TEST METHOD FOR ANALYSIS FOR AMINE CONTENT

1. SCOPE

1.1 This method is designed to quantitatively determine the amine content of the amine component of two component structural steel coatings.

2. MATERIALS AND REAGENTS

- 2.1 Mettler-Toledo DL50 titrator or equivalent
- 2.2 Balance accurate to 0.001g
- 2.3 High speed centrifuge
- 2.4 Centrifuge tubes, 50 ml, disposable polypropylene
- 2.5 Hot plate, with variable heat control
- 2.6 Magnetic stirrer, adjustable speed
- 2.7 Magnetic stirring bars, PTFE coated
- 2.8 250 ml low-form beakers
- 2.9 250 ml titration vessel
- 2.10 Graduated cylinders, 10 ml, 100 ml
- 2.11 Methylene chloride, reagent grade
- 2.12 Isopropyl alcohol (99%), reagent grade
- 2.13 Chloroform, reagent grade
- 2.14 Hydrochloric acid, conc., reagent grade
- 2.15 Hydrochloric acid, standard solution, 1.0 N
- 2.16 Distilled water, ASTM D1193 Type II

2.17 Sodium carbonate, reagent grade

3. PREPARATION OF STANDARD SOLUTIONS

Hydrochloric acid solution, 1.0 N:
Add 170 ml conc. Hydrochloric acid to 1000 ml distilled water in a 2L volumetric flask. Dilute to volume with distilled water and mix.

4. STANDARDIZATION OF 0.1 N HYDROCHLORIC ACID SOLUTION

- 4.1 Dry sodium carbonate to a constant weight in an oven at 110°C.
- 4.2 Weigh 0.53 g sodium carbonate to the nearest 0.001 g.
- 4.3 Dissolve sodium carbonate in 50 ml distilled water.
- 4.4 Using the titrator, titrate with the 1.0 N HCl to a pH of 3.5.
- 4.5 Record the ml of HCl used.
- 4.6 Calculate the normality of the HCl (see 7.2).

5. SAMPLE PREPARATION: Perform in duplicate

- 5.1 If the component to be tested is clear, it can be used in the method as is.
- 5.2 If the component to be tested is pigmented, the pigment must be removed..
 - 5.2.1 Weigh 1.0 g of sample (to 0.001g) into a disposable polypropylene centrifuge tube.
 - 5.2.2 Thin the sample with 3-4 ml methylene chloride; tap the bottom of the tube on the edge of the counter to disperse the sample.
 - 5.2.3 Centrifuge the sample to produce a minimum relative centrifugal force (RCF) of 4200 for 30 minutes. See 7.1 for calculation of RCF.
 - 5.2.4 Transfer the supernatant to a 250 ml low-form beaker.
 - 5.2.5 Re-disperse the pigment in the bottom of the centrifuge tube with 3-4 ml methylene chloride.
 - 5.2.6 Centrifuge the sample again for 30 minutes as in 5.2.3.
 - 5.2.7 Add this supernatant to the original supernatant for analysis.

6. **PROCEDURE:** (Perform in duplicate)

- 6.1 Weigh 1.0 g to nearest 0.001 g into a 250 ml low-form beaker or if pretreatment was necessary, use all the supernatant from that procedure.
- 6.2 Record the weight.
- 6.3 Add 90 ml chloroform and 10 ml isopropyl alcohol to the beaker.
- 6.4 Boil on a hot plate for 1 minute.
- 6.5 Cool to room temperature.
- 6.6 Pour contents into the 250 ml titration vessel.
- 6.7 Attach correct pH electrode (Mettler-Toledo DG111-SC).
- 6.8 Calibrate the pH electrode with standard pH 4.00 and pH 7.00 buffer solutions.
- 6.9 Attach burette and bottle assembly containing the standardized 1.0 N HCl solution to the titrator.
- 6.10 Bleed any air out of the burette and lines by putting titrator into "Dispense" mode and dispensing 5 ml while tapping on the burette and lines gently with a teflon stir stick. Repeat until there are no air bubbles.
- 6.11 Attach titration vessel containing the prepared sample to the titrator; add enough isopropyl alcohol so that the end of the electrode remains immersed in the solution.
- 6.12 Using user method "Amine" titrate the sample through the endpoint.
- 6.13 Record the volume of standardized 1.0 N HCl used to the nearest 0.001 ml.
- 6.14 Calculate the amine value (7.3).
- 6.15 After each titration the electrode, feed line and stirrer should be cleaned with isopropyl alcohol.
- 6.16 Soak the electrode in distilled water for 5 minutes before the next titration.
- 6.17 Titrate the duplicate sample.

6.18 Calculate the relative percent difference (RPD)(see 7.4).

7. CALCULATIONS

7.1 Calculation for Relative Centrifugal Force (RCF):

 $RCF = 0.00001118 \text{ x r x } N^2$

Where: r = radius of rotation N = revolutions per minute (RPM)

7.2 Calculation for Normality of the HCl solution:

N=(W x 1000)/(53 x V)

Where: N = normality of the HCl solution W = sodium carbonate used, g V = HCl used, ml 53 = sodium carbonate equivalent weight

7.3 Calculation for the amine value:

amine value = $(V \times N \times 56.1) / S$

Where: V = HCl required to titrate the sample, ml N = normality of the HCl solution S = sample weight used, g

8. REPORT

- 8.1 Report the weights of the duplicate coating samples to the nearest 0.001 g.
- 8.2 Report the normality of the HCl solution.
- 8.3 Report the amine value in duplicate.
- 8.4 Results should be considered suspect if duplicate analyses differ by more than 2% relative percent difference when performed by a single analyst.

APPROVED

DIRECTOR DIVISION OF MATERIALS

DATE 03/31/08

Kentucky Method 64-261-08 Dated 03/31/08

KM26108.doc