APPENDIX C

Noise Baseline

TRAFFIC NOISE IMPACT ANALYSIS

US 60 Improvements
Ballard and McCracken Counties, Kentucky Item Numbers: 01-115.00, 01-115.1 and 01-118.00

Prepared for:

Kentucky Transportation Cabinet Division of Environmental Analysis

Prepared by:
James R. Smith, CEP

1046 E Chestnut Street
Louisville, KY 40204

August 2019

TABLE OF CONTENTS

EXECUTIVE SUMMARY ES1
1.0 INTRODUCTION 1
1.1 Purpose of the Traffic Noise Impact Analysis 1
1.2 Project Purpose and Need 1
1.3 Project Area Description and Setting 1
1.4 Existing Facilities 3
2.0 ALTERNATIVES UNDER CONSIDERATION 4
2.1 No-Build Alternative 4
2.2 Build Alternatives 4
3.0 TRAFFIC NOISE ANALYSIS 7
3.1 Noise Sensitive Sites 7
3.2 Field Measurements of Existing Noise Levels 9
3.3 TNM Model Validation 13
4.0 PREDICTED NOISE LEVELS 16
4.1 Traffic Data 16
4.2 No-Build Alternative 16
4.3 Build Alternatives 16
5.0 TRAFFIC NOISE IMPACTS 24
6.0 NOISE ABATEMENT CONSIDERATIONS 26
7.0 SUMMARY AND CONCLUSIONS 30
8.0 INDIRECT AND CUMULATIVE IMPACTS 32
9.0 CONSTRUCTION NOISE 33
10.0 COORDINATION WITH LOCAL OFFICIALS 34
TABLES
Table 1: Noise Abatement Criteria (NAC) 8
Table 2: Identification and Description of Receptor Site Locations 11
Table 3: Existing Noise Levels (dBA Leq) 12
Table 4: TNM 2.5 Model Validation Results (dBA Leq) 15
Table 5: Traffic Data Summary 17
Table 6: Existing and No-Build Predicted Noise Levels (dBA Leq) 18
Table 7: Summary of Predicted Noise Levels (dBA Leq) 21

FIGURES

Figure 1: Study Area 2
Figure 2: Project Location 5
Figure 3: Build Alternatives 10
Figure 4: Noise Receptor Sites 23

APPENDICES

Appendix A Sound Level Meter Calibration Certificates, Field Monitoring Data Sheets and Sound Meter Output Data
Appendix B 2040 Traffic DataAppendix C Existing Noise AnalysisAppendix D 2040 No-Build Analysis
Appendix E 2040 Build Analysis

EXECUTIVE SUMMARY

The proposed project consists of the reconstruction of approximately 6.7 miles of US 60 in McCracken and Ballard Counties. The project begins in Ballard County on US 60, east of the community of La Center at approximately milepoint (MP) 12.0, just east of Humphrey Creek and west of KY 310. The project ends in McCracken County where the existing US 60 four-lane crosssection into Paducah ends, at MP 1.5.

The purpose of the project is to improve mobility and safety for the US 60 corridor in eastern Ballard County. The project would increase the opportunity for freight movement and improve safety by modifying and/or improving geometrics to meet current design standards.

A traffic noise impact analysis (TNIA) was performed to determine the highway-generated noise impacts associated with the proposed project. The analysis was conducted in accordance with governing document 23 Code of Federal Regulations (CFR) Part 772, "Procedures for Abatement of Highway Traffic Noise and Construction Noise" and the Kentucky Transportation Cabinet Noise Analysis and Abatement Policy (dated July 1, 2015).

Based on TNM modeling, traffic data for the design year (2040) and the most current design files for the US 60 improvements, traffic noise impacts are predicted to occur as a result of the construction of any of the 3 build alternatives. The construction of noise barriers was considered for abating noise impacts generated by the proposed project.

Upon review, Alternative 1 represents an improvement primarily on new alignment. As described by the existing land use, noise sensitive receptors are relatively few and are dispersed and scattered throughout the study corridor. After consideration of potential relocations or displacements by the proposed Alternative 1 alignment, these receptors represent isolated residences in vicinity to the proposed alignment. Substantial noise reduction for a reasonable number of impacted receptors would not be achievable. Construction of noise walls was therefore not considered feasible for Alternative 1.

For Alternative 2, which generally follows the existing US 60 alignment, approximately 23 receptors were determined to have future noise levels that would approach or exceed their NAC. However, 16 receptors would potentially be displaced or relocated by the widening improvements with at least 3 receptors representing isolated residences. Four (4) of the remaining receptors
were located adjacent to US 60 in Kevil and currently have direct access (driveways). A proposed barrier at this location would pose safety, overriding sight distance and visibility issues for motorists. Potential noise barriers were not considered acoustically feasible for this alternative and none were proposed.

Approximately 11 receptors were determined to have future noise levels that would approach or exceed their NAC for Alternative 3. The alignment for Alternative 3 follows the former railroad bed west of Kevil and follows existing US 60 through the eastern portion of the project area. At least seven (7) receptors would potentially be displaced or relocated by the widening improvements. Four (4) of the remaining receptors were located adjacent to US 60 in Kevil and currently have direct access (driveways). As discussed for Alternative 2, a proposed barrier at this location would pose overriding sight distance and visibility issues for motorists. For the section of Alternative 3 on new alignment, predicted noise levels for four (4) receptors would also substantially exceed (> 10 dBA Leq) their existing noise levels. However, all of these receptors would be considered isolated residences. Since a substantial noise reduction would not be achievable for a reasonable number of impacted receptors, noise barriers were not considered acoustically feasible for this alternative and none were proposed.

The opportunities for minimizing traffic noise as a result of the project are limited. Based on a preliminary noise analysis, the construction of noise barriers are not acoustically feasible and therefore, not reasonable for any alternative. Alignment shifts would also likely result in increased environmental impacts, relocations and construction costs. Therefore, additional noise abatement measures were determined not to be effective as described in 23 CFR 772.13(c) and none were proposed.

1.0 INTRODUCTION

The proposed project is the reconstruction of 6.7 miles of US 60 in McCracken and Ballard Counties. The project begins in the west in Ballard County on US 60, east of the community of La Center at approximately milepoint (MP) 12.0, just east of Humphrey Creek and west of KY 310. The project ends in the east in McCracken County where the existing US 60 four-lane crosssection into Paducah ends, at MP 1.5. The project study area is shown in Figure 1, Study Area.

The following sections provide an overview of the purpose of the Traffic Noise Impact Analysis (TNIA) conducted for the US 60 Improvements in Ballard and McCracken counties and also includes a brief statement of the project's purpose and need as well as provide background information for the project.

1.1 Purpose of the Traffic Noise Impact Analysis

The purpose of this report is to evaluate traffic noise impacts and examine potential noise abatement options, if required, under the requirements of Title 23, Part 772 of the Code of Federal Regulations (CFR), "Procedures for Abatement of Highway Traffic Noise and Construction Noise" and the Kentucky Transportation Cabinet's (KYTC) Noise Analysis and Abatement Policy (dated July 1, 2015).

1.2 Project Purpose and Need

The purpose of the project is to improve mobility and safety for the US 60 corridor in eastern Ballard County. US 60 is the only east-west arterial link in Kentucky west of Paducah, leading to the only Ohio River highway crossing for an 80-mile stretch. Listed on the National Highway System and a state-designated truck route, its narrow lanes, limited passing opportunities, closely spaced access points through Kevil, and substandard curves make the route challenging for freight carriers. Further, five years of data show a history of crashes, with two high crash spots and five fatality collisions.

1.3 Project Area Description and Setting

The area is generally rural and agricultural in nature; however, there is commercial and residential development along US 60 through the city limits of Kevil. This development is relatively dense as compared to the surrounding project area, and many of the structures are located close to the existing road. Numerous driveways and commercial entrances are located along this stretch. The

commercial developments along this segment of US 60 are generally banks, auto repair shops, small specialty shops, and other small businesses. A technology park, which includes several businesses, an adult care facility, and children's daycare center, is also located in this area.

1.4 Existing Facilities

US 60, locally known as Hinkleville Road, Kentucky Avenue, and Paducah Road moving east to west, is a two-lane rural highway with two 11 -foot lanes and 2 -foot paved shoulders. The speed limit in the area is generally 55 miles per hour (mph) except through the city of Kevil. In Kevil, the speed limit is 35 mph west of KY 473 and 45 mph east of KY 473. The existing roadway has several segments that do not meet current geometric standards, and sight distance is severely restricted at several locations. No traffic stoplights exist on this section of roadway, but a flashing beacon is located at the intersection of US 60 and KY 473.

US 60 is the only east-west arterial link in Kentucky west of Paducah, leading to the only Ohio River highway crossing for an 80-mile stretch. Listed on the National Highway System and a statedesignated truck route, its narrow lanes, limited passing opportunities, closely spaced access points through Kevil, and substandard curves make the route challenging for freight carriers. The route is rated for AAA trucks (up to 80,000 pounds gross weight). Volumes range from 5,800 to

7,200 vehicles per day (vpd) based on 2017 counts, including 12 percent truck traffic. There are three culverts along the route, all rated in Fair condition as of their 2017 inspections:

- 004B00011N for Frazier Creek, MP 12.475
- 004B00012N for Branch of Frazier Creek, MP 12.515
- 004B00013N, for Page Branch, MP 15.866

Other state-maintained highways in the area are KY 310 (Turner Landing Road) near the western project terminus, KY 473 (Gage and New Liberty Church roads) in Kevil, and KY 2532 (County Line Road) - all rural minor collector routes. A few dozen local routes also intersect US 60 along the project length.

2.0 ALTERNATIVES UNDER CONSIDERATION

The proposed project is the reconstruction of 6.7 miles of US 60 in McCracken and Ballard counties. The project begins in the west in Ballard County on US 60, east of the community of La Center at approximately milepoint (MP) 12.0, just east of Humphrey Creek and west of KY 310. The project ends in McCracken County where the existing US 60 four-lane cross-section into Paducah ends, at MP 1.5 (see Figure 2, Project Location). Preliminary designs have been developed under three separate KYTC Item numbers, including a southern "preferred alternative" on new alignment.

Local officials have voiced their preference for a four-lane section; however, due to the Transportation Cabinet's focus on Performance Based Flexible Solutions (PBFS), lack of funding, and traffic volumes in the area, it is important to consider a two-lane initial/four-lane ultimate typical section as well. Therefore, alternates that include both a two-lane initial/four-lane ultimate and a four-lane typical section were considered. Traffic projections will be used to further define the alternates and typical sections studied.

The environmental process will evaluate a No-Build Alternative and three build alternatives:

- Rebuild the existing road, either in total or in selected locations; and
- Build a road on new alignment within the same general roadway corridor

2.1 No-Build Alternative

In order to satisfy National Environmental Policy Act (NEPA) requirements, an evaluation of the No-Build Alternative was performed. The No-Build Alternative is one in which the KYTC would take no action to construct or reconstruct US 60; only routine maintenance would occur. The NoBuild Alternative would maintain the current configuration of the existing roadway. The No-Build Alternative would not improve east-west connectivity and would not meet the stated purpose and need for the proposed project. Therefore, the No-Build Alternative was not considered a reasonable and feasible alternative.

2.2 Build Alternatives

Three build alternatives are under consideration as shown in Figure 2. A variety of typical sections were considered as part of the engineering design process: two to five travel lanes, various

shoulder widths, rural or urban templates, etc. To be conservative, the largest footprint scenarios were evaluated and impacts may be reduced as preliminary designs are refined.

- Alternative 1 (Red) begins east of the bridge over Humphrey Creek, creating a new route on new alignment south of existing US 60. It ends at the improved 4-lane section near Lester Harris Road. The assumed cross-section is a 4-lane divided rural highway.
- Alternative 2 (Green) begins east of the bridge over Humphrey Creek, generally following the existing US 60 alignment. The assumed cross-section is a 4-lane divided rural highway with a 5-lane urban section through Kevil.
- Alternative 3 (Blue) begins east of the bridge over Humphrey Creek, while creating a new route along the old railroad bed west of Kevil. The alignment then generally follows the existing US 60 alignment through Kevil to the east. The assumed cross-section is a 4-lane divided rural highway with a 5-lane urban section through Kevil.

3.0 TRAFFIC NOISE ANALYSIS

Noise can be generally defined as unwanted or excessive sound. Sources of highway traffic noise include tire pavement interaction, as well as vehicle engine and exhaust system operations. Noise is a vibrational energy form that causes pressure variations in elastic media such as air or water. The human ear perceives these variations as sound. The ear can discern different levels of loudness as the intensity of pressure variations fluctuate. These pressure differences are commonly measured in decibels (dB). The decibel scale audible to the human ear ranges from 0 to 140 dBs . A level of zero decibels corresponds to the lowest limit of audibility, while a level of 140 decibels represents the threshold of pain. To closely resemble the non-linear sensitivity of human hearing, the "A-weighted" scale is used to define the relative loudness of different frequencies. Sound levels measured using the A-weighted scale is often expressed as dBA.

The procedures set forth by the Federal Highway Administration (FHWA) recommend noise analyses to be performed in terms of either L10 or Leq. L10 is the sound level exceeded 10 percent of the time. Leq is defined as the equivalent, steady state sound level, which in a given period of time contains the same acoustical energy as the time-varying sound level during the same time period. The Leq noise descriptor was used in this study because of its relative ease to monitor and compare with FHWA's Noise Abatement Criteria (NAC). For the purposes of this study, all references to sound levels will be in dBA Leq.

For this project, the latest version of the FHWA Traffic Noise Model (TNM) Version 2.5 was used to predict the highway generated traffic noise levels associated with the US 60 improvements. TNM takes into account factors from current and future traffic volumes and speeds, vehicle types, meteorology, topography, buildings and roadways. These factors are used to create a 3dimensional model that is used to calculate noise levels for an entire area and can also be used to predict both existing and future noise levels for specific locations using various criteria and information programmed into the model.

3.1 Noise Sensitive Sites

The FHWA's Noise Abatement Criteria (NAC) was used to select noise sensitive land uses within the project study area (see Table 1). Seven land use activity categories have been identified by FHWA for use in traffic noise impact analysis. Maximum noise level thresholds have been established for four of these land use activity categories. These maximum thresholds or criteria

Table 1: Noise Abatement Criteria (NAC)

Activity	Hourly A-Weighted Sound Level: Decibels (dBA)		Description of Activity Category
	Leq(h)	$\mathrm{L}_{10}(\mathrm{~h})$	
A	$\begin{gathered} 57 \\ \text { (Exterior) } \end{gathered}$	$\begin{gathered} 60 \\ \text { (Exterior) } \end{gathered}$	Lands on which serenity and quiet are of extraordinary significance and serve an important public need and where the preservation of those qualities is essential if the area is to continue to serve its intended purpose.
B	$\begin{gathered} 67 \\ \text { (Exterior) } \end{gathered}$	70 (Exterior)	Residential
C	$\begin{array}{\|c\|} 67 \\ \text { (Exterior) } \end{array}$	$\begin{gathered} 70 \\ \text { (Exterior) } \end{gathered}$	Active sport areas, amphitheaters, auditoriums, campgrounds, cemeteries, day care centers, hospitals, libraries, medical facilities, parks, picnic areas, places of worship, playgrounds, public meeting rooms, public or nonprofit institutional structures, radio studios, recording studios, recreation areas, Section 4(f) sites, schools, television studios, trails, and trail crossings.
D	$\begin{gathered} 52 \\ \text { (Interior) } \end{gathered}$	$\begin{gathered} 55 \\ \text { (Interior) } \end{gathered}$	Auditoriums, day care centers, hospitals, libraries, medical facilities, places of worship, public meeting rooms, public or nonprofit institutional structures, radio studios, recording studios, schools, and television studios.
E	72 (Exterior)	75 (Exterior)	Hotels, motels, offices, restaurants/bars, and other developed lands, properties or activities not included in A-D or F.
F	--	--	Agriculture, airports, bus yards, emergency services, industrial, logging, maintenance facilities, manufacturing, mining, rail yards, retail facilities, shipyards, utilities (water resources, water treatment, electrical), and warehousing.
G	--	--	Undeveloped lands that are not permitted.

levels represent acceptable traffic noise conditions. Noise abatement measures must be considered when predicted noise levels approach (i.e. within 1 dBA the respective NAC) or exceed the NAC or when a substantial noise increase occurs. A substantial noise increase occurs when there is an increase in noise levels of 10 dBA or more for the design year over existing levels as a direct result of the transportation improvement.

A field review of the project corridor and a review of available aerial mapping were conducted to identify the noise sensitive receptor sites that may be impacted by traffic noise associated with the proposed improvements. Typical noise sensitive receptors include residences, parks, schools, hospitals, and churches. Noise sensitive sites represent any property (owner occupied, rented, or leased) where frequent exterior human use occurs and where a lowered noise level would be of benefit.

3.2 Field Measurements of Existing Noise Levels

Based on the results of the field review and a review of available mapping, five (5) locations were selected as representative noise sensitive sites within the US 60 study area (see Figure 3, Build Alternatives). The sites that were selected for existing noise measurements are described briefly in Table 2, Identification and Description of Receptor Site Locations.

Ambient noise measurements were taken using a Larson Davis 831 (type 1) sound level meter on October 22nd and 23rd, 2018. The meter was calibrated to be in tolerance of the manufacturer's specification on June 7,2018 . The procedures used to measure existing noise levels were conducted in accordance with the methodology established by the Federal Highway Administration (FHWA) and documented in Report No. DP-96-046, Measurement of HighwayRelated Noise: Final Report, May 1996.

In order to represent the Leq(h), noise measurements were performed in 15 minute intervals and were taken 5 feet above the ground. The measurements were conducted during peak and nonpeak hours of free-flow traffic conditions and measurements were taken under meteorologically acceptable conditions. Prior to measurements, the sound level meter was calibrated using an acoustical calibrator. Dates, times, traffic data and measured noise levels for each of the monitoring sites are shown in Table 3, Existing Noise Levels (dBA Leq). Monitoring locations are described in more detail in Appendix A.

Table 2: Identification and Description of Receptor Site Locations

Noise Reading Site Location and Activity Category	NAC	Description	Total Receptors ${ }^{1}$
$\stackrel{1}{\mathrm{~B} / \mathrm{C}-\stackrel{\text { Church }}{ }}$	67	This site represents the House of Prayer located on US 60 (Paducah Road) at the west end of the project near the intersection of US 310. The site also represents the exterior area of the church (picnic tables).	1 church/4 residences
$\stackrel{2}{\mathrm{~B}}-\stackrel{\mathrm{Residential}}{ }$	67	This site represents a single-family residence located at 7948 US 60 (Paducah Road). This site also represents approximately $5-6$ other residences along US 60 .	7
$\stackrel{3}{\mathrm{~B}-\text { Residential }}$	67	This site represents a single-family residence just north of Pine Lane and where the proposed build alternative alignment would cross KY 473 (Gage Road). This site also represents approximately 3 other residences.	4
$\stackrel{4}{\mathrm{~B}-\text { Residential }}$	67	This site represents a single-family residence on US 60 (Paducah Road) adjacent to the West Kentucky Technology Park. This site also represents approximately 9 other residences along US 60 .	10
$\text { B/C }-\stackrel{5}{\text { Church }}$	67	This site represents the Grace Valley Independent Baptist Church located on US 60 (Kentucky Avenue) at the east end of the project near the intersection of Amy Lynn Road.	1 church/5 residences

Traffic data was simultaneously recorded during the 15-minute noise measurements and was classified into five (5) vehicle types, automobiles, medium trucks, heavy trucks, buses and motorcycles, for subsequent entry into the TNM noise prediction computer model. Vehicle speed observations while driving the existing roads and posted speed limits along the roads were used to obtain average travel speeds for each vehicle type. Since all noise levels for this report are based on a one-hour period, the field recorded traffic volumes were adjusted upward to reflect hourly volumes. The traffic data along with the existing and proposed road geometry were used as input to the TNM model to predict noise levels at each of the sites.

[^0]Table 3
US 60 Improvements
Existing Noise Levels (dBA Leq)

Site Number	Receptor	Date	Time Period	Event No.	Direction (NB/SB or EB/WB)	Hourly Traffic Based on Concurrent Traffic Counts										Measured Leq
						Autos	MT	HT	Bus	MC	Autos	MT	HT	Bus	MC	
1	House of Prayer	$\begin{aligned} & 10 / 23 / 2018 \\ & 10 / 23 / 2018 \end{aligned}$	AM Peak 9:11-9:26 am $9: 26-9: 42 \mathrm{am}$	$\begin{aligned} & \text { LxT_015 } \\ & \text { LxT_016 } \end{aligned}$	$\begin{aligned} & \mathrm{EB} / \mathrm{WB} \\ & \mathrm{~EB} / \mathrm{WB} \end{aligned}$	$\begin{aligned} & 144 \\ & 168 \end{aligned}$	12 8	20 56	0 0	$\begin{aligned} & 0 \\ & 4 \end{aligned}$	$\begin{gathered} 100 \\ 56 \end{gathered}$	20 12	52 16	0	0 0	$\begin{aligned} & 64.6 \\ & 64.9 \end{aligned}$
		$\begin{aligned} & 10 / 23 / 2018 \\ & 10 / 23 / 2018 \end{aligned}$	$\begin{gathered} \text { midday } \\ 1: 21-1: 36 \mathrm{pm} \\ 1: 36-1: 51 \mathrm{pm} \end{gathered}$	$\begin{aligned} & \text { LxT_023 } \\ & \text { LxT_024 } \end{aligned}$	EB/WB EB/WB	$\begin{aligned} & 108 \\ & 112 \end{aligned}$	$\begin{aligned} & 20 \\ & 16 \end{aligned}$	24 16	0 0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 120 \\ & 124 \end{aligned}$	20 4	40 20	4 0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 64.0 \\ 64.3 \end{gathered}$
		$\begin{aligned} & 10 / 22 / 2018 \\ & 10 / 22 / 2018 \end{aligned}$	$\begin{gathered} \text { PM Peak } \\ \text { 3:00-3:15 pm } \\ \text { 3:15-3:30 pm } \end{gathered}$	$\begin{aligned} & \text { LxT_001 } \\ & \text { LxT_002 } \end{aligned}$	EB/WB EB/WB	$\begin{aligned} & 268 \\ & 248 \end{aligned}$	$\begin{aligned} & 28 \\ & 16 \end{aligned}$	$\begin{aligned} & 48 \\ & 32 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 12 \\ 4 \end{gathered}$	$\begin{aligned} & 192 \\ & 216 \end{aligned}$	$\begin{gathered} 24 \\ 4 \end{gathered}$	$\begin{gathered} 40 \\ 8 \end{gathered}$	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 69.0 \\ & 64.6 \end{aligned}$
2	$\begin{array}{\|l\|} \hline 7948 \text { US } 60 \\ \text { residence } \end{array}$	$\begin{aligned} & 10 / 23 / 2018 \\ & 10 / 23 / 2018 \\ & 10 / 22 / 2018 \end{aligned}$	AM Peak 8:48-9:03 am midday 12:58-1:13 pm PM Peak 3:48-4:03 pm	LxT_014 LxT_022 LxT_003	EB/WB EB/WB EB/WB	128 72 152	12	12	4	0	60	0	56	0	0	65.8
							12	12	0	4	72	12	16	4	0	61.2
							28	12	0	0	232	8	28	0	0	64.1
3	Pine Lane residences	10/23/2018	$\begin{gathered} \text { AM Peak } \\ 8: 19-8: 35 \mathrm{am} \end{gathered}$	$\begin{aligned} & \text { LxT_013 } \\ & \text { LxT_021 } \end{aligned}$	NB/SB	-	-	-	-	-		-	-	-	-	46.4
		10/23/2018	midday 12:35-12:50 pm PM Peak 4:14-4:29 pm		NB/SB	-	-	-	-	-	-	-	-	-	-	45.6
						-	-	-	-	-	-	-	-	-		52.3
4	West Kentucky Technology Park residences	$\begin{aligned} & 10 / 23 / 2018 \\ & 10 / 23 / 2018 \end{aligned}$	AM Peak 7:41-7:57 am 7:57-8:12 am	LxT_011 LxT_012	EB/WB EB/WB	$\begin{aligned} & 360 \\ & 292 \end{aligned}$	$\begin{gathered} 8 \\ 16 \end{gathered}$	$\begin{gathered} 20 \\ 4 \end{gathered}$	$\begin{aligned} & 4 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 148 \\ & 168 \end{aligned}$	$\begin{gathered} 16 \\ 0 \end{gathered}$	$\begin{aligned} & 20 \\ & 32 \end{aligned}$	$\begin{aligned} & 4 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 61.5 \\ & 61.8 \end{aligned}$
		$\begin{aligned} & 10 / 23 / 2018 \\ & 10 / 23 / 2018 \end{aligned}$	$\begin{gathered} \text { Midday } \\ \text { 11:54-12:09 pm } \\ \text { 12:09-12:24 pm } \end{gathered}$	$\begin{aligned} & \text { LxT_019 } \\ & \text { LxT_020 } \end{aligned}$	EB/WB EB/WB	$\begin{aligned} & 192 \\ & 180 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 24 \\ & 24 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \end{aligned}$	$\begin{aligned} & 184 \\ & 180 \end{aligned}$	$\begin{aligned} & 24 \\ & 20 \end{aligned}$	20 28	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 60.0 \\ & 62.8 \end{aligned}$
		$\begin{aligned} & 10 / 22 / 2018 \\ & 10 / 22 / 2018 \end{aligned}$	PM Peak 4:39-4:54 pm 4:54-5:10 pm	$\begin{aligned} & \text { LxT_005 } \\ & \text { LxT_006 } \end{aligned}$	EB/WB EB/WB	$\begin{aligned} & 252 \\ & 216 \end{aligned}$	$\begin{gathered} 12 \\ 8 \end{gathered}$	$\begin{gathered} 20 \\ 8 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 380 \\ & 416 \end{aligned}$	$\begin{gathered} 36 \\ 8 \end{gathered}$	$\begin{aligned} & 36 \\ & 12 \end{aligned}$	4 0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 62.4 \\ & 60.1 \end{aligned}$
5	Grace Valley Independent Baptist Church	$\begin{aligned} & 10 / 23 / 2018 \\ & 10 / 23 / 2018 \end{aligned}$	AM Peak 7:05-7:20 am 7:20-7:35 am	$\begin{aligned} & \text { LxT_009 } \\ & \text { LxT_010 } \end{aligned}$	$\begin{aligned} & \mathrm{EB} / \mathrm{WB} \\ & \mathrm{~EB} / \mathrm{WB} \end{aligned}$	$\begin{aligned} & 312 \\ & 416 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	12 12	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0 0	$\begin{aligned} & 208 \\ & 272 \end{aligned}$	$\begin{gathered} 16 \\ 4 \end{gathered}$	20 16	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 63.5 \\ & 63.5 \end{aligned}$
		$\begin{aligned} & 10 / 23 / 2018 \\ & 10 / 23 / 2018 \end{aligned}$	$\begin{gathered} \text { Midday } \\ \text { 11:15-11:31 am } \\ \text { 11:31-11:48 am } \end{gathered}$	$\begin{aligned} & \text { LxT_017 } \\ & \text { LxT_018 } \end{aligned}$	EB/WB EB/WB	$\begin{aligned} & 192 \\ & 156 \end{aligned}$	8 20	12 20	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 148 \\ & 200 \end{aligned}$	8 12	24 20	0	0 0	$\begin{aligned} & 61.1 \\ & 60.9 \end{aligned}$
		$\begin{aligned} & 10 / 22 / 2018 \\ & 10 / 22 / 2018 \end{aligned}$	$\begin{gathered} \text { PM Peak } \\ \text { 5:19-5:34 pm } \\ \text { 5:34-5:49 pm } \end{gathered}$	$\begin{aligned} & \text { LxT_007 } \\ & \text { LxT_008 } \end{aligned}$	EB/WB EB/WB	$\begin{aligned} & 176 \\ & 172 \end{aligned}$	$\begin{gathered} 16 \\ 4 \end{gathered}$	$\begin{aligned} & 24 \\ & 16 \end{aligned}$	$\begin{aligned} & 0 \\ & 4 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 384 \\ & 268 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 16 \\ & 24 \end{aligned}$	0	$\begin{aligned} & 8 \\ & 0 \end{aligned}$	$\begin{aligned} & 62.8 \\ & 62.7 \end{aligned}$

Climatological data (average wind speed, relative humidity, and temperature) were measured in the field using a Nielsen-Kellerman Kestrel® 3000 Pocket Weather Meter. Weather readings were taken at the time the noise measurements were taken. The Kestrel 3000 uses a hermetically sealed thermistor accurate to $\pm 1^{\circ} \mathrm{C}$ to measure temperature, a silicon-based capacitive sensor accurate to $\pm 3 \%$ to measure humidity, and a 25 mm -diameter impeller on sapphire bearings to provide wind speeds from 0.7 to 89 mph with an accuracy of $\pm 3 \%$.

As shown in Table 3, measured noise levels in the project area range from 45.6 dBA Leq for Site 3 located north of Pine Lane where the proposed build alternative alignment crosses SR 473 (Gage Road) to a PM reading of 69.0 dBA Leq at Site 1 (House of Prayer) near the western terminus of the project. This reading was considered to be unusually high compared to other readings recorded at this location. Site 1 represents both the church's exterior area (Activity Category C) and approximately 4 nearby residential land uses. There are picnic tables and a playground area at the church, which represent areas of exterior use. The PM reading does exceed the 67 dBA Leq NAC but for the remaining sites, existing noise levels do not approach or exceed the respective NAC criteria.

3.3 TNM Model Validation

Existing noise levels were measured directly by a sound level meter to establish ambient noise levels at those representative locations along existing roadways where traffic noise was considered the predominant noise source. Existing noise levels were also measured by a sound level meter to validate the noise prediction model. In accordance with 23 CFR 772.11(d)(2), FHWA requires validating predicted values with actual measured levels to verify the accuracy of the noise model to predict existing or future noise levels.

The noise model is validated on a site-specific basis by comparing existing noise levels with the model predictions based upon traffic counts obtained during noise measurement periods. Additional adjustments are applied to the model as part of the validation process to account for speed, site distance from the roadway, grade, length of roadway segment, and shielding. The differences obtained are used to determine site peculiarities for existing and predicted noise levels for which the model might not account for. TNM estimates vehicle noise emissions based on reference energy mean emission levels for five classes of vehicles: motorcycles, automobiles and
light trucks, buses, medium trucks (with two axles and six wheels), and heavy trucks (with three or more axles).

The model is considered validated when modeled noise levels using TNM are within +/- 3.0 dBA Leq for all measured sites. Model validation was performed for Sites 1, 2, 4 and 5 where existing traffic was observed and considered to be the predominant noise source. As shown in Table 4, the measured noise levels were within +/- 2.9 dBA Leq of the modeled noise levels. Based on the acceptable minor differences between measured and modeled existing noise levels, it was assumed that the TNM noise model was validated and therefore capable of predicting future noise levels for this project.

Table 4
US 60 Improvements
TNM 2.5 Model Validation Results (dBA Leq)

4.0 PREDICTED NOISE LEVELS

Once TNM 2.5 has been validated, the next step in the highway traffic noise analysis involved a comparison of predicted noise levels for each alternative with the NAC and existing base year noise levels. Traffic noise levels were predicted for the representative noise sensitive receptors for the No-Build and the Build Alternative. In order to simulate a worst case scenario, TNM uses traffic volumes that will produce the noisiest traffic condition likely to occur for the design year. The "worst hourly traffic noise impact" has been determined to generally occur when truck volumes are the greatest and when traffic flow is free-flowing and at or near level of service (LOS) C conditions.

4.1 Traffic Data

Traffic data for the 2040 design year was based on turning movement forecasts provided as contained in Appendix B. This data was used to predict future noise levels for the No-Build and Build Alternatives using the TNM computer program. Since proposed US 60 improvements are expected to operate at LOS C or better for the design year, the noise impact analysis associated with the 2040 No-Build and Build Alternatives was based on average daily traffic (ADT) and design hourly volume (DHV) projections (Table 5). The existing travel speed used in the TNM analysis was based on posted speed limits in the project area.

4.2 No-Build Alternative

In order to satisfy National Environmental Policy Act (NEPA) requirements, an evaluation of the No-Build scenario was performed. The analysis of the No-Build Alternative was conducted assuming the current roadway configuration and 2040 No-Build traffic data. As shown in Table 6, Summary of Existing and No-Build Noise Levels (dBA Leq), the results of the noise analysis conducted for the No-Build Alternative indicate that noise levels will increase from 0.0 to 1.0 dBA Leq over their existing levels. A 3 dBA increase is generally considered to be barely perceptible to the human ear. Approximately 19 modeled receptors for the No-Build Alternative were determined to have predicted noise levels that would approach (within 1 dBA Leq) or exceed the NAC or substantially exceed existing noise levels.

4.3 Build Alternatives

Alternative 1 (Red) would be constructed on new alignment, beginning east of the bridge over Humphrey Creek south of existing US 60 and would end at the improved 4-lane section near

Table 5
US 60 Improvements
Traffic Data Summary

			Existing		2040 No-Build		2040 Build	
			ADT	DHV	ADT	DHV	ADT	DHV
US 60	MP 12.0	KY 310	5,900	610	7,300	770	7,300	750
US 60	KY 310	KY 473	6,000	620	7,300	770	7,300	750
US 60	KY 473	MP 1.5	7,300	760	9,000	1,160	9,000	1,160
Alternative 1	MP 12.0	KY 473	-	-	-	-	5,200	560
Alternative 1	KY 473	MP 1.5	-	-	-	-	7,000	910

Table 6
US 60 Improvements
Existing and No Build Noise Levels (dBA Leq)

Receptor	\# of Receptors Represented	Activity Category	Noise Abatement Criteria (dBA Leq)	Existing	2040 No-Build Alternative	Increase between Existing and No-Build	Approach or Exceedance of NAC
1	1	B	67	63.5	64.5	1.0	no
2	1	B	67	64.9	65.8	0.9	no
3	1	B	67	63.1	64.1	1.0	no
4	1	B	67	56.6	57.6	1.0	no
5	1	B	67	64.6	65.6	1.0	no
6	1	B	67	63.3	64.3	1.0	no
7	1	B	67	64.4	65.3	0.9	no
8	1	B	67	63.6	64.6	1.0	no
9	1	B	67	65.1	66.0	0.9	yes
10	1	C	67	66.7	67.7	1.0	yes
11	1	C	67	68.4	69.4	1.0	yes
12	1	B	67	56.0	56.9	0.9	no
13	1	B	67	62.8	63.7	0.9	no
14	1	B	67	57.8	58.6	0.8	no
16	1	B	67	60.4	61.3	0.9	no
17	1	B	67	56.6	57.4	0.8	no
19	1	B	67	65.0	65.9	0.9	no
21	1	B	67	65.9	66.7	0.8	yes
22	1	B	67	53.9	54.8	0.9	no
23	1	B	67	67.5	68.3	0.8	yes
24	1	B	67	68.0	68.8	0.8	yes
25	1	B	67	45.5	46.4	0.9	no
27	1	B	67	64.6	65.4	0.8	no
28	1	B	67	64.3	65.1	0.8	no
29	1	B	67	62.5	63.3	0.8	no
30	1	B	67	60.2	61.1	0.9	no
31	1	B	67	64.6	65.5	0.9	no
32	1	B	67	66.4	67.2	0.8	yes
33	1	B	67	63.9	64.7	0.8	no
34	1	B	67	60.7	61.6	0.9	no
35	1	B	67	64.6	65.5	0.9	no
36	1	B	67	64.3	65.1	0.8	no
37	1	B	67	64.2	65.1	0.9	no
38	1	B	67	63.1	63.9	0.8	no
39	1	B	67	62.9	63.7	0.8	no
40	1	B	67	52.0	52.9	0.9	no
42	1	B	67	45.9	46.8	0.9	no
43	1	B	67	45.3	46.1	0.8	no
44	1	B	67	43.1	44.0	0.9	no
45	1	B	67	42.6	43.4	0.8	no
47	1	B	67	42.0	42.8	0.8	no
48	1	B	67	42.2	43.0	0.8	no
49	1	B	67	41.3	42.1	0.8	no
50	1	B	67	40.8	41.5	0.7	no
51	1	B	67	40.1	40.8	0.7	no
52	1	B	67	39.8	40.5	0.7	no
54	1	B	67	62.0	62.9	0.9	no
55	1	B	67	62.1	63.1	1.0	no
56	1	B	67	66.9	67.6	0.7	yes
57	1	B	67	63.0	63.8	0.8	no
58	1	B	67	53.9	54.9	1.0	no
60	1	B	67	65.7	66.5	0.8	yes
61	1	B	67	60.4	61.0	0.6	no
62	1	B	67	60.4	61.0	0.6	no
63	1	B	67	62.4	62.9	0.5	no

Table 6
US 60 Improvements
Existing and No Build Noise Levels (dBA Leq)

Receptor	\# of Receptors Represented	Activity Category	Noise Abatement Criteria (dBA Leq)	Existing	2040 No-Build Alternative	Increase between Existing and No-Build	Approach or Exceedance of NAC
64	1	E	72	66.3	66.8	0.5	yes
65	1	E	72	65.2	65.6	0.4	no
66	1	B	67	43.5	44.2	0.7	no
67	1	B	67	43.1	43.7	0.6	no
68	1	B	67	42.7	43.4	0.7	no
69	1	B	67	42.3	43.0	0.7	no
70	1	B	67	42.0	42.7	0.7	no
71	1	B	67	41.3	42.0	0.7	no
72	1	B	67	41.8	42.4	0.6	no
73	1	B	67	41.3	41.9	0.6	no
74	1	B	67	40.9	41.6	0.7	no
75	1	B	67	40.1	40.8	0.7	no
77	1	B	67	39.7	40.4	0.7	no
78	1	B	67	38.9	39.6	0.7	no
79	1	B	67	38.7	39.4	0.7	no
80	1	B	67	38.8	39.5	0.7	no
82	1	B	67	64.8	65.2	0.4	no
83	1	B	67	65.9	66.4	0.5	yes
84	1	B	67	63.4	63.9	0.5	no
85	1	B	67	65.5	66.0	0.5	yes
86	1	B	67	64.8	65.3	0.5	no
87	1	B	67	64.5	64.9	0.4	no
88	1	B	67	64.7	65.1	0.4	no
89	1	B	67	64.7	65.1	0.4	no
91	1	B	67	62.9	63.3	0.4	no
92	1	B	67	64.1	64.5	0.4	no
93	1	B	67	64.6	65.1	0.5	no
95	1	B	67	63.0	63.5	0.5	no
96	1	B	67	66.6	67.1	0.5	yes
98	1	B	67	43.8	44.3	0.5	no
100	1	B	67	61.8	62.2	0.4	no
101	1	B	67	55.6	56.1	0.5	no
102	1	B	67	48.3	48.8	0.5	no
103	1	B	67	44.6	45.1	0.5	no
104	1	B	67	43.7	44.2	0.5	no
105	1	B	67	43.1	43.6	0.5	no
106	1	B	67	43.3	43.8	0.5	no
107	1	B	67	59.9	60.4	0.5	no
108	1	B	67	60.0	60.4	0.4	no
109	1	B	67	60.8	61.3	0.5	no
110	1	B	67	60.5	61.0	0.5	no
111	1	E	72	64.5	65.0	0.5	no
112	1	B	67	59.7	60.1	0.4	no
113	1	B	67	62.8	63.3	0.5	no
114	1	B	67	45.3	45.7	0.4	no
115	1	B	67	63.1	63.6	0.5	no
117	1	B	67	66.7	67.2	0.5	yes
119	1	B	67	41.6	42.5	0.9	no
120	1	B	67	41.2	42.0	0.8	no
121	1	B	67	40.3	41.1	0.8	no
122	1	B	67	40.0	40.8	0.8	no
123	1	B	67	40.4	41.2	0.8	no
124	1	B	67	41.0	41.9	0.9	no
125	1	B	67	42.8	43.6	0.8	no
126	1	B	67	46.2	47.1	0.9	no

Lester Harris Road. Based on its proposed alignment, predicted noise levels for Alternative 1 will range from 38.9 to 74.0 dBA Leq. Two (2) modeled receptors, Receptor Nos. 51 and 98 were determined to have future noise levels that would approach (within 1 dBA Leq) or exceed the 67 dBA Leq NAC (see Table 7, Summary of Predicted Noise Levels, dBA Leq). Receptor No. 98 represents a single-family residence located on a long driveway off US 60 (Kentucky Avenue) between Freedom Boulevard and Amy Lynn Road (see Figure 4, Noise Receptor Sites). The next highest noise levels were predicted for Receiver 51 (66.5 dBA). Based on a review of aerial mapping, Receptor No. 51 is a farm building located at the end of Pine Lane and does not appear to be a residential structure. As anticipated with a new roadway constructed through a rural environment, predicted noise levels for approximately 17 receptors would substantially exceed (> 10 dBA Leq) their existing noise levels.

Alternative 2 (Blue) primarily follows the existing US 60 alignment beginning east of the bridge over Humphrey Creek. The proposed cross-section is a 4-lane divided rural highway with a 5-lane urban section through Kevil. Predicted noise levels for Alternative 2 will range from 39.4 to 75.4 dBA Leq for Receptor 32. Receptor No. 32 represents a single-family residence located on the south side of US 60 (Paducah Road) approximately 370 feet east of the Eagles Nest Plantation entrance. Predicted noise levels for two (2) receptors would substantially exceed (> 10 $d B A$ Leq) their existing noise levels.

Alternative 3 (Green) begins east of the bridge over Humphrey Creek, while creating a new route along the old railroad bed west of Kevil. The alignment then generally follows the existing US 60 alignment through Kevil to the east. The assumed cross-section is a 4-lane divided rural highway with a 5-lane urban section through Kevil. Predicted noise levels for Alternative 3 will range from 38.7 to 72.3 dBA Leq for Receptor 125. Receptor No. 125 represents a single-family residence located Predicted noise levels for six (6) receptors would substantially exceed (> 10 dBA Leq) their existing noise levels.

Table 7
US 60 Improvements
Summary of Predicted Noise Levels (dBA Leq)

Receptor	\# of Receptors Represented	Activity Category	Noise Abatement Criteria (dBA Leq)	Existing Noise Levels	Predicted Noise Levels (dBA Leq)			
					2040 No-Build Alternative	2040 Build Alternative 1	2040 Build Alternative 2	2040 Build Alternative 3
1	1	B	67	63.5	64.5	59.8	64.3	63.5
2	1	B	67	64.9	65.8	61.2	66.1	62.9
3	1	B	67	63.1	64.1	59.8	67.9	60.6
4	1	B	67	56.6	57.6	54.5	60.5	54.4
5	1	B	67	64.6	65.6	60.9	65.6	61.9
6	1	B	67	63.3	64.3	59.6	64.5	60.6
7	1	B	67	64.4	65.3	60.7	65.3	61.2
8	1	B	67	63.6	64.6	59.9	64.7	60.4
9	1	B	67	65.1	66.0	61.4	72.4	61.5
10	1	C	67	66.7	67.7	63.1	67.3	63.3
11	1	C	67	68.4	69.4	64.9	68.6	65.0
12	1	B	67	56.0	56.9	52.1	59.2	52.3
13	1	B	67	62.8	63.7	58.7	67.9	58.8
14	1	B	67	57.8	58.6	53.5	58.9	53.8
16	1	B	67	60.4	61.3	56.3	61.7	56.3
17	1	B	67	56.6	57.4	52.3	59.2	52.3
19	1	B	67	65.0	65.9	60.6	71.1	60.6
21	1	B	67	65.9	66.7	61.4	74.1	63.9
22	1	B	67	53.9	54.8	50.8	55.7	49.5
23	1	B	67	67.5	68.3	63.6	65.1	63.6
24	1	B	67	68.0	68.8	64.0	64.9	64.0
25	1	B	67	45.5	46.4	47.4	41.9	38.7
27	1	B	67	64.6	65.4	60.7	63.4	60.5
28	1	B	67	64.3	65.1	60.4	63.6	60.2
29	1	B	67	62.5	63.3	58.6	66.4	58.3
30	1	B	67	60.2	61.1	57.1	62.0	56.1
31	1	B	67	64.6	65.5	61.3	64.7	60.5
32	1	B	67	66.4	67.2	63.1	75.4	62.5
33	1	B	67	63.9	64.7	61.8	69.1	59.9
34	1	B	67	60.7	61.6	58.2	60.8	56.1
35	1	B	67	64.6	65.5	62.3	63.7	60.6
36	1	B	67	64.3	65.1	62.3	63.5	60.2
37	1	B	67	64.2	65.1	63.0	63.3	60.2
38	1	B	67	63.1	63.9	62.5	62.4	58.9
39	1	B	67	62.9	63.7	60.6	62.8	58.5
40	1	B	67	52.0	52.9	54.6	56.4	48.1
42	1	B	67	45.9	46.8	57.1	48.2	43.0
43	1	B	67	45.3	46.1	48.4	47.6	42.6
44	1	B	67	43.1	44.0	45.9	45.1	40.9
45	1	B	67	42.6	43.4	53.3	44.7	40.6
47	1	B	67	42.0	42.8	48.0	43.3	42.4
48	1	B	67	42.2	43.0	47.8	43.3	42.4
49	1	B	67	41.3	42.1	51.9	42.4	41.8
50	1	B	67	40.8	41.5	58.2	41.8	41.0
51	1	B	67	40.1	40.8	66.5	41.1	40.1
52	1	B	67	39.8	40.5	58.6	40.7	39.8
54	1	B	67	62.0	62.9	56.7	73.2	63.4
55	1	B	67	62.1	63.1	56.8	72.8	64.0
56	1	B	67	66.9	67.6	61.5	66.1	67.6
57	1	B	67	63.0	63.8	57.7	61.7	62.8
58	1	B	67	53.9	54.9	49.0	57.9	55.1
60	1	B	67	65.7	66.5	60.4	67.7	67.6
61	1	B	67	60.4	61.0	54.7	60.6	60.6
62	1	B	67	60.4	61.0	54.4	60.7	60.6
63	1	B	67	62.4	62.9	55.9	62.5	62.5
64	1	E	72	66.3	66.8	59.4	68.5	68.5
65	1	E	72	65.2	65.6	58.3	67.6	67.6
66	1	B	67	43.5	44.2	47.6	44.4	44.1

Table 7
US 60 Improvements
Summary of Predicted Noise Levels (dBA Leq)

5.0 TRAFFIC NOISE IMPACTS

As defined by the KYTC Noise Analysis and Abatement Policy, dated July 1, 2015, a traffic noise impact is considered to occur when either of the following is determined:

1) The noise level predicted for the design year approaches or exceeds the NAC as established in 23 CFR 772. "Approach" is defined as within 1 dBA for the land use category affected as shown in Table 1.
2) A substantial increase over existing noise levels is predicted for the design year. A substantial increase is defined as an increase in noise levels of $\mathbf{1 0 ~ d B A}$ or more. This criterion is independent of the NAC and may result in a defined noise impact even though the NAC may not be approached or exceeded.

Based on TNM modeling, design year (2040) traffic data and the most current design files for the US 60 improvements, traffic noise impacts are predicted to occur as a result of the construction of all 3 build alternatives. These impacts are described as follows:

Alternative 1 - Predicted noise levels will range from 38.9 to 74.0 dBA Leq. Two (2) modeled receptors, Receptor Nos. 51 and 98 were determined to have future noise levels that would approach (within 1 dBA Leq) or exceed the 67 dBA Leq NAC. Both of these receptors have been identified as potentially relocated or displaced by the proposed alignment. Predicted noise levels for Receptor No. 51 and approximately 16 other receptors would substantially exceed (> 10 dBA Leq) their existing noise levels. Upon review of these receptor locations, two (2) of the receptors are considered as isolated residences and eleven (11) of the receptors would be displaced or relocated by the project.

Alternative 2 - Predicted noise levels will range from 39.4 to 75.4 dBA Leq. Approximately 23 receptors were determined to have future noise levels that would approach or exceed their NAC. Most of these occur along existing US 60 through Kevil. Upon review, approximately 16 receptors would potentially be displaced or relocated by the widening improvements with at least 3 receptors representing isolated residences. Four (4) of the remaining receptors were located adjacent to US 60 in Kevil and currently have direct access (driveways). Predicted noise levels for two (2) receptors would also substantially exceed (> 10 dBA Leq) their existing noise levels. However, both of these receptors would be displaced or relocated.

Alternative 3-This alternative begins on new alignment along the old railroad bed west of Kevil but follows the existing US 60 alignment through Kevil identical to Alternative 2. Predicted noise levels for Alternative 3 will range from 38.7 to 72.3 dBA Leq. Approximately 11 receptors were determined to have future noise levels that would approach or exceed their NAC. As identified for Alternative 2, most of these occur along existing US 60 through Kevil. Upon review, approximately seven (7) receptors would potentially be displaced or relocated by the widening improvements. Four (4) of the remaining receptors were located adjacent to US 60 in Kevil and currently have direct access (driveways). Predicted noise levels for four (4) receptors would also substantially exceed (> 10 dBA Leq) their existing noise levels. However, all of these receptors would be considered isolated residences.

6.0 NOISE ABATEMENT CONSIDERATIONS

KYTC has developed a policy consistent with FHWA guidelines to determine the need, feasibility, and reasonableness of noise abatement measures for all major highway projects. In 23 CFR Part 772, FHWA requires that noise abatement measures be considered when traffic noise impacts are identified for Type I Federal projects. The FHWA offers a number of measures for abating or eliminating noise impacts. The primary means of mitigating noise impacts, as offered by the FHWA, are listed as follows:

- Construction of noise barriers including acquisition of property rights, either within or outside the highway right-of-way. Landscaping is not a viable noise abatement measure.
- Traffic management measures including, but not limited to, traffic control devices and signing for prohibition of certain vehicle types, time-use restrictions for certain vehicle types, modified speed limits, and exclusive lane designations.
- Alteration of horizontal and vertical alignments.
- Acquisition of real property or interests therein (predominantly unimproved property) to serve as a buffer zone to preempt development that would be adversely impacted by traffic noise.
- Noise insulation of Activity Category D land use facilities. Post-installation maintenance and operational costs for noise insulation are not eligible for Federal-aid funding.

KYTC is not part of a FHWA approved quiet pavement pilot program and therefore, the use of quiet pavement is not an acceptable option for providing noise abatement for a project.

In accordance with 23 CFR 772.13(c), the following noise abatement measures were considered as a means to reduce or eliminate traffic noise impacts.

Traffic Management Measures: Traffic management measures were not considered feasible for abating noise impacts for this project. Measures such as installation of additional traffic control devices, prohibition of vehicle types, time-use restrictions, speed limit reductions, and exclusive lane designations would be detrimental to the proposed project's ability to function as intended. Restricting truck traffic would be unreasonable, very difficult to enforce, and was considered a disincentive to economic development.

Alteration of Horizontal and Vertical Alignments: KYTC is in the process of integrating noise considerations into the selection of alternatives and into the horizontal and vertical design of highways. The selection of a preferred alignment usually includes shifting the alignment both vertically and horizontally, wherever feasible, to minimize impacts to adjacent land uses. Both vertical and horizontal alignments are altered to minimize noise impacts where other factors are not prohibitive. Since this project consists primarily of interchange improvements, opportunities for altering the vertical and horizontal alignments would be limited. Based on the proposed project's topography, it is likely that the final design would result in noise levels similar to those predicted for this study.

Acquisition of Property Rights or Acquisition of Property: Visual screening in the form of privacy fencing (wood) and/or landscaping may be proposed to help reduce the psychological impacts of the proposed project. However, these measures have been determined not to be as effective as the construction of noise walls and would not be the responsibility of KYTC.

Noise Insulation of Public Use or Nonprofit Institutional Structures: KYTC's policy is consistent with FHWA's interior noise level criteria policy on noise insulation and air conditioning compliance. This noise abatement measure option applies only to public or non-profit institutional use buildings.

Construction of Noise Barriers: KYTC has established a policy for determining the feasibility and reasonableness of when and where barriers should be constructed. In order to be implemented, a noise mitigation measure must be determined to be both feasible and reasonable. These considerations are discussed in more detail as follows:

Feasibility

When determining the acoustic feasibility of a proposed noise abatement measure, KYTC considers whether the measure provides a substantial noised reduction ($\geq 5 \mathrm{dBA}$ Leq) for a reasonable number of impacted receptors (minimum of three (3) impacted receptors) to warrant consideration. Therefore, if a proposed barrier does not provide a minimum of 5 dBA reduction for at least 3 impacted receptors, it will not be considered acoustically feasible.

Engineering or constructability issues may render an abatement measure infeasible. In determining if site characteristics are suitable for barrier construction, KYTC considers numerous
factors including safety, maintenance, drainage and accessibility. Engineering judgment may dictate that a barrier is not feasible if:

1) A substantial noise reduction ($>5 \mathrm{dBA}$ Leq) for three (3) or more impacted receptors is not achievable.
2) The barrier poses overriding safety (i.e. visibility or sight distance) issues or maintenance (i.e. drainage or right of way access) problems as determined by the AASHTO Green Book, Roadside Design Guide or Manual of Uniform Traffic Control Devices (MUTCD).

Based on a preliminary noise analysis conducted for the proposed US 60 improvements, traffic noise impacts were predicted to occur for all three build alternatives considered.

Alternative 1 (Red) - Predicted noise levels for Alternative 1 would range from 38.9 to 74.0 dBA Leq. Approximately 18 receptors were determined to have noise impacts but only two (2) receptors would have noise levels that would approach (within 1 dBA Leq) or exceed the 67 dBA Leq NAC. Predicted noise levels for approximately 17 receptors would substantially exceed (> 10 dBA Leq) their existing noise levels. Upon review of these receptor locations, two (2) of the receptors are considered as isolated residences and eleven (11) of the receptors would be displaced or relocated by the project. Based on the location of the remaining receptors with predicted impacts, a substantial noise reduction is not achievable for a reasonable number of impacted receptors. Therefore, noise barriers were not considered acoustically feasible for this alternative and none were proposed.

Alternative 2 (Blue) - Predicted noise levels for Alternative 2 will range from 39.4 to 75.4 dBA Leq. Approximately 23 receptors were determined to have future noise levels that would approach or exceed their NAC. However, 16 receptors would potentially be displaced or relocated by the widening improvements with at least 3 receptors representing isolated residences. Four (4) of the remaining receptors were located adjacent to US 60 in Kevil and currently have direct access (driveways). A proposed barrier at this location would pose overriding sight distance and visibility issues for motorists. Predicted noise levels for two (2) receptors would also substantially exceed (> 10 dBA Leq) their existing noise levels. Both of these receptors would be displaced or relocated. Potential noise barriers were not considered acoustically feasible for this alternative and none were proposed.

Alternative 3 (Green) - Predicted noise levels for Alternative 3 will range from 38.7 to 72.3 dBA Leq. Approximately 11 receptors were determined to have future noise levels that would approach or exceed their NAC. Upon review, approximately seven (7) receptors would potentially be displaced or relocated by the widening improvements. Four (4) of the remaining receptors were located adjacent to US 60 in Kevil and currently have direct access (driveways). As discussed for Alternative 2, a proposed barrier at this location would pose overriding sight distance and visibility issues for motorists. For the section of Alternative 3 on new alignment, predicted noise levels for four (4) receptors would also substantially exceed (> 10 dBA Leq) their existing noise levels. However, all of these receptors would be considered isolated residences. Since a substantial noise reduction would not be achievable for a reasonable number of impacted receptors, noise barriers were not considered acoustically feasible for this alternative and none were proposed.

7.0 SUMMARY AND CONCLUSIONS

A traffic noise impact analysis was conducted for the proposed US 60 improvements. The analysis was performed in accordance with the requirements of Title 23, Part 772 of the Code of Federal Regulations (CFR), "Procedures for Abatement of Highway Traffic Noise and Construction Noise" and the Kentucky Transportation Cabinet's (KYTC) Noise Analysis and Abatement Policy (dated July 1, 2015).

Traffic noise impacts occur when noise levels generated by the proposed project approach or exceed the NAC, or when predicted noise levels substantially exceed (greater than 10 dBA Leq) existing noise levels. Based on TNM modeling, design year (2040) traffic data and the most current design files for project alternatives, traffic noise impacts are predicted to occur as a result of the construction of all 3 build alternatives.

The construction of noise barriers was considered for abating noise impacts generated by the proposed project. KYTC has established a policy for determining the feasibility and reasonableness of when and where barriers should be constructed. In order to be implemented, a noise mitigation measure must be determined to be both feasible and reasonable.

Upon review, Alternative 1 represents an improvement primarily on new alignment. As described by the existing land use, noise sensitive receptors are relatively few and are dispersed and scattered throughout the study corridor. After consideration of potential relocations or displacements by the proposed Alternative 1 alignment, these receptors represent isolated residences in vicinity to the proposed alignment. Substantial noise reduction for a reasonable number of impacted receptors would not be achievable. Construction of noise walls was therefore not considered feasible for Alternative 1.

Alternatives 2 and 3 represent widening improvements to existing US 60 through Kevil. As anticipated, future noise levels are predicted to increase for those sensitive land uses (residences) directly adjacent to the roadway.

For Alternative 2, approximately 23 receptors were determined to have future noise levels that would approach or exceed their NAC. However, 16 receptors would potentially be displaced or relocated by the widening improvements with at least 3 receptors representing isolated
residences. Four (4) of the remaining receptors were located adjacent to US 60 in Kevil and currently have direct access (driveways). A proposed barrier at this location would pose overriding sight distance and visibility issues for motorists. Potential noise barriers were not considered acoustically feasible for this alternative and none were proposed.

Approximately 11 receptors were determined to have future noise levels that would approach or exceed their NAC for Alternative 3. At least seven (7) receptors would potentially be displaced or relocated by the widening improvements. Four (4) of the remaining receptors were located adjacent to US 60 in Kevil and currently have direct access (driveways). As discussed for Alternative 2, a proposed barrier at this location would pose overriding sight distance and visibility issues for motorists. For the section of Alternative 3 on new alignment, predicted noise levels for four (4) receptors would also substantially exceed (> 10 dBA Leq) their existing noise levels. However, all of these receptors would be considered isolated residences. Since a substantial noise reduction would not be achievable for a reasonable number of impacted receptors, noise barriers were not considered acoustically feasible for this alternative and none were proposed.

The opportunities for minimizing traffic noise as a result of the project are limited. Based on a preliminary noise analysis, the construction of noise barriers are not acoustically feasible and therefore, not reasonable for any alternative. Alignment shifts would also likely result in increased environmental impacts, relocations and construction costs. Therefore, additional noise abatement measures were determined not to be effective as described in 23 CFR 772.13(c) and none were proposed.

8.0 INDIRECT AND CUMULATIVE IMPACTS

Indirect impacts are those impacts that are caused by the action and are later in time and further removed in distance, but are still reasonably foreseeable. The purpose of the project is to improve mobility and safety for the US 60 corridor in eastern Ballard County. US 60 is the only east-west arterial link in Kentucky west of Paducah, leading to the only Ohio River highway crossing for an 80 -mile stretch. The project is anticipated to have positive indirect impacts as congestion and heavy truck traffic are reduced through Kevil. As a result of this project, noise levels for those residential and sensitive noise land uses may decrease. No known sources of additional traffic, such as the construction of indirect commercial or industrial development, are part of this study. Therefore, the proposed project is not anticipated have any negative indirect impacts on traffic noise.

Cumulative impacts occur when the effects (both direct and indirect) of the action interact with the effects of other actions. Based on a review of the FY 2018-2024 Enacted Highway Plan, KYTC plans to improve sections of US 60 from Paducah to east of La Center. These improvements have been accounted for in the US 60 traffic projections and therefore addressed in this study. Therefore, it was assumed there would be no cumulative impacts for this study.

9.0 CONSTRUCTION NOISE

There would be unavoidable short-term noise impacts as a result of project construction. The primary source of noise expected would be generated from construction activities such as earth removal, hauling, grading, and paving. For this project, construction is not anticipated to last for a long period of time. If it is likely that noise construction will persist longer than two years, noise abatement measures may be necessary during construction to restrict noise levels in the vicinity of noise sensitive sites. These measures may include, but are not necessarily limited to the following:

- Provide shielding of equipment with acoustic barriers.
- Restrict certain types of work to specific times during the day.
- Require source control on equipment such as mufflers.
- Other measures to reduce noise impacts.

10.0 COORDINATION WITH LOCAL OFFICIALS

A copy of this traffic noise impact analysis may be made available to the following local officials as part of the coordination efforts to help minimize highway noise related impacts to adjacent properties. Approval of land uses adjacent to a highway that are typically sensitive to noise should be an informed decision-making process. If appropriate, visual screening may be suggested or considered to help reduce the psychological impacts of the project. The final decision on implementation of abatement measures will be made after completion of the project design and the public involvement process, including coordinating with and providing predicted noise information on the Build Alternative to local officials per the KYTC Noise Analysis and Abatement Policy.

APPENDIX A

Sound Level Meter Calibration Certificates,

Field Monitoring Data Sheets and Sound Meter Output Data

Calibration Certificate

Certificate Number 2018005268
Customer:
The Modal Shop
3149 East Kemper Road
Cincinnati, OH 45241, United States

Model Number	LxT1
Serial Number	0005625
Test Results	Pass
Initial Condition	As Manufactured
Description	SoundTrack LxT Class 1
	Class 1 Sound Level Meter
	Firmware Revision: 2.302

$\left.\begin{array}{lll}\begin{array}{lll}\text { Procedure Number } & \text { D0001.8378 } \\ \text { Technician } \\ \text { Calibration Date }\end{array} & \begin{array}{l}\text { Ron Harris } \\ \text { Callibration Due }\end{array} & 23 \text { May } 2018\end{array}\right]$

Evaluation Method Tested electrically using Larson Davis PRMLxT1 S/N 046882 and a 12.0 pF capacitor to simulate microphone capacitance. Data reported in dB re $20 \mu \mathrm{~Pa}$ assuming a microphone sensitivity of 50.0 $\mathrm{mV} / \mathrm{Pa}$.

Compliance Standards Compliant to Manufacturer Specifications and the following standards when combined with

 Calibration Certificate from procedure D0001,8384:IEC 60651:2001 Type 1
IEC 60804:2000 Type 1
IEC 61252:2002
IEC 61260:2001 Class 1
IEC 61672:2013 Class 1

```
ANSI S1.4-2014 Class 1
ANSI S1.4 (R2006) Type 1
ANSI S1.11 (R2009) Class 1
ANSI S1.25 (R2007)
ANSI S1.43 (R2007) Type 1
```

Issuing lab certifies that the instrument described above meets or exceeds all specificalions as stated in the referenced procedure (unless otherwise noted). It has been calibrated using measurement standards traceable to the International System of Units (SI) through the National Institute of Standards and Technology (NIST), or other national measurement institutes, and meats the requirements of ISO/IEC 17025:2005. Test points marked with a \ddagger in the uncertalntles column do not fall within this laboratory's scope of accreditation.

The quality system is registered to ISO 9001:2008.
This callibration is a direct comparison of the unit under test to the listed reference standards and did not involve any sampling plans to complete. No allowance has been made for the instability of the test device due to use, time, etc. Such allowances would be made by the customer as needed.

The uncertainties were computed in accordance with the ISO Guide to the Expression of Uncertainty in Measurement (GUM). A coverage factor of approximately 2 sigma $(k=2)$ has been applied to the standard uncertainty to express the expanded uncertainly at approximately 95% confidence level.

This report may not be reproduced, except in full, uniess permission for the publication of an approved abstract is obtained in writing from the organization issuing this report.

Correction data from Larson Davis LxT Manual for SoundTrack LxT \& SoundExpert Lxt, 1770.01 Rev J Supporting Firmware Version 2.301, 2015-04-30

Callbration Check Frequency: 1000 Hz ; Reference Sound Pressure Level: 114 dB re $20 \mu \mathrm{~Pa}$

Page 1 of 7

Calibration Certificate

Certificate Number 2018005269

Customer:
The Modal Shop
3149 East Kemper Road
Cincinnati, OH 45241, United States

Model Number	LXT1
Serial Number	0005625
Test Results	Pass
Initial Condition	As Manufactured
Descriptlon	SoundTrack LxT Class 1 Class 1 Sound Level Meter Firmware Revision: 2.302

Evaluation Method
Tested with:
$\left.\begin{array}{lll}\begin{array}{lll}\text { Procedure Number } & \text { D0001.8384 }\end{array} \\ \begin{array}{lll}\text { Technician } \\ \text { Calibration Date } \\ \text { Calibration Due }\end{array} & 23 \text { May } 2018\end{array}\right]$

Larson Davis PRMLxT1. S/N 046882
PCB 377B02. S/N 304769
Larson Davis CAL200. S/N 9079
Larson Davis CAL291. S/N 0108
Compllance Standards
Compliant to Manufacturer Specifications and the following standards when combined with Calibration Certificate from procedure D0001.8378:

```
IEC 60651:2001 Type 1
IEC 60804:2000 Type 1
IEC 61252:2002
IEC 61280:2001 Class 1
IEC 61672:2013 Class 1
```

ANSI S1.4-2014 Class 1
ANSI S1.4 (R2006) Type 1
ANSI S1.11 (R2009) Class 1
ANSI S1.25 (R2007)
ANSI S1.43 (R2007) Type 1

Issuing lab certifies that the instrument described above meets or exceeds all specifications as stated in the referenced procedure (unless otherwise noted). It has been calibrated using measurement standards traceable to the International System of Units (SI) through the National Institute of Standards and Technology (NIST), or other national measurement institutes, and meets the requirements of ISO/IEC 17025:2005.
Test points marked with a \ddagger in the uncertalnties column do not fall within this laboratory's scope of accreditation.
The quality system is registered to ISO 9001:2008.
This calibration is a direct comparison of the unit under test to the listed reference standards and did not involve any sampling plans to complete. No allowance has been made for the instability of the test device due to use, time, etc. Such allowances would be made by the customer as needed.

The uncertaintles were computed in accordance with the ISO Guide to the Expression of Uncertainty in Measurement (GUM). A coverage factor of approximately 2 sigma $(k=2)$ has been applied to the standard uncertainty to express the expanded uncertainty at approximately 95% confidence level.

This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from the organization issuing this report.

Correction data from Larson Davis LxT Manual for SoundTrack LxT \& SoundExpert Lxt, 1770.01 Rev J Supporting Firmware Version 2.301, 2015-04-30

[^1]

Page 1 of 3

Certificate Number 2018005269

For $1 / 4^{\prime \prime}$ microphones, the Larson Davis ADP024 $1 / 4^{\prime \prime}$ to $1 / 2^{\prime \prime}$ adaptor is used with the calibrators and the Larson Davis ADP043 $1 / 4^{\prime \prime}$ to $1 / 2^{\prime \prime}$ adaptor is used with the preamplifier.

Callbration Check Frequency: 1000 Hz ; Reference Sound Pressure Level: 114 dB re $20 \mu \mathrm{~Pa}$

Periodic tests were performed in accordance with precedures from IEC 61672-3:2013 / ANSI/ASA S1.4-2014/Parl3.
Pattern approval for IEC 61672-1:2013 / ANSI/ASA S1.4-2014/Part 1 successfully completed by Physikalisch-Technische Bundesanstalt (PTB) on 2007-10-09 reference number PTB-1.72-4034218.

The sound level meter submitted for lesting successfully completed the periodic tests of IEC 61672-3:2013 / ANSI/ASA S1.4-2014/Part 3 , for the environmental conditions under which the tests were performed. As evidence was publicly avallable, from an independent testing organization responsible for approving the results of pattern-evaluation tests performed in accordance with IEC 61672-2:2013/ ANSI/ASA S1,4-2014/Part 2, to demonstrate that the model of sound level meter fully conformed to the class 1 specifications in IEC 61672-1:2013 / ANSIIASA S1.4-2014/Part 1; the sound level meter submilted for testing conforms to the class 1specifications in IEC 61672-1:2013 / ANSI/ASA S1.4-2014/Part 1.

Description	Cal Date	Cal Due	Cal Standard	
Larson Davis CAL291 Residual Intensity Calibrator	$2017-09-19$	$2018-09-19$	001250	
SRS DS360 Ultra Low Distortion Generator	$2017-06-23$	$2018-06-23$	006311	
Hart Scientific 2626-S Humidity/Temperature Sensor	$2017-06-11$	$2018-06-11$	006943	
Larson Davis CAL200 Acoustic Calibrator	$2017-07-25$	$2018-07-25$	007027	
Larson Davis Model 831	$2018-02-28$	$2019-02-28$	007182	
PCB 377A13 1/2 inch Prepolarized Pressure Microphone	$2018-03-07$	$2019-03-07$	007185	

Acoustic Calibration

Measured according to IEC 61672-3:2013 10 and ANSI S1.4-2014 Part 3: 10

Acoustic Signal Tests, C-weighting

Measured according to IEC 61672-3:2013 12 and ANSI S1.4-2014 Part 3: 12 using a comparison coupler with Unit Under Test (UUT) and reference SLM using slow time-weighted sound level for compliance to IEC 61672-1:2013 5.5; ANSI S1.4-2014 Part 1: 5.5

Self-generated Noise

Measured according to IEC 61672-3:2013 11.1 and ANSI S1.4-2014 Part 3: 11.1

Measurement
Test Result [dB]

Page 2 of 3

~Certificate of Calibration~

3149 East Kemper Rd. Cincinnati, OH 45241 Ph: 513-351-9919 Fax: 513-458-2172 www.modalshop.com

Traceability: The calibration is traceable through NIST Project A1633.
Notes: Calibration results relate only to the items calibrated.
This certificate may not be reproduced, except in full, without written permission.
This calibration is performed in compliance with ISO 9001, ISO 17025 and ANSI Z540.
Measurement uncertainty (250 Hz sensitivity calibration) at 95% confidence level: $\quad 0.30 \mathrm{~dB}$
Calibrated per procedure PRD-P204.
User Note: As Found / As Left: In Tolerance.

Frequency Response with reference to level at 250 Hz							
Frequency	Upper	Frequency	Upper (dB)	Frequency	Upper (dB)	Frequency (Hz)	Upper (dB)
20	-0.10	630	0.00	4500	-0.30		
25	-0.17	800	0.03	5000	-0.33		
31.5	-0.08	1000	0.02	5600	-0.38		
40	-0.24	1120	0.02	6300	-0.41		
50	0.01	1250	0.01	7100	-0.40		
63	-0.02	1400	0.00	8000	-0.32		
80	0.02	1600	-0.03	9000	-0.20		
100	0.01	1800	-0.05	10000	-0.26		
125	0.01	2000	-0.07	11200	-0.16		
160	0.00	2240	-0.10	12500	0.12		
200	0.00	2500	-0.13	14000	0.46		
250	0.00	2800	-0.18	16000	0.66		
315	0.01	3150	-0.24	18000	0.37		
400	0.00	3550	-0.33	20000	0.60		
500	0.02	4000	-0.40				

Technician: Ed Devlin
Approval:

Reference Equipment Used:

Manuf.	Model	Serial	Cal. Date	Due Date
GRAS	$40 A G$	9542	$2 / 22 / 2018$	$2 / 22 / 2019$

Calibration Certificate

Certificate Number 2018003154

Customer:
PCB Piezotronics Inc.
3425 Walden Avenue
Depew, NY 14043, US
888-684-0013

Model Number	CAL200	Procedure Number	D0001.8386		
Serial Number	15533	Technician	Scott Montgomery		
Test Results	Pass	Calibration Date	29 Mar 2018		
Initial Condition	As Manufactured	Calibration Due			
Description	Larson Davis CAL200 Acoustic Calibrator	Temperature	24	${ }^{\circ} \mathrm{C}$	$\pm 0.3^{\circ} \mathrm{C}$
		Humidity	36	$\% \mathrm{RH}$	$\pm 3 \% \mathrm{RH}$
		Static Pressure	101.0	kPa	$\pm 1 \mathrm{kPa}$

Evaluation Method The data is aquired by the insert voltage calibration method using the reference microphone's open circuit sensitivity. Data reported in dB re $20 \mu \mathrm{~Pa}$.

Compliance Standards Compliant to Manufacturer Specifications per D0001.8190 and the following standards:
IEC 60942:2017
ANSI S1.40-2006

Issuing lab certifies that the instrument described above meets or exceeds all specifications as stated in the referenced procedure (unless otherwise noted). It has been calibrated using measurement standards traceable to the SI through the National Institute of Standards and Technology (NIST), or other national measurement institutes, and meels the requirements of ISO/IEC 17025:2005. Test points marked with a \ddagger In the uncertainties column do not fall within this laboratory's scope of accreditation.

The quality sysiem is registered to ISO 9001:2008.
This calibration is a direct comparison of the unit under test to the listed reference standards and did not involve any sampling plans to complete. No allowance has been made for the instability of the test device due to use, time, etc. Such allowances would be made by the customer as needed.

The uncertainties were computed in accordance with the ISO Guide to the Expression of Uncertainty in Measurement (GUM). A coverage factor of approximately 2 sigma ($k=2$) has been applied to the standard uncerlainly to express the expanded uncertainty at approximately 95% confidence level.

This report may not be reproduced, except in full, unless permission for the publicalion of an approved abstract is obtained in writing from the organization issuing this report.

NOISE RECEPTOR SITE DATA SHEET
Job Name: US 60 Job Number: 18402 Calibration Check: 113.90 Receptor Site No: \qquad Event No: AM \qquad PI \qquad Taken By: \qquad AM Date: \qquad Begin Time: \qquad End Time: \qquad PMM Date: $10 / 22 / 18$ Begin Time: $2: 59$ End Time: $3: 15$ Receptor Name: House of Prayer Purpose of Receptors: Ambient Only (Y or N); No. of Residences: 4 Other: 1 Site Description: church and picnic tables / swines Intersecting Roadway Name: \qquad VS 60

AM

Le (ABA):
Traffic Count on Existing Roadway:

Autos:

\qquad
\qquad

east west bound
 bound \qquad bound
 48

Is the road at a grade: \qquad Percent Slope: \qquad Which way is it inclining: \qquad west Will this receptor need a driveway to the proposed road: \qquad Weather:

AM: \quad Temp (F) \qquad RH \qquad \% Wind Speed \qquad MPH
$\mathbb{P M}: \quad$ Temp (F) L6. 2 RH 3L \% wind Speed 1.6 MPH
NOTES: Non-traffic noise (airplanes, dogs, cars on side road, etc.), foliage, terrain between road and receptor
AM: \qquad
PM: \qquad
Both: \qquad

Summary	
File Name on Meter	LxT_Data. 001
File Name on PC	SLM_0005625_LxT_Data_001.00.1dbin
Serial Number	0005625
Model	SoundTrack LxT ${ }^{\text {® }}$
Firmware Version	2.302
User	Jim Smith
Location	Paducah
Job Description	US 60 Ballard/McCracken_Friendship Road
Note	1-24 US 60
Measurement	
Description	
Start	2018-10-22 14:59:59
Stop	2018-10-22 15:15:05
Duration	00:15:05.4
Run Time	00:15:05.4
Pause	00:00:00.0
Pre Calibration	2018-10-22 14:45:43
Post Calibration	None
Calibration Deviation	---
Overall Settings	
RMS Weight	A Weighting
Peak Weight	Z Weighting
Detector	Slow
Preamp	PRMLxT1
Microphone Correction	Off
Integration Method	Exponential
OBA Range	Low
OBA Bandwidth	$1 / 1$ and 1/3
OBA Freq. Weighting	Z Weighting
OBA Max Spectrum	Bin Max
Overload	146.4
	A
Under Range Peak	102.7
Under Range Limit	51.7
Noise Floor	38.5

Results	
LASeq	69.0
LASE	98.6
EAS	798.078
EAS8	25.386
EAS40	126.931
LZSpeak (max)	$2018-10-22$

Job Name: US 6O Job Number: 18402 Calibration Check: 113.90 Receptor Site No: \qquad Event No: AM \qquad $\mathbb{P M I}$ \qquad Taken By: JRS

AIMI Date: \qquad Begin Time: \qquad End Time: \qquad PM Date: $10 / 22 / 18$ Begin Time: $3: 15$ End Time: $\quad 3: 30$ Receptor Name: House of Prayer
Purpose or Receptors. Ambient Only (Y or N). \qquad No. of Residences: \qquad Other: \qquad Site Descripion:_Church and picnic tables / swings Intersecting Roadway Name: \qquad

Distance from Existing Road: 75^{\prime} Height Above or Below Existing Road: \qquad
Existing Speed Limit: \qquad Average Speed of Vehicles: 50 mph Is the road at a grade: \qquad yes Percent Slope: \qquad Which way is it inclining: west Will this receptor need a driveway to the proposed road: \qquad
Weather:
AM: \quad Temp (F) \qquad RH \qquad \% Wind Speed \qquad MPH
PM: Temp (F) $65.2 \quad \mathrm{RH} 37 \quad \%$ Wind Speed 1.9 MPH
NOTES: Non-traffic noise (airplanes, dogs, cars on side road, etc.), foliage, terrain between road and receptor
AM: \qquad
PM: - mixer truck on side road $3: 2 \mathrm{l}$ pm
Both: \qquad

Summary	
File Name on Meter	LxT_Data. 002
File Name on PC	SLM_0005625_LxT_Data_002.00.Idbin
Serial Number	0005625
Model	SoundTrack LxT ${ }^{\text {® }}$
Firmware Version	2.302
User	Jim Smith
Location	Paducah
Job Description	US 60 Ballard/McCracken_Friendship Road
Note	1-24 US 60
Measurement	
Description	
Start	2018-10-22 15:15:12
Stop	2018-10-22 15:30:16
Duration	00:15:03.5
Run Time	00:15:03.5
Pause	00:00:00.0
Pre Calibration	2018-10-22 14:45:39
Post Calibration	None
Calibration Deviation	---
Overall Settings	
RMS Weight	A Weighting
Peak Weight	Z Weighting
Detector	Slow
Preamp	PRMLxT1
Microphone Correction	Off
Integration Method	Exponential
OBA Range	Low
OBA Bandwidth	$1 / 1$ and $1 / 3$
OBA Freq. Weighting	Z Weighting
OBA Max Spectrum	Bin Max
Overload	146.4
	A
Under Range Peak	102.7
Under Range Limit	51.7
Noise Floor	38.5

Results	64.6
LASeq	94.2
LASE	290.557
EAS	9.262
EAS8	46.309
EAS40	$2018-10-2215: 22: 22$

Job Name: US 60 Job Number: 18402 Calibration Check: 113.90 Receptor Site No: 2 Event No: AM_ PMI Taken By: JRS

AMI Date: \qquad Begin Time: \qquad End Time: \qquad
PMI Date: $10 / 22 / 18 \quad$ Begin Time: $3: 48$ End Time: \qquad Receptor Name: Smith's residence
Purpose of Receptors: Ambient Only (Y or N): No. of Residences: $6-7$ Other: \qquad Site Description: 7948 VS 60 front residence Intersecting Roadway Name: US 60

Distance from Existing Road: 95^{\prime} Height Above or Below Existing Road: 5 ft Existing Speed Limit: 55 mph Average Speed of Vehicles: 50 mph Is the road at a grade: \qquad NO Percent Slope: \qquad Which way is it inclining: \qquad
Will this receptor need a driveway to the proposed road: \qquad
Weather: \quad AM: \quad Temp (F) \qquad RH \qquad \% Wind Speed \qquad MPH

PM: Temp (F) 65
RH 34
\% Wind Speed \qquad MPH

NOTES: Non-traffic noise (airplanes, dogs, cars on side road, etc.), foliage, terrain between road and receptor
AM: \qquad
PM: \qquad
Both: \qquad

Summary	
File Name on Meter	LxT_Data. 003
File Name on PC	SLM_0005625_LxT_Data_003.00.Idbin
Serial Number	0005625
Model	SoundTrack LxT*
Firmware Version	2.302
User	Jim Smith
Location	Paducah
Job Description	US 60 Ballard/McCracken_Friendship Road
Note	1-24 US 60
Measurement	
Description	
Start	2018-10-22 15:48:30
Stop	2018-10-22 16:03:34
Duration	00:15:04.1
Run Time	00:15:04.1
Pause	00:00:00.0
Pre Calibration	2018-10-22 14:45:39
Post Calibration	None
Calibration Deviation	---
Overall Settings	
RMS Weight	A Weighting
Peak Weight	Z Weighting
Detector	Slow
Preamp	PRMLxT1
Microphone Correction	Off
Integration Method	Exponential
OBA Range	Low
OBA Bandwidth	$1 / 1$ and $1 / 3$
OBA Freq. Weighting	Z Weighting
OBA Max Spectrum	Bin Max
Overload	146.4
	A
Under Range Peak	102.7
Under Range Limit	51.7
Noise Floor	38.5
Results	
LASeq	64.1
LASE	93.7
EAS	260.130
EAS8	8.286
EAS40	41.432
LZSpeak (max)	2018-10-22 15:49:36

Job Name: US 60 Job Number: 18402 Calibration Check: 113.90 Receptor Site No: \qquad Event No: AM \qquad PI \qquad Taken By: JRS

AMM Date: \qquad Begin Time: \qquad End Time: \qquad PMI Date: $10122 / 18$ Begin Time: $4: 14$ End Time: $4: 29$ Receptor Name: Pine Lane residence
Purpose of Receptors: Ambient Only (Y or N): $Y \quad$ No. of Residences: \qquad Other: \qquad Site Description: residence near proposed clighmest Intersecting Roadway Name: \qquad
Leq (dBA):

Traffic Count on Existing Roadway:

Distance from Existing Road: \qquad Height Above or Below Existing Road: \qquad Existing Speed Limit: \qquad Average Speed of Vehicles: \qquad
Is the road at a grade: \qquad Percent Slope: \qquad Which way is it inclining: \qquad
Will this receptor need a driveway to the proposed road: \qquad
Weather:
AM: \quad Temp (F) \qquad RH \qquad \% Wind Speed \qquad MPH

PM: Temp (F) 63
RH 37 $\%$ Wind Speed \qquad MPH

NOTES: Non-traffic noise (airplanes, dogs, cars on side road, etc.), foliage, terrain between road and receptor
AM: \qquad
PM: \qquad
Both: \qquad

Job Name: US 60 Job Number: 18402 Calibration Check: 113.90 Receptor Site No: 4 Event No: AM_PMI Taken By:_JRS

AIVI Date: \qquad Begin Time: \qquad End Time: \qquad PM Date: $10122 / 18$ Begin Time: $4: 39$ End Time: $4: 54$ Receptor Name: West KY Techivology Park Purpose of Receptors: Ambient Only (Y or N): N No. of Residences: 10 Other: ___ Site Description: front vow of residences Intersecting Roadway Name: \qquad

Distance from Existing Road: 100^{\prime} Height Above or Below Existing Road: 5 ft Existing Speed Limit: 35 mph Average Speed of Vehicles: \qquad Is the road at a grade: NO Percent Slope: \qquad Which way is it inclining: \qquad
Will this receptor need a driveway to the proposed road: \qquad yes

Weather:
AM: \quad Temp (F) \qquad RH \qquad \% Wind Speed \qquad MPH
PM: $\quad \operatorname{Temp}(F) \underline{L O .9}$ RH 44% Wind Speed 2.7 MPH
NOTES: Non-traffic noise (airplanes, dogs, cars on side road, etc.), foliage, terrain between road and receptor
AM: \qquad

PM: birds, weedeater
Both: \qquad

Results	62.4
LASeq	92.0
LASE	175.179
EAS	5.547
EAS8	27.736
EAS40	$16: 54: 37$

NOISE RECEPTOR SITE DATA SHEET

Job Name: \qquad Job Number: \qquad 18402 Calibration Check: \qquad 113.90

Receptor Site No: \qquad 4 Event No: AM \qquad PM \qquad Taken By: \qquad IRS

AM Date: \qquad Begin Time: \qquad End Time: \qquad
PM Date: \qquad $10 / 22 / 18$ Begin Time: \qquad $4: 54$ End Time: \qquad $5: 10$

Receptor Name: \qquad West Ky Technology Park
Purpose of Receptors: Ambient Only (Y or N): \qquad No. of Residences: \qquad Other: \qquad
Site Description: \qquad
Intersecting Roadway Name: \qquad US 60

$$
\mathrm{AM}
$$

Req (ABA): \qquad
Traffic Count on Existing Roadway:
\qquad bound \qquad bound

Autos: \qquad
Medium Trucks: \qquad
Heavy Trucks: \qquad
Buses: \qquad
Motorcycles: \qquad
\qquad 100^{\prime} Height Above or Below Existing Road: \qquad
Distance from Existing Road: \qquad
Existing Speed Limit: \qquad 35 mph Average Speed of Vehicles: \qquad 35 mph
Is the road at a grade: \qquad NO Percent Slope: \qquad Which way is it inclining: \qquad
Will this receptor need a driveway to the proposed road: \qquad
Weather:

$$
\mathbf{A M}: \quad \text { Temp }(F)
$$

RH \qquad \% Wind Speed \qquad MPH
\qquad RH \qquad 40 $\%$ Wind Speed \qquad 2.8 MPH

NOTES: Non-traffic noise (airplanes, dogs, cars on side road, etc.), foliage, terrain between road and receptor
AM: \qquad
PM: \qquad birds, weedecter ot $5: 05 \mathrm{pm}$
Both: \qquad

Summary	
File Name on Meter	LxT_Data. 006
File Name on PC	SLM_0005625_LxT_Data_006.00.Idbin
Serial Number	0005625
Model	SoundTrack LxT ${ }^{\text {® }}$
Firmware Version	2.302
User	Jim Smith
Location	Paducah
Job Description	US 60 Ballard/McCracken_Friendship Road
Note	1-24 US 60
Measurement	
Description	
Start	2018-10-22 16:54:54
Stop	2018-10-22 17:10:00
Duration	00:15:05.7
Run Time	00:15:05.7
Pause	00:00:00.0
Pre Calibration	2018-10-22 14:45:39
Post Calibration	None
Calibration Deviation	---
Overall Settings	
RMS Weight	A Weighting
Peak Weight	Z Weighting
Detector	Slow
Preamp	PRMLxT1
Microphone Correction	Off
Integration Method	Exponential
OBA Range	Low
OBA Bandwidth	$1 / 1$ and $1 / 3$
OBA Freq. Weighting	Z Weighting
OBA Max Spectrum	Bin Max
Overload	146.4
	A
Under Range Peak	102.7
Under Range Limit	51.7
Noise Floor	38.5
Results	
LASeq	60.1
LASE	89.7
EAS	102.965
EAS8	3.274
EAS40	16.371
LZSpeak (max)	2018-10-22 17:04:35

NOISE RECEPTOR SITE DATA SHEET
Lxt_007

Job Name: \qquad Job Number: 18402 Calibration Check: 113.99 Receptor Site No: \qquad Event No: AM \qquad PM \qquad Taken By \qquad AIM Date: \qquad Begin Time: \qquad End Time: \qquad PMM Date: $10 / 22 / 18$ Begin Time: $5: 19$ End Time: $5: 34$ Receptor Name: Grace Valley Independent Baptist Church Purpose of Receptors: Ambient Only (Yon N): N No. of Residences: 5 Other: 1 Site Description: front of church Intersecting Roadway Name: US 60

Distance from Existing Road: 125^{\prime} Height Above or Below Existing Road: 5 ft Existing Speed Limit: \qquad Average Speed of Vehicles: \qquad Is the road at a grade: \qquad NO Percent Slope: \qquad Which way is it inclining: \qquad Will this receptor need a driveway to the proposed road: \qquad
Weather: $\quad \mathbf{A M}: \quad$ Temp (F) \qquad RH \qquad \% Wind Speed \qquad MPH
PM: Temp (F) 58
RH 51 $\%$ Wind Speed \qquad MPH

NOTES: Non-traffic noise (airplanes, dogs, cars on side road, etc.), foliage, terrain between road and receptor
AM: \qquad
PM: \qquad
Both: \qquad

Summary		
File Name on Meter		LxT_Data. 007
File Name on PC	SLM_0005625_LxT_Data_007.00.Idbin	
Serial Number	0005625	
Model	SoundTrack LxT ${ }^{\text {® }}$	
Firmware Version	2.302	
User	Jim Smith	
Location	Paducah	
Job Description	US 60 Ballard/McCracken_Friendship Road	
Note	1-24 US 60	
Measurement		
Description		
Start		2018-10-22 17:19:41
Stop		2018-10-22 17:34:45
Duration		00:15:04.6
Run Time		00:15:04.6
Pause		00:00:00.0
Pre Calibration		2018-10-22 14:45:39
Post Calibration		None
Calibration Deviation		---
Overall Settings		
RMS Weight		A Weighting
Peak Weight		Z Weighting
Detector		Slow
Preamp		PRMLxT1
Microphone Correction		Off
Integration Method		Exponential
OBA Range		Low
OBA Bandwidth		$1 / 1$ and $1 / 3$
OBA Freq. Weighting		Z Weighting
OBA Max Spectrum		Bin Max
Overload		146.4
		A
Under Range Peak		102.7
Under Range Limit		51.7
Noise Floor		38.5
Results		
LASeq		62.8
LASE		92.4
EAS		193.055
EAS8		6.146
EAS40		30.732
LZSpeak (max)	2018-10-22 17:31:44	

Job Name: \qquad Job Number: 18402 Calibration Check: 113.99 Receptor Site No: \qquad Event No: AM \qquad PM \qquad Taken By: JRS

AMM Date: \qquad Begin Time: \qquad End Time: \qquad
PM Date: $10 / 22118 \quad$ Begin Time: $5: 34$ End Time: $5: 49$ Receptor Name: Grace Valley Independent Baptist Church Purpose of Receptors: Ambient Only (Yor N): N_No. of Residences: \qquad Other: \qquad Site Description: \qquad front of church Intersecting Roadway Name: \qquad

Distance from Existing Road: 125^{\prime} Height Above or Below Existing Road: 5 ft Existing Speed Limit: \qquad Average Speed of Vehicles: \qquad Is the road at a grade: \qquad NO Percent Slope: \qquad Which way is it inclining: \qquad
Will this receptor need a driveway to the proposed road: \qquad
Weather: AM: $\operatorname{Temp}(\mathrm{F}) \quad \mathrm{RH} \quad$ \% Wind Speed ___ MPH
PM: Temp (F) $56.5 \quad \mathrm{RH} \quad 55 \%$ wind Speed 0.5 MPH
NOTES: Non-traffic noise (airplanes, dogs, cars on side road, etc.), foliage, terrain between road and receptor
AM: \qquad
PM: \qquad
Both: \qquad

Summary	
File Name on Meter	LxT_Data. 008
File Name on PC	SLM_0005625_LxT_Data_008.00.Idbin
Serial Number	0005625
Model	SoundTrack LxT ${ }^{\text {® }}$
Firmware Version	2.302
User	Jim Smith
Location	Paducah
Job Description	US 60 Ballard/McCracken_Friendship Road
Note	1-24 US 60
Measurement	
Description	
Start	2018-10-22 17:34:52
Stop	2018-10-22 17:49:55
Duration	00:15:03.3
Run Time	00:15:03.3
Pause	00:00:00.0
Pre Calibration	2018-10-22 14:45:39
Post Calibration	None
Calibration Deviation	---
Overall Settings	
RMS Weight	A Weighting
Peak Weight	Z Weighting
Detector	Slow
Preamp	PRMLxT1
Microphone Correction	Off
Integration Method	Exponential
OBA Range	Low
OBA Bandwidth	$1 / 1$ and $1 / 3$
OBA Freq. Weighting	Z Weighting
OBA Max Spectrum	Bin Max
Overload	146.4
	A
Under Range Peak	102.7
Under Range Limit	51.7
Noise Floor	38.5
Results	
LASeq	62.7
LASE	92.2
EAS	186.481
EAS8	5.946
EAS40	29.728
LZSpeak (max)	2018-10-22 17:48:49

Job Name: US LO Job Number: 18402 Calibration Check: 113,94

Receptor Site No: \qquad Event No: AM \qquad $\mathbb{P M}$ \qquad Taken By: JRS
AMI Date: $10 / 23 / 18$ Begin Time: 7:05 End Time: 7:20
PIMI Date: \qquad Begin Time: \qquad End Time: \qquad
Receptor Name: Grace Valley Independent Brptist Church Purpose of Receptors: Ambient Only (Y or N): No. of Residences: \qquad Other: \qquad Site Description: front of church Intersecting Roadway Name: \qquad
Req (ABA): $\quad \frac{103.5}{\text { Traffic Count on Existing Roadway: }<}<l$

Distance from Existing Road: 125^{\prime} Height Above or Below Existing Road: $5 f$
Existing Speed Limit: 55 mph Average Speed of Vehicles: $\quad 45-50$ Is the road at a grade: NO Percent Slope: \qquad Which way is it inclining: \qquad
Will this receptor need a driveway to the proposed road: \qquad yes
Weather:
AM: $\quad \operatorname{Temp}(F) 41$
RH \qquad \% Wind Speed \qquad MPH

PM: \quad Temp (F) \qquad RH \qquad \% Wind Speed \qquad MPH

NOTES: Non-traffic noise (airplanes, dogs, cars on side road, etc.), foliage, terrain between road and receptor
AM:

PM: \qquad
Both: \qquad

Summary	
File Name on Meter	LxT_Data. 009
File Name on PC	SLM_0005625_LxT_Data_009.00.Idbin
Serial Number	0005625
Model	SoundTrack LxT ${ }^{\text {® }}$
Firmware Version	2.302
User	Jim Smith
Location	Paducah
Job Description	
Note	US 60 Ballard/McCracken_Friendship Road $\text { 1-24 US } 60$
Measurement	
Description	
Start	2018-10-23 07:05:21
Stop	2018-10-23 07:20:31
Duration	00:15:09.6
Run Time	00:15:09.6
Pause	00:00:00.0
Pre Calibration	2018-10-23 07:03:21
Post Calibration	None
Calibration Deviation	---
Overall Settings	
RMS Weight	A Weighting
Peak Weight	Z Weighting
Detector	Slow
Preamp	PRMLxT1
Microphone Correction	Off
Integration Method	Exponential
OBA Range	Low
OBA Bandwidth	$1 / 1$ and $1 / 3$
OBA Freq. Weighting	Z Weighting
OBA Max Spectrum	Bin Max
Overload	146.5
	A
Under Range Peak	102.7
Under Range Limit	51.7
Noise Floor	38.6

Results	63.5
LASeq	93.1
LASE	224.333
EAS	7.103
EAS8	35.514
EAS40	$2018-10-23$
LZSpeak (max)	$27: 18: 31$

NOISE RECEPTOR SITE DATA SHEET

Job Name: \qquad Job Number: 18402 Calibration Check: 113.94

Receptor Site No: \qquad Event No: AMI \qquad PM \qquad Taken By \qquad
AM Date: $10123 / 18$ Begin Time: $7: 20 \quad$ End Time: $7: 35$
$\mathbb{P M}$ Date: \qquad Begin Time: \qquad End Time: \qquad
Receptor Name: Grace Valley Independent Baptist Church Purpose of Receptors: Ambient Only (Y or N):N_ No. of Residences: 5 Other: 1 Site Description: front of church Intersecting Roadway Name: \qquad us 60

Req (aBA):	$\frac{\mathrm{AM}}{33.5}$
Traffic Count on Existing Roadway:	

Distance from Existing Road: 125^{\prime} Height Above or Below Existing Road: 5 ft Existing Speed Limit: 55 mph Average Speed of Vehicles: $45-50$ Is the road at a grade: \qquad NO Percent Slope: \qquad Which way is it inclining: \qquad
Will this receptor need a driveway to the proposed road; \qquad
Weather: AM: $\operatorname{Temp}(\mathrm{F}) \quad 41 \quad \mathrm{RH} 99 \%$ Wind Speed 0.0 MPH
PM: \quad Temp (F) \qquad RH \qquad \% Wind Speed \qquad MPH

NOTES: Non-traffic noise (airplanes, dogs, cars on side road, etc.), foliage, terrain between road and receptor
AM:

PM: \qquad
Both: \qquad

Summary		
File Name on Meter		LxT_Data. 010
File Name on PC	SLM_0005	ta_010.00.Idbin
Serial Number		0005625
Model		SoundTrack LxT ${ }^{\text {® }}$
Firmware Version		2.302
User		Jim Smith
Location		Paducah
Job Description	US 60 B	cken_Friendship Road
Note	1-24 US 60	
Measurement		
Description		
Start		2018-10-23 07:20:40
Stop		2018-10-23 07:35:56
Duration		00:15:15.9
Run Time		00:15:15.9
Pause		00:00:00.0
Pre Calibration		2018-10-23 07:03:18
Post Calibration		None
Calibration Deviation		---
Overall Settings		
RMS Weight		A Weighting
Peak Weight		Z Weighting
Detector		Slow
Preamp		PRMLxT1
Microphone Correction		Off
Integration Method		Exponential
OBA Range		Low
OBA Bandwidth		$1 / 1$ and $1 / 3$
OBA Freq. Weighting		Z Weighting
OBA Max Spectrum		Bin Max
Overload		146.5
		A
Under Range Peak		102.7
Under Range Limit		51.7
Noise Floor		38.6
Results		
LASeq		63.5
LASE		93.1
EAS		226.918
EAS8		7.135
EAS40		35.677
LZSpeak (max)		2018-10-23 07:28:30

NOISE RECEPTOR SITE DATA SHEET

Job Name: US 60 Job Number: 18402 . Calibration Check: 113.94 Receptor Site No: 4 Event No: AM \vee PMI___ Taken By: JRS AM Date: $10 / 23 / 18$ Begin Time: $7: 41$ End Time: $7: 57$ PMI Date: \qquad Begin Time: \qquad End Time: \qquad Receptor Name: West Ky Technology Park
Purpose of Receptors: Ambient Only (Y or N) \qquad No, of Residences: 10 Other: \qquad Site Description: front vow of residences Intersecting Roadway Name: \qquad
AMI
61.5

Leq (BA):
Traffic Count on Existing Roadway: \leftarrow

\qquad bound \qquad bound

Distance from Existing Road: $100^{1} \mathrm{H}$ Height Above or Below Existing Road: 5 ft Existing Speed Limit: $\quad 35 \mathrm{mph}$ Average Speed of Vehicles: $\quad 35 \mathrm{mph}$ Is the road at a grade: \qquad NO Percent Slope: \qquad Which way is it inclining: \qquad
Will this receptor need a driveway to the proposed road: \qquad yes
Weather: AM: $\operatorname{Temp}(F) 40.2^{\circ} \quad \mathrm{RH} 96 \%$ Wind Speed 0.0 MPH
PM: \quad Temp (F) \qquad RH \qquad \% Wind Speed \qquad MPH

NOTES: Non-traffic noise (airplanes, dogs, cars on side road, etc.), foliage, terrain between road and receptor
AIM:

PM: \qquad
Both: \qquad

Summary		
File Name on Meter		LxT_Data. 011
File Name on PC	SLM_0005625_LxT_Data_011.00.Idbin	
Serial Number	0005625	
Model	SoundTrack LxT ${ }^{\text {® }}$	
Firmware Version	2.302	
User	Jim Smith	
Location	Paducah	
Job Description	US 60 Ballard/McCracken_Friendship Road	
Note	1-24 US 60	
Measurement		
Description		
Start		2018-10-23 07:41:57
Stop		2018-10-23 07:57:01
Duration		00:15:03.5
Run Time		00:15:03.5
Pause		00:00:00.0
Pre Calibration		2018-10-23 07:03:18
Post Calibration		None
Calibration Deviation		---
Overall Settings		
RMS Weight	A Weighting	
Peak Weight	Z Weighting	
Detector	Slow	
Preamp	PRMLxT1	
Microphone Correction	Exponential	
Integration Method		
OBA Range	Low	
OBA Bandwidth	$1 / 1$ and $1 / 3$	
OBA Freq. Weighting	Z Weighting	
OBA Max Spectrum	Bin Max	
Overload	146.5A	
Under Range Peak	102.7	
Under Range Limit	51.7	
Noise Floor	38.6	
Results		
LASeq		61.5
LASE		91.0
EAS		141.104
EAS8		4.498
EAS40		22.489
LZspeak (max)	2018-10-23 07:53:11	

Job Name: US 60 Job Number: 18402 Calibration Check: 113.94
Receptor Site No: \qquad Event No: AMI \qquad PM \qquad Taken By: JRS AM Date: $10 / 23 / 18$ Begin Time: $7: 57$ End Time: $8: 12$ PIM Date: \qquad Begin Time: \qquad End Time: \qquad
Receptor Name: West Ky Technology Park
Purpose of Receptors: Ambient Only (Y or N): N No. of Residences: 10 Other: \qquad Site Description: front row of residences Intersecting Roadway Name: \qquad US 60

AM
61.8

Le (ABA):
Traffic Count on Existing Roadway: \leftarrow
\qquad bound \qquad bound

Distance from Existing Road: 100^{1} Height Above or Below Existing Road: $5 \mathrm{ft}^{\prime}$ Existing Speed Limit: 35 mph_ Average Speed of Vehicles: \qquad Is the road at a grade: NO Percent Slope: \qquad Which way is it inclining: \qquad
Will this receptor need a driveway to the proposed road: \qquad
Weather: $\quad \mathbf{A M}: \quad \operatorname{Temp}(F) 49^{\circ}$
PM: \quad Temp (F) \qquad RH \qquad \% Wind Speed \qquad MPH

NOTES: Non-traffic noise (airplanes, dogs, cars on side road, etc.), foliage, terrain between road and receptor
AM: \qquad
PM: \qquad
Both: \qquad

Summary	
File Name on Meter	LxT_Data. 012
File Name on PC	SLM_0005625_LxT_Data_012.00.Idbin
Serial Number	0005625
Model	SoundTrack LxT ${ }^{\text {® }}$
Firmware Version	2.302
User	Jim Smith
Location	Paducah
Job Description	US 60 Ballard/McCracken_Friendship Road
Note	1-24 US 60
Measurement	
Description	
Start	2018-10-23 07:57:12
Stop	2018-10-23 08:12:16
Duration	00:15:04.1
Run Time	00:15:04.1
Pause	00:00:00.0
Pre Calibration	2018-10-23 07:03:18
Post Calibration	None
Calibration Deviation	---
Overall Settings	
RMS Weight	A Weighting
Peak Weight	Z Weighting
Detector	Slow
Preamp	PRMLxT1
Microphone Correction	Off
Integration Method	Exponential
OBA Range	Low
OBA Bandwidth	$1 / 1$ and $1 / 3$
OBA Freq. Weighting	Z Weighting
OBA Max Spectrum	Bin Max
Overload	146.5
	A
Under Range Peak	102.7
Under Range Limit	51.7
Noise Floor	38.6
Results	
LASeq	61.8
LASE	91.4
EAS	153.687
EAS8	4.896
EAS40	24.478
LZSpeak (max)	2018-10-23 08:01:11

Traffic Count on Existing Roadway:

Distance from Existing Road: \qquad Height Above or Below Existing Road; \qquad
Existing Speed Limit: \qquad Average Speed of Vehicles: \qquad
Is the road at a grade: \qquad Percent Slope: \qquad Which way is it inclining: \qquad
Will this receptor need a driveway to the proposed road: \qquad No

Weather:
AM: $\operatorname{Temp}(\mathrm{F}) 46.8$
PM: \quad Temp (F) \qquad RH \qquad \% Wind Speed \qquad MPH

RH \qquad \% Wind Speed \qquad MPH

NOTES: Non-traffic noise (airplanes, dogs, cars on side road, etc.), foliage, terrain between road and receptor
AM: \qquad
PM: \qquad
Both: \qquad

Summary	
File Name on Meter	LxT_Data. 013
File Name on PC	SLM_0005625_LxT_Data_013.00.Idbin
Serial Number	0005625
Model	SoundTrack LxT ${ }^{\text {® }}$
Firmware Version	2.302
User	Jim Smith
Location	Paducah
Job Description	US 60 Ballard/McCracken_Friendship Road
Note	$1-24 \text { US } 60$
Measurement	
Description	
Start	2018-10-23 08:19:53
Stop	2018-10-23 08:35:13
Duration	00:15:20.1
Run Time	00:15:20.1
Pause	00:00:00.0
Pre Calibration	2018-10-23 07:03:18
Post Calibration	None
Calibration Deviation	-
Overall Settings	
RMS Weight	A Weighting
Peak Weight	Z Weighting
Detector	Slow
Preamp	PRMLxT1
Microphone Correction	Off
Integration Method	Exponential
OBA Range	Low
OBA Bandwidth	$1 / 1$ and $1 / 3$
OBA Freq. Weighting	Z Weighting
OBA Max Spectrum	Bin Max
Overload	146.5
	A
Under Range Peak	102.7
Under Range Limit	51.7
Noise Floor	38.6
Results	
LASeq	46.4
LASE	76.0
EAS	4.462
EAS8	139.669
EAS40	698.345
LZSpeak (max)	2018-10-23 08:19:58

\qquad Job Number: 18402 Calibration Check: 113.94 Receptor Site No: 2 Event No: AM \qquad PM \qquad Taken By: JRS AMI Date: $10 / 23 / 18$ Begin Time: $8: 48$ End Time: $9: 03$ PM Date: \qquad Begin Time: \qquad End Time: \qquad Receptor Name: Smith's residence Purpose of Receptors: Ambient Only (Y or N): No. of Residences: $6-7$ Other: Site Description: 7948 US 60 front yard Intersecting Roadway Name: US LO
Seq (ABA): $\quad \underline{\text { LM }}$

Traffic Count on Existing Roadway:

Distance from Existing Road: 95^{\prime} Height Above or Below Existing Road: $5 \frac{f}{f}$ Existing Speed Limit: 55 mph Average Speed of Vehicles: 50 mph

Is the road at a grade: \qquad Percent Slope: \qquad Which way is it inclining: \qquad
Will this receptor need a driveway to the proposed road: \qquad
Weather:
AM: Temp (F) $49,5^{\circ}$
RH \qquad \% Wind Speed \qquad MPH
PM: \quad Temp (F) \qquad RH \qquad \% Wind Speed \qquad MPH

NOTES: Non-traffic noise (airplanes, dogs, cars on side road, etc.), foliage, terrain between road and receptor
AM: \qquad
PM: \qquad
Both: \qquad

Summary	
File Name on Meter	LxT_Data. 014
File Name on PC	SLM_0005625_LxT_Data_014.00.Idbin
Serial Number	0005625
Model	SoundTrack LxT*
Firmware Version	2.302
User	Jim Smith
Location	Paducah
Job Description	US 60 Ballard/McCracken_Friendship Road
Note	1-24 US 60
Measurement	
Description	
Start	2018-10-23 08:48:54
Stop	2018-10-23 09:03:57
Duration	00:15:02.8
Run Time	00:15:02.8
Pause	00:00:00.0
Pre Calibration	2018-10-23 07:03:18
Post Calibration	None
Calibration Deviation	---
Overall Settings	
RMS Weight	A Weighting
Peak Weight	Z Weighting
Detector	Slow
Preamp	PRMLxT1
Microphone Correction	Off
Integration Method	Exponential
OBA Range	Low
OBA Bandwidth	$1 / 1$ and $1 / 3$
OBA Freq. Weighting	Z Weighting
OBA Max Spectrum	Bin Max
Overload	146.5
	A
Under Range Peak	102.7
Under Range Limit	51.7
Noise Floor	38.6
Results	
LASeq	65.8
LASE	95.3
EAS	380.697
EAS8	12.145
EAS40	60.723
LZSpeak (max)	2018-10-23 08:56:23

Job Name: \qquad Job Number: 18402 Calibration Check: 113.94 Receptor Site No: \qquad Event No: AM \qquad PM \qquad Taken By: JRS AM Date: $10 / 23118$ Begin Time: $9: 11$ End Time: $9: 26$ PMI Date: \qquad Begin Time: \qquad End Time: \qquad
Receptor Name: House of Prayer
Purpose of Receptors: Ambient Only (Y or N): No. of Residences: \square Other: \qquad Site Description: church and picnic tables/ swings Intersecting Roadway Name: \qquad
AM
64.6

Leq (ABA):
Traffic Count on Existing Roadway:
Autos:
\qquad bound \qquad bound \qquad
Medium Trucks:
Heavy Trucks:
Buses:
Motorcycles:

Distance from Existing Road: 75^{1} Height Above orelow existing Road: \qquad Existing Speed Limit: $\quad 55 \mathrm{mph}$ Average Speed of Vehicles: \qquad Is the road at a grade: \qquad Percent Slope: \qquad Which way is it inclining: west Will this receptor need a driveway to the proposed road: \qquad 5 Weather: AM: $\quad \operatorname{Temp}(F) 51.3$ PM: \quad Temp (F) \qquad RH \qquad \% Wind Speed
\qquad MPH
RH 88 $\%$ Wind Speed bound yes \qquad ph

Job Name: \qquad Job Number: 18402 Calibration Check: 113.94

Receptor Site No: \qquad Event No: AM \qquad PM \qquad Taken By: JRS
AMI Date: $10 / 23 / 18$ Begin Time: $9: 26$ End Time: $9: 42$
PM Date: \qquad Begin Time: \qquad End Time: \qquad
Receptor Name: House of Prayer
Purpose of Receptors: Ambient Only (Y or N): N No. of Residences: \qquad Other: \qquad
Site Description: \qquad church and picnic tables / swings Intersecting Roadway Name: \qquad US 60

$\operatorname{Leq}(\mathrm{dBA})$:
Traffic Count on Existing Roadway:

	$\frac{c}{\text { east }}$ bound $\frac{\text { west }}{14}$ bound	
Autos:	$\frac{42}{2}$	$\frac{14}{3}$
Medium Trucks:	$\frac{14}{4}$	-
Heavy Trucks:	$\frac{-}{4}$	
Buses:	-	-
Motorcycles:	-	

\qquad bound \qquad bound

Autos:

Medium Trucks:
Heavy Trucks:
Buses:
Motorcycles:

Distance from Existing Road: 75^{1} Height Above or Below Existing Road: \qquad Existing Speed Limit: \qquad Average Speed of Vehicles:
 Is the road at a grade: \qquad Percent Slope: \qquad Which way is it inclining: \qquad west Will this receptor need a driveway to the proposed road: \qquad Weather:

PM: Temp (F) \qquad H \qquad \% Wind Speed \qquad MPH

NOTES: Non-traffic noise (airplanes, dogs, cars on side road, etc.), foliage, terrain between road and receptor
AM: \qquad
PM: \qquad
Both: \qquad

Summary	
File Name on Meter	LxT_Data. 016
File Name on PC	SLM_0005625_LxT_Data_016.00.Idbin
Serial Number	0005625
Model	SoundTrack LxT ${ }^{\text {® }}$
Firmware Version	2.302
User	Jim Smith
Location	Paducah
Job Description	US 60 Ballard/McCracken_Friendship Road
Note	1-24 US 60
Measurement	
Description	
Start	2018-10-23 09:26:55
Stop	2018-10-23 09:42:12
Duration	00:15:16.8
Run Time	00:15:16.8
Pause	00:00:00.0
Pre Calibration	2018-10-23 07:03:18
Post Calibration	None
Calibration Deviation	---
Overall Settings	
RMS Weight	A Weighting
Peak Weight	Z Weighting
Detector	Slow
Preamp	PRMLxT1
Microphone Correction	Off
Integration Method	Exponential
OBA Range	Low
OBA Bandwidth	$1 / 1$ and $1 / 3$
OBA Freq. Weighting	Z Weighting
OBA Max Spectrum	Bin Max
Overload	146.5
	A
Under Range Peak	102.7
Under Range Limit	51.7
Noise Floor	38.6
Results	
LASeq	64.9
LASE	94.5
EAS	313.030
EAS8	9.833
EAS40	49.167
LZSpeak (max)	2018-10-23 09:29:17

NOISE RECEPTOR SITE DATA SHEET
Job Name: US 60 Job Number: 18402 Calibration Check: 114.02
Receptor Site No: 5 Event No: AM 1 PMI__Taken By:_JRS
AM Date: $10 / 23 / 18$ Begin Time: $11: 15$ End Time: $11: 31$
PM Date: \qquad Begin Time: \qquad End Time: \qquad
Receptor Name: \square Grace Valley Independent at Baptist Churd Purpose of Receptors: Ambient Only (Y or N): No. of Residences: 5 Other: 1 Site Description: front of church

Intersecting Roadway Name: \qquad US LO
Leq (ABA): $\quad \underline{(6) .1}$

Traffic Count on Existing Roadway: $\quad<$

Distance from Existing Road: 125^{\prime} Height Above or Below Existing Road: 5 ft Existing Speed Limit: 55 mph Average Speed of Vehicles: 45 mph Is the road at a grade: \qquad NO Percent Slope: \qquad Which way is it inclining: \qquad
Will this receptor need a driveway to the proposed road: \qquad Weather: AM: $\operatorname{Temp}(F) 67.8 \quad$ RH 43% Wind Speed 2.5 MPH

PM: \quad Temp (F) \qquad RH \qquad \% Wind Speed \qquad MPH

NOTES: Non-traffic noise (airplanes, dogs, cars on side road, etc.), foliage, terrain between road and receptor
AM: \qquad
PM: \qquad
Both: \qquad

Summary	
File Name on Meter	LxT_Data. 017
File Name on PC	SLM_0005625_LxT_Data_017.00.Idbin
Serial Number	0005625
Model	SoundTrack LxT ${ }^{\text {® }}$
Firmware Version	2.302
User	Jim Smith
Location	Paducah
Job Description	US 60 Ballard/McCracken_Friendship Road
Note	1-24 US 60
Measurement	
Description	
Start	2018-10-23 11:15:03
Stop	2018-10-23 11:31:19
Duration	00:16:16.3
Run Time	00:16:16.3
Pause	00:00:00.0
Pre Calibration	2018-10-23 11:13:33
Post Calibration	None
Calibration Deviation	---
Overall Settings	
RMS Weight	A Weighting
Peak Weight	Z Weighting
Detector	Slow
Preamp	PRMLxT1
Microphone Correction	Off
Integration Method	Exponential
OBA Range	Low
OBA Bandwidth	$1 / 1$ and $1 / 3$
OBA Freq. Weighting	Z Weighting
OBA Max Spectrum	Bin Max
Overload	146.5
	A
Under Range Peak	102.7
Under Range Limit	51.7
Noise Floor	38.6
Results	
LASeq	61.1
LASE	90.9
EAS	138.269
EAS8	4.079
EAS40	20.394
LZSpeak (max)	2018-10-23 11:17:37

Job Name: US 60 Job Number: 18402 Calibration Check: 114.02 Receptor Site No: 5 Event No: AM \downarrow PM__ Taken By: JRS AM Date: $10 / 23 / 18$ Begin Time: $11: 31$ End Time: $11: 48$ PM Date: \qquad Begin Time: \qquad End Time: \qquad
Receptor Name: Grace Valley Independent Baptist Church Purpose of Receptors: Ambient Only (Y or N): N No. of Residences: 5 Other: 1 Site Description: \qquad front of church Intersecting Roadway Name: US 60

Distance from Existing Road: 125^{\prime} Height Above or Below Existing Road: 5 ft Existing Speed Limit: 55 mph Average Speed of Vehicles: 45 mph Is the road at a grade: \qquad NO Percent Slope: \qquad Which way is it inclining: \qquad
Will this receptor need a driveway to the proposed road: \qquad
Weather:
AM: $\operatorname{Temp}(\mathrm{F}) 71.4^{\circ}$
RH 39 $\%$ Wind Speed \qquad MPH

PM: Temp (F) \qquad RH \qquad \% Wind Speed \qquad MPH

NOTES: Non-traffic noise (airplanes, dogs, cars on side road, etc.), foliage, terrain between road and receptor
AM: \qquad
PM: \qquad
Both: \qquad

Summary	
File Name on Meter	LxT_Data. 018
File Name on PC	SLM_0005625_LxT_Data_018.00.Idbin
Serial Number	0005625
Model	SoundTrack LxT ${ }^{\text {® }}$
Firmware Version	2.302
User	Jim Smith
Location	Paducah
Job Description	US 60 Ballard/McCracken_Friendship Road
Note	1-24 US 60
Measurement	
Description	
Start	2018-10-23 11:31:27
Stop	2018-10-23 11:48:50
Duration	00:17:23.7
Run Time	00:17:23.7
Pause	00:00:00.0
Pre Calibration	2018-10-23 11:13:30
Post Calibration	None
Calibration Deviation	---
Overall Settings	
RMS Weight	A Weighting
Peak Weight	Z Weighting
Detector	Slow
Preamp	PRMLxT1
Microphone Correction	Off
Integration Method	Exponential
OBA Range	Low
OBA Bandwidth	$1 / 1$ and $1 / 3$
OBA Freq. Weighting	Z Weighting
OBA Max Spectrum	Bin Max
Overload	146.5
	A
Under Range Peak	102.7
Under Range Limit	51.7
Noise Floor	38.6
Results	
LASeq	60.9
LASE	91.0
EAS	141.165
EAS8	3.895
EAS40	19.477
LZspeak (max)	2018-10-23 11:39:06

NOISE RECEPTOR SITE DATA SHEET

Job Name: \qquad US wO Job Number: \qquad 18402 Calibration Check: \qquad 114.02

Receptor Site No: \qquad 4 Event No: AM \qquad PI \qquad Taken By: \qquad
AIM Date: \qquad $10 / 23 / 18$ Begin Time: \qquad $11: 54$ End Time: \qquad $12: 09$

PM Date: \qquad Begin Time: \qquad End Time: \qquad
Receptor Name: \qquad West Ky Technology Park
Purpose of Receptors: Ambient Only (Y or N): \qquad No. of Residences: \qquad Other: \qquad
Site Description: \qquad front row of residences

Intersecting Roadway Name: \qquad US 60

| $\underline{\mathrm{AMI}}$ |
| :--- | :--- |
| $\underline{\mathrm{COHM}}$ |

Traffic Count on Existing Roadway:

Distance from Existing Road: 100^{\prime} Height Above or Below Existing Road: \qquad
Existing Speed Limit: \qquad 35 mph Average Speed of Vehicles: \qquad Is the road at a grade: \qquad NO Percent Slope: \qquad Which way is it inclining: \qquad
Will this receptor need a driveway to the proposed road: \qquad yes

\qquad
\qquad
\qquad
NOTES: Non-traffic noise (airplanes, dogs, cars on side road, etc.), foliage, terrain between road and receptor
AM: \qquad dog barking, truck idling; birds

PM: \qquad
Both: \qquad

Summary	
File Name on Meter	LxT_Data. 019
File Name on PC	SLM_0005625_LxT_Data_019.00.Idbin
Serial Number	0005625
Model	SoundTrack LxT ${ }^{\text {® }}$
Firmware Version	2.302
User	Jim Smith
Location	Paducah
Job Description	US 60 Ballard/McCracken_Friendship Road
Note	1-24 US 60
Measurement	
Description	
Start	2018-10-23 11:54:23
Stop	2018-10-23 12:09:28
Duration	00:15:04.7
Run Time	00:15:04.7
Pause	00:00:00.0
Pre Calibration	2018-10-23 11:13:30
Post Calibration	None
Calibration Deviation	---
Overall Settings	
RMS Weight	A Weighting
Peak Weight	Z Weighting
Detector	Slow
Preamp	PRMLxT1
Microphone Correction	Off
Integration Method	Exponential
OBA Range	Low
OBA Bandwidth	$1 / 1$ and $1 / 3$
OBA Freq. Weighting	Z Weighting
OBA Max Spectrum	Bin Max
Overload	146.5
	A
Under Range Peak	102.7
Under Range Limit	51.7
Noise Floor	38.6
Results	
LASeq	60.0
LASE	89.5
EAS	99.521
EAS8	3.168
EAS40	15.841
LZSpeak (max)	2018-10-23 11:59:14

Job Name: \qquad Job Number: \qquad 18402 Calibration Check: 114.02

Receptor Site No: \qquad Event No: AM \qquad PM \qquad Taken By: \qquad AMI Date: \qquad Begin Time: \qquad End Time: \qquad PM Date: $10 / 23 / 18$ Begin Time: $12: 09$ End Time: $12: 24$ Receptor Name: West KY Technology Park Purpose of Receptors: Ambient Only (Y or N): N_No. of Residences: 10 Other: \qquad Site Description: front vow of residences Intersecting Roadway Name: US 60
Leq (ABA): $\quad \frac{62.8}{\text { AIM }}$
Traffic Count on Existing Roadway:

Distance from Existing Road: 100^{\prime} Height Above or Below Existing Road: 5 ft Existing Speed Limit: 35 mph Average Speed of Vehicles: 35 mph Is the road at a grade: \qquad NO Percent Slope: \qquad Which way is it inclining: \qquad
Will this receptor need a driveway to the proposed road: \qquad
Weather: \qquad RH \qquad \% Wind Speed \qquad MPH PM: Temp (F) 71.5 RH 35% wind Speed 1. 6 MPH

NOTES: Non-traffic noise (airplanes, dogs, cars on side road, etc.), foliage, terrain between road and receptor
AM: \qquad
PM: dog barking, birls
Both: \qquad

NOISE RECEPTOR SITE DATA SHEET

Job Name: \qquad Job Number: 18402 Calibration Check: 114.02 Receptor Site No: \qquad Event No: AM \qquad PIN \qquad Taken By: \qquad

AIM Date: \qquad Begin Time: \qquad End Time: \qquad PMM Date: $10 / 23 / 18$ Begin Time: $12: 35$ End Time: $12: 50$ Receptor Name: \qquad Pine Lane residence
Purpose of Receptors: Ambient Only (Y or N): \qquad No. of Residences: \qquad Other: \qquad Site Description: residence near proposed alicnment Intersecting Roadway Name: \qquad Gage Road

AMI
Seq (dBA):
Traffic Count on Existing Roadway:
\qquad Autos:
Medium Trucks:
Heavy Trucks:
Buses:
Bound _____ bound
Motorcycles:
\qquad Autos:
Medium Trucks:
Heavy Trucks:
Buses:
Bound _____ bound
Motorcycles:
\qquad Autos:
Medium Trucks:
Heavy Trucks:
Buses:
Bound _____ bound
Motorcycles:
\qquad Autos:
Medium Trucks:
Heavy Trucks:
Buses:
Bound _____ bound
Motorcycles: Autos:
Medium Trucks:
Heavy Trucks:
Buses:
Bound _____ bound
Motorcycles:
\qquad
\qquad Autos:
Medium Trucks:
Heavy Trucks:
Buses:
Bound _____ bound
Motorcycles:
\qquad
\qquad Autos:
Medium Trucks:
Heavy Trucks:
Buses:
Bound _____ bound
Motorcycles: Autos:
Medium Trucks:
Heavy Trucks:
Buses:
Bound _____ bound
Motorcycles: Autos:
Medium Trucks:
Heavy Trucks:
Buses:
Bound _____ bound
Motorcycles:

\qquad $\frac{\mathrm{PM}}{45.6}$

Distance from Existing Road: \qquad Height Above or Below Existing Road: \qquad

Existing Speed Limit: \qquad Average Speed of Vehicles: \qquad Is the road at a grade: \qquad Percent Slope: \qquad Which way is it inclining: \qquad

Will this receptor need a driveway to the proposed road: \qquad
Weather:
AM: \quad Temp (F) \qquad RH \qquad \% Wind Speed \qquad MPH

PM: \quad Temp (F) 73.6
RH \qquad \% Wind Speed \qquad MPH

NOTES: Non-traffic noise (airplanes, dogs, cars on side road, etc.), foliage, terrain between road and receptor
AMI:
PM: lawn mowing in back ground. small plane overhead
Both: \qquad

Summary	
File Name on Meter	LxT_Data. 021
File Name on PC	SLM_0005625_LxT_Data_021.00.Idbin
Serial Number	0005625
Model	SoundTrack LxT ${ }^{\text {® }}$
Firmware Version	2.302
User	Jim Smith
Location	Paducah
Job Description	US 60 Ballard/McCracken_Friendship Road
Note	1-24 US 60
Measurement	
Description	
Start	2018-10-23 12:35:36
Stop	2018-10-23 12:50:40
Duration	00:15:03.5
Run Time	00:15:03.5
Pause	00:00:00.0
Pre Calibration	2018-10-23 11:13:30
Post Calibration	None
Calibration Deviation	---
Overall Settings	
RMS Weight	A Weighting
Peak Weight	Z Weighting
Detector	Slow
Preamp	PRMLxT1
Microphone Correction	Off
Integration Method	Exponential
OBA Range	Low
OBA Bandwidth	$1 / 1$ and $1 / 3$
OBA Freq. Weighting	Z Weighting
OBA Max Spectrum	Bin Max
Overload	146.5
	A
Under Range Peak	102.7
Under Range Limit	51.7
Noise Floor	38.6
Results	
LASeq	45.6
LASE	75.2
EAS	3.683
EAS8	117.411
EAS40	587.054
LZSpeak (max)	2018-10-23 12:39:33

NOISE RECEPTOR SITE DATA SHEET

Job Name: \qquad Job Number: \qquad 18402 Calibration Check: 114.02 Receptor Site No: \qquad Event No: AMI \qquad PM \qquad Taken By: \qquad IRS

AMI Date: \qquad Begin Time: \qquad End Time: \qquad
PMI Date: $10 / 23 / 18$ Begin Time: \qquad $12: 58$ End Time: \qquad $1: 13$

Receptor Name: \qquad Smith's residence

Purpose of Receptors: Ambient Only (Y or N): \qquad No. of Residences: \qquad $6-7$ Other: \qquad
Site Description: \qquad 7948 us 60 front yard
Intersecting Roadway Name: \qquad US 60

$$
\mathrm{AM}
$$

Leq (ABA): \qquad
Traffic Count on Existing Roadway:
\qquad bound \qquad bound

Autos: \qquad
Medium Trucks: \qquad
Heavy Trucks: \qquad
Buses: \qquad
Motorcycles: \qquad
\qquad Height Above or Below Existing Road: 5 ft
\qquad
Distance from Existing Road: 95^{\prime}

Existing Speed Limit: \qquad 55 mph Average Speed of Vehicles: \qquad
Is the road at a grade: \qquad NO Percent Slope: \qquad Which way is it inclining: \qquad
Will this receptor need a driveway to the proposed road: \qquad
Weather:

$$
\text { AIM: } \quad \operatorname{Temp}(F)
$$ RH \qquad \% Wind Speed \qquad MPH

PI: \quad Temp (F) 73.8
RH \qquad 38 \% Wind Speed \qquad 1.1 MPH

NOTES: Non-traffic noise (airplanes, dogs, cars on side road, etc.), foliage, terrain between road and receptor
AM: \qquad
PM: \qquad birds; woodpecker
Both: \qquad

Summary	
File Name on Meter	LxT_Data. 022
File Name on PC	SLM_0005625_LxT_Data_022.00.Idbin
Serial Number	0005625
Model	SoundTrack LxT ${ }^{\text {® }}$
Firmware Version	2.302
User	Jim Smith
Location	Paducah
Job Description	US 60 Ballard/McCracken_Friendship Road
Note	1-24 US 60
Measurement	
Description	
Start	2018-10-23 12:58:10
Stop	2018-10-23 13:13:53
Duration	00:15:42.7
Run Time	00:15:42.7
Pause	00:00:00.0
Pre Calibration	2018-10-23 11:13:30
Post Calibration	None
Calibration Deviation	---
Overall Settings	
RMS Weight	A Weighting
Peak Weight	Z Weighting
Detector	Slow
Preamp	PRMLxT1
Microphone Correction	Off
Integration Method	Exponential
OBA Range	Low
OBA Bandwidth	$1 / 1$ and $1 / 3$
OBA Freq. Weighting	Z Weighting
OBA Max Spectrum	Bin Max
Overload	146.5
	A
Under Range Peak	102.7
Under Range Limit	51.7
Noise Floor	38.6
Results	
LASeq	61.2
LASE	91.0
EAS	139.537
EAS8	4.263
EAS40	21.315
LZSpeak (max)	2018-10-23 13:12:26

Job Name: \qquad US 60 Job Number: \qquad 18402 Calibration Check: \qquad 114.02 Receptor Site No: \qquad Event No: AM \qquad PM \qquad Taken By: \qquad IRS

AMI Date: \qquad Begin Time: \qquad End Time: \qquad
PM Date: \qquad $10123 / 18$ Begin Time: \qquad 1:21 End Time: \qquad $1: 36$

Receptor Name: \qquad
Purpose of Receptors: Ambient Only (Y or N): \qquad No. of Residences: \qquad 4 Other: \qquad
Site Description: \qquad church picnic tables $/$ swings

Intersecting Roadway Name: \qquad
AMI
Req (ABA): \qquad
Traffic Count on Existing Roadway:
\qquad bound \qquad bound

Autos: \qquad
Medium Trucks: \qquad
Heavy Trucks: \qquad
Buses: \qquad
Motorcycles: \qquad
\qquad 75^{\prime} Height Above of Below Existing Road: \qquad
Distance from Existing Road:
Existing Speed Limit: \qquad 55 mph Average Speed of Vehicles: \qquad 50 mph Is the road at a grade: \qquad yes Percent Slope: \qquad Which way is it inclining: \qquad west

Will this receptor need a driveway to the proposed road: \qquad
Weather:

$$
\begin{array}{ll}
\text { AM: } & \operatorname{Temp}(F) \\
\text { PI: } & \operatorname{Temp}(F) 69.4
\end{array}
$$ RH \qquad \% Wind Speed \qquad MPH

RH \qquad 39 $\%$ Wind Speed \qquad MPH

NOTES: Non-traffic noise (airplanes, dogs, cars on side road, etc.), foliage, terrain between road and receptor
AM: \qquad
PM: \qquad
Both: \qquad

Summary		
File Name on Meter		LxT_Data. 023
File Name on PC	SLM_0005625_LxT_Data_023.00.Idbin	
Serial Number	0005625	
Model	SoundTrack LxT ${ }^{\text {® }}$	
Firmware Version	2.302	
User	Jim Smith	
Location	Paducah	
Job Description	US 60 Ballard/McCracken_Friendship Road	
Note	1-24 US 60	
Measurement		
Description		
Start		2018-10-23 13:21:17
Stop		2018-10-23 13:36:22
Duration		00:15:05.9
Run Time		00:15:05.9
Pause		00:00:00.0
Pre Calibration		2018-10-23 11:13:30
Post Calibration		None
Calibration Deviation		---
Overall Settings		
RMS Weight		A Weighting
Peak Weight		Z Weighting
Detector		Slow
Preamp		PRMLxT1
Microphone Correction		Off
Integration Method		Exponential
OBA Range		Low
OBA Bandwidth		$1 / 1$ and $1 / 3$
OBA Freq. Weighting		Z Weighting
OBA Max Spectrum		Bin Max
Overload		146.5
		A
Under Range Peak		102.7
Under Range Limit		51.7
Noise Floor		38.6
Results		
LASeq		64.0
LASE		93.6
EAS		253.075
EAS8		8.046
EAS40		40.228
LZSpeak (max)	2018-10-23 13:23:46	

NOISE RECEPTOR SITE DATA SHEET

Job Name: \qquad Job Number: 18402 Calibration Check: 114.02 Receptor Site No: \qquad Event No: AMI \qquad $\mathbb{P M}$ \qquad Taken By: JRS

AIM Date: \qquad Begin Time: \qquad End Time: \qquad PM Date: $10 / 23 / 18$ Begin Time: $1: 36$ End Time: $1: 51$ Receptor Name: House of Prayer Purpose of Receptors: Ambient Only $(\mathrm{Y}$ or N$)$: N No. of Residences: 4 Other: 1 Site Description: Church picnic tables I swings Intersecting Roadway Name: US60

Distance from Existing Road: 75^{\prime} Height Above or Below Existing Road: \qquad Existing Speed Limit: 55 mph Average Speed of Vehicles: 50 mph Is the road at a grade: \qquad Percent Slope: \qquad Which way is it inclining: \qquad west Will this receptor need a driveway to the proposed road: \qquad
Weather: $\quad \mathbb{A M}: \quad \operatorname{Temp}(F)$
RH \qquad \% Wind Speed \qquad MPH

PMI: Temp (F) 74.8 RH 36% wind speed 2. 1 MPH

NOTES: Non-traffic noise (airplanes, dogs, cars on side road, etc.), foliage, terrain between road and receptor
AM: \qquad
PM: birds
Both: \qquad

Summary	
File Name on Meter	LxT_Data. 024
File Name on PC	SLM_0005625_LxT_Data_024.00.Idbin
Serial Number	0005625
Model	SoundTrack LxT ${ }^{\text {® }}$
Firmware Version	2.302
User	Jim Smith
Location	Paducah
Job Description	US 60 Ballard/McCracken_Friendship Road
Note	1-24 US 60
Measurement	
Description	
Start	2018-10-23 13:36:31
Stop	2018-10-23 13:51:35
Duration	00:15:03.5
Run Time	00:15:03.5
Pause	00:00:00.0
Pre Calibration	2018-10-23 11:13:30
Post Calibration	None
Calibration Deviation	---
Overall Settings	
RMS Weight	A Weighting
Peak Weight	Z Weighting
Detector	Slow
Preamp	PRMLxT1
Microphone Correction	Off
Integration Method	Exponential
OBA Range	Low
OBA Bandwidth	$1 / 1$ and 1/3
OBA Freq. Weighting	Z Weighting
OBA Max Spectrum	Bin Max
Overload	146.5
	A
Under Range Peak	102.7
Under Range Limit	51.7
Noise Floor	38.6
Results	
LASeq	64.3
LASE	93.8
EAS	268.097
EAS8	8.546
EAS40	42.729
LZSpeak (max)	2018-10-23 13:42:13

APPENDIX B

TRAFFIC DATA

NOTE: K-Factors, Directional Distributions, and Peak Hour Factors were determined from a 2019 Turning Movement Count. AM and PM DHVs represent 30th highest hour estimates for each turn maneuver.

NOTE: K-Factors, Directional Distributions, and Peak Hour Factors were determined from a 2040 Turning Movement Count. AM and PM DHVs represent 30th highest hour estimates for each turn maneuver.

NOTE: K-Factors, Directional Distributions, and Peak Hour Factors were determined from a 2019 Turning Movement Count. AM and PM DHVs represent 30th highest hour estimates for each turn maneuver.

2019 PM Design Hour

－AHG．＊

[^2]2019 ADT

Location Map
\[

$$
\begin{aligned}
& \text { NOTE: K-Factors, Directional Distributions, and Peak Hour Factors were determined from a } 2019 \text { Turning } \\
& \text { Movement Count. AM and PM DHVs represent 30th highest hour estimates for each turn maneuver. }
\end{aligned}
$$
\]

$$
\begin{aligned}
& \text { NOTE: K-Factors, Directional Distributions, and Peak Hour Factors were determined from a } 2019 \text { Turning } \\
& \text { Movement Count. AM and PM DHVs }
\end{aligned}
$$

$=2$
NOTE: K-Factors, Directional Distributions, and Peak Hour Factors were determined from a 2040 Turning Movement Count. AM and PM DHVs represent 30th highest hour estimates for each turn maneuver.

NOTE: K-Factors, Directional Distributions, and Peak Hour Factors were determined from a 2040 Turning Movement Count. AM and PM DHVs represent 30th highest hour estimates for each turn maneuver.

[^3]```
TURN MOVEMENT (2040)
```



## 2040 AM Design Hour



## APPENDIX C

## EXISTING NOISE ANALYSIS






18407 - US 60 Ballard Co.






RESULTS: SOUND LEVELS
Receiver28






ஹ




RESULTS: SOUND LEVELS


RESULTS: SOUND LEVELS

RESULTS: SOUND LEVELS

RESULTS: SOUND LEVELS
18402 US 60 Ballard Co

RESULTS: SOUND LEVELS

RESULTS: SOUND LEVELS

RESULTS: SOUND LEVELS

RESULTS: SOUND LEVELS

| Qk4 JRS RESULS: SOUND LEVELS | 28 August 2019 |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RESULTS: SOUND LEVELS Calculated with TNM 2.5 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| PROJECT/CONTRACT: | 18402 - US60 Ballard Co. |  |  |  |  |  |  |  |  |  |  |  |  |
| RUN: | Existing Site 2-8:43 am |  |  |  |  |  |  |  |  |  |  |  |  |
| BARRIER DESIGN: INPUT HEIGHTS |  |  |  |  |  |  |  |  | Average pavement type shall be used unless |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ATMOSPHERICS: |  | 68 deg | F, 50\% RH |  |  |  |  |  | of a differ | ent type with | substantiate | s the use HWA. |  |
| Receiver |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Name | No. | \#DUs | Existing LAeq1h | No Barrier |  |  |  |  |  | With Barrier |  |  |  |
|  |  |  |  | LAeq1h |  | Increase over existing |  |  | Type Impact | Calculated | Noise Reduction |  |  |
|  |  |  |  | Calculated | Crit'n |  | Calculated | Crit'n |  | LAeq1h | Calculated | Goal | Calculated |
|  |  |  |  |  |  |  |  | Sub'I Inc |  |  |  |  | minus |
|  |  |  |  |  |  |  |  |  |  |  |  |  | Goal |
| Site 2 - The Smiths |  |  |  | dBA | dBA |  | B | dB |  | dBA | dB | dB | dB |
| Receiver12 | 12 | 0 | 0.0 | 66.3 |  |  | 66.3 | 10 | Snd Lvi | 66.3 | 0.0 | 7 | -7.0 |
| Receiver13 | 13 | 1 | 0.0 | 56.5 |  |  | 56.5 | 10 | --.. | 56.5 | 0.0 | 7 | -7.0 |
| Receiver14 | 14 | 1 | 0.0 | 61.1 |  |  | 61.1 | 10 | --- | 61.1 | 0.0 | 7 | -7.0 |
| Receiver15 | 15 | 1 | 0.0 | 60.5 |  |  | 60.5 | 10 | --- | 60.5 | 0.0 | 7 | -7.0 |
| Receiver16 | 16 | 1 | 0.0 | 61.3 |  |  | 61.3 | 10 | --- | 61.3 | 0.0 | 7 | -7.0 |
| Receiver17 | 17 | 1 | 0.0 | 61.0 |  |  | 61.0 | 10 | --- | 61.0 | 0.0 | 7 | -7.0 |
| Receiver18 | 18 | 1 | 0.0 | 63,0 |  |  | 63.0 | 10 | -... | 63.0 | 0.0 | 7 | -7.0 |
| Receiver20 | 20 | 1 | 0.0 | 49.4 |  |  | 49.4 | 10 | ---- | 49.4 | 0.0 | 7 | -7.0 |
| Receiver21 | 21 | 1 | 0.0 | 60,8 59,3 |  |  | 60.8 | 10 | ---- | 60.8 | 0.0 | 7 | -7.0 |
| Dwelling Units |  | 1 | 0.0 | 59.3 |  |  | 59.3 | 10 | ---- | 59.3 | 0.0 |  | -7.0 |
|  |  | \# DUs | Noise Reduction |  |  |  |  |  |  |  |  |  |  |
|  |  |  | Min | Avg | Max |  |  |  |  |  |  |  |  |
|  |  |  | dB | dB | dB |  |  |  |  |  |  |  |  |
| All Selected |  | 9 | 0.0 | 0.0 |  |  |  |  |  |  |  |  |  |
| All impacted |  | 0 | 0.0 | 0.0 |  |  |  |  |  |  |  |  |  |
| All that meet NR Goal |  | 0 | 0.0 | 0.0 |  |  |  |  |  |  |  |  |  |

RESULTS: SOUND LEVELS


RESULTS: SOUND LEVELS

RESULTS: SOUND LEVELS

RESULTS: SOUND LEVELS

RESULTS: SOUND LEVELS
RESULTS: SOUND LEVELS PROJECT/CONTRACT:
BARRIER DESIGN:
ATMOSPHERICS:
18402 - US60 Ballard Co
Existing Site 4-12:09 pm
INPUT HEIGHTS
$68 \operatorname{deg} \mathrm{~F}, 50 \% \mathrm{RH}$
28 August 2019
TNM 2.5
Calculated with TNM 2.5 a State highway agency substantiates the us of a different type with approval of FHWA.

| No. | \#DUs | Existing LAeq1h | No Barrier |  |  |  |  | With Barrier |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | LAeq1h |  | Increase over existing |  | Type Impact | Calculated LAeq1h | Noise Reduction |  |  |
|  |  |  | Calculated | Crit'n | Calculated | Crit'n <br> Sub'I Inc |  |  | Calculated | Goal | Calculated <br> minus <br> Goal |
|  |  | dBA | dBA | dBA | dB | dB |  | dBA | dB | dB | dB |
| 1 | 1 | 0.0 | 56.7 | 66 | 56.7 | 10 | - | 56.7 | 0.0 | 7 | -7.0 |
| 2 | 1 | 0.0 | 57.4 | 66 | 57.4 | 10 | - | 57.4 | 0.0 | 7 | -7.0 |
| 3 | 1 | 0.0 | 58.3 | 66 | 58.3 | 10 | --- | 58.3 | 0.0 | 7 | -7.0 |
| 4 | 1 | 0.0 | 58.4 | 66 | 58.4 | 10 | .... | 58.4 | 0.0 | 7 | -7.0 |
| 5 | 1 | 0.0 | 63.0 | 66 | 63.0 | 10 | ---- | 63.0 | 0.0 | 7 | -7.0 |
| 6 | 1 | 0.0 | 62.0 | 66 | 62.0 | 10 | - | 62.0 | 0.0 | 7 | -7.0 |
| 7 | 1 | 0.0 | 60.8 | 66 | 60.8 | 10 | --- | 60.8 | 0.0 |  | -7.0 |
| 8 | 1 | 0.0 | 61.6 | 66 | 61.6 | 10 | --- | 61.6 | 0.0 | 7 | -7.0 |
| 9 | 1 | 0.0 | 59.6 | 66 | 59.6 | 10 | $\cdots$ | 59.6 | 0.0 | 7 | -7.0 |
| 10 | 1 | 0.0 | 61.4 | 66 | 61.4 | 10 | $\cdots$ | 61.4 | 0.0 | 7 | -7.0 |
| 11 | 1 | 0.0 | 61.3 | 66 | 61.3 | 10 | $\cdots$ | 61.3 | 0.0 | 7 | -7.0 |
| 12 | 1 | 0.0 | 60.5 | 66 | 60.5 | 10 | -- | 60.5 | 0.0 | 7 | -7.0 |
| 13 | 1 | 0.0 | 60.4 | 66 | 60.4 | 10 | --- | 60.4 | 0.0 | 7 | -7.0 |
| 14 | 1 | 0.0 | 60.4 | 66 | 60.4 | 10 | ---- | 60.4 | 0.0 | 7 | -7.0 |
| 15 | 1 | 0.0 | 62.7 | 66 | 62.7 | 10 | --- | 62.7 | 0.0 | 7 | -7.0 |
| 16 | 1 | 0.0 | 61.7 | 66 | 61.7 | 10 | $\cdots$ | 61.7 | 0.0 | 7 | -7.0 |
| 19 | 1 | 0.0 | 62.3 | 66 | 62.3 | 10 | ---- | 62.3 | 0.0 | 7 | -7.0 |



RESULTS: SOUND LEVELS

RESULTS: SOUND LEVELS

## 部告

RESULTS: SOUND LEVELS PROJECT/CONTRACT:
RUN:
bARRIER DESIGN:
ATMOSPHERICS:

[^4]$68 \operatorname{deg} \mathrm{~F}, 50 \% \mathrm{RH}$
Calculated with TNM 2.5
of a different type with approval of FHWA.

| Name | No. | \#DUs | Existing LAeq1h | No Barrier |  |  |  |  | With Barrier |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | LAeq1h |  | Increase over existing |  | Type Impact | Calculated LAeq1h | Noise Reduction |  |  |
|  |  |  |  | Calculated | Crit'n | Calculated | Crit'n <br> Sub'I Inc |  |  | Calculated | Goal | Calculated minus Goal |
|  |  |  | dBA | dBA | dBA | dB | dB |  | dBA | dB | dB | dB |
| Receivert | 1 | 1 | 0.0 | 60.2 | 66 | 60.2 | 10 | ---- | 60.2 | 0.0 | 7 |  |
| Receiver2 | 2 | 1 | 0.0 | 53.5 | 66 | 53.5 | 10 | -..- | 53.5 | 0.0 | 7 | -7.0 -7.0 |
| Receiver3 | 3 | 1 | 0.0 | 57.2 | 66 | 57.2 | 10 | ---- | 53.5 | 0.0 | 7 | -7.0 |
| Receiver4 | 4 | 1 | 0.0 | 57.8 | 66 | 57.2 | 10 | --- | 57.2 | 0.0 | 7 | -7.0 |
| Receiver5 | 5 | 1 | 0.0 | 57.8 | 66 | 57.8 | 10 | ---- | 57.8 | 0.0 | 7 | -7.0 |
| Receiver6 | 6 | 1 | 0.0 | - 63.4 | 66 | 59.3 | 10 | - | 59.3 | 0.0 | 7 | -7.0 |
| Receiver7 | 7 | 1 | 0.0 | - 60.4 | 66 | 63.4 | 0 | ---- | 63.4 | 0.0 | 7 | -7.0 |
| Receiver8 | 8 | 1 | 0.0 |  |  |  | 0 | --- | 60.4 | 0.0 | 7 | -7.0 |
| Receiver9 | 9 | 1 | 0.0 |  | 66 | 45.5 | 10 | *-* | 45.5 | 0.0 | 7 | -7.0 |
| Receiver10 | 10 | 1 | 0.0 | 44.1 | 66 | 44.1 | 10 | --- | 44.1 | 0.0 | 7 | -7.0 |
| Receiver11 | 11 | 1 | 0.0 | 42.9 | 66 | 42.9 | 10 | --- | 42.9 | 0.0 | 7 | -7.0 |
| Receiver12 | 12 | 1 | 0.0 | 40.9 | 66 | 40.9 | 10 | --- | 40.9 | 0.0 | 7 | -7.0 |
| Receiver13 | 13 | 1 | 0.0 | 39 | 66 | 40.1 | 10 | --- | 40.1 | 0.0 | 7 | -7.0 |
| Receiver14 | 14 | - 1 | 0.0 | 38 | 66 | 39.4 | 10 | -*- | 39.4 | 0.0 | 7 | -7.0 |
| Receiver15 | 15 | -1 | - 0.0 | 43 | 66 | 38.7 | 10 | - | 38.7 | 0.0 | 7 | -7.0 |
| Receiver16 | 16 | 1 |  | 4 | 66 | 43.2 | 10 | -- | 43.2 | 0.0 | 7 | -7.0 |
| Receiver17 | 17 | 1 |  | 4 | 66 | 42.0 | 10 | - - | 42.0 | 0.0 | 7 | -7.0 |
| Receiver18 | 18 | 1 | 0 | 38 | 66 | 39.6 | 10 | - --. | 39,6 | 0.0 | 7 | -7.0 |
| Receiver20 | 20 | 1 | 0 | 38 | 66 | 38.9 | 10 | ---- | 38.9 | 0.0 | 7 | -7.0 |
| Receiver21 | 21 | 1 |  | 04 | 66 | 64.5 | 10 | --- | 64.5 | 0.0 | 7 | -7.0 |
| Grace Valley Independent Church | 23 | 0 | 0 | 61 | 66 | 61.5 | 10 | ---- | 61.5 | 0.0 | 7 | -7.0 |
| Dwelling Units |  | \# DUs | Noise Reduction |  |  | 61.8 | 10 | --- | 61.8 | 0.0 | 7 | -7.0 |
|  |  |  |  |  |  |  |  |  |  |  |  |

RESULTS: SOUND LEVELS

|  | 18402 US60 Ballard Co |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
| All Selected |  | dB | dB | dB |  |
| All Impacted | 20 | 0.0 | 0.0 | 0.0 |  |
| All that meet NR Goal | 0 | 0.0 | 0.0 | 0.0 |  |

RESULTS: SOUND LEVELS
RESULTS: SOUND LEVELS

|  | 18402 US60 Ballard Co |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| All Selected |  | dB | dB | dB |  |
| All Impacted | 20 | 0.0 | 0.0 | 0.0 |  |
| All that meet NR Goal | 0 | 0.0 | 0.0 | 0.0 |  |

RESULTS: SOUND LEVELS
Calculated with TNM 2.5 Existing Site $511 \cdot 15$ am INPUT HEIGHTS

## $68 \operatorname{deg} \mathrm{~F}, 50 \% \mathrm{RH}$

28 August 2019
TNM 2.5
Cat
of a different type with approval of FHWA.

| Name | No. | \#DUs | Existing LAeq1h | No Barrier |  |  |  |  | With Barrier |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | LAeq1h |  | Increase over existing |  | Type <br> Impact | Calculated LAeq1h | Noise Reduction |  |  |
|  |  |  |  | Calculated | Crit'n | Calculated | Crit'n <br> Sub'I Inc |  |  | Calculated | Goal | Calculated minus Goal |
|  |  |  | dBA | dBA | dBA | dB | dB |  | dBA | dB | dB | dB |
| Receiver 1 | 1 | 1 | 0.0 | 59.5 | 66 | 59.5 | 10 | --- | 59.5 | 0.0 | 7 | -7.0 |
| Receiver2 | 2 | 1 | 0.0 | 53.1 | 66 | 53.1 | 10 | ---- | 53.1 | 0.0 | 7 | -7.0 |
| Receiver3 | 3 | -1 | 0.0 | 56.6 | 66 | 56.6 | 10 | ---- | 56.6 | 0.0 | 7 | -7.0 |
| Receiver4 | 4 | 1 | 0.0 | 57.2 | 66 | 57.2 | 10 | - | 57.2 | 0.0 | 7 | -7.0 |
| Receiver5 | 5 | -1 | 0.0 | 58.5 | 66 | 58.5 | 10 | - | 58.5 | 0.0 | 7 | -7.0 |
| Receiver6 | 6 | 1 | 0.0 | 62.7 | 66 | 62.7 | 10 | -- | 62.7 | 0.0 | 7 | -7.0 |
| Receiver7 | 7 | 1 | 0.0 | 59.7 | 66 | 59.7 | 10 | -- | 59.7 | 0.0 | 7 | -7.0 |
| Receiver8 <br> Receiver9 | 8 | 1 | 0.0 | 45.3 | 66 | 45.3 | 10 | --" | 45.3 | 0.0 | 7 | -7.0 |
| Receiver9 <br> Receiver10 | 9 | 1 | 0.0 | 43.8 | 66 | 43.8 | 10 | -- | 43.8 | 0.0 | 7 | -7.0 |
| Receiver11 | 10 | 1 | 0.0 | 42.6 | 66 | 42.6 | 10 | --- | 42.6 | 0.0 | 7 | -7.0 |
| Receiver12 | 11 | 1 | 0.0 | 40.5 | 66 | 40.5 | 10 | --.* | 40.5 | 0.0 | 7 | -7.0 |
| Receiver13 | 12 | 1 | 0.0 | 39.8 | 66 | 39.8 | 10 | - | 39.8 | 0.0 | 7 | -7.0 |
| Receiver14 | 14 | 1 | 0.0 | 39.0 | 66 | 39.0 | 10 | - | 39.0 | 0.0 | 7 | -7.0 |
| Receiver15 | 15 | 1 | 0.0 | 38.3 | 66 | 38.3 | 10 | $\cdots$ | 38.3 | 0.0 | 7 | -7.0 |
| Receiver16 | 16 | 1 | 0.0 | 42 | 66 | 42.9 | 10 | ---- | 42.9 | 0.0 | 7 | -7.0 |
| Receiver17 | 17 | 1 | 0.0 | 41 | 66 | 41.6 | 10 | *-* | 41.6 | 0.0 | 7 | -7.0 |
| Receiver18 | 18 | 1 |  | 39 | 66 | 39.2 | 10 | --- | 39.2 | 0.0 | 7 | -7.0 |
| Receiver20 | 20 | 1 |  | 38 | 66 | 38.5 | 10 | --- | 38.5 | 0.0 | 7 | -7.0 |
| Receiver21 | 21 | 1 | 0.0 | 63 | 66 | 63.6 | 10 | --- | 63.6 | 0.0 | 7 | -7.0 |
| Grace Valley Independent Church | 2 | 0 |  | 60.8 61.1 | 66 | 60.8 | 10 | --- | 60.8 | 0.0 | 7 | -7.0 |
| Dwelling Units |  | \# DUs |  | duction | 66 | 61.1 | 10 | --- | 61.1 | 0.0 | 7 | -7.0 |
|  |  | Noise Reduction |  |  |  |  |  |  |  |
|  |  | Min | Avg | Max |  |  |  |  |  |  |  |

RESULTS: SOUND LEVELS

|  |  | dB | dB | dB |
| :--- | ---: | ---: | ---: | ---: |
| All Selected | 20 | 0.0 | 0.0 | 0.0 |
| All Impacted | 0 | 0.0 | 0.0 | 0.0 |
| All that meet NR Goal | 0 | 0.0 | 0.0 | 0.0 |

RESULTS: SOUND LEVELS
18402 US60 Ballard Co


$$
\begin{aligned}
& \text { RESULTS: SOUND LEVELS } \\
&
\end{aligned}
$$

RESULTS: SOUND LEVELS

RESULTS: SOUND LEVELS

|  | 18402 US60 Ballard Co |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
| All Selected |  | dB | dB | dB |  |
| All Impacted | 20 | 0.0 | 0.0 | 0.0 |  |
| All that meet NR Goal | 0 | 0.0 | 0.0 | 0.0 |  |



| RESULTS: SOUND LEVELS |
| :--- |
|  18402 US60 Ballard Co      <br> All Selected       <br> All Impacted 20 0.0 dB  dB  <br> All that meet NR Goal 0 0.0 0.0    |

APPENDIX D
2040 NO-BUILD ANALYSIS
RESULTS: SOUND LEVELS
18407 - US 60 Ballard Co.





| 0 |
| :--- |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| $\vdots$ |
|  |
|  |












18407-US 60 Ballard Co.

$111+1 \quad 1 \quad 1$
$1111 \left\lvert\, \frac{\bar{\Sigma}}{\frac{\Sigma}{0}}\right.$







RESULTS: SOUND LEVELS

| Receiver72 |
| :--- | :--- |
| Receiver73 |
| Receiver74 |
| Receiver75 |
| Receiver77 |
| Receiver78 |
| Receiver79 |
| Receiver80 |
| Receiver82 |
| Receiver83 |
| Receiver84 |
| Receiver85 |
| Receiver86 |
| Receiver87 |
| Receiver88 |
| Receiver89 |
| Receiver91 |
| Receiver92 |
| Receiver93 |
| Receiver95 |
| Receiver96 |
| Receiver98 |
| Receiver100 |
| Receiver101 |
| Receiver102 |
| Receiver103 |
| Receiver104 |
| Receiver105 |
| Receiver106 |
| Receiver107 |
| Receiver108 |
| Receiver109 |
| Receiver110 |
| Receiver111 |
| Receiver112 |
| Receiver113 |
| Receiver114 |
| Receiver115 |
| Receiver117 |
| Receiver119 |

RESULTS: SOUND LEVELS

| Receiver120 | 120 | 1 | 0.0 | 42.0 | 66 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Receiver121 | 121 | 1 | 0.0 | 41.1 | 66 |
| Receiver122 | 122 | 1 | 0.0 | 40.8 | 66 |
| Receiver123 | 123 | 1 | 0.0 | 41.2 | 66 |
| Receiver124 | 124 | 1 | 0.0 | 41.9 | 66 |
| Receiver125 | 125 | 1 | 0.0 | 43.6 | 66 |
| Receiver126 | 138 | 1 | 0.0 | 47.1 | 66 |
| Dwelling Units |  | \# DUs | Noise Reduction |  |  |
|  |  |  | Min | Avg | Max |
|  |  |  | dB | dB | dB |
| All Selected |  | 110 | 0.0 | 0.0 | 0.0 |
| All Impacted |  | 14 | 0.0 | 0.0 | 0.0 |
| All that meet NR Goal |  | 0 | 0.0 | 0.0 | 0.0 |

## APPENDIX E

 2040 BUILD ALTERNATIVESRESULTS: SOUND LEVELS

| Qk4, Inc. JRS |  |  |  |  |  |  | 23 August <br> TNM 2.5 <br> Calculated | 2019 <br> with TN |  |  |  |  | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RESULTS: SOUND LEVELS Calculated with TNM 2.5 |  |  |  |  |  |  |  |  |  |  |  |  |
| PROJECT/CONTRACT: | 18407 - US 60 Ballard Co. |  |  |  |  |  |  |  |  |  |  |  |
| RUN: | 2040 Build Alt 1 |  |  |  |  |  |  |  |  |  |  |  |
| BARRIER DESIGN: INPUT HEIGHTS | INPUT HEIGHTS |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| ATMOSPHERICS: | 68 deg F, 50\% RH |  |  |  |  |  |  | Average pavement type shall be used unlessa State highway agency substantiates the useof a different type with approval of FHWA. |  |  |  |  |
| Receiver |  |  |  |  |  |  |  |  |  |  |  |  |
| Name | No. | \#DUs | Existing LAeq1h | No Barrier |  |  |  |  | With Barrier |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  | Increase over existing |  | Type Impact | Calculated | Noise Reduction |  |  |
|  |  |  |  | Calculated | Crit'n | Calculated | Crit'n |  |  | Calculated | Goal | Calculated |
|  |  |  |  |  |  |  | Sub'I Inc |  |  |  |  | minus |
|  |  |  |  |  |  |  |  |  |  |  |  | Goal |
|  |  |  | dBA | dBA | dBA | dB | dB |  | dBA | dB | dB | dB |
| Receiver1 | 1 | 1 | 0.0 | 59.8 | 66 | 59.8 | 10 | ---- | 59.8 | 0.0 | 7 | -7.0 |
| Receiver2 | 2 | 1 | 0.0 | 61.2 | 66 | 61.2 | 10 | ---- | 61.2 | 0.0 | 7 |  |
| Receiver3 | 3 | 1 | 0.0 | 59.8 | 66 | 59.8 | 10 | --- | 59.8 | 0 | 7 | -7.0 |
| Receiver4 | 4 | 1 | 0.0 | 54.5 | 66 | 54.5 | 10 | --- | 59.8 | 0.0 | 7 | -7.0 |
| Receiver5 | 5 | 1 | 0.0 |  |  |  | 1 | --- | 54.5 | 0.0 | 7 | -7.0 |
| Receiver6 | 6 | 1 | 0.0 | 59.9 | 66 | 60.9 | 10 | --- | 60.9 | 0.0 | 7 | -7.0 |
| Receiver7 | 7 | 1 | 0.0 | 59.6 | 66 | 59.6 | 10 | ---* | 59.6 | 0.0 | 7 | -7.0 |
| Receiver8 | 8 | 1 | 0.0 | 60.7 | 66 | 60.7 | 10 | --- | 60.7 | 0.0 | 7 | -7.0 |
| Receiver9 | 9 | 1 | 0.0 | 59.9 | 66 | 59.9 | 10 | --- | 59.9 | 0.0 | 7 | -7.0 |
| Receiver10 | 10 | 1 | 0.0 | 61.4 | 66 | 61.4 | 10 | --- | 61.4 | 0.0 | 7 | -7.0 |
| Receiver11 | 11 | 1 | 0.0 | 63.1 | 66 | 63.1 | 10 | - | 63.1 | 0.0 | 7 | -7.0 |
| Receiver12 | 12 | 1 | 0.0 | 64.9 | 66 | 64.9 | 10 | --- | 64.9 | 0.0 | 7 | -7.0 |
| Receiver13 | 13 | 1 | 0.0 | 58.7 | 66 | 52.1 | 10 | --- | 52.1 | 0.0 | 7 | -7.0 |
| Receiver14 | 14 | 1 | 0.0 | 53.5 | 66 | 58.7 | 10 | --- | 58.7 | 0.0 | 7 | -7.0 |
| Receiver16 | 16 | 1 | 0.0 | 56.3 | 66 | 53.5 | 10 | --- | 53.5 | 0.0 | 7 | -7.0 |
| Receiver17 | 17 | 1 | 0.0 | 52.3 | 66 | 56.3 | 10 | --- | 56.3 | 0.0 | 7 | -7.0 |
| Receiver19 | 19 | 1 | 0.0 | 60.6 | 66 | 52.3 | 10 | --- | 52.3 | 0.0 | 7 | -7.0 |
| Receiver21 | 21 | 1 | 0.0 | 61.4 | 66 | 60.6 | 10 | --- | 60.6 | 0.0 | 7 | -7.0 |
| Receiver22 | 22 | 1 | 0.0 | 50.8 | 66 | 61.4 | 10 | --- | 61.4 | 0.0 | 7 | -7.0 |
| Receiver23 | 23 | 1 | 0.0 | 63.6 | 66 | 50.8 | 10 | $\cdots$ | 50.8 | 0.0 | 7 | -7.0 |
| Receiver24 | 24 | 1 | 0.0 | 64.0 | 66 | 63.6 | 10 | $\cdots$ | 63.6 | 0.0 | 7 | -7.0 |
| Receiver25 | 25 | 1 | 0.0 | 47.4 | 66 | 64.0 | 10 | $\cdots$ | 64.0 | 0.0 | 7 | -7.0 |
| Receiver27 | 27 | 1 |  | 47.4 | 66 | 47.4 | 10 | --- | 47.4 | 0.0 | 7 | -7.0 |
|  | 27 | 1 | 0.0 | 60.7 | 66 | 60.7 | 10 | --- | 60.7 | 0.0 | 7 | -7.0 |





18407-US 60 Ballard Co.






RESULTS: SOUND LEVELS








## 





C:ITNM25l18402_US60 Ballardl2040 Build_Alt1

## RESULTS: SOUND LEVELS


RESULTS: SOUND LEVELS

| Receiver120 | 120 | 1 | 0.0 | 40.3 | 66 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Receiver121 | 121 | 1 | 0.0 | 40.1 | 66 |
| Receiver122 | 122 | 1 | 0.0 | 38.9 | 66 |
| Receiver123 | 123 | 1 | 0.0 | 39.3 | 66 |
| Receiver124 | 124 | 1 | 0.0 | 39.8 | 66 |
| Receiver125 | 125 | 1 | 0.0 | 40.8 | 66 |
| Receiver126 | 126 | 1 | 0.0 | 43.2 | 66 |
| Dwelling Units |  | \# DUs | Noise Reduction |  |  |
|  |  |  | Min | Avg | Max |
|  |  |  | dB | dB | dB |
| All Selected |  | 110 | 0.0 | 0.0 | 0.0 |
| All Impacted |  | 2 | 0.0 | 0.0 | 0.0 |
| All that meet NR Goal |  | 0 | 0.0 | 0.0 | 0.0 |

RESULTS: SOUND LEVELS









が


RESULTS: SOUND LEVELS
$\square$

 $+$
-
r




18407 - US 60 Ballard Co. -




RESULTS: SOUND LEVELS

RESULTS: SOUND LEVELS





18407 - US 60 Ballard Co. 18407 - US 60 Ballard Co.
60.2


 -




RESULTS: SOUND LEVELS






M



RESULTS: SOUND LEVELS

RESULTS: SOUND LEVELS

| Receiver124 | 124 | 1 | 0.0 | 59.1 | 66 |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Receiver125 | 125 | 1 | 0.0 | 72.3 | 66 |  |
| Receiver126 | 126 | 1 | 0.0 | 54.1 | 66 |  |
| Dwelling Units |  | \# DUs | Noise Reduction |  |  |  |
|  |  | Min | Avg |  |  |  |
|  |  |  | dB |  | dB |  |
|  |  | dB |  |  |  |  |
| All Selected | 106 | 0.0 |  | 0.0 | 0.0 |  |
| All Impacted |  | 14 | 0.0 | 0.0 | 0.0 |  |
| All that meet NR Goal |  | 0 | 0.0 | 0.0 | 0.0 |  |


[^0]:    1 Total number of receptors represented by the study site, including the study site receptor.

[^1]:    Larson Davis, a division of PCB Piezotronics, Inc
    1681 West 820 North
    Provo, UT 84601, United States
    716-684-0001

[^2]:    ：yヨawnn Subw
    ：yヨawnn wヨll
    ： $10 \exists$ roud
    $\begin{array}{ll}\text { MARS NUMBER：} & 0 \\ \text { REQUEST DATE：} & \text { Saturday，January } 0,1900 \\ \text { ANALYST：} & 0\end{array}$
    $\begin{array}{ll}\text { REQUEST DATE：} & \text { Saturday，January } 0,1900 \\ \text { ANALYST：} & 0\end{array}$
    YEAR：
    INTERS
    
    INTERSECTION：

[^3]:    $=$

[^4]:    18402 US60 Ballard Co
    INPUT HEIGHTS

