWHSSA or this part; or

d. Informing any other person about their rights under CWHSSA or this part.

VI. SUBLETTING OR ASSIGNING THE CONTRACT

This provision is applicable to all Federal-aid construction contracts on the National Highway System pursuant to 23 CFR 635.116.

1. The contractor shall perform with its own organization contract work amounting to not less than 30 percent (or a greater percentage if specified elsewhere in the contract) of the total original contract price, excluding any specialty items designated by the contracting agency. Specialty items may be performed by subcontract and the amount of any such specialty items performed may be deducted from the total original contract price before computing the amount of work required to be performed by the contractor's own organization (23 CFR 635.116).

a. The term "perform work with its own organization" in paragraph 1 of Section VI refers to workers employed or leased by the prime contractor, and equipment owned or rented by the prime contractor, with or without operators. Such term does not include employees or equipment of a subcontractor or lower tier subcontractor, agents of the prime contractor, or any other assignees. The term may include payments for the costs of hiring leased employees from an employee leasing firm meeting all relevant Federal and State regulatory requirements. Leased employees may only be included in this term if the prime contractor meets all of the following conditions: (based on longstanding interpretation)

 the prime contractor maintains control over the supervision of the day-to-day activities of the leased employees;

(2) the prime contractor remains responsible for the quality of the work of the leased employees;

(3) the prime contractor retains all power to accept or exclude individual employees from work on the project; and
(4) the prime contractor remains ultimately responsible for the payment of predetermined minimum wages, the submission of payrolls, statements of compliance and all other Federal regulatory requirements.

b. "Specialty Items" shall be construed to be limited to work that requires highly specialized knowledge, abilities, or equipment not ordinarily available in the type of contracting organizations qualified and expected to bid or propose on the contract as a whole and in general are to be limited to minor components of the overall contract. 23 CFR 635.102.

2. Pursuant to 23 CFR 635.116(a), the contract amount upon which the requirements set forth in paragraph (1) of Section VI is computed includes the cost of material and manufactured products which are to be purchased or produced by the contractor under the contract provisions.

3. Pursuant to 23 CFR 635.116(c), the contractor shall furnish (a) a competent superintendent or supervisor who is employed by the firm, has full authority to direct performance of the work in accordance with the contract requirements, and is in charge of all construction operations (regardless of who performs the work) and (b) such other of its own organizational resources (supervision, management, and engineering services) as the contracting officer determines is necessary to assure the performance of the contract.

4. No portion of the contract shall be sublet, assigned or otherwise disposed of except with the written consent of the contracting officer, or authorized representative, and such consent when given shall not be construed to relieve the contractor of any responsibility for the fulfillment of the contract. Written consent will be given only after the contracting agency has assured that each subcontract is evidenced in writing and that it contains all pertinent provisions and requirements of the prime contract. (based on longstanding interpretation of 23 CFR 635.116).

5. The 30-percent self-performance requirement of paragraph (1) is not applicable to design-build contracts; however, contracting agencies may establish their own self-performance requirements. 23 CFR 635.116(d).

VII. SAFETY: ACCIDENT PREVENTION

This provision is applicable to all Federal-aid construction contracts and to all related subcontracts.

1. In the performance of this contract the contractor shall comply with all applicable Federal, State, and local laws governing safety, health, and sanitation (23 CFR Part 635). The contractor shall provide all safeguards, safety devices and protective equipment and take any other needed actions as it determines, or as the contracting officer may determine, to be reasonably necessary to protect the life and health of employees on the job and the safety of the public and to protect property in connection with the performance of the work covered by the contract. 23 CFR 635.108.

2. It is a condition of this contract, and shall be made a condition of each subcontract, which the contractor enters into pursuant to this contract, that the contractor and any subcontractor shall not permit any employee, in performance of the contract, to work in surroundings or under conditions which are unsanitary, hazardous or dangerous to his/her health or safety, as determined under construction safety and

health standards (29 CFR Part 1926) promulgated by the Secretary of Labor, in accordance with Section 107 of the Contract Work Hours and Safety Standards Act (40 U.S.C. 3704). 29 CFR 1926.10.

3. Pursuant to 29 CFR 1926.3, it is a condition of this contract that the Secretary of Labor or authorized representative thereof, shall have right of entry to any site of contract performance to inspect or investigate the matter of compliance with the construction safety and health standards and to carry out the duties of the Secretary under Section 107 of the Contract Work Hours and Safety Standards Act (40 U.S.C. 3704).

VIII. FALSE STATEMENTS CONCERNING HIGHWAY PROJECTS

This provision is applicable to all Federal-aid construction contracts and to all related subcontracts.

In order to assure high quality and durable construction in conformity with approved plans and specifications and a high degree of reliability on statements and representations made by engineers, contractors, suppliers, and workers on Federalaid highway projects, it is essential that all persons concerned with the project perform their functions as carefully, thoroughly, and honestly as possible. Willful falsification, distortion, or misrepresentation with respect to any facts related to the project is a violation of Federal law. To prevent any misunderstanding regarding the seriousness of these and similar acts, Form FHWA-1022 shall be posted on each Federal-aid highway project (23 CFR Part 635) in one or more places where it is readily available to all persons concerned with the project:

18 U.S.C. 1020 reads as follows:

"Whoever, being an officer, agent, or employee of the United States, or of any State or Territory, or whoever, whether a person, association, firm, or corporation, knowingly makes any false statement, false representation, or false report as to the character, quality, quantity, or cost of the material used or to be used, or the quantity or quality of the work performed or to be performed, or the cost thereof in connection with the submission of plans, maps, specifications, contracts, or costs of construction on any highway or related project submitted for approval to the Secretary of Transportation; or

Whoever knowingly makes any false statement, false representation, false report or false claim with respect to the character, quality, quantity, or cost of any work performed or to be performed, or materials furnished or to be furnished, in connection with the construction of any highway or related project approved by the Secretary of Transportation; or

Whoever knowingly makes any false statement or false representation as to material fact in any statement, certificate, or report submitted pursuant to provisions of the Federal-aid Roads Act approved July 11, 1916, (39 Stat. 355), as amended and supplemented;

Shall be fined under this title or imprisoned not more than 5 years or both."

IX. IMPLEMENTATION OF CLEAN AIR ACT AND FEDERAL WATER POLLUTION CONTROL ACT (42 U.S.C. 7606; 2 CFR 200.88; EO 11738)

This provision is applicable to all Federal-aid construction contracts in excess of \$150,000 and to all related subcontracts. 48 CFR 2.101; 2 CFR 200.327.

By submission of this bid/proposal or the execution of this contract or subcontract, as appropriate, the bidder, proposer, Federal-aid construction contractor, subcontractor, supplier, or vendor agrees to comply with all applicable standards, orders or regulations issued pursuant to the Clean Air Act (42 U.S.C. 7401-7671q) and the Federal Water Pollution Control Act, as amended (33 U.S.C. 1251-1387). Violations must be reported to the Federal Highway Administration and the Regional Office of the Environmental Protection Agency. 2 CFR Part 200, Appendix II.

The contractor agrees to include or cause to be included the requirements of this Section in every subcontract, and further agrees to take such action as the contracting agency may direct as a means of enforcing such requirements. 2 CFR 200.327.

X. CERTIFICATION REGARDING DEBARMENT, SUSPENSION, INELIGIBILITY AND VOLUNTARY EXCLUSION

This provision is applicable to all Federal-aid construction contracts, design-build contracts, subcontracts, lower-tier subcontracts, purchase orders, lease agreements, consultant contracts or any other covered transaction requiring FHWA approval or that is estimated to cost \$25,000 or more – as defined in 2 CFR Parts 180 and 1200. 2 CFR 180.220 and 1200.220.

1. Instructions for Certification – First Tier Participants:

a. By signing and submitting this proposal, the prospective first tier participant is providing the certification set out below.

b. The inability of a person to provide the certification set out below will not necessarily result in denial of participation in this covered transaction. The prospective first tier participant shall submit an explanation of why it cannot provide the certification set out below. The certification or explanation will be considered in connection with the department or agency's determination whether to enter into this transaction. However, failure of the prospective first tier participant to furnish a certification or an explanation shall disqualify such a person from participation in this transaction. 2 CFR 180.320.

c. The certification in this clause is a material representation of fact upon which reliance was placed when the contracting agency determined to enter into this transaction. If it is later determined that the prospective participant knowingly rendered an erroneous certification, in addition to other remedies available to the Federal Government, the contracting agency may terminate this transaction for cause of default. 2 CFR 180.325.

d. The prospective first tier participant shall provide immediate written notice to the contracting agency to whom this proposal is submitted if any time the prospective first tier participant learns that its certification was erroneous when submitted or has become erroneous by reason of changed circumstances. 2 CFR 180.345 and 180.350. e. The terms "covered transaction," "debarred," "suspended," "ineligible," "participant," "person," "principal," and "voluntarily excluded," as used in this clause, are defined in 2 CFR Parts 180, Subpart I, 180.900-180.1020, and 1200. "First Tier Covered Transactions" refers to any covered transaction between a recipient or subrecipient of Federal funds and a participant (such as the prime or general contract). "Lower Tier Covered Transactions" refers to any covered transaction under a First Tier Covered Transaction (such as subcontracts). "First Tier Participant" refers to the participant who has entered into a covered transaction with a recipient or subrecipient of Federal funds (such as the prime or general contractor). "Lower Tier Participant" refers any participant who has entered into a covered transaction with a First Tier Participant or other Lower Tier Participants (such as subcontractors and suppliers).

f. The prospective first tier participant agrees by submitting this proposal that, should the proposed covered transaction be entered into, it shall not knowingly enter into any lower tier covered transaction with a person who is debarred, suspended, declared ineligible, or voluntarily excluded from participation in this covered transaction, unless authorized by the department or agency entering into this transaction. 2 CFR 180.330.

g. The prospective first tier participant further agrees by submitting this proposal that it will include the clause titled "Certification Regarding Debarment, Suspension, Ineligibility and Voluntary Exclusion-Lower Tier Covered Transactions," provided by the department or contracting agency, entering into this covered transaction, without modification, in all lower tier covered transactions and in all solicitations for lower tier covered transactions exceeding the \$25,000 threshold. 2 CFR 180.220 and 180.300.

h. A participant in a covered transaction may rely upon a certification of a prospective participant in a lower tier covered transaction that is not debarred, suspended, ineligible, or voluntarily excluded from the covered transaction, unless it knows that the certification is erroneous. 2 CFR 180.300; 180.320, and 180.325. A participant is responsible for ensuring that its principals are not suspended, debarred, or otherwise ineligible to participate in covered transactions. 2 CFR 180.335. To verify the eligibility of its principals, as well as the eligibility of any lower tier prospective participants, each participant may, but is not required to, check the System for Award Management website (https://www.sam.gov/). 2 CFR 180.300, 180.320, and 180.325.

i. Nothing contained in the foregoing shall be construed to require the establishment of a system of records in order to render in good faith the certification required by this clause. The knowledge and information of the prospective participant is not required to exceed that which is normally possessed by a prudent person in the ordinary course of business dealings.

j. Except for transactions authorized under paragraph (f) of these instructions, if a participant in a covered transaction knowingly enters into a lower tier covered transaction with a person who is suspended, debarred, ineligible, or voluntarily excluded from participation in this transaction, in addition to other remedies available to the Federal Government, the department or agency may terminate this transaction for cause or default. 2 CFR 180.325.

* * * * *

2. Certification Regarding Debarment, Suspension, Ineligibility and Voluntary Exclusion – First Tier Participants:

a. The prospective first tier participant certifies to the best of its knowledge and belief, that it and its principals:

(1) Are not presently debarred, suspended, proposed for debarment, declared ineligible, or voluntarily excluded from participating in covered transactions by any Federal department or agency, 2 CFR 180.335;.

(2) Have not within a three-year period preceding this proposal been convicted of or had a civil judgment rendered against them for commission of fraud or a criminal offense in connection with obtaining, attempting to obtain, or performing a public (Federal, State, or local) transaction or contract under a public transaction; violation of Federal or State antitrust statutes or commission of embezzlement, theft, forgery, bribery, falsification or destruction of records, making false statements, or receiving stolen property, 2 CFR 180.800;

(3) Are not presently indicted for or otherwise criminally or civilly charged by a governmental entity (Federal, State or local) with commission of any of the offenses enumerated in paragraph (a)(2) of this certification, 2 CFR 180.700 and 180.800; and

(4) Have not within a three-year period preceding this application/proposal had one or more public transactions (Federal, State or local) terminated for cause or default. 2 CFR 180.335(d).

(5) Are not a corporation that has been convicted of a felony violation under any Federal law within the two-year period preceding this proposal (USDOT Order 4200.6 implementing appropriations act requirements); and

(6) Are not a corporation with any unpaid Federal tax liability that has been assessed, for which all judicial and administrative remedies have been exhausted, or have lapsed, and that is not being paid in a timely manner pursuant to an agreement with the authority responsible for collecting the tax liability (USDOT Order 4200.6 implementing appropriations act requirements).

b. Where the prospective participant is unable to certify to any of the statements in this certification, such prospective participant should attach an explanation to this proposal. 2 CFR 180.335 and 180.340.

* * * * *

3. Instructions for Certification - Lower Tier Participants:

(Applicable to all subcontracts, purchase orders, and other lower tier transactions requiring prior FHWA approval or estimated to cost \$25,000 or more - 2 CFR Parts 180 and 1200). 2 CFR 180.220 and 1200.220.

a. By signing and submitting this proposal, the prospective lower tier participant is providing the certification set out below.

b. The certification in this clause is a material representation of fact upon which reliance was placed when this transaction was entered into. If it is later determined that the prospective lower tier participant knowingly rendered an erroneous certification, in addition to other remedies available to the Federal Government, the department, or agency with which this transaction originated may pursue available remedies, including suspension and/or debarment.

c. The prospective lower tier participant shall provide immediate written notice to the person to which this proposal is submitted if at any time the prospective lower tier participant learns that its certification was erroneous by reason of changed circumstances. 2 CFR 180.365.

d. The terms "covered transaction," "debarred," "suspended," "ineligible," "participant," "person," "principal," and "voluntarily excluded," as used in this clause, are defined in 2 CFR Parts 180, Subpart I, 180.900 - 180.1020, and 1200. You may contact the person to which this proposal is submitted for assistance in obtaining a copy of those regulations. "First Tier Covered Transactions" refers to any covered transaction between a recipient or subrecipient of Federal funds and a participant (such as the prime or general contract). "Lower Tier Covered Transactions" refers to any covered transaction under a First Tier Covered Transaction (such as subcontracts). "First Tier Participant" refers to the participant who has entered into a covered transaction with a recipient or subrecipient of Federal funds (such as the prime or general contractor). "Lower Tier Participant" refers any participant who has entered into a covered transaction with a First Tier Participant or other Lower Tier Participants (such as subcontractors and suppliers).

e. The prospective lower tier participant agrees by submitting this proposal that, should the proposed covered transaction be entered into, it shall not knowingly enter into any lower tier covered transaction with a person who is debarred, suspended, declared ineligible, or voluntarily excluded from participation in this covered transaction, unless authorized by the department or agency with which this transaction originated. 2 CFR 1200.220 and 1200.332.

f. The prospective lower tier participant further agrees by submitting this proposal that it will include this clause titled "Certification Regarding Debarment, Suspension, Ineligibility and Voluntary Exclusion-Lower Tier Covered Transaction," without modification, in all lower tier covered transactions and in all solicitations for lower tier covered transactions exceeding the \$25,000 threshold. 2 CFR 180.220 and 1200.220.

g. A participant in a covered transaction may rely upon a certification of a prospective participant in a lower tier covered transaction that is not debarred, suspended, ineligible, or voluntarily excluded from the covered transaction, unless it knows that the certification is erroneous. A participant is responsible for ensuring that its principals are not suspended, debarred, or otherwise ineligible to participate in covered transactions. To verify the eligibility of its principals, as well as the eligibility of any lower tier prospective participants, each participant may, but is not required to, check the System for Award Management website (https://www.sam.gov/), which is compiled by the General Services Administration. 2 CFR 180.300, 180.320, 180.330, and 180.335.

h. Nothing contained in the foregoing shall be construed to require establishment of a system of records in order to render in good faith the certification required by this clause. The knowledge and information of participant is not required to exceed that which is normally possessed by a prudent person in the ordinary course of business dealings.

i. Except for transactions authorized under paragraph e of these instructions, if a participant in a covered transaction knowingly enters into a lower tier covered transaction with a person who is suspended, debarred, ineligible, or voluntarily excluded from participation in this transaction, in addition to other remedies available to the Federal Government, the department or agency with which this transaction originated may pursue available remedies, including suspension and/or debarment. 2 CFR 180.325.

* * * * *

4. Certification Regarding Debarment, Suspension, Ineligibility and Voluntary Exclusion--Lower Tier Participants:

a. The prospective lower tier participant certifies, by submission of this proposal, that neither it nor its principals:

(1) is presently debarred, suspended, proposed for debarment, declared ineligible, or voluntarily excluded from participating in covered transactions by any Federal department or agency, 2 CFR 180.355;

(2) is a corporation that has been convicted of a felony violation under any Federal law within the two-year period preceding this proposal (USDOT Order 4200.6 implementing appropriations act requirements); and

(3) is a corporation with any unpaid Federal tax liability that has been assessed, for which all judicial and administrative remedies have been exhausted, or have lapsed, and that is not being paid in a timely manner pursuant to an agreement with the authority responsible for collecting the tax liability. (USDOT Order 4200.6 implementing appropriations act requirements)

b. Where the prospective lower tier participant is unable to certify to any of the statements in this certification, such prospective participant should attach an explanation to this proposal.

* * * * *

XI. CERTIFICATION REGARDING USE OF CONTRACT FUNDS FOR LOBBYING

This provision is applicable to all Federal-aid construction contracts and to all related subcontracts which exceed \$100,000. 49 CFR Part 20, App. A.

1. The prospective participant certifies, by signing and submitting this bid or proposal, to the best of his or her knowledge and belief, that:

a. No Federal appropriated funds have been paid or will be paid, by or on behalf of the undersigned, to any person for influencing or attempting to influence an officer or employee of any Federal agency, a Member of Congress, an officer or employee of Congress, or an employee of a Member of Congress in connection with the awarding of any Federal contract, the making of any Federal grant, the making of any Federal loan, the entering into of any cooperative agreement, and the extension, continuation, renewal, amendment, or modification of any Federal contract, grant, loan, or cooperative agreement.

b. If any funds other than Federal appropriated funds have been paid or will be paid to any person for influencing or attempting to influence an officer or employee of any Federal agency, a Member of Congress, an officer or employee of Congress, or an employee of a Member of Congress in connection with this Federal contract, grant, loan, or cooperative agreement, the undersigned shall complete and submit Standard Form-LLL, "Disclosure Form to Report Lobbying," in accordance with its instructions.

2. This certification is a material representation of fact upon which reliance was placed when this transaction was made or entered into. Submission of this certification is a prerequisite for making or entering into this transaction imposed by 31 U.S.C. 1352. Any person who fails to file the required certification shall be subject to a civil penalty of not less than \$10,000 and not more than \$100,000 for each such failure.

3. The prospective participant also agrees by submitting its bid or proposal that the participant shall require that the language of this certification be included in all lower tier subcontracts, which exceed \$100,000 and that all such recipients shall certify and disclose accordingly.

XII. USE OF UNITED STATES-FLAG VESSELS:

This provision is applicable to all Federal-aid construction contracts, design-build contracts, subcontracts, lower-tier subcontracts, purchase orders, lease agreements, or any other covered transaction. 46 CFR Part 381.

This requirement applies to material or equipment that is acquired for a specific Federal-aid highway project. 46 CFR 381.7. It is not applicable to goods or materials that come into inventories independent of an FHWA funded-contract.

When oceanic shipments (or shipments across the Great Lakes) are necessary for materials or equipment acquired for a specific Federal-aid construction project, the bidder, proposer, contractor, subcontractor, or vendor agrees:

1. To utilize privately owned United States-flag commercial vessels to ship at least 50 percent of the gross tonnage (computed separately for dry bulk carriers, dry cargo liners, and tankers) involved, whenever shipping any equipment, material, or commodities pursuant to this contract, to the extent such vessels are available at fair and reasonable rates for United States-flag commercial vessels. 46 CFR 381.7.

2. To furnish within 20 days following the date of loading for shipments originating within the United States or within 30 working days following the date of loading for shipments originating outside the United States, a legible copy of a rated, 'on-board' commercial ocean bill-of-lading in English for each shipment of cargo described in paragraph (b)(1) of this section to both the Contracting Officer (through the prime contractor in the case of subcontractor bills-of-lading) and to the Office of Cargo and Commercial Sealift (MAR-620), Maritime Administration, Washington, DC 20590. (MARAD requires copies of the ocean carrier's (master) bills of lading, certified onboard, dated, with rates and charges. These bills of lading may contain business sensitive information and therefore may be submitted directly to MARAD by the Ocean Transportation Intermediary on behalf of the contractor). 46 CFR 381.7. ATTACHMENT A - EMPLOYMENT AND MATERIALS PREFERENCE FOR APPALACHIAN DEVELOPMENT HIGHWAY SYSTEM OR APPALACHIAN LOCAL ACCESS ROAD CONTRACTS (23 CFR 633, Subpart B, Appendix B) This provision is applicable to all Federal-aid projects funded under the Appalachian Regional Development Act of 1965.

1. During the performance of this contract, the contractor undertaking to do work which is, or reasonably may be, done as on-site work, shall give preference to qualified persons who regularly reside in the labor area as designated by the DOL wherein the contract work is situated, or the subregion, or the Appalachian counties of the State wherein the contract work is situated, except:

a. To the extent that qualified persons regularly residing in the area are not available.

b. For the reasonable needs of the contractor to employ supervisory or specially experienced personnel necessary to assure an efficient execution of the contract work.

c. For the obligation of the contractor to offer employment to present or former employees as the result of a lawful collective bargaining contract, provided that the number of nonresident persons employed under this subparagraph (1c) shall not exceed 20 percent of the total number of employees employed by the contractor on the contract work, except as provided in subparagraph (4) below.

2. The contractor shall place a job order with the State Employment Service indicating (a) the classifications of the laborers, mechanics and other employees required to perform the contract work, (b) the number of employees required in each classification, (c) the date on which the participant estimates such employees will be required, and (d) any other pertinent information required by the State Employment Service to complete the job order form. The job order may be placed with the State Employment Service in writing or by telephone. If during the course of the contract work, the information submitted by the contractor in the original job order is substantially modified, the participant shall promptly notify the State Employment Service.

3. The contractor shall give full consideration to all qualified job applicants referred to him by the State Employment Service. The contractor is not required to grant employment to any job applicants who, in his opinion, are not qualified to perform the classification of work required.

4. If, within one week following the placing of a job order by the contractor with the State Employment Service, the State Employment Service is unable to refer any qualified job applicants to the contractor, or less than the number requested, the State Employment Service will forward a certificate to the contractor indicating the unavailability of applicants. Such certificate shall be made a part of the contractor's permanent project records. Upon receipt of this certificate, the contractor may employ persons who do not normally reside in the labor area to fill positions covered by the certificate, notwithstanding the provisions of subparagraph (1c) above.

5. The provisions of 23 CFR 633.207(e) allow the contracting agency to provide a contractual preference for the use of mineral resource materials native to the Appalachian region.

6. The contractor shall include the provisions of Sections 1 through 4 of this Attachment A in every subcontract for work which is, or reasonably may be, done as on-site work.

KENTUCKY TRANSPORTATION CABINET DEPARTMENT OF HIGHWAYS

EMPLOYMENT REQUIREMENTS RELATING TO NONDISCRIMINATION OF EMPLOYEES (APPLICABLE TO FEDERAL-AID SYSTEM CONTRACTS)

AN ACT OF THE KENTUCKY GENERAL ASSEMBLY TO PREVENT DISCRIMINATION IN EMPLOYMENT

KRS CHAPTER 344 EFFECTIVE JUNE 16, 1972

The contract on this project, in accordance with KRS Chapter 344, provides that during the performance of this contract, the contractor agrees as follows:

1. The contractor shall not fail or refuse to hire, or shall not discharge any individual, or otherwise discriminate against an individual with respect to his compensation, terms, conditions, or privileges of employment, because of such individual's race, color, religion, national origin, sex, disability or age (forty and above); or limit, segregate, or classify his employees in any way which would deprive or tend to deprive an individual of employment opportunities or otherwise adversely affect his status as an employee, because of such individual's race, color, religion, national origin, sex, disability or age forty (40) and over. The contractor agrees to post in conspicuous places, available to employees and applicants for employment, notices to be provided setting forth the provisions of this nondiscrimination clause.

2. The contractor shall not print or publish or cause to be printed or published a notice or advertisement relating to employment by such an employer or membership in or any classification or referral for employment by the employment agency, indicating any preference, limitation, specification, or discrimination, based on race, color, religion, national origin, sex, or age forty (40) and over, or because the person is a qualified individual with a disability, except that such a notice or advertisement may indicate a preference, limitation, or specification based on religion, national origin, sex, or age forty (40) and over, or because the person is a qualified individual with a disability, when religion, national origin, sex, or age forty (40) and over, or because the person is a qualified individual with a disability, is a bona fide occupational qualification for employment.

3. If the contractor is in control of apprenticeship or other training or retraining, including on-the-job training programs, he shall not discriminate against an individual because of his race, color, religion, national origin, sex, disability or age forty (40) and over, in admission to, or employment in any program established to provide apprenticeship or other training. 4. The contractor will send to each labor union or representative of workers with which he has a collective bargaining agreement or other contract or understanding, a notice to be provided advising the said labor union or workers' representative of the contractor's commitments under this section, and shall post copies of the notice in conspicuous places available to employees and applicants for employment. The contractor will take such action with respect to any subcontract or purchase order as the administrating agency may direct as a means of enforcing such provisions, including sanctions for non-compliance.

Revised: January 25, 2017

Standard Title VI/Non-Discrimination Assurances

During the performance of this contract, the contractor, for itself, its assignees, and successors in interest (hereinafter referred to as the "contractor") agrees as follows:

- 1. **Compliance with Regulations:** The contractor (hereinafter includes consultants) will comply with the Acts and the Regulations relative to Non-discrimination in Federally-assisted programs of the U.S. Department of Transportation, **Federal Highway Administration**, as they may be amended from time to time, which are herein incorporated by reference and made a part of this contract.
- 2. Non-discrimination: The contractor, with regard to the work performed by it during the contract, will_not discriminate on the grounds of race, color, or national origin in the selection and retention of subcontractors, including procurements of materials and leases of equipment. The contractor will not participate directly or indirectly in the discrimination prohibited by the Acts and the Regulations, including employment practices when the contract covers any activity, project, or program set forth in Appendix B of 49 CFR Part 21.
- 3. Solicitations for Subcontracts, Including Procurements of Materials and Equipment: In all solicitations, either by competitive bidding, or negotiation made by the contractor for work to be performed under a subcontract, including procurements of materials, or leases of equipment, each potential subcontractor or supplier will be notified by the contractor of the contractor's obligations under this contract and the Acts and the Regulations relative to Non-discrimination on the grounds of race, color, or national origin.
- [4. Information and Reports: The contractor will_provide all information and reports required by the Acts, the Regulations, and directives issued pursuant thereto and will permit access to its books, records, accounts, other sources of information, and its facilities as may be determined by the Recipient or the Federal Highway Administration to be pertinent to ascertain compliance with such Acts, Regulations, and instructions. Where any information required of a contractor is in the exclusive possession of another who fails or refuses to furnish the information, the contractor will so certify to the Recipient or the Federal Highway Administration, as appropriate, and will set forth what efforts it has made to obtain the information.
- 5. Sanctions for Noncompliance: In the event of a contractor's noncompliance with the Non-discrimination provisions of this contract, the Recipient will impose such contract sanctions as it or the Federal Highway Administration may determine to be appropriate, including, but not limited to:
 - a. withholding payments to the contractor under the contract until the contractor complies; and/or
 - b. cancelling, terminating, or suspending a contract, in whole or in part.
- 6. Incorporation of Provisions: The contractor will include the provisions of paragraphs one through six in every subcontract, including procurements of materials and leases of equipment, unless exempt by the Acts, the Regulations and directives issued pursuant thereto. The contractor will take action with respect to any subcontract or procurement as the Recipient or the Federal Highway Administration may direct as a means of enforcing such provisions including sanctions for noncompliance. Provided, that if the contractor becomes involved in, or is threatened with litigation by a subcontractor, or supplier because of such direction, the contractor may request the Recipient to enter into any litigation to protect the interests of the Recipient. In addition, the contractor may request the United States to enter into the litigation to protect the interests of the United States.

Standard Title VI/Non-Discrimination Statutes and Authorities

During the performance of this contract, the contractor, for itself, its assignees, and successors in interest (hereinafter referred to as the "contractor") agrees to comply with the following non-discrimination statutes and authorities; including but not limited to:

- Title VI of the Civil Rights Act of 1964 (42 U.S.C. § 2000d *et seq.*, 78 stat. 252), (prohibits discrimination on the basis of race, color, national origin); and 49 CFR Part 21;
- The Uniform Relocation Assistance and Real Property Acquisition Policies Act of 1970, (42 U.S.C. § 4601), (prohibits unfair treatment of persons displaced or whose property has been acquired because of Federal or Federal-aid programs and projects);
- Federal-Aid Highway Act of 1973, (23 U.S.C. § 324 *et seq.*), (prohibits discrimination on the basis of sex);
- Section 504 of the Rehabilitation Act of 1973, (29 U.S.C. § 794 *et seq.*), as amended, (prohibits discrimination on the basis of disability); and 49 CFR Part 27;
- The Age Discrimination Act of 1975, as amended, (42 U.S.C. § 6101 *et seq.*), (prohibits discrimination on the basis of age);
- Airport and Airway Improvement Act of 1982, (49 USC § 471, Section 47123), as amended, (prohibits discrimination based on race, creed, color, national origin, or sex);
- The Civil Rights Restoration Act of 1987, (PL 100-209), (Broadened the scope, coverage and applicability of Title VI of the Civil Rights Act of 1964, The Age Discrimination Act of 1975 and Section 504 of the Rehabilitation Act of 1973, by expanding the definition of the terms "programs or activities" to include all of the programs or activities of the Federal-aid recipients, sub-recipients and contractors, whether such programs or activities are Federally funded or not);
- Titles II and III of the Americans with Disabilities Act, which prohibit discrimination on the basis of disability in the operation of public entities, public and private transportation systems, places of public accommodation, and certain testing entities (42 U.S.C. §§ 12131 -- 12189) as implemented by Department of Transportation regulations at 49 C.F.R. parts 37 and 38;
- The Federal Aviation Administration's Non-discrimination statute (49 U.S.C. § 47123) (prohibits discrimination on the basis of race, color, national origin, and sex);
- Executive Order 12898, Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations, which ensures non-discrimination against minority populations by discouraging programs, policies, and activities with disproportionately high and adverse human health or environmental effects on minority and low-income populations;
- Executive Order 13166, Improving Access to Services for Persons with Limited English Proficiency, and resulting agency guidance, national origin discrimination includes discrimination because of limited English proficiency (LEP). To ensure compliance with Title VI, you must take reasonable steps to ensure that LEP persons have meaningful access to your programs (70 Fed. Reg. at 74087 to 74100);
- Title IX of the Education Amendments of 1972, as amended, which prohibits you from discriminating because of sex in education programs or activities (20 U.S.C. 1681 et seq).

EXECUTIVE BRANCH CODE OF ETHICS

The Executive Branch Code of Ethics created by Kentucky Revised Statutes (KRS) Chapter 11A, effective July 14, 1992, establishes the ethical standards that govern the conduct of all executive branch employees. The Executive Branch Code of Ethics, which states, in part:

KRS 11A.040 (7) provides:

A present or former public servant listed in KRS 11A.010(9)(a) to (g) shall not, within one (1) year following termination of his or her office or employment, accept employment, compensation, or other economic benefit from any person or business that contracts or does business with, or is regulated by, the state in matters in which he was directly involved during the last thirty-six (36) months of his tenure. This provision shall not prohibit an individual from returning to the same business, firm, occupation, or profession in which he was involved prior to taking office or beginning his term of employment, or for which he received, prior to his state employment, a professional degree or license, provided that, for a period of one (1) year, he or she personally refrains from working on any matter in which he was directly involved during the last thirty-six (36) months of his or her tenure in state government. This subsection shall not prohibit the performance of ministerial functions, including but not limited to filing tax returns, filing applications for permits or licenses, or filing incorporation papers, nor shall it prohibit the former officer or public servant from receiving public funds disbursed through entitlement programs.

KRS 11A.040 (9) states:

A former public servant shall not represent a person or business before a state agency in a matter in which the former public servant was directly involved during the last thirty-six (36) months of his tenure, for a period of one (1) year after the latter of:

- a) The date of leaving office or termination of employment; or
- b) The date the term of office expires to which the public servant was elected.

This law is intended to promote public confidence in the integrity of state government and to declare as public policy the idea that state employees should view their work as a public trust and not to obtain private benefits.

If you have worked for the executive branch of state government within the past year, you may be subject to the law's prohibitions. The law's applicability may be different if you hold elected office or are contemplating representation of another before a state agency.

Also, if you are affiliated with a firm which does business with the state and which employs former state executive-branch employees, you should be aware that the law may apply to them.

In case of doubt, the law permits you to request an advisory opinion from the Executive Branch Ethics Commission, 1025 Capital Center Drive, Suite 105, Frankfort, Kentucky 40601; telephone (502) 564-7954.

Revised: March 11, 2025

"General Decision Number: KY20250040 05/16/2025

Superseded General Decision Number: KY20240040

State: Kentucky

Construction Type: Highway

Counties: Allen, Ballard, Butler, Caldwell, Calloway, Carlisle, Christian, Crittenden, Daviess, Edmonson, Fulton, Graves, Hancock, Henderson, Hickman, Hopkins, Livingston, Logan, Lyon, Marshall, McCracken, McLean, Muhlenberg, Ohio, Simpson, Todd, Trigg, Union, Warren and Webster Counties in Kentucky.

HIGHWAY CONSTRUCTION PROJECTS (excluding tunnels, building structures in rest area projects & railroad construction; bascule, suspension & spandrel arch bridges designed for commercial navigation, bridges involving marine construction; and other major bridges).

Note: Contracts subject to the Davis-Bacon Act are generally required to pay at least the applicable minimum wage rate required under Executive Order 14026 or Executive Order 13658. Please note that these Executive Orders apply to covered contracts entered into by the federal government that are subject to the Davis-Bacon Act itself, but do not apply to contracts subject only to the Davis-Bacon Related Acts, including those set forth at 29 CFR 5.1(a)(1).

If the contract is entered into on or after January 30, 2022, or the contract is renewed or extended (e.g., an option is exercised) on or after January 30, 2022:	 Executive Order 14026 generally applies to the contract. The contractor must pay all covered workers at least \$17.75 per hour (or the applicable wage rate listed on this wage determination, if it is higher) for all hours spent performing on the contract in 2025.
If the contract was awarded on or between January 1, 2015 and January 29, 2022, and the contract is not renewed or extended on or after January 30, 2022:	

The applicable Executive Order minimum wage rate will be adjusted annually. If this contract is covered by one of the Executive Orders and a classification considered necessary for performance of work on the contract does not appear on this wage determination, the contractor must still submit a conformance request. Additional information on contractor requirements and worker protections under the Executive Orders is available at http://www.dol.gov/whd/govcontracts.

Modification Number	Publication Date
0	01/03/2025
1	02/28/2025
2	04/04/2025
3	05/16/2025

BRIN0004-002 06/01/2024

BALLARD, BUTLER, CALDWELL, CARLISLE, CRITTENDEN, DAVIESS, EDMONSON, FULTON, GRAVES, HANCOCK, HENDERSON, HICKMAN, HOPKINS, LIVINGSTON, LYON, MARSHALL, MCCRACKEN, MCLEAN, MUHLENBERG, OHIO, UNION, and WEBSTER COUNTIES

	Rates	Fringes
BRICKLAYER		
Ballard, Caldwell,		
Carlisle, Crittenden,		
Fulton, Graves, Hickman,		
Livingston, Lyon,		
Marshall, and McCracken		
Counties\$	33.70	16.57
Butler, Edmonson, Hopkins,		
Muhlenberg, and Ohio		
Counties\$	33.70	16.57
Daviess, Hancock,		
Henderson, McLean, Union,		
and Webster Counties\$	33.70	16.57

BRTN0004-005 06/01/2024

ALLEN, CALLOWAY, CHRISTIAN, LOGAN, SIMPSON, TODD, TRIGG, and WARREN COUNTIES

	Rates	Fringes
BRICKLAYER	\$ 33.70	16.57
* CARP0357-002 04/01/2025		
	Rates	Fringes
CARPENTER DIVER PILEDRIVERMAN	\$ 51.21	24.02 24.02 24.02
ELEC0369-006 05/29/2024		
BUTLER, EDMONSON, LOGAN, TODD &	& WARREN COUN	TIES:
	Rates	Fringes
ELECTRICIAN	\$ 37.88	21.38

	Rates	Fringes
ELECTRICIAN	\$ 37.88	21.38
ELEC0429-001 06/01/2024		

ALLEN & SIMPSON COUNTIES:

RZ 9030 (500)		
	Rates	Fringes
ELECTRICIAN		14.75
ELEC0816-002 06/01/2024		
BALLARD, CALDWELL, CALLOWA FULTON (Except a 5 mile ra HICKMAN, LIVINGSTON, LYON,	dius of City Hall i	n Fulton), GRAVES,
	Rates	Fringes
ELECTRICIAN	\$ 35.67	28%+8.60
Cable spicers receive \$.25		
ELEC1701-003 07/01/2024		
DAVIESS, HANCOCK, HENDERSO UNION & WEBSTER COUNTIES:	N, HOPKINS, MCLEAN,	MUHLENBERG, OHIO,
	Rates	Fringes
ELECTRICIAN	\$ 37.10	8.60+30.8%
Cable spicers receive \$.25		
ELEC1925-002 01/01/2025		
FULTON COUNTY (Up to a 5 m	ile radius of City	Hall in Fulton):
	Rates	Fringes
CABLE SPLICER		15.50 15.49
ENGI0181-017 07/01/2024		
	Rates	Fringes
POWER EQUIPMENT OPERATOR GROUP 1 GROUP 2 GROUP 3 GROUP 4	\$ 37.19 \$ 37.64	19.10 19.10 19.10 19.10
OPERATING ENGINEER CLASSIF	ICATIONS	
GROUP 1 - A-Frame Winch Batcher Plant; Bituminou Machine; Boom Cat; Bulld Scoop; Carry Deck Crane; Picker; Clamshell; Concr Concrete Paver; Truck-Mo Crane; Crusher Plant; De Trenching Machine; Dragl Engineer: Elevating Grad	s Paver; Bituminous ozer; Mechanic; Cab Central Compressor ete Mixer (21 cu. f unted Concrete Pump rrick; Derrick Boat ine; Dredge Operato	Transfer Pleway; Carry-All Plant; Cherry t. or Over); ; Core Drill; ; Ditching & or; Dredge

Engineer; Elevating Grader & Loaders; Grade-All; Gurries; Heavy Equipment Robotics Operator/Mechanic; High Lift; Hoe-Type Machine; Hoist (Two or More Drums); Hoisting Engine (Two or More Drums); Horizontal Directional Drill Operator; Hydrocrane; Hyster; KeCal Loader; LeTourneau; Locomotive; Mechanic; Mechanically Operated Laser Screed; Mechanic Welder; Mucking Machine; Motor Scraper; Orangepeel Bucket; Overhead Crane; Piledriver; Power Blade; Pumpcrete; Push Dozer; Rock Spreader, attached to equipment; Rotary Drill; Roller (Bituminous); Rough Terrain Crane; Scarifier; Scoopmobile; Shovel; Side Boom; Subgrader; Tailboom; Telescoping Type Forklift; Tow or Push Boat; Tower Crane (French, German & other types); Tractor Shovel; Truck Crane; Tunnel Mining Machines, including Moles, Shields or similar types of Tunnel Mining Equipment

GROUP 2 - Air Compressor (Over 900 cu. ft. per min.); Bituminous Mixer; Boom Type Tamping Machine; Bull Float; Concrete Mixer (Under 21 cu. ft.); Dredge Engineer; Electric Vibrator; Compactor/Self-Propelled Compactor; Elevator (One Drum or Buck Hoist); Elevator (When used to Hoist Building Material); Finish Machine; Firemen & Hoist (One Drum); Flexplane; Forklift (Regardless of Lift Height); Form Grader; Joint Sealing Machine; Outboard Motor Boat; Power Sweeper (Riding Type); Roller (Rock); Ross Carrier; Skid Mounted or Trailer Mounted Conrete Pump; Skid Steer Machine with all Attachments; Switchman or Brakeman; Throttle Valve Person; Tractair & Road Widening Trencher; Tractor (50 H.P. or Over); Truck Crane Oiler; Tugger; Welding Machine; Well Points;& Whirley Oiler

GROUP 3 -All Off Road Material Handling Equipment, including Articulating Dump Trucks; Greaser on Grease Facilities servicing Heavy Equipment

GROUP 4 - Bituminous Distributor; Burlap & Curing Machine; Cement Gun; Concrete Saw; Conveyor; Deckhand Oiler; Grout Pump; Hydraulic Post Driver; Hydro Seeder; Mud Jack; Oiler; Paving Joint Machine; Power Form Handling Equipment; Pump; Roller (Earth); Steerman; Tamping Machine; Tractor (Under 50 H.P.); & Vibrator

CRANES - with booms 150 ft. & Over (Including JIB), and where the length of the boom in combination with the length of the piling equals or exceeds 150 ft. - \$1.00 above Group 1 rate

EMPLOYEES ASSIGNED TO WORK BELOW GROUND LEVEL ARE TO BE PAID 10% ABOVE BASIC WAGE RATE. THIS DOES NOT APPLY TO OPEN CUT WORK.

IRON0070-005 06/01/2024

BUTLER COUNTY (Eastern eighth, including the Townships of Decker, Lee & Tilford); EDMONSON COUNTY (Northern three-fourths, including the Townships of Asphalt, Bee Spring, Brownsville, Grassland, Huff, Kyrock, Lindseyville, Mammoth Cave, Ollie, Prosperity, Rhoda, Sunfish & Sweden)

IRONWORKER Structural; Ornamental; Reinforcing; Precast Concrete Erectors......\$ 34.59 25.00

Rates

Fringes

IRON0103-004 08/01/2024

DAVIESS, HANCOCK, HENDERSON, HOPKINS, MCLEAN, OHIO, UNION & WEBSTER COUNTIES BUTLER COUNTY (Townships of Aberdeen, Bancock, Casey, Dexterville, Dunbar, Elfie, Gilstrap, Huntsville, Logansport, Monford, Morgantown, Provo, Rochester, South Hill & Welchs Creek); CALDWELL COUNTY (Northeastern third, including the Township of Creswell); CHRISTIAN COUNTY (Northern third, including the Townships of Apex, Crofton, Kelly, Mannington & Wynns); CRITTENDEN COUNTY (Northeastern half, including the Townships of Grove, Mattoon, Repton, Shady Grove & Tribune); MUHLENBERG COUNTY (Townships of Bavier, Beech Creek Junction, Benton, Brennen, Browder, Central City, Cleaton, Depoy, Drakesboro, Eunis, Graham, Hillside, Luzerne, Lynn City, Martwick, McNary, Millport, Moorman, Nelson, Paradise, Powderly, South Carrollton, Tarina & Weir)

Rates Fringes

Ironworkers:.....\$ 35.34 26.4 IRON0492-003 05/01/2024

ALLEN, LOGAN, SIMPSON, TODD & WARREN COUNTIES BUTLER COUNTY (Southern third, including the Townships of Boston, Berrys Lick, Dimple, Jetson, Quality, Sharer, Sugar Grove & Woodbury); CHRISTIAN COUNTY (Eastern two-thirds, including the Townships of Bennettstown, Casky, Herndon, Hopkinsville, Howell, Masonville, Pembroke & Thompsonville); EDMONSON COUNTY (Southern fourth, including the Townships of Chalybeate & Rocky Hill); MUHLENBERG COUNTY (Southern eighth, including the Townships of Dunnior, Penrod & Rosewood)

 Rates
 Fringes

 Ironworkers:
 33.73
 16.38

 IRON0782-006
 08/01/2024

BALLARD, CALLOWAY, CARLISLE, FULTON, GRAVES, HICKMAN, LIVINGSTON, LYON, MARSHALL, MCCRACKEN & TRIGG COUNTIES CALDWELL COUNTY (Southwestern two-thirds, including the Townships of Cedar Bluff, Cider, Claxton, Cobb, Crowtown, Dulaney, Farmersville, Fredonia, McGowan, Otter Pond & Princeton); CHRISTIAN COUNTY (Western third, Excluding the Townships of Apex, Crofton, Kelly, Mannington, Wynns, Bennettstown, Casky, Herndon, Hopkinsville, Howell, Masonville, Pembroke & Thompsonville); CRITTENDEN COUNTY (Southwestern half, including the Townships of Crayne, Dycusburg, Frances, Marion, Mexico, Midway, Sheridan & Told)

Rates Fringes

All Other Work.....\$ 34.01 24.83

LAB00189-005 07/01/2024

BALLARD, CALLOWAY, CARLISLE, FULTON, GRAVES, HICKMAN, LIVINGSTON, LYON, MARSHALL & MCCRACKEN COUNTIES

	F	Rates	Fringes
	1\$		18.58 18.58
GROUP	3\$ 4\$	24.26	18.58 18.58

LABORER CLASSIFICATIONS

GROUP 1 - Aging & Curing of Concrete; Asbestos Abatement Worker; Asphalt Plant; Asphalt; Batch Truck Dump; Carpenter Tender; Cement Mason Tender; Cleaning of Machines; Concrete; Demolition; Dredging; Environmental - Nuclear, Radiation, Toxic & Hazardous Waste - Level D; Flagperson; Grade Checker; Hand Digging & Hand Back Filling; Highway Marker Placer; Landscaping, Mesh Handler & Placer; Puddler; Railroad; Rip-rap & Grouter; Right-of-Way; Sign, Guard Rail & Fence Installer; Signal Person; Sound Barrier Installer; Storm & Sanitary Sewer; Swamper; Truck Spotter & Dumper; Wrecking of Concrete Forms; General Cleanup

GROUP 2 - Batter Board Man (Sanitary & Storm Sewer); Brickmason Tender; Mortar Mixer Operator; Scaffold Builder; Burner & Welder; Bushammer; Chain Saw Operator; Concrete Saw Operator; Deckhand Scow Man; Dry Cement Handler; Environmental - Nuclear, Radiation, Toxic & Hazardous Waste - Level C; Forklift Operator for Masonary; Form Setter; Green Concrete Cutting; Hand Operated Grouter & Grinder Machine Operator; Jackhammer; Pavement Breaker; Paving Joint Machine; Pipelayer; Plastic Pipe Fusion; Power Driven Georgia Buggy & Wheel Barrow; Power Post Hole Digger; Precast Manhole Setter; Walk-Behind Tamper; Walk-Behind Trencher; Sand Blaster; Concrete Chipper; Surface Grinder; Vibrator Operator; Wagon Driller

GROUP 3 - Asphalt Luteman & Raker; Gunnite Nozzleman; Gunnite Operator & Mixer; Grout Pump Operator; Blaster; Side Rail Setter; Rail Paved Ditches; Screw Operator; Tunnel (Free Air); Water Blaster

GROUP 4 - Caisson Worker (Free Air); Cement Finisher; Environmental - Nuclear, Radiation, Toxic & Hazardous Waste - Levels A & B; Miner & Driller (Free Air); Tunnel Blaster; & Tunnel Mucker (Free Air); Directional & Horizontal Boring; Air Track Drillers (All Types); Powdermen & Blasters; Troxler & Concrete Tester if Laborer is Utilized

LAB00189-006 07/01/2024

ALLEN, BUTLER, CALDWELL, CHRISTIAN, DAVIESS, EDMONSON, HANCOCK, HOPKINS, LOGAN, MCLEAN, MUHLENBERG, OHIO, SIMPSON, TODD, TRIGG & WARREN COUNTIES

Laborers:

GROUP 1\$	23.96	18.58
GROUP 2\$	24.26	18.58
GROUP 3\$	24.21	18.58
GROUP 4\$	24.86	18.58

LABORER CLASSIFICATIONS

GROUP 1 - Aging & Curing of Concrete; Asbestos Abatement Worker; Asphalt Plant; Asphalt; Batch Truck Dump; Carpenter Tender; Cement Mason Tender; Cleaning of Machines; Concrete; Demolition; Dredging; Environmental - Nuclear, Radiation, Toxic & Hazardous Waste - Level D; Flagperson; Grade Checker; Hand Digging & Hand Back Filling; Highway Marker Placer; Landscaping, Mesh Handler & Placer; Puddler; Railroad; Rip-rap & Grouter; Right-of-Way; Sign, Guard Rail & Fence Installer; Signal Person; Sound Barrier Installer; Storm & Sanitary Sewer; Swamper; Truck Spotter & Dumper; Wrecking of Concrete Forms; General Cleanup

GROUP 2 - Batter Board Man (Sanitary & Storm Sewer); Brickmason Tender; Mortar Mixer Operator; Scaffold Builder; Burner & Welder; Bushammer; Chain Saw Operator; Concrete Saw Operator; Deckhand Scow Man; Dry Cement Handler; Environmental - Nuclear, Radiation, Toxic & Hazardous Waste - Level C; Forklift Operator for Masonary; Form Setter; Green Concrete Cutting; Hand Operated Grouter & Grinder Machine Operator; Jackhammer; Pavement Breaker; Paving Joint Machine; Pipelayer; Plastic Pipe Fusion; Power Driven Georgia Buggy & Wheel Barrow; Power Post Hole Digger; Precast Manhole Setter; Walk-Behind Tamper; Walk-Behind Trencher; Sand Blaster; Concrete Chipper; Surface Grinder; Vibrator Operator; Wagon Driller

GROUP 3 - Asphalt Luteman & Raker; Gunnite Nozzleman; Gunnite Operator & Mixer; Grout Pump Operator; Blaster; Side Rail Setter; Rail Paved Ditches; Screw Operator; Tunnel (Free Air); Water Blaster

GROUP 4 - Caisson Worker (Free Air); Cement Finisher; Environmental - Nuclear, Radiation, Toxic & Hazardous Waste - Levels A & B; Miner & Driller (Free Air); Tunnel Blaster; & Tunnel Mucker (Free Air); Directional & Horizontal Boring; Air Track Drillers (All Types); Powdermen & Blasters; Troxler & Concrete Tester if Laborer is Utilized

LAB00561-001 07/01/2024

CRITTENDEN, HENDERSON, UNION & WEBSTER COUNTIES

	Rat	es Fri	inges
Laborers:			
GROUP	1\$ 25	.22	18.10
GROUP	2\$ 25	.47	18.10
GROUP	3\$ 25	.52	18.10
GROUP	4\$ 26	.12	18.10

LABORER CLASSIFICATIONS

GROUP 1 - Aging & Curing of Concrete; Asbestos Abatement Worker; Asphalt Plant; Asphalt; Batch Truck Dump; Carpenter Tender; Cement Mason Tender; Cleaning of Machines; Concrete; Demolition; Dredging; Environmental - Nuclear, Radiation, Toxic & Hazardous Waste - Level D; Flagperson; Grade Checker; Hand Digging & Hand Back Filling; Highway Marker Placer; Landscaping, Mesh Handler & Placer; Puddler; Railroad; Rip-rap & Grouter; Right-of-Way; Sign, Guard Rail & Fence Installer; Signal Person; Sound Barrier Installer; Storm & Sanitary Sewer; Swamper; Truck Spotter & Dumper; Wrecking of Concrete Forms; General Cleanup

GROUP 2 - Batter Board Man (Sanitary & Storm Sewer); Brickmason Tender; Mortar Mixer Operator; Scaffold Builder; Burner & Welder; Bushammer; Chain Saw Operator; Concrete Saw Operator; Deckhand Scow Man; Dry Cement Handler; Environmental - Nuclear, Radiation, Toxic & Hazardous Waste - Level C; Forklift Operator for Masonary; Form Setter; Green Concrete Cutting; Hand Operated Grouter & Grinder Machine Operator; Jackhammer; Pavement Breaker; Paving Joint Machine; Pipelayer; Plastic Pipe Fusion; Power Driven Georgia Buggy & Wheel Barrow; Power Post Hole Digger; Precast Manhole Setter; Walk-Behind Tamper; Walk-Behind Trencher; Sand Blaster; Concrete Chipper; Surface Grinder; Vibrator Operator; Wagon Driller

GROUP 3 - Asphalt Luteman & Raker; Gunnite Nozzleman; Gunnite Operator & Mixer; Grout Pump Operator; Blaster; Side Rail Setter; Rail Paved Ditches; Screw Operator; Tunnel (Free Air); Water Blaster

GROUP 4 - Caisson Worker (Free Air); Cement Finisher; Environmental - Nuclear, Radiation, Toxic & Hazardous Waste - Levels A & B; Miner & Driller (Free Air); Tunnel Blaster; & Tunnel Mucker (Free Air); Directional & Horizontal Boring; Air Track Drillers (All Types); Powdermen & Blasters; Troxler & Concrete Tester if Laborer is Utilized

PAIN0032-002 09/01/2024

BALLARD COUNTY

	Rates	Fringes
Painters: Bridges All Other Work		21.77 21.77
Spray, Blast, Steam, High & Ha Abatement) and All Epoxy - \$1.	•	.ng Lead
PAIN0118-003 06/01/2014		
EDMONSON COUNTY:		
	Rates	Fringes
Painters: Brush & Roller Spray, Sandblast, Power Tools, Waterblast & Steam	.,	11.97
Cleaning	.\$ 19.50	11.97
PAIN0156-006 04/01/2024		

DAVIESS, HANCOCK, HENDERSON, MCLEAN, OHIO, UNION & WEBSTER

Rates Fringes Painters: BRIDGES GROUP 1.....\$ 30.77 20.30 GROUP 3.....\$ 31.77 20.30 20.30 GROUP 4.....\$ 35.00 ALL OTHER WORK: GROUP 1.....\$ 29.62 20.30 GROUP 2.....\$ 30.37 20.30 GROUP 3.....\$ 30.62 20.30 GROUP 4.....\$ 31.77 20.30 PAINTER CLASSIFICATIONS GROUP 1 - Brush & Roller **GROUP 2 - Plasterers** GROUP 3 - Spray; Sandblast; Power Tools; Waterblast; Steamcleaning; Brush & Roller of Mastics, Creosotes, Kwinch Koate & Coal Tar Epoxy GROUP 4 - Spray of Mastics, Creosotes, Kwinch Koate & Coal Tar Epoxy _____ PAIN0500-002 06/01/2024 CALDWELL, CALLOWAY, CARLISLE, CHRISTIAN, CRITTENDEN, FULTON, GRAVES, HICKMAN, HOPKINS, LIVINGSTON, LYON, MARSHALL, MCCRACKEN & TRIGG COUNTIES: Rates Fringes Painters: Bridges.....\$ 30.75 15.50 All Other Work.....\$ 24.50 15.50 Waterblasting units with 3500 PSI and above - \$.50 premium Spraypainting and all abrasive blasting - \$1.00 premium Work 40 ft. and above ground level - \$1.00 premium PLUM0184-002 07/01/2024 BALLARD, CALDWELL, CALLOWAY, CARLISLE, CHRISTIAN, CRITTENDEN, FULTON, GRAVES, HICKMAN, LIVINGSTON, LYON, MARSHALL, MCCRACKEN and TRIGG COUNTIES Rates Fringes Plumber; Steamfitter.....\$ 41.01 20.28 PLUM0502-004 08/01/2024 ALLEN, BUTLER, EDMONSON, SIMPSON & WARREN Rates Fringes

 Plumber; Steamfitter.....\$ 41.90
 24.89

PLUM0633-002 08/01/2024

DAVIESS, HANCOCK, HENDERSON, HOPKINS, LOGAN, MCLEAN, MUHLENBERG, OHIO, TODD, UNION & WEBSTER COUNTIES:

Rates Fringes

PLUMBER/PIPEFITTER.....\$ 38.41 22.26

TEAM0089-003 03/31/2024

ALLEN, BUTLER, EDMONSON, LOGAN, SIMPSON & WARREN COUNTIES

Rates Fringes

Truck drivers:

Zone 1:		
Group 1\$	23.53	27.39
Group 2\$	23.70	27.39
Group 3\$	23.78	27.39
Group 4\$	23.80	27.39

GROUP 1 - Greaser; Tire Changer

GROUP 2 - Truck Mechanic; Single Axle Dump; Flat Bed; All Terrain Vehicles when used to haul materials; Semi Trailer or Pole Trailer when used to pull building materials and equipment; Tandem Axle Dump; Driver of Distributors

GROUP 3 - Mixer All Types

GROUP 4 - Winch and A-Frame when used in transporting materials; Ross Carrier; Fork Lift when used to transport building materials; Driver on Pavement Breaker; Euclid and Other Heavy Earth Moving Equipment; Low Boy; Articulator Cat; Five Axle Vehicle

TEAM0215-003 03/31/2024

DAVIESS, HANCOCK, HENDERSON, HOPKINS, MCLEAN, MUHLENBERG, OHIO & WEBSTER COUNTIES

Rates Fringes

TRUCK DRIVER		
Group 1\$	25.15	27.39
Group 2\$	25.38	27.39
Group 3\$	25.45	27.39
Group 4\$	25.46	27.39

GROUP 1: Greaser, Tire Changer

GROUP 2: Truck Mechanic

GROUP 3: Single Axle Dump; Flat Bed; All Terrain Vehicle when used to haul materials; Semi Trailer or Pole Trailer when used to pull building materials and equipment; Tandem Axle Dump; Driver of Distributors; Mixer All Types

GROUP 4: Euclid and other heavy earth moving equipment; Low

Boy; Articulator Cat; 5 Axle Vehicle; Winch and A- Frame when used in transporting materials; Ross Carrier; Fork Lift when used to transport building materials; Driver on Pavement Breaker

TEAM0236-001 03/31/2024

BALLARD, CALDWELL, CALLOWAY, CARLISLE, CHRISTIAN, CRITTENDEN, FULTON, GRAVES, HICKMAN, LIVINGSTON, LYON, MARSHALL, MCCRACKEN,TODD & TRIGG COUNTIES

Rates Fringes

TRUCK DRIVER

Gro	p 1\$	23.52	27.39
Gro	p 2\$	23.70	27.39
Gro	p 3\$	23.70	27.39
Gro	p 4\$	5 23.78	27.39
Gro	p 5\$	23.80	27.39

GROUP 1: Greaser, Tire Changer

GROUP 2: Truck Mechanic

GROUP 3: Single Axle Dump; Flat Bed; All Terrain Vehicle when used to haul materials; Semi Trailer or Pole Trailer when used to pull building materials and equipment; Tandem Axle Dump; Drivers of Distributors

GROUP 4: Euclid and other heavy earth moving equipment; Low Boy; Articulator Cat; Five Axle Vehicle; Winch and A-Frame when used in transporting materials; Ross Carrier

GROUP 5: Mixer All Types

WELDERS - Receive rate prescribed for craft performing operation to which welding is incidental.

Note: Executive Order (EO) 13706, Establishing Paid Sick Leave for Federal Contractors applies to all contracts subject to the Davis-Bacon Act for which the contract is awarded (and any solicitation was issued) on or after January 1, 2017. If this contract is covered by the EO, the contractor must provide employees with 1 hour of paid sick leave for every 30 hours they work, up to 56 hours of paid sick leave each year. Employees must be permitted to use paid sick leave for their own illness, injury or other health-related needs, including preventive care; to assist a family member (or person who is like family to the employee) who is ill, injured, or has other health-related needs, including preventive care; or for reasons resulting from, or to assist a family member (or person who is like family to the employee) who is a victim of, domestic violence, sexual assault, or stalking. Additional information on contractor requirements and worker protections under the EO is available at

https://www.dol.gov/agencies/whd/government-contracts.

Unlisted classifications needed for work not included within the scope of the classifications listed may be added after

award only as provided in the labor standards contract clauses (29CFR 5.5 (a) (1) (iii)).

The body of each wage determination lists the classifications and wage rates that have been found to be prevailing for the type(s) of construction and geographic area covered by the wage determination. The classifications are listed in alphabetical order under rate identifiers indicating whether the particular rate is a union rate (current union negotiated rate), a survey rate, a weighted union average rate, a state adopted rate, or a supplemental classification rate.

Union Rate Identifiers

A four-letter identifier beginning with characters other than ""SU"", ""UAVG"", ?SA?, or ?SC? denotes that a union rate was prevailing for that classification in the survey. Example: PLUM0198-005 07/01/2024. PLUM is an identifier of the union whose collectively bargained rate prevailed in the survey for this classification, which in this example would be Plumbers. 0198 indicates the local union number or district council number where applicable, i.e., Plumbers Local 0198. The next number, 005 in the example, is an internal number used in processing the wage determination. The date, 07/01/2024 in the example, is the effective date of the most current negotiated rate.

Union prevailing wage rates are updated to reflect all changes over time that are reported to WHD in the rates in the collective bargaining agreement (CBA) governing the classification.

Union Average Rate Identifiers

The UAVG identifier indicates that no single rate prevailed for those classifications, but that 100% of the data reported for the classifications reflected union rates. EXAMPLE: UAVG-OH-0010 01/01/2024. UAVG indicates that the rate is a weighted union average rate. OH indicates the State of Ohio. The next number, 0010 in the example, is an internal number used in producing the wage determination. The date, 01/01/2024 in the example, indicates the date the wage determination was updated to reflect the most current union average rate.

A UAVG rate will be updated once a year, usually in January, to reflect a weighted average of the current rates in the collective bargaining agreements on which the rate is based.

Survey Rate Identifiers

The ""SU"" identifier indicates that either a single non-union rate prevailed (as defined in 29 CFR 1.2) for this classification in the survey or that the rate was derived by computing a weighted average rate based on all the rates reported in the survey for that classification. As a weighted average rate includes all rates reported in the survey, it may include both union and non-union rates. Example: SUFL2022-007 6/27/2024. SU indicates the rate is a single non-union prevailing rate or a weighted average of survey data for that classification. FL indicates the State of Florida. 2022 is the year of the survey on which these classifications and rates are based. The next number, 007 in the example, is an internal number used in producing the wage determination. The date, 6/27/2024 in the example, indicates the survey completion date for the classifications and rates under that identifier.

?SU? wage rates typically remain in effect until a new survey is conducted. However, the Wage and Hour Division (WHD) has the discretion to update such rates under 29 CFR 1.6(c)(1).

State Adopted Rate Identifiers

The ""SA"" identifier indicates that the classifications and prevailing wage rates set by a state (or local) government were adopted under 29 C.F.R 1.3(g)-(h). Example: SAME2023-007 01/03/2024. SA reflects that the rates are state adopted. ME refers to the State of Maine. 2023 is the year during which the state completed the survey on which the listed classifications and rates are based. The next number, 007 in the example, is an internal number used in producing the wage determination. The date, 01/03/2024 in the example, reflects the date on which the classifications and rates under the ?SA? identifier took effect under state law in the state from which the rates were adopted.

WAGE DETERMINATION APPEALS PROCESS

1) Has there been an initial decision in the matter? This can be:

a) a survey underlying a wage determinationb) an existing published wage determinationc) an initial WHD letter setting forth a position ona wage determination matterd) an initial conformance (additional classification and rate) determination

On survey related matters, initial contact, including requests for summaries of surveys, should be directed to the WHD Branch of Wage Surveys. Requests can be submitted via email to davisbaconinfo@dol.gov or by mail to:

> Branch of Wage Surveys Wage and Hour Division U.S. Department of Labor 200 Constitution Avenue, N.W. Washington, DC 20210

Regarding any other wage determination matter such as conformance decisions, requests for initial decisions should be directed to the WHD Branch of Construction Wage Determinations. Requests can be submitted via email to BCWD-Office@dol.gov or by mail to:

> Branch of Construction Wage Determinations Wage and Hour Division U.S. Department of Labor 200 Constitution Avenue, N.W. Washington, DC 20210

2) If an initial decision has been issued, then any interested party (those affected by the action) that disagrees with the decision can request review and reconsideration from the Wage and Hour Administrator (See 29 CFR Part 1.8 and 29 CFR Part 7). Requests for review and reconsideration can be submitted via email to dba.reconsideration@dol.gov or by mail to:

Wage and Hour Administrator U.S. Department of Labor 200 Constitution Avenue, N.W. Washington, DC 20210

The request should be accompanied by a full statement of the interested party's position and any information (wage payment data, project description, area practice material, etc.) that the requestor considers relevant to the issue.

3) If the decision of the Administrator is not favorable, an interested party may appeal directly to the Administrative Review Board (formerly the Wage Appeals Board). Write to:

Administrative Review Board U.S. Department of Labor 200 Constitution Avenue, N.W. Washington, DC 20210.

END OF GENERAL DECISION"

Fringe benefit amounts are applicable for all hours worked except when otherwise noted.

No laborer, workman or mechanic shall be paid at a rate less than that of a Journeyman except those classified as bona fide apprentices.

Apprentices or trainees shall be permitted to work as such subject to Administrative Regulations adopted by the Commissioner of Workplace Standards. Copies of these regulations will be furnished upon request from any interested person.

Before using apprentices on the job the contractor shall present to the Contracting Officer written evidence of registration of such employees in a program of a State apprenticeship and training agency approved and recognized by the U. S. Bureau of Apprenticeship and Training. In the absence of such a State agency, the contractor shall submit evidence of approval and registration by the U. S. Bureau of Apprenticeship and Training.

The contractor shall submit to the Contracting Officer, written evidence of the established apprenticeship-journeyman ratios and wage rates in the project area, which will be the basis for establishing such ratios and rates for the project under the applicable contract provisions.

TO: EMPLOYERS/EMPLOYEES

PREVAILING WAGE SCHEDULE:

The wages indicated on this wage schedule are the least permitted to be paid for the occupations indicated. When an employee works in more than one classification, the employer must record the number of hours worked in each classification at the prescribed hourly base rate.

OVERTIME:

Overtime is to be paid to an employee at a rate not less than one and one-half times the basic rate of pay for all hours worked in excess of forty (40) hours in such workweek. Wage violations or questions should be directed to the designated Engineer or the undersigned.

Director Division of Construction Procurement Frankfort, Kentucky 40622 502-564-3500

PART IV

BID ITEMS

255382

PROPOSAL BID ITEMS

Page 1 of 3

Report Date 7/1/25

255382

Section: 0001 - PAVING

LINE	BID CODE	ALT DESCRIPTION	QUANTITY	UNIT	UNIT PRIC	FP	AMOUNT
0010	00001	DGA BASE	5,517.00	TON		\$	
0020	00020	TRAFFIC BOUND BASE	123.00	TON		\$	
0030	00100	ASPHALT SEAL AGGREGATE	49.00	TON		\$	
0040	00103	ASPHALT SEAL COAT	8.00	TON		\$	
0050	00212	CL2 ASPH BASE 1.00D PG64-22	3,058.00	TON		\$	
0060	00301	CL2 ASPH SURF 0.38D PG64-22	575.00	TON		\$	

Section: 0002 - ROADWAY

LINE	BID CODE	ALT	DESCRIPTION	QUANTITY	UNIT	UNIT PRIC	FP	AMOUNT
0070	01897		ASPHALT WEDGE CURB	87.00	LF		\$	
0080	01984		DELINEATOR FOR BARRIER - WHITE	8.00	EACH		\$	
			DELINEATOR FOR GUARDRAIL BI					
0090	01987		DIRECTIONAL WHITE		EACH		\$	
0100	02014		BARRICADE-TYPE III		EACH		\$	
0110	02091		REMOVE PAVEMENT	2,083.00			\$	
0120	02204		SPECIAL EXCAVATION	1,072.00	CUYD		\$	
0130	02223		GRANULAR EMBANKMENT	3,058.00	CUYD		\$	
0140	02230		EMBANKMENT IN PLACE	20,610.00	CUYD		\$	
0150	02351		GUARDRAIL-STEEL W BEAM-S FACE	1,737.50	LF		\$	
0160	02360		GUARDRAIL TERMINAL SECTION NO 1	4.00	EACH		\$	
0170	02367		GUARDRAIL END TREATMENT TYPE 1	2.00	EACH		\$	
0180	02371		GUARDRAIL END TREATMENT TYPE 7	1.00	EACH		\$	
0190	02381		REMOVE GUARDRAIL	1,998.00	LF		\$	
0200	02391		GUARDRAIL END TREATMENT TYPE 4A	1.00	EACH		\$	
0210	02399		EXTRA LENGTH GUARDRAIL POST	25.00	EACH		\$	
0220	02429		RIGHT-OF-WAY MONUMENT TYPE 1	13.00	EACH		\$	
0230	02432		WITNESS POST	13.00	EACH		\$	
0240	02545		CLEARING AND GRUBBING APPROX LESS THAN 1 ACRE	1.00	LS		\$	
0250	02555		CONCRETE-CLASS B	200.00	CUYD		\$	
0260	02562		TEMPORARY SIGNS	81.00	SQFT		\$	
0270	02585		EDGE KEY	93.00	LF		\$	
0280	02603		FABRIC-GEOTEXTILE CLASS 2	906.00	SQYD		\$	
0290	02625		REMOVE HEADWALL	2.00	EACH		\$	
0300	02650		MAINTAIN & CONTROL TRAFFIC	1.00	LS		\$	
0310	02671		PORTABLE CHANGEABLE MESSAGE SIGN	5.00	EACH		\$	
0320	02696		SHOULDER RUMBLE STRIPS	4,199.00	LF		\$	
0330	02726		STAKING	1.00	LS		\$	
0340	02731		REMOVE STRUCTURE	1.00	LS		\$	
0350	06511		PAVE STRIPING-TEMP PAINT-6 IN	2,000.00	LF		\$	
0360	06540		PAVE STRIPING-THERMO-4 IN W	786.00	LF		\$	
0370	06541		PAVE STRIPING-THERMO-4 IN Y	636.00	LF		\$	
0380	06542		PAVE STRIPING-THERMO-6 IN W	3,413.00	LF		\$	

255382

PROPOSAL BID ITEMS

Page 2 of 3

Report Date 7/1/25

LINE	BID CODE	ALT DESCRIPTION	QUANTITY	UNIT	UNIT PRIC	FP	AMOUNT
0390	06543	PAVE STRIPING-THERMO-6 IN Y	4,154.00	LF		\$	
0400	06556	PAVE STRIPING-DUR TY 1-6 IN W	750.00	LF		\$	
0410	06557	PAVE STRIPING-DUR TY 1-6 IN Y	750.00	LF		\$	
0420	06568	PAVE MARKING-THERMO STOP BAR-24IN	36.00	LF		\$	
0430	08001	STRUCTURE EXCAVATION-COMMON	60.00	CUYD		\$	
0440	10020NS	FUEL ADJUSTMENT	10,829.00	DOLL	\$1.00	\$	\$10,829.00
0450	10030NS	ASPHALT ADJUSTMENT	14,125.00	DOLL	\$1.00	\$	\$14,125.00
0460	20191ED	OBJECT MARKER TY 3	3.00	EACH		\$	
0470	20418ED	REMOVE & RELOCATE SIGNS	21.00	EACH		\$	
0480	21415ND	EROSION CONTROL	1.00	LS		\$	
0490	23649EC	DRAIN POND	1.00	LS		\$	
0500	24814EC	PIPELINE INSPECTION	202.00	LF		\$	
0510	24970EC	ASPHALT MATERIAL FOR TACK NON- TRACKING	4.90	TON		\$	
0520	25078ED	THRIE BEAM GUARDRAIL TRANSITION TL-3	4.00	EACH		\$	
0530	26248EC	ELECTRONIC DELIVERY MGMT SYSTEM - AGG	1.00	LS		\$	
0540	40033	TURF REINFORCEMENT MAT	815.00	SQYD		\$	

Section: 0003 - DRAINAGE

LINE	BID CODE	ALT	DESCRIPTION	QUANTITY	UNIT	UNIT PRIC	FP	AMOUNT
0550	00462		CULVERT PIPE-18 IN	195.00	LF		\$	
0560	01310		REMOVE PIPE	139.00	LF		\$	
0570	01450		S & F BOX INLET-OUTLET-18 IN	4.00	EACH		\$	
0580	01490		DROP BOX INLET TYPE 1	2.00	EACH		\$	
0590	01691		FLUME INLET TYPE 2	4.00	EACH		\$	

Section: 0004 - BRIDGE

LINE	BID CODE	ALT	DESCRIPTION	QUANTITY	UNIT	UNIT PRIC	FP	AMOUNT
0600	02231		STRUCTURE GRANULAR BACKFILL	180.00	CUYD		\$	
0610	03299		ARMORED EDGE FOR CONCRETE	56.00	LF		\$	
0620	08003		FOUNDATION PREPARATION	1.00	LS		\$	
0630	08019		CYCLOPEAN STONE RIP RAP	1,700.00	TON		\$	
0640	08033		TEST PILES	405.00	LF		\$	
0650	08051		PILES-STEEL HP14X89	4,570.00	LF		\$	
0660	08095		PILE POINTS-14 IN	58.00	EACH		\$	
0670	08100		CONCRETE-CLASS A	355.00	CUYD		\$	
0680	08104		CONCRETE-CLASS AA	405.00	CUYD		\$	
0690	08136		MECHANICAL REINF COUPLER #11	128.00	EACH		\$	
0700	08150		STEEL REINFORCEMENT	66,000.00	LB		\$	
0710	08151		STEEL REINFORCEMENT-EPOXY COATED	108,689.00	LB		\$	
0720	23378EC		CONCRETE SEALING	29,800.00	SQFT		\$	
0730	24098EC		PPC I-BEAM TYPE HN 66-49	1,460.00	LF		\$	
0740	24877ED		RAIL SYSTEM TYPE C411	733.50	LF		\$	
0750	26233EC		MOBILIZATION FOR CONCRETE SURF TREATMENT	1.00	LS		\$	

255382

PROPOSAL BID ITEMS

Page 3 of 3

Report Date 7/1/25

Section: 0005 - TRAFFIC

LINE	BID CODE	ALT	DESCRIPTION	QUANTITY	UNIT	UNIT PRIC	FP	AMOUNT
0760	04844		CABLE-NO. 14/5C	315.00	LF		\$	
0770	04885		MESSENGER-10800 LB	89.00	LF		\$	
0780	04932		INSTALL STEEL STRAIN POLE	2.00	EACH		\$	
0790	20408ES835		INSTALL LED BEACON-12 IN	8.00	EACH		\$	
0800	23157EN		TRAFFIC SIGNAL POLE BASE	6.80	CUYD		\$	
0810	24526ED		INSTALL-BEACON CONTROLLER-2 CIRCUIT	1.00	EACH		\$	
0820	24955ED		REMOVE SIGNAL EQUIPMENT	1.00	EACH		\$	

Section: 0006 - DEMOBILIZATION &/OR MOBILIZATION

LINE	BID CODE	ALT	DESCRIPTION	QUANTITY	UNIT	UNIT PRIC	FP AMOUNT
0830	02568		MOBILIZATION	1.00	LS		\$
0840	02569		DEMOBILIZATION	1.00	LS		\$