

I-69 in Indiana: A Toll Model Case Study & Its Implications for NEPA

Kentucky Model Users Group June 12, 2008

Major Topics

- General Background
 - Indiana Statewide Modeling Framework
 - Overview of "Tier 1" NEPA Process
- The Toll Model How It Works
- Traffic and Revenue Findings: Reevaluation of Major "Tier 1" Alternatives as Toll Facilities
- Implications of Tolling in the context of NEPA

- General Background
 - Indiana Statewide Modeling Framework
 - Overview of "Tier 1" NEPA Process
- The Toll Model How It Works
- Traffic and Revenue Findings: Reeva "Tier 1" Alternatives as Toll Facilities
- Implications of Tolling in the context of KIEPA

NEPA Tier 1 Modeling

Modeling / Forecasting Approach ...

It all started with earlier versions of the Indiana Statewide Travel Demand Model (ISTDM) – versions 2 and 3

NEPA Tier 2 Modeling

ISTDM v4 Road Network

Network Attributes

- ✓ Lanes, lane widths
- ✓ Directionality
- ✓ Shoulders, shoulder widths
- ✓ Medians, when present, and median width
- ✓ Access control
- ✓ Count data
- ✓ Functional Class
- ✓ Signals

25,000 links & 32,000 miles

NEPA Tier 2 Modeling

ISTDM v4 Traffic Analysis Zones

TAZ GIS-based process:

- ✓ Conform to roads
- ✓ CTPP boundaries
- ✓ Maximum number of connectors-per-zone → 3
- ✓ No connection to facilities with full or partial access control

4,720 TAZs

NEPA Tier 2 Modeling

Network & TAZ Attributes

Almost 3,900 signals statewide ...

- ✓ 2,638 on State system
- ✓ 1,225 on local jurisdictional roads

Capacities computed from geometric link attributes

Free flow speeds computed from posted speeds and facility / area types

Intersection delays computed from type of traffic control device and approach priority

BERNARDIN · LOCHMUELLER & ASSOCIATES, INC.

Indiana Statewide Travel Demand Model (version 4)

I-69 Corridor Model

Microsimulation Models

Bloomington

Martinsville

Indianapolis

BERNARDIN · LOCHMUELLER & ASSOCIATES, INC.

I-69 Corridor Model Network

✓ Highly disaggregated subarea model within the ISTDM

✓ Peak period time- ofday and 24-hour model

Tier 1 Alternatives and Study Process

INTERSTATE

- Began by modeling 14 preliminary highway route concepts "A" through "N"
 - Several with as many as 4 variations
- Eventually whittled down to a total of 12 including alternatives
- These 12 evaluated on a wide variety of model generated "performance measures" and affected environmental resources

Tier 1 Transportation-Economic- Land Use

Process

Integrated process – plus the GIS capabilities of TransCAD – used for generating numerous performance measures

Mid-90s, INDOT developed...

"Major Corridor Investment Benefit Analysis System" (MCIBAS)

ADDITIONAL I-69 TIER 1 PROCESSES

Table 3-35 - 4: Performance of Alternatives on Project Goals												
	1	2A	2B	2C	3A	3В	3C	4A	4B	4C	5A	5B
Indy-Evv Travel Time Savings	0	•	•	•	•	•	•	•	•	•	•	•
Improved Personal Accessibility	0	•	•	•	•	•	•	0	0	•	•	•
International & Interstate Freight Movement	0	0	0	•	•	•	•	•	•	•	•	•
Reduction in Traffic Crashes	0	0	0	•	0	•	•	0	0	•	•	•
Congestion Relief	0	0	•	•	•	•	•	0	•	•	•	•
Improved Business Accessibility	0	0	0	•	0	•	•	0	0	•		•
Long-Term Economic Growth	0	•	•	•		•		•	•	•	•	•
Economic Benefits to a Wide Spectrum of Regional Residents	0	•	•	•	•	•	•	•	•	•	•	•
Improved Access to Intermodal Facilities	0	•	•	•		•	•	•	•	•	•	•
SOURCE: Bernardin, Lochmueller & Associates, Inc.												
O LOW		MI	EDIUM					HIGH				

Preferred	versus N	Non-F	Preferred	Alternatives
-----------	----------	-------	-----------	--------------

Preferred Alternatives 2C, 3B, 3C, 4B, 4C

Non-Preferred 1, 2A, 2B, 4A,3A, 5A, 5B Alternatives

... for performance reasons

... for environmental reasons

Tier 1 Corridor Selection -Route 3C

- 3B eliminated on environmental grounds
- 4C had highest wetland impacts; doubtful it could pass the Section 404 "LEDPA" test
- 4B has serious potential for inducing sprawl and poorer performance than 2C or 3C
- 2C about the same price range as3C, but poorer performance
- 3C viewed as best long-range solution for Indiana

Major Topics

- General Background
 - Indiana Statewide Modeling Framework
 - Overview of "Tier 1" NEPA Process
- The Toll Model How It Works
- Traffic and Revenue Findings Reevaluation of Major "Tier 1" Alternatives as Toll Facilities
- Implications of Tolling in the context of NEP/

1-69 Toll Choice Model

- Estimates the number of toll and non-toll trips for each origin-destination pair in the model.
- Uses a "post-distribution" logit utility function that considers a combination of <u>travel time savings</u> and <u>cost</u> to determine if a trip is likely to make use of (be "eligible for") a toll route.

$$P_{Toll} = \frac{1.0}{1.0 + e^{[a(T_{Toll} - T_{Free}) + b(C_{Toll})]}}$$

- P_{Toll} = Probability of using toll route
- T_{Toll} = Travel time using the toll route
- $T_{Free} = Travel time using the non toll route$
- $C_{Toll} = Toll \ cost \ using \ the \ toll \ route$
- Alpha = Time coefficient
- Beta = Cost coefficient

INTERSTATE

I-69 Toll Choice Model

BERNARDIN · LOCHMUELLER & ASSOCIATES, INC.

Toll Model Assumptions

- Most of the analysis using the ISTDM. For detailed analysis, used the I-69 Corridor Model
 - Network Design Statewide LRP projects "built"
 - Land Use Assumptions 2030 Induced Growth
 - Time of Day volumes (AM Peak, PM Peak and Off-Peak) used to estimate TOD congested travel time.

Toll Model Assumptions – Trip Purposes

- Individual trip purposes were used to <u>vary the value of</u> <u>time</u> for sub-markets
- Auto trip purposes (HBW, HBO, NHB, Long)
- Non-Freight Trucks = Single Unit
 - Single Unit (4 Tire) = 2/3 of Non-Freight Truck (used auto toll rates)
 - Single Unit (4+ Tire) = 1/3 of Non-Freight Truck
- Freight Trucks = Combo Unit (much higher tolls)

Model Assumptions – Value of Time

- Value of time (VOT) used to estimate the Beta Coefficient.
 - Beta = (Alpha*60) / VOT
- Established the median hourly wage for the region of \$12.09
- Later refinement –
 Specific VOTs by county of origin

Model Assumptions – Value of Time

- VOT assigned to each trip purpose as a percentage of wage (Source: URS Corporation)
 - HBW: 61.2%
 - HBShop: 29.6%
 - HBO: 55.2%
 - Non-Home Based Work: 53.8%
 - Non-Home Based Other: 64.1%
 - Truck: 335.1%
- 2030 VOTs inflated at 3% compounded annually

Calibration of Alpha Coefficients

Purpose	Original Alphas	Final Calibrated Alphas
HBW	0.1228	0.4269
НВО	0.0350	0.4697
NHB	0.0858	0.5910
LNG / Ext	0.0350	0.1782 / 0.1573
Sing Unit	0.0237	0.4236
Comb Unit	0.0237	0.1000

- Betas
 - Calculated using Alpha and VOT
 - Beta = (Alpha*60)/VOT

Resulting Elasticities by Vehicle Class

Vehicle Class	Variable	Base Line Toll Rates	Double Base Line Toll Rate
Auto	VMT	2,544,700	1,478,960
	"100%" Toll Rate	\$ 0.05	\$ 0.10
	Elasticity		-0.42
Combo	VMT	231,230	103,198
Trucks	"100%" Toll Rate	\$ 0.15	\$ 0.30
	Elasticity		-0.55
Single	VMT	103,686	77,975
Unit Trucks	"100%" Toll Rate	\$ 0.10	\$ 0.20
> 4	Elasticity	3	-0.25
Tires Single	VMT	236,547	217,684
Unit Trucks 4 Tires	"100%" Toll Rate	\$ 0.05	\$ 0.10
	Elasticity		-0.08

Scenarios

- The following scenarios were tested with inflated tolls in 2030.
 - 50% Base Toll Rate
 - 75% Base Toll Rate
 - 125% Base Toll Rate
 - 150% Base Toll Rate
 - Split Toll Rate (South of BLM / North of BLM)
 - **0% / 100%**
 - **50% / 100%**
- Eventually, Governor Daniels had to promise non-inflated toll rates on the Indiana Toll Road as a condition of legislative approval of the lease. Subsequent scenarios revised to assume this lower rate structure in 2030.

INTERSTATE

- General Background
 - Indiana Statewide Modeling Framework
 - Overview of "Tier 1" NEPA Process
- The Toll Model How It Works
- Traffic and Revenue Findings: Reevaluation of Major "Tier 1" Alternatives as Toll Facilities
- Implications of Tolling in the context of NEPA

MARION

POSEY

VANDERBURGH

BERNARDIN · LOCHMUELLER & ASSOCIATES, INC.

LAWRENCE

ORANGE

CRAWFORD

PERRY

DAVIESS

PIKE

WARRICK

KNOX

MARTIN

DUBOIS

SPENCER

BERNARDIN · LOCHMUELLER & ASSOCIATES, INC.

MARTIN

LAWRENCE

The alternative selected as "preferred" in the Tier 1 ROD

BERNARDIN · LOCHMUELLER & ASSOCIATES, INC.

KNOX

Traffic ...

INTERSTATE

- Alternative 1 is a special case entirely on an existing highway.
- Tolled minimum traffic volumes are difficult to defend.
- Tolls tested to date have a dramatic effect on both minima and maxima.
 - Minima: 57-67% reductions
 - Maxima: 44-60% reductions
- Alternatives that use SR 37 2C, 3C, and 4C – all have far larger maxima that the other alternatives.

Traffic ...

- Alternative <u>3C experiences the</u>
 <u>largest percentage decline</u> in average traffic volumes between the non-toll and the 100% toll scenarios very disconcerting!
 - 67% decrease
- At the 100% toll level,
 Alternative 3C has the second lowest mean traffic volume second only to 4B.
- At the 75% toll level, Alternative 3C has the <u>highest</u> mean traffic volume – tied with Alternative 1 (a special case).

... and Revenue

- At the 100% toll level ...
 - Alternative 2C achieves the highest revenue with \$96.4 million in 2030.
 - Alternative 3C achieves the second highest revenue with \$90.9 million in 2030.
- At the 75% toll level ...
 - Alternative 2C: \$78 million
 - Alternative 3C: \$73.6 million
- At the split 50-100% toll level, preliminary modeling suggests:
 - Alternative 3C achieves the highest revenue with \$78.4 million in 2030.

Split tolls increase minimum traffic volumes and generate reasonable revenue comparable to 75%. Worth resolving the technical problems.

Major Topics

INTERSTATE

- General Background
 - Indiana Statewide Modeling Framework
 - Overview of "Tier 1" NEPA Process
- The Toll Model How It Works
- Traffic and Revenue Findings: Reevaluation of Major "Tier 1" Alternatives as Toll Facilities
- Implications of Tolling in the context of NEPA

The Challenge:

To balance concessionaire revenue goals with NEPA project goals

Toll Performance Evaluation. Travel Time Savings

Toll Performance Evaluation. Access to Indianapolis

Accessibility to Indianapolis not influenced by tolling

Toll Performance Evaluation. Access to Higher Education

Figure 3-6: Year 2030 Increases in Access Opportunities to Higher Education by Alternative

Access to higher education <u>not</u> <u>influenced</u> by tolling

Toll Performance Evaluation: Truck Hours Saved

3C non-toll alternative: 4,600 daily truck hours saved – Tolling a 46% decline

Toll Performance Evaluation. Injury Crash Reductions

3C non-tolled alternative: 1,162 injury crashes saved – Tolling a <u>61% decline</u>

Toll Performance Evaluation. PDO Crash Reductions

3C non-tolled alternative: 1,404 PDO crashes saved – Tolling a <u>68% reduction</u>

Toll Performance Evaluation. Increased Personal Income

Figure 3-9: Forecasted Year 2030 Increases in Personal Income by Alternative, 75% Toll Rate

3C non-tolled alternative: \$171 million increase in annual disposable income – Tolling 80% of non-toll

Toll Performance Evaluation. Employment Increase

I-69 Tier 1 EIS ReevaluationHighlights

- Comparison with Non-Toll Option
 - Performance on some goals unaffected by tolling
 - Evansville-to-Indianapolis travel time
 - Personal accessibility
 - Performance on other goals reduced by tolling
 - Interstate and international freight movement
 - Crash reduction
 - Congestion relief
 - Economic development

I-69 Tier 1 EIS ReevaluationHighlights

- Timing "Tradeoffs"
 - May receive benefits many years sooner
 - May receive some benefits in reduced magnitude
- Final Outcome...
 - Tolling dropped due to the low revenue and big drop in performance. Risk of not meeting the NEPA test of Purpose & Need in court.
 - 3C no longer the "stand-out performer"
 - Will it be back? Who knows?

