

INLET SPACING: CURB-OPENING, GRATED AND SLOTTED PIPE INLETS

SECTION 3: INSTRUCTIONS

COLUMN	ITEM	INSTRUCTIONS
1	STA/LOC	Station and Location of Inlet
2	CA	C X A: Weighted Runoff Coefficient times Drainage Area to Inlet in Acres
3	Q	Rational Discharge $=(2) \times I$ (Intensity)
4	Qc	Carryover from Previous Inlet Upstream
5	Qa	Total Gutter Flow Available = 3) + (4)
6	Sx	Pavement Cross-Slope at Inlet; use minimum of 0.001 for inlet placed 50 feet back of flat spot in Superelevated Roadway.
7	Sw / Sx	Ratio of Gutter Cross Slope (Sw) to (6)
8	So	Longitudinal Slope; use minimum of 0.001 for inlet in Sag Vertical Curve.
9	T / W	Ratio of Top Width (Spread) to Gutter Width
10	T	Top Width Flow at Inlet (Spread)
11	d	Depth of Flow at Inlet
12	V	Velocity at Inlet = (3) / Area
13	W / T	Ratio of Gutter Width to Top Width
14	Eo	Ratio of Gutter Flow to Total Flow = Qw / (3) = 1-(1-W/T) ${ }^{2.67}$
15	Se	Equivalent Cross Slope at Depressed Inlets $=$ Sx + Swx Eo
16	Lt	Length of Curb Opening Inlet required for Total Interception $=0.6 \mathrm{Q}^{0.42} \mathrm{So}^{0.3}(1 / \mathrm{nSe})^{0.6}$
17	L / LT	Ratio of Length of Inlet to Curb Opening Length required for Total Interception
18	Rf	Ratio of Grate Frontal Flow intercepted to Total Frontal Flow = $1-0.09(\mathrm{~V}-\mathrm{Vo})$, where Vo = gutter velocity where grate splash-over first occurs (see HEC-12)
19	1-Eo	Ratio of Grate Side Slow, Qs, to Total Gutter Flow = Qs/Q = 1-Qw/W = 1-Eo
20	Rs	Ratio of Grate Side Flow intercepted to Total Side Flow $=1 /\left[1+\left(0.15 \mathrm{~V}^{1.8}\right) /\left(\mathrm{SxLg}^{2.3}\right)\right]$, where Lg is length of grate
21	E	Efficiency of: \quadGrate $=$ RfEo + Rs $(1-E o)$ Curb Opening $=1-(1-L / L t)^{1.8}$
22	Qi	Total Discharge intercepted by inlet, Qi = EQ
23	Qc	Carryover Discharge (not intercepted) to next inlet, Qc = Q - Qi
	da	Depth at Curb Face times Gutter Depression
	Ta	Top Width times Gutter Depression
	1	Rainfall Intensity
	n	Manning's Roughness Coefficient for Pavement
	Wg	Width of Grate
	Lg	Length of Grate
	a	Gutter Depression at Inlet in feet
	Li	Length of Curb Opening Inlet
	Qsum	Sum of Total Gutter Flow in Sag
	Cw	Weir Coefficient
	Co	Office Coefficient
	h	Height of curb opening
	do	Effective Head on Center of Orifice Throat of Curb Opening Inlet, do $=d-(h / 2) \operatorname{Sin} \odot$, where h is height of curb opening orifice and 0is angle of orifice opening (see HEC-12)
	A/2	Area of Clear Grate Opening divided by 2
	$\mathrm{P} / 2$	Perimeter of Grate divided by 2

