Kentucky has a primary seat belt law, meaning drivers can be stopped and cited if anyone in the vehicle is not wearing a seat belt. Those in violation are subject to a fine. With the passage of the primary law, Kentucky’s seat belt usage rate increased from 67.2 percent in 2006 to 86.7 percent in 2014. The national average is 88.5 percent.

Top five myths and facts about seat belts

Myth #1: I don’t need to wear a seat belt when driving at slow speeds or on short trips.

Fact: Most crash deaths occur within 25 miles of home and at speeds of less than 40 mph.

Did You Know? Fatal injuries to unrestrained motorists have occurred in vehicles traveling as slow as 12 mph. An unbelted person hitting a windshield in a 40-mph crash would feel the same force as hitting the ground after falling off a five-story building.

Myth #2: If I wear a seat belt, I might get trapped in my car if it catches on fire or becomes submerged under water.

Fact: Crashes involving fire or water occur in less than one half of one percent of all crashes. The greatest danger to vehicle occupants is from the impact of the crash itself.

Did You Know? Those wearing a seat belt are more likely to be uninjured and conscious after a crash, allowing them to get out of the vehicle quickly.

Myth #3: If I don’t wear a seat belt I’m not affecting anyone but myself. If I’m injured or die in a crash from not wearing a seat belt, that’s my business!

Fact: Deaths and injuries that result from non-use of seat belts cost everyone in the form of higher insurance premiums, medical costs, property damage, and loss of productivity. Plus, the emotional cost to victims’ families is too great to measure.

Did You Know? Kentuckians pay over $2 billion each year for car crash victims. Citizens not involved in crashes pay three-fourths of that cost.

Myth #4: I don’t need to wear a seat belt because my vehicle has air bags.

Fact: Air bags are designed to work in combination with seat belts, providing supplemental protection during certain types of crashes. Seat belts help to properly position occupants to maximize the airbags’ benefits and help restrain occupants during the initial impact and any following collisions.

Did You Know? Air bags inflate at a speed of over 100 mph. An unrestrained or improperly restrained occupant can be seriously injured or killed by the force of an activated air bag.

The risk of injury is greater in the front seat for children, with or without an air bag. Research shows it is best for children age 12 and under to ALWAYS ride in the back seat.
Myth #5: I might be saved if I’m thrown clear of the crash.

Fact: Being thrown to safety in a crash is almost impossible. Your best bet for survival is to be securely held in place by the seat belt.

Did You Know? You are 25 times more likely to be killed in a crash when thrown from a vehicle. You may be thrown through the windshield and into another vehicle or fixed object, scraped along the pavement, or even crushed by your own vehicle.

In Kentucky in 2015, of the 761 total highway fatalities, 588 were in motor vehicles. Of the motor vehicle fatalities, 358 (61 percent) were unrestrained.

Do seat belts really help in a crash?

Yes! Seat belts are the most effective safety feature on vehicles; however, nearly one in five Americans fail to buckle up. According to the National Highway Traffic Safety Administration, seat belts, when worn correctly, reduce the risk of fatal injury to front-seat passenger car occupants by 45 percent and the risk of moderate-to-critical injury by 50 percent. For pickup trucks, SUVs and van occupants, seat belts reduce the risk of fatal injury by 60 percent and moderate-to-critical injury by 65 percent.

How do I correctly wear a seat belt?

Properly fastened seat belts contact the strongest parts of the body, such as the chest, hips, and shoulders. This allows the restraint to spread crash forces over a wide area of the body, putting less stress on any one part.

A quick change in speed is what causes injury. A seat belt allows the body to slow down with the crash, extending the time when the crash forces are felt by the occupant.