I-64 / I-75 Widening

Item No. 7-8909.00

Fayette County, KY.

Value Engineering Report

Final Report

Prepared by: HDR Engineering, Inc.

Lead Authors: Ken L. Smith, PE, CVS®

Workshop Dates: January 28-February 1, 2019

Disclaimer:

The information contained in this report represents the professional opinions of the team members during the Value Engineering Study. These opinions were based on the information provided to the team at the time of the workshop. As the project continues to develop, new information will become available, and this information will need to be evaluated on how it may affect the recommendations and findings in this report. All costs displayed in the report are based on best available information at the time of the workshop and are in 2019 dollars unless otherwise noted.

Table of Contents

VE Summary	
Introduction	1
Project Overview	1
Value Engineering Recommendations	
Introduction	
Value Engineering Approach	
Scope and Methodology of the VE Workshop	
VE Workshop Timing	
VE Team Members	
Project Description	
Alternative #1	
Alternative #2	7
Alternative #3	7
Alternative #4 Hard Shoulder Running	7
Information Phase	
Information Provided to the VE Team	
Site Visit Observations and Constraints & Controlling Decisions	
Risks	
Cost Estimate	10
Cost Models	12
Performance Attributes	13
Performance Attribute Matrix	18
Performance Criteria Rating	18
Scoring Performance for Original Concepts	25
Function Analysis Phase	31
FAST Diagram	31
Creative Phase	
Evaluation Phase	
Development Phase	41
FHWA Functional Benefit Criteria	41
Value Engineering Recommendation Approval	
Recommendations	
Design Considerations	
Scoring Performance for Alternatives with VE Recommendations.	

Appendix	93
VE Study Recommendation Approval Form	
VE Study Agenda	
Agenda Memo	
Value Engineering Process	133
Baseline Construction Cost Estimates	135

Tables

Table 1 Summary of Recommendations	2
Table 2 Information Provided to VE Team	9
Table 3 Project Risks	9
Table 4 Opinion of Probable Costs	11
Table 5 Performance Attributes	13
Table 6 Value Index Alternative's 1 thru 4 Pre-VE	29
Table 7: Functions	31
Table 8 Summary of Recommendations	41
Table 9 Value Index	92

VE Summary

Introduction

This value engineering (VE) report summarizes the events of the workshop conducted for the Kentucky Transportation Cabinet (KYTC) and facilitated by HDR Engineering, Inc.

The subject of the workshop was the I-64 I75 Widening Project. The workshop was conducted January 28–February 1, 2019 in Lexington, Kentucky.

The primary objectives of the VE workshop were to:

Value Summary Project Cost: \$64.5-\$90.2 Million Number of Recommendations: 6 Recommended Cost Avoidance: \$6.48-\$13.75 Million Total Number of Team Members: 12 Facilitator: Ken L. Smith, PE, CVS® - HDR Cost of the Study: \$50,000+/-

- Conduct a thorough review and analysis of the key project issues using a multidiscipline, cross-functional team
- Develop "Data driven decisions to data driven locations."
- Use a "fresh set of eyes" to search for new/innovative approaches to and corridor improvements.

Project Overview

The project is located in Fayette County between the splits of I-64/ I75. It includes the interstate, ramps, interchanges in this area.

The VE team was presented with four alternatives for the corridor.

Value Engineering Recommendations

The VE team generated 32 ideas during the brainstorming activity for alternative concepts.

These ideas were compared against the original alternatives. The ideas that performed the best were further developed by the VE team and resulted in 6 VE Recommendations.

The recommendations and alternatives developed by the VE team are shown in Table 1 below and are detailed in the Development Phase section of this report.

Table 1 Summary of Recommendations					
Description	Alt. 1	Alt 2	Alt. 3	Alt. 4	
Pavement	-\$8.8M	-\$8.60M	-\$8.9M	-\$8.8	
Narrowing Shoulders at existing structures		-\$1.90M	-\$3.3M		
10' Inside Shoulders			-\$2.5M		
Reduction of Right-of-Way Impacts	+\$0.02M	-\$0.17M	+\$0.66M	+\$0.02M	
Lengthen merge/diverge areas at ramps where needed (Paris Pike)	+\$2.30M	+\$2.22M	+\$2.25M	+\$2.3M	
Narrow Shoulders at Existing Bridge Piers		-\$5.30M	-\$5.30M		
Totals	-\$6.48M	-\$13.75M	-\$17.35M	-\$6.48M	

To facilitate implementation, a Value Engineering Recommendation Approval Form is included within the Appendix. If the Project Manager elects to reject or modify a recommendation, please include a brief explanation of why on that form.

The VE team wishes to express its appreciation to the project design team and management for the excellent support they provided during the workshop. These recommendations and other design considerations provided will assist management with decisions necessary to move the project forward.

Hen I Suit

Ken L. Smith, PE, CVS® VE Team Leader

This report summarizes the events of the VE Study conducted for the Kentucky Transportation Cabinet, facilitated by HDR, Inc. The subject of the study was the I-64 / I-75 Widening, Item No. 7-8909.00, Fayette County, KY.

The purpose of the proposed project is to decrease congestion and improve safety, operations, and roadway traffic capacity on the combined I-75/I-64 interstate route around Lexington. The project is needed to address the increased traffic along the project corridor in recent years as well as anticipated continued population growth in Fayette and surrounding counties.

The VE team was challenged with developing "Data driven decisions to data driven locations."

Value Engineering Approach

Value Engineering has traditionally been perceived as an effective means for reducing project costs. This paradigm only addresses one part of the value equation, oftentimes at the expense of overlooking the role that value analysis can play to improve project performance. To address this issue, a performance-based VE approach was used.

The primary objective of any VE study is to improve the value of the project. A simple way to think of value in terms of an equation is shown at right.

 $Value = \frac{Performance}{Cost}$

While project costs are fairly easy to quantify and compare through traditional estimating techniques, performance is not so easily quantifiable.

The use of performance measures provides the cornerstone of the performance-based VE process by giving a systematic and structured way of considering the relationship of a project's performance and cost as it relates to value. Project performance must be properly defined and agreed on by the stakeholders at the beginning of the VE study. The performance attributes and requirements that are developed are then used throughout the study to identify, evaluate, and document alternatives.

The application of performance-based VE consists of the following steps:

- 1) Identify key project (scope and delivery) performance attributes and requirements for the project
- 2) Establish the hierarchy and impact of these attributes on the project
- 3) Establish the baseline of the current project performance by evaluating and rating the effectiveness of the current design concepts
- Identify the change in performance of alternative project concepts generated by the study
- 5) Measure the aggregate effect of alternative concepts relative to the baseline project's performance as a measure of overall value improvement.

- Mainline Operations
- Local Operations
- Maintainability
- Construction Impacts
- Environmental Impacts
- Project Schedule

Scope and Methodology of the VE Workshop

The scope of the VE Study was to verify or improve upon the concepts being proposed for I-64 / I-75 Widening project.

To accomplish this, the VE Team:

- Applied the principles and practices of the VE Job Plan (see Appendix page 133)
- Conducted a thorough review and analysis of the key project issues using a multidiscipline, cross-functional team (i.e. review the baseline design)
- Verified or improved upon the various concepts for the I-64 / I-75 Widening project
- Improved the value of the project through innovative measures aimed at improving the performance while reducing costs of the project
- Identified high risk areas in delivering this project
- Use a "fresh set of eyes" to search for new/innovative approaches

The VE team was presented with four competing concepts for the corridor.

To determine best value of the four concepts the VE team used the proven process of value equals performance divided by cost.

VE Workshop Timing

The study was conducted January 28th – February 1st 2019 at the HDR Lexington office 2517 Sir Barton Way Lexington, KY 40509

The project was at concept level of design at the time of the study.

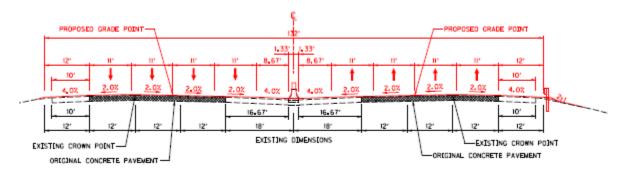
VE Team Members

The list of team members for the VE workshop is provided below. Other attendees are identified on a sign-in sheet which is provided in the Appendix of this report. The team members included:

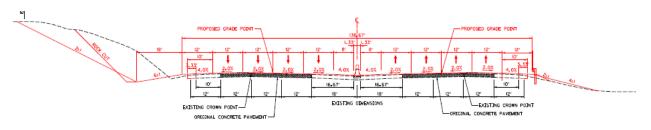
- Jody Barker Roadway
- Joe Cochran- Roadway
- Jeff Cowan Roadway
- Ben Edelen Project Manager
- Jim Guinn Roadway
- Wes Hagerman Structures
- Adam Hedges Traffic
- Matt Newman Roadway
- Bob Nunley Roadway
- Philip Pfaffenberger Roadway
- Ken L. Smith VE team leader
- Allison Westcote Roadway .

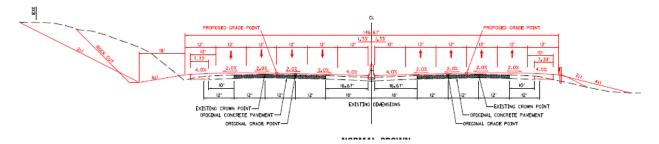
Project Description


The VE team was provided four alternatives that would increase capacity for approximately a seven mile section of the combined I-64 and I-75 between the splits. The following aerials illustrate the propose section of interstate.



Alternative #1


- 4-11' lanes
- 8.7' inside shoulder
- 12' outside shoulder


Alternative #2

- 4- 12' lanes
- 8' inside shoulder
- 12' outside shoulder

Alternative #3

- 4- 12' lanes
- 12' inside shoulder
- 12' outside shoulder

Alternative #4 Hard Shoulder Running

During Non-Peak hours

- 3- 12' lanes
- 16.7' inside shoulder
- 12' outside shoulder

During Peak hours (not illustrated)

- 4- 12' lanes
- 4.7' inside shoulder
- 12' outside shoulder

This page is intentionally left blank.

Information Phase

Information Provided to the VE Team

The following project documents were provided to the Team for their use during the workshop:

Table 2 Information Provided to VE Team				
Document				
Value Planning estimate January 2019				
I64/I-75 lane additional study March 2017				
Typical roadway sections all alternative January 2019				
Split lane diagrams (traffic data) January 2019				
Google earth KMZ files for each alternative				

Site Visit Observations and Constraints & Controlling Decisions

The first day of the workshop included a presentation from the project team and a virtual site visit using Google Earth. The following summarizes key project issues, project drivers and observations identified during these activities:

- Bridge Jacking up to 2.5' may cause impacts to utilities and cross streets
- Potentially \$30M available 2022

Risks

Table 3 Project Risks				
Risk	Alt. 1	Alt. 2	Alt. 3	Alt. 4
Funding availability	✓	✓	✓	✓
Approval of Design Exceptions	✓	✓		✓
Debris in hard running shoulders –Maint. costs				✓
Condition of existing structures	✓	✓	✓	✓
Opportunity for roadway section (pavement depth)	✓	✓	✓	✓
Differential pavement settlement due to existing concrete	✓	✓	✓	✓
Added drainage risk for Maint.	✓	✓		✓
Operational/ crash performance of narrow shoulders/ lanes	✓	✓		✓
Phasing to meet available funds	✓	✓	✓	✓
Lane Balance	✓	✓	✓	✓

Cost Estimate

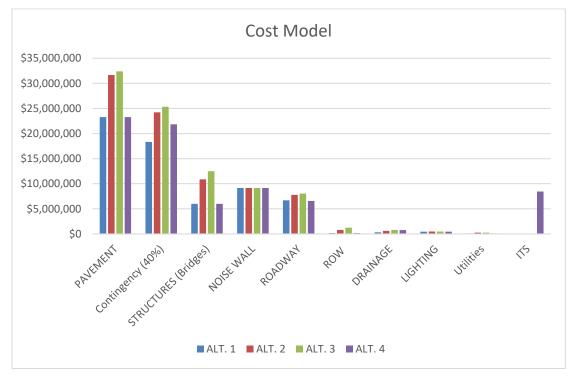
Rough Order of Magnitude (ROM) Costs were provided to the VE team for comparison purposes. Quantity take-offs were developed from the concept schematics for the following major construction elements:

- PAVEMENT
- NOISE WALL
- CONCRETE MEDIAN BARRIER 50" WALL
- STRUCTURES
- EARTHWORK
- LIGHTING
- GUARDRAIL
- DRAINAGE
- SIGNING
- ROW
- UTILITIES

In addition a 40 percent contingency was applied to cover the following:

- Mobilization (5%)
- Maintenance of Traffic (10%)
- Miscellaneous Item Allowance (10%)
- Design Contingency (5%)
- Construction Contingency (10%)

Table 4 Opinion of Probable Costs


CONSTRUCTION			<u> </u>		1	ALTERN	4 <i>TI</i>	VE/OPTION				
CONSTRUCTION		ALT. 1		ALT. 2		ALT. 3		ALT. 4		FLYOVER OPTION	NO	RTHERN 3-LN OPTION
ROADWAY	\$	6,680,098	Ś	7,786,360	Ś	8,020,711	\$	6,556,648	\$	3,386,300	\$	1,443,48
NOISE WALL	\$	9,165,000		9,165,000	\$	9,165,000	\$		\$	-	\$	
PAVEMENT	\$	23,266,407		31,660,371	· ·	32,407,466	· ·	23,266,407	\$	4,038,094	\$	7,158,86
DRAINAGE	\$	307,375	\$	610,870	\$	801,132	\$	752,375	\$	98,000		177,22
STRUCTURES (Bridges)	\$	5,997,772		10,865,398	· ·	12,513,175	\$	5,997,772	\$	12,258,314	\$	6,748,15
LIGHTING	\$	437,500	\$	469,000	\$	469,000	\$	437,500	\$	91,000	\$	178,50
Τ							\$	8,460,000				
SUBTOTAL	\$	45,854,152	\$	60,556,999	\$	63,376,484	\$	54,635,702	\$	19,871,707	\$	15,706,21
Contingency (40%)	\$	18,341,661	\$	24,222,800	\$	25,350,594	\$	21,854,281	\$	7,948,683	\$	6,282,48
ΤΟΤΑΙ	\$	64,196,000	\$8	84,780,000	\$	88,727,000	\$	76,490,000	\$	27,820,000	\$	21,989,00
						ALTERN	ATI	VE/OPTION				
RIGHT-OF-WAY		ALT. 1		ALT. 2		ALT. 3		ALT. 4		FLYOVER OPTION	NO	RTHERN 3-LN OPTION
			-		-	000 00-	ć			4 404 777		
Land Acquistion	\$	114,125	\$	574,750	\$	882,625	\$	114,125	\$, ,		167,00
SUBTOTAL	· ·	114,125	\$	574,750	\$	882,625	-	114,125	\$	1,191,750		167,00
Contingency (40%)		45,650	\$	229,900	\$	353,050		45,650	\$	476,700		66,80
ΤΟΤΑΙ	\$	160,000	\$	805,000	\$	1,236,000	\$	160,000	\$	1,668,000	\$	234,00
						ALTERN	4 <i>TI</i>	VE/OPTION				
UTILITIES		ALT. 1		ALT. 2		ALT. 3		ALT. 4		FLYOVER OPTION	NO	RTHERN 3-LN OPTION
		400.000		252.000		250.000	<u>_</u>	100.000		400.000	<u> </u>	100.00
Utility Placeholder	\$	100,000	\$	250,000	\$	250,000	\$	100,000	\$	100,000	\$	100,00
SUBTOTAL	<u> </u>	100,000	\$	250,000	\$	250,000	-	100,000	\$	100,000		100,00
Contingency (0%)	-	- 100.000	\$	-	\$	-	\$	-	\$ \$	- 100 000	\$	-
ΤΟΤΑΙ	\$	100,000	\$	250,000	\$	250,000	\$	100,000	Ş	100,000	\$	100,00
						ALTERN	ATI	VE/OPTION				
DESIGN		ALT. 1		ALT. 2		ALT. 3		ALT. 4		FLYOVER OPTION	NO	RTHERN 3-LI OPTION
							~		-			
Use 8% of Construction SUBTOTAL	\$	-	\$	-	\$ \$	-	\$	-	\$ \$	-	\$	-
		-	\$	-	> \$	-	\$	-		-	\$	-
Contingency (0%) TOTAL		-	\$ \$	-	ې \$	-	\$ \$	-	\$ \$	-	\$ \$	-
TOTAL	Ş		Ş		7		Ş	-	•		Ş	
						ALTERN	ATI	VE/OPTION				
PROJECT TOTALS		ALT. 1		ALT. 2	ALT. 3 ALT. 4		ALT. 4	FLYOVER OPTION		NORTHERN 3-LN OPTION		
	1		1		1		1	1	1		1	

Cost Models

The VE Team Leader prepared a cost model from the opinion of probable costs provided to the VE team. The cost model is organized to identify major construction elements or trade categories and the percent of total project cost for the significant cost items. Development of this cost model allows the team to focus on project elements with the highest degree of impact and utilize workshop time most effectively.

Cost Model all Alternatives

The graphs above show project elements sorted from highest percentage of overall project cost to lowest.

Performance Attributes

The VE team, along with the Project Team, identified and defined the performance attributes for this improvement. Performance attributes are used to define a performance score for the value equation (value equals performance divided by cost).

Table 5 Performance Attributes				
Performance Attribute	Description			
Main Line Operations	An assessment of traffic operations and safety on the main line within the project limits. Operational considerations include level of service relative to the 20- year traffic projections, as well as geometric considerations such as design speed, sight distance, and lane and shoulder widths.			
Local Operations	An assessment of traffic operations and safety on the local roadway infrastructure. Local Operations include frontage roads as well as cross roads. Operational considerations include level of service relative to the 20- year traffic projections; geometric considerations such as design speed, sight distance, lane and shoulder widths; bicycle and pedestrian operations and access.			
Maintainability	An assessment of the long-term maintainability of the facilities and equipment. Maintenance considerations include the overall durability, longevity, and maintainability of structures and systems; ease of maintenance; accessibility and safety considerations for maintenance personnel.			
Construction Impacts	An assessment of the temporary impacts to the public during construction related to traffic disruptions, detours and delays; impacts to existing utilities; impacts to businesses and residents relative to access, visual effects, noise, vibration, dust, and construction traffic; environmental impacts.			
Environmental Impacts	An assessment of the permanent impacts to the environment including ecological (i.e., flora, fauna, air quality, water quality, visual, noise); socioeconomic impacts; impacts to shore edge; impacts to cultural, recreational and historic resources.			
Reduce Risk	An assessment of reducing project risks from concept through construction			

Performance Attributes							
Evaluative Criteria Alternative 1							
Performance Attribute	Description	Baseline					
Main Line Operations	An assessment of traffic operations and safety on the main line within the project limits. Operational considerations include level of service relative to the 20-year traffic projections, as well as geometric considerations such as design speed, sight distance, and lane and shoulder widths.	 4-11 foot thru lanes 8.7 foot inside shoulder 12 foot outside shoulder Design exceptions - lane widths and inside shoulder Shoulders may be less under existing bridges Lane balance at northern split may require a design exception 					
Local Operations	An assessment of traffic operations and safety on the local roadway infrastructure. Local Operations include frontage roads as well as cross roads. Operational considerations include level of service relative to the 20-year traffic projections; geometric considerations such as design speed, sight distance, lane and shoulder widths; bicycle and pedestrian operations and access.	Sight distance at Bryan Station and Russell Cave if bridges are raised Structures not replaced may require approvals because of lack of pedestrian accessibility					
Maintainability	An assessment of the long-term maintainability of the facilities and equipment. Maintenance considerations include the overall durability, longevity, and maintainability of structures and systems; ease of maintenance; accessibility and safety considerations for maintenance personnel.	Lane widening with concrete section to match existing with 6 inch Asphalt overlay Raising bridges at Russell Cave and Bryan Station and widening bridge northbound direction on Newtown Pike Narrow inside shoulders may require lane closures during maintenance activities Less pavement and drainage pipe for long term maintenance Requires more drainage inlets on inside shoulder					
Construction Impacts	An assessment of the temporary impacts to the public during construction related to traffic disruptions, detours and delays; impacts to existing utilities; impacts to businesses and residents relative to access, visual effects, noise, vibration, dust, and construction traffic; environmental impacts.	Raise structures at Bryan Station and Russell Cave, harden existing shoulder, multiple traffic shifts to develop pavement lifts, use temporary barrier, detours for side roads during bridge raising					
Environmental Impacts	An assessment of the permanent impacts to the environment including ecological (i.e., flora, fauna, air quality, water quality, visual, noise); socioeconomic impacts; impacts to shore edge; impacts to cultural, recreational and historic resources.	Widening accomplished within existing ROW Noise walls assumed in areas of receptors Minimal addition of impervious surface Small slivers of additional ROW required around Newtown Pike Interchange for ramp					

Evaluative Criteria Alternative 2						
Performance Attribute	Description	Baseline				
Main Line Operations	An assessment of traffic operations and safety on the main line within the project limits. Operational considerations include level of service relative to the 20-year traffic projections, as well as geometric considerations such as design speed, sight distance, and lane and shoulder widths.	 4-12 foot thru lanes 8 foot inside shoulder 12 foot outside shoulder Design exception - inside shoulder Shoulders may be less under existing bridges Lane balance at northern split may require a design exception 				
Local Operations	An assessment of traffic operations and safety on the local roadway infrastructure. Local Operations include frontage roads as well as cross roads. Operational considerations include level of service relative to the 20-year traffic projections; geometric considerations such as design speed, sight distance, lane and shoulder widths; bicycle and pedestrian operations and access.	New structures assumed to meet full standards Widening structure at Legacy Trail All over crossings widened				
Maintainability	An assessment of the long-term maintainability of the facilities and equipment. Maintenance considerations include the overall durability, longevity, and maintainability of structures and systems; ease of maintenance; accessibility and safety considerations for maintenance personnel.	Lane widening with concrete section to match existing with 6 inch Asphalt overlay Replacing bridges at Russell Cave and Bryan Station and widening bridge both directions on Newtown Pike Narrow inside shoulders may require lane closures during maintenance activities Requires more drainage inlets on inside shoulder Widening impacts to all structures				
Construction Impacts	An assessment of the temporary impacts to the public during construction related to traffic disruptions, detours and delays; impacts to existing utilities; impacts to businesses and residents relative to access, visual effects, noise, vibration, dust, and construction traffic; environmental impacts.	Replace structures at Bryan Station and Russell Cave, harden existing shoulder, multiple traffic shifts to develop pavement lifts, use temporary barrier, shorter duration detours for side roads during bridge construction				
Environmental Impacts	An assessment of the permanent impacts to the environment including ecological (i.e., flora, fauna, air quality, water quality, visual, noise); socioeconomic impacts; impacts to shore edge; impacts to cultural, recreational and historic resources.	Requires some ROW to accommodate interstate widening and realignment of Russell Cave and Bryan Station Noise walls assumed in areas of receptors Addition of impervious surface (less than 4 feet) Small slivers of additional ROW required around Newtown Pike Interchange for ramp 4f De-Minimus at Cold Stream Park				

Evaluative Criteria Alternative 3						
Performance Attribute	Description	Baseline				
Main Line Operations	An assessment of traffic operations and safety on the main line within the project limits. Operational considerations include level of service relative to the 20-year traffic projections, as well as geometric considerations such as design speed, sight distance, and lane and shoulder widths.	 4-12 foot thru lanes 12 foot inside shoulder 12 foot outside shoulder Shoulders may be less under existing bridges Lane balance at northern split may require a design exception 				
Local Operations	An assessment of traffic operations and safety on the local roadway infrastructure. Local Operations include frontage roads as well as cross roads. Operational considerations include level of service relative to the 20-year traffic projections; geometric considerations such as design speed, sight distance, lane and shoulder widths; bicycle and pedestrian operations and access.	New structures assumed to meet full standards Widening structure at Legacy Trail All over crossings widened				
Maintainability	An assessment of the long-term maintainability of the facilities and equipment. Maintenance considerations include the overall durability, longevity, and maintainability of structures and systems; ease of maintenance; accessibility and safety considerations for maintenance personnel.	Lane widening with concrete section to match existing with 6 inch Asphalt overlay Replacing bridges at Russell Cave and Bryan Station and widening bridge both directions on Newtown Pike Requires minimal addition to median drainage Widening impacts to all structures				
Construction Impacts	An assessment of the temporary impacts to the public during construction related to traffic disruptions, detours and delays; impacts to existing utilities; impacts to businesses and residents relative to access, visual effects, noise, vibration, dust, and construction traffic; environmental impacts.	Replace structures at Bryan Station and Russell Cave, harden existing shoulder, multiple traffic shifts to develop pavement lifts, use temporary barrier, shorter duration detours for side roads during bridge construction Longer overall construction duration				
Environmental Impacts	An assessment of the permanent impacts to the environment including ecological (i.e., flora, fauna, air quality, water quality, visual, noise); socioeconomic impacts; impacts to shore edge; impacts to cultural, recreational and historic resources.	Requires ROW or walls to accommodate interstate widening and realignment of Russell Cave and Bryan Station Noise walls assumed in areas of receptors Addition of impervious surface (less than 8 feet) Small slivers of additional ROW required around Newtown Pike Interchange for ramp 4f De-Minimus at Cold Stream Park				

Performance Attributes							
Evaluative Criteria Alternative 4							
Performance Attribute							
Main Line Operations	An assessment of traffic operations and safety on the main line within the project limits. Operational considerations include level of service relative to the 20-year traffic projections, as well as geometric considerations such as design speed, sight distance, and lane and shoulder widths.	 4-12 foot thru lanes 4.7 foot inside shoulder (when hard-shoulder running is open) 16.7 foot inside shoulder (when hard-shoulder running is closed) 12 foot outside shoulder Design exceptions - lane widths and inside shoulder Shoulders may be less under existing bridges Lane balance at northern split may require a design exception 					
Local Operations	An assessment of traffic operations and safety on the local roadway infrastructure. Local Operations include frontage roads as well as cross roads. Operational considerations include level of service relative to the 20-year traffic projections; geometric considerations such as design speed, sight distance, lane and shoulder widths; bicycle and pedestrian operations and access.	Sight distance at Bryan Station and Russell Cave if bridges are raised Structures not replaced may require approvals because of lack of pedestrian accessibility					
Maintainability	An assessment of the long-term maintainability of the facilities and equipment. Maintenance considerations include the overall durability, longevity, and maintainability of structures and systems; ease of maintenance; accessibility and safety considerations for maintenance personnel.	Lane widening with concrete section to match existing with 6 inch Asphalt overlay Raising bridges at Russell Cave and Bryan Station and widening bridge northbound direction on Newtown Pike Wider inside shoulders during non-peak hours provides additional width for maintenance activities Less pavement for long term maintenance Requires more drainage inlets on inside shoulder Additional maintenance for ITS and coordination with LFUCG					
Construction Impacts	An assessment of the temporary impacts to the public during construction related to traffic disruptions, detours and delays; impacts to existing utilities; impacts to businesses and residents relative to access, visual effects, noise, vibration, dust, and construction traffic; environmental impacts.	Raise structures at Bryan Station and Russell Cave, harden existing shoulder, multiple traffic shifts to develop pavement lifts, use temporary barrier, detours for side roads during bridge raising					
Environmental Impacts	An assessment of the permanent impacts to the environment including ecological (i.e., flora, fauna, air quality, water quality, visual, noise); socioeconomic impacts; impacts to shore edge; impacts to cultural, recreational and historic resources.	Widening accomplished within existing ROW Noise walls assumed in areas of receptors Minimal addition of impervious surface Small slivers of additional ROW required around Newtown Pike Interchange for ramp					

A matrix was used to determine the relative importance of the individual performance attributes for the Project. The Project and VE Teams evaluated the relative importance of the performance attributes that would be used to evaluate the creative ideas.

These attributes were compared in pairs, asking the question: "Which one is more important to the purpose and need of the project?" The letter code (e.g., "A") was entered into the matrix for each pair.

Performance Attributes Criteria Matrix									
Paired Comparison									
Total points % of Total									
Main Line Operations	Α	Α	Α	A	A	A		6.0	29%
Local Operations	Local Operations B C			В	В	В		4	19%
Maintainabi	lity		С	С	С	С		5.0	24%
Constructi	on Impac	ts		D	D	D		3.0	14%
Enviro	nmental li	mpacts			E	E		2.0	10%
Reduce Risk						F		1.0	5%
	Total 21.0 100%								

Paired Comparison

After all pairs were discussed, they were tallied (after normalizing the scores by adding a point to each attribute) and the percentages calculated. These scores were then used as a weighting to calculate the value of each concept during the performance evaluation scoring team review for each Concept.

Performance Criteria Rating

Following are definitions and rating scales for the standardized performance criteria. The following rating criteria was provided to the VE team members prior to the scoring exercise.

Criteria	Definition	Rating Scale	Unit of Measure/Quantification
Mainline Operations	An assessment of traffic operations and safety on the mainline	10	Free flow – excellent operation
	facility(s), including off- ramps, and collector- distributor roads. Operational	9	Full Design standards
	considerations include level of service relative to the 20 year traffic	8	Stable flow – very good operation
	projections as well as geometric considerations such as design speed, sight distance, lane widths and shoulder widths.	7	Minor design exceptions
		6	Stable flow – good operation
		5	Approaching unstable flow – fair operation
		4	Design exceptions (geometry, sight distance)
		3	Unstable flow – poor operation
		2	Major Design exceptions (weaving and merging)
		1	Traffic congestion

Criteria	Definition	Rating Scale	Unit of Measure/Quantification	
Local Operations	An assessment of traffic operations and safety	10	Free flow – excellent operation	
	on the local roadway infrastructure, including on-ramps and frontage roads. Operational	9	Full Design standards	
	considerations include level of service relative to the 20 year traffic	8	Stable flow – very good operation	
	considerations such as design speed, sight distance, lane widths;	design speed, sight distance, lane widths;	7	Minor design exceptions
	bicycle and pedestrian operations and access.	6	Stable flow – good operation	
		5	Approaching unstable flow – fair operation	
		4	Design exceptions (geometry, sight distance)	
			3	Unstable flow – poor operation
		2	Major Design exceptions (weaving and merging)	
		1	Traffic congestion	

Criteria	Definition	Rating Scale	Unit of Measure/Quantification
Maintainability	An assessment of the long-term maintainability of the transportation	10	Very low maintenance
	facility(s). Maintenance considerations include the overall durability,	9	
	longevity and maintainability of pavements, structures	8	
	and systems; ease of maintenance; accessibility and safety considerations for	7	Similar maintenance to the existing facility when it
	maintenance personnel.	6	was in like new condition
		5	
		4	Similar maintenance to the existing facility in existing condition
		3	
		2	Maintainability is significantly increased over the existing facility when it was in like new condition
		1	

Criteria	Definition	Rating Scale	Unit of Measure/Quantification
Construction Impacts	An assessment of the temporary impacts to	10	No impacts
	the public during construction related to traffic disruptions, detours and delays; impacts to businesses	9	Minor impacts (i.e., noise, vibration, dust, or visual, requiring limited mitigation effort)
	and residents relative to access, visual, noise, vibration, dust and construction traffic;	8	Minor impacts (i.e., minor traffic delays, occasional temporary nighttime lane closures, etc.)
	environmental impacts.	7	
			Ramp closures of up to 30 days with acceptable detours
		6	
		5	Moderate impacts (i.e., noise, vibration, dust, or visual, requiring significant mitigation efforts and/or inconveniences to the public)
			Moderate impacts (i.e., multiple minor traffic delays, lengthy detours for ramp closures up to 45 days, extended temporary night closures, etc.)
		4	
			Major impacts (i.e., noise, vibration, dust, or visual, requiring substantial mitigation efforts and/or inconveniences to the public with lengthy detours for ramp closures up to 60 days
		3	
			Major impacts (i.e., noise, vibration, dust, or visual, requiring substantial mitigation efforts and/or inconveniences to the public with lengthy detours for ramp closures up to 90 days
		2	Major impacts (i.e., noise, vibration, dust, or visual, requiring substantial mitigation efforts and/or inconveniences to the public with lengthy detours for ramp closures up to 120 days

Criteria	Definition	Rating Scale	Unit of Measure/Quantification
Environmental Impacts	An assessment of the permanent impacts to the environment including ecological (i.e., flora, fauna, air quality,	10	Major improvement upon existing environmental conditions
	water quality, visual, noise); socioeconomic impacts (i.e.,	9	
	environmental justice, business, residents); impacts to cultural, recreational and historic	8	Minor improvement upon existing environmental conditions
	resources.	7	No environmental impacts
		6	Negligible degradation - does not require mitigation
		5	Minor degradation - requires some mitigation
		4	Moderate degradation - requires significant on-site mitigation
		3	
		2	Severe degradation - requires significant off-site

mitigation

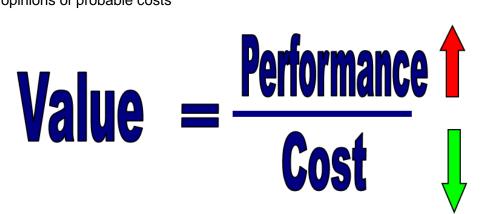
1

Criteria	Definition	Rating Scale	Unit of Measure/Quantification
Reduce Risk	An assessment of reducing project risks from concept through	10	Eliminates project risk
	construction	9	
		8	Mitigates risk with little residual cost or schedule risk
		7	
		6	
		5	Mitigates risk with added cost and schedule
		4	Added risk to cost and schedule
		3	
		2	Significantly adds cost and or schedule risk
		1	

To develop the total performance score for each of the four concepts presented, the VE team used the weighting and scoring criteria to score each of the attributes.

Alternative 1				
PERFORMANCE MEASURES Attributes and Rating Rationale	Performance	Score		
Mainline Operations	Rating	6		
 Design exceptions – lane 11 ft Design exception – inside shoulder 8.7 ft Full outside shoulder 	Weight	28.6		
 Exceeds LOS C in design year 	Contribution	171.6		
Local Operations	Rating	6		
 Russell Cave and Bryan Station – raising structures therefore no adjustments to lane or shoulder widths Does not Commitment satisfy commitment to provide bike and pedestrian access Russell Cave road 	Weight	19.0		
	Contribution	114.0		
Maintainability	Rating	4		
 Similar maintenance to existing facility Maintenance has expressed concerns for inside shoulder maintenance activities – would require lane closures 	Weight	23.8		
 Raising structures built in late 60s may have additional maintenance 	Contribution	95.2		
Construction Impacts	Rating	6		
 Maintain 2-3 lanes in each direction throughout construction with interim night closures 	Weight	14.2		
	Contribution	85.2		
Environmental Impacts	Rating	6		
 Assumes noise walls where required Stays mostly within existing right of way 	Weight	9.5		
	Contribution	57.0		
Reduce Risk	Rating	5		
 Risk of additional cost to repair existing structures Stays within existing roadway prism, minimizing risk to environmental right of way and utilities 	Weight	4.7		
 Will require design exceptions for lane and shoulder widths Raising structures Does not address lane balance at northern split 	Contribution	23.5		
Total	Performance:	547		

Alternative 2					
PERFORMANCE MEASURES Attributes and Rating Rationale	Performance	Score			
Mainline Operations	Rating	7.5			
 Design exception – inside shoulder 8 ft Full outside shoulder Exceeds LOS C in design year 	Weight	28.6			
	Contribution	214.5			
Local Operations	Rating	8			
 Russell Cave and Bryan Station – replaces structures with adjustments to lane or shoulder widths Accommodates Commitment satisfy commitment to provide bike and 	Weight	19.0			
pedestrian access Russell Cave road	Contribution	152			
Maintainability	Rating	5			
 Similar maintenance to existing facility Maintenance has expressed concerns for inside shoulder maintenance activities – would require lane closures 	Weight	23.8			
 Replacing structures built in late 60s will have less maintenance 	Contribution	119.0			
Construction Impacts	Rating	6			
 Maintain 2-3 lanes in each direction throughout construction with interim night closures 	Weight	14.2			
	Contribution	85.2			
Environmental Impacts	Rating	5			
 Assumes noise walls where required Some right of way required Outside widening throughout 	Weight	9.5			
 Added shoulder or sidewalk on Russell Cave and Bryan Station 	Contribution	47.5			
Reduce Risk	Rating	5			
 Risk of additional cost to repair existing structures Will require design exceptions for shoulder widths Widening outside of current right of way 	Weight	4.7			
 Does not address lane balance at northern split 	Contribution	23.5			
Total Performance: 6					



Alternative 3	Alternative 3					
PERFORMANCE MEASURES Attributes and Rating Rationale	Performance	Score				
Mainline Operations	Rating	9				
 No design exception Full inside/outside shoulder Exceeds LOS C in design year 	Weight	28.6				
Exceeds 200 o in design year	Contribution	257.4				
Local Operations	Rating	8				
 Russell Cave and Bryan Station – replaces structures with adjustments to lane or shoulder widths Accommodates commitment satisfy commitment to provide bike and pedestrian access Russell Cave road 	Weight	19.0				
	Contribution	152.0				
Maintainability Similar maintenance to existing facility Replacing structures built in late 60s will have less maintenance	Rating	6				
	Weight	23.8				
	Contribution	142.8				
Construction Impacts	Rating	6				
 Maintain 2-3 lanes in each direction throughout construction with interim night closures May not require outside shoulder widening for stage 1 construction 	Weight	14.2				
 Added drainage/slope construction work on outside could add to construction duration 	Contribution	85.2				
Environmental Impacts	Rating	4				
 Assumes noise walls where required Additional right of way required Outside widening throughout 	Weight	9.5				
 Outside widening throughout Added shoulder or sidewalk on Russell Cave and Bryan Station Potential 4f impacts will need to be mitigated 	Contribution	38.0				
Reduce Risk	Rating	6				
 Risk of additional cost to repair existing structures Widening outside of current right of way Does not address lane balance at northern split 	Weight	4.7				
	Contribution	23.5				
Total	Performance:	699				

Alternative 4				
PERFORMANCE MEASURES				
Attributes and Rating Rationale	Performance	Score		
Mainline Operations	Rating	4		
 Design exception – inside shoulder 4.7 ft during peak hours, 16.7 ft off peak Full outside shoulder 	Weight	28.6		
 Opening and closing of lanes could cause operational issues Reliability of ITS may affect lane operations Complicates merge on southern split May have inside shoulder reduction in areas of overhead signing (ITS) 	Contribution	114.4		
Local Operations	Rating	6		
 Russell Cave and Bryan Station – raising structures therefore no 	Weight	19.0		
 adjustments to lane or shoulder widths Does not Commitment satisfy commitment to provide bike and pedestrian access Russell Cave road 	Contribution	114.0		
Maintainability	Rating	2		
 Maintenance has expressed concerns for inside shoulder maintenance activities – would require lane closures Raising structures built in late 60s may have additional maintenance 	Weight	23.8		
 Maintaining ITS components significant Interim maintenance of hard shoulder running lane between peak hours 	Contribution	47.6		
Construction Impacts	Rating	6		
 Maintain 2-3 lanes in each direction throughout construction with 	Weight	14.2		
interim night closures	Contribution	85.2		
Environmental Impacts	Rating	6		
 Assumes noise walls where required 	Weight	9.5		
 Stays mostly within existing right of way 	Contribution	57.0		
Reduce Risk	Rating	5		
 Risk of additional cost to repair existing structures 	Weight	4.7		
 Stays within existing roadway prism, minimizing risk to environmental, right of way and utilities Will require design exceptions for shoulder widths Raising structures Does not address lane balance at northern split Coordination and operation of ITS Opening and transitioning of inside lane on southern split 	Contribution	23.7		
Total	Performance:	442		

	Alternative Summary					
	Alternatives	Performance (P)	Cost (C) \$ millions	Value Index		
1	Alternative 1	547	\$64.5	8.48		
2	Alternative 2	646	\$85.8	7.53		
3	Alternative 3	699	\$90.2	7.75		
4	Alternative 4	442	\$78.1	5.65		

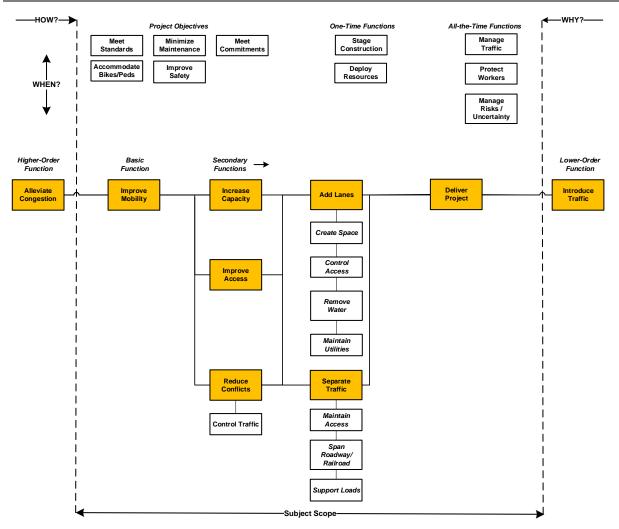
Table 6 Value Index Alternative's 1 thru 4 Pre-VE

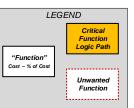
This page is intentionally left blank.

Function Analysis Phase

Function analysis results in a unique view of the project. It transforms project elements into functions, which moves the VE team mentally away from the original design and takes it toward a functional concept of the project.

Functions are defined in verb-noun statements to reduce the needs of the project to their most elemental level. Identifying the functions of the major design elements of the project allows a broader consideration of alternative ways to accomplish the functions. The major functions identified by the team were:


Table 7: Functions	
Verb	Noun
Alleviate	Congestion
Improve	Mobility
Increase	Capacity
Improve	Access
Reduce	Conflicts
Add	Lanes
Separate	Traffic


FAST Diagram

The Function Analysis System Technique or FAST diagram arranges the functions in logical order so that when read from left to right; the functions answer the question "How?" If the diagram is read from right to left, the functions answer the question "Why?" Functions connected with a vertical line are those that happen at the same time as, or are caused by, the function at the top of the column.

The FAST Diagram for this project shows Improve Mobility as the basic function of this project. A key secondary function was Increase Capacity and Reduce Conflicts. This provided the VE team with an understanding of the project design rationale and which functions offer the best opportunity for cost or performance improvement.

FAST Diagram

Creative Phase

During the Creative Phase of the Value Methodology Job Plan, the VE team brainstormed ideas on how to achieve the various functions. These ideas were based on the available information given to them at the time of the workshop, taking into consideration the constraints and controlling decisions that were also defined for them. The ideas listed below coincide with each function being considered:

Function: Increase Capacity

- Toll lanes
- Advanced signing for lane choice
- Auxiliary lane between interchanges
- Flyover southern split
- Northern split 3 lane widening (I75N/I75S)
- 2 lane on ramp southbound from Newtown Pike
- Ramp metering at interchanges
- Narrowing shoulders at existing structures
- Lengthen merge/diverge areas at ramps where needed
- Only widen southbound
- Widen southbound from Newtown to southern split
- Reversible lane
- HOV

Function: Support Load

- Change 6 in overlay to 4.5 in mill/fill
- Break and seat existing concrete with overlay
- Do not overlay existing structures
- Widening without concrete base
- Only pave widened areas that have not recently been rehabbed

Function: Span Roadway

- Single span all bridges
- No median piers
- Current and future structures maintenance included with this project
- Bike lanes on overpass bridges
- Not raising the bridges
- Stub wall on legacy trail to avoid extending box culvert
- Concrete roadway section spanning legacy trail box culvert
- Steel beams for new bridge construction
- Raise substructure and superstructure

Function: Create Space

- Narrow ditches to reduce right of way
- Use sound wall combination cut/fill
- Small retaining walls to reduce right of way
- Guardrail/barrier to narrow footprint to reduce right of way

Function: Separate Traffic

• Encase existing median barrier with single slope

Although each project is different, the evaluation process for each VE effort can be thought of in its simplest form as a way of combining, evaluating, and narrowing ideas until the VE team agrees on the proposals to be forwarded.

Taking into consideration the constraints and controlling decisions, the team discussed each idea and documented the advantages and disadvantages. Each idea was then carefully evaluated with the VE team reaching consensus on the overall rating of the idea (zero through three). Ideas rated three were developed further; those that need to be combined with other Ideas or was a future design consideration were (rated two); and low-rated ones (one or lower) were dropped from further consideration; however, the team provided a short description and justification to support the low rating. The rating values are shown below:

- 3 = Good Opportunity
- 2 = Design Consideration (Needs to be combined with other ideas to move forward)
- 1 = Major Value Degradation
- 0 = Fatal Flaw (unacceptable impact or doesn't meet the project purpose and need)
- B/L = Baseline

#	Idea	Advantages	Disadvantages	Alt 1	Alt. 2	Alt. 3	Alt. 4
1	Toll lanes	 Eliminate weave over the entire section Help fund the project 	 Adding congestion to non-toll lanes Public acceptance Ingress and Egress points could cause issues in facility Additional cross section 	1	1	1	1
2	Advanced signing / road markings for lane choice	 May eliminate weaves May eliminate side swipes Low cost 	 Closely spaced interchanges reduces availability for space 	2	2	2	2
3	Auxiliary lane between interchanges (Interim)	 Defer full project Compatible with ultimate alternatives 1- 3 	 Will not meet project purpose and need in interim condition 	2	2	2	0
4	Flyover southern split	 Eliminates left exit Changes weave pattern Minor benefit over current condition 	 Changes weave pattern Cost 	1	1	1	2

Function: Improve Access

#	Idea	Advantages	Disadvantages	Alt 1	Alt. 2	Alt. 3	Alt. 4
5	Northern split 3 lane widening (I75N/I75S)	 Fixes lane balance Continuity of 3 lanes on I75 from state line to state line 	 Extends project limits and cost 	2	2	2	2
6	2 lane on ramp southbound from Newtown Pike (assumed baseline)	 Reduces congestion on Newtown Pike Interim May improve local operations 	 Potential impacts to ROW/golf course Doesn't improve mainline operations May require IMR 	B/L	B/L	B/L	B/L
7	Ramp metering at interchanges	 Increases capacity on mainline Works best at Paris Pike southbound entrance ramp 	 May add requirements to widening ramps Only one in KY 	2	2	2	2
8	Narrowing shoulders at existing structures	 Cost Eliminates widening bridges nearing the end of their service life 	 Doesn't correct vertical clearance issues on underpasses Introduces fixed object on existing shoulder width 	3	3	1	3
9	Lengthen merge/diverge areas at ramps where needed (Paris Pike)	 Improves weaving distance 	 May require additional road and bridge widening Added cost 	3	3	3	3
10	Only widen southbound (interim)	 Interim Decreased cost Attacks most pressing problem May match available funding 	 Will still require structure raising or replacements Replace median barrier wall 	2	2	2	2
11	Widen southbound from Newtown to southern split	 Same as 10 	•	2	2	2	2

#	Idea	Advantages	Disadvantages	Alt 1	Alt. 2	Alt. 3	Alt. 4
12	Reversible lane	 Add capacity over existing 	 Existing median piers could make this a challenge Added width on one side for buffers and extra barrier May not meet project purpose and need Added maintenance 	0	0	0	0
13	HOV – High Occupancy Vehicle	 May reduce volume 	 Not used in the area Egress/Degress bigger problem with trucks on southern end Added requirement for enforcement 	1	1	1	0
14	Change 6 in overlay to 4.5 in mill/fill	 Reduces profile changes on mainline Eliminate bridge overlays/need to replace barriers Reduces side slope fills Reduces amount of raising required for vertical clearance Sustainability 	 Reduces pavement structural depth May increase construction duration Additional haul Could expose unknown problems with existing concrete 	3	3	3	3
15	Break and seat existing concrete with overlay	 Reduce profile Should reduce reflective cracking Eliminates concrete base 	 Increase cost May increase construction duration Limited contractors 	2	2	2	2
16	Do not overlay existing structures	 Reduce dead load Eliminate need to replace bridge rail Reduced cost 	 Dive down to existing bridge deck profile May be bridge deck repair 	3	3	3	3
17	Widening without concrete base	 May reduce cost and/or construction time 	 Could have reflective cracking in the middle of lanes Differential settlement 	2	2	2	2

FS

#	Idea	Advantages	Disadvantages	Alt 1	Alt. 2	Alt. 3	Alt. 4
18	Only pave widened areas that have not recently been rehabbed	 Full service life over previous work Cost May shorten construction duration May eliminate phases of construction 	 Ghost striping from temporary traffic shifts Does not accommodate crown shift 	2	2	2	2
19	Single span bridges (Russell Cave and Bryan Station)	 Eliminate piers in median 	 Increased structure depth Increase cost Higher profile changes on cross streets 	1	1	1	1
20	No median piers (3 span structure) Russell Cave and Bryan Station	 Eliminates piers in median Eliminates bulb out around pier 	 Increase cost Higher profile changes on cross streets 		1	1	
21	Current and future structures maintenance included with this project	 Assume part of base 	•	2	2	2	2
22	Bike lanes/ sidewalks on overpass bridges	 Assume part of base 	•		2	2	
23	Not raising the bridges (replace)	 Can accommodate bike/peds Eliminate specialty construction Reduce risk 	 May increase costs 	3			3
24	Stub wall on legacy trail to avoid extending box culvert	 Eliminate profile changes to trail Could apply to other drainage facilities as well 	 Would require physical barrier 		3	3	
25	Concrete roadway section spanning legacy trail box culvert	 Could help correct cross slope problems 	 Added cost 		1	1	
26	Steel beams for new bridge construction	 Can accommodate single/3 span options Reduce profile cross roads if median pier still incorporated 	Cost		1	1	

#	Idea	Advantages	Disadvantagas	Alt 1	Alt. 2	Alt. 3	Alt. 4
#	Narrow ditches to	Advantages	Disadvantages				
27	reduce right of way	 Reduce ROW 	 Would require physical barrier due to clear zone 	3	3	3	3
28	Use sound wall combination cut/fill	 Could reduce ROW 	 May require physical barrier due to clear zone Addition of fixed object 	3	3	3	3
29	Small retaining walls to reduce right of way	 Reduce ROW 	 May require physical barrier due to clear zone Addition of fixed object 	3	3	3	3
30	Guardrail/barrier to narrow footprint to reduce right of way	 Reduce ROW 	 Addition of fixed object 	3	3	3	3
31	Encase existing median barrier with single slope	 May reduce median pavement replacement May reduce cost of barrier replacement 	 Median drainage work Hasn't been done in the area Constrained construction work area May reduce shoulder width Reduces options for median conduit 	1	1	1	1
32	Raise substructure and replace superstructure Russell Cave Road and Bryan Station Road	 Can accommodate Bike and pedestrians on Russell Cave Road and Bryan Station Road 	 Will require shoulder variance on main line to narrow shoulders to accommodate existing bridge piers 		3	3	

This page is intentionally left blank

Development Phase

The VE Recommendations are presented as written by the team during the VE study. While they have been edited for the VE report to correct errors or better clarify the recommendation, they represent the VE team's findings during the workshop. The following table is a summary of all recommendations generated and their impact to the project.

Table 8 Summary of Recommendations									
Description	Alt. 1	Alt 2	Alt. 3	Alt. 4					
Pavement	-\$8.8M	-\$8.60M	-\$8.9M	-\$8.8					
Narrowing Shoulders at existing structures		-\$1.90M	-\$3.3M						
10' Inside Shoulders			-\$2.5M						
Reduction of Right-of-Way Impacts	+\$0.02M	-\$0.17M	+\$0.66M	+\$0.02M					
Lengthen merge/diverge areas at ramps where needed (Paris Pike)	+\$2.30M	+\$2.22M	+\$2.25M	+\$2.3M					
Narrow Shoulders at Existing Bridge Piers		-\$5.30M	-\$5.30M						
Totals	-\$6.48M	-\$13.75M	-\$17.09M	-\$6.48M					

Note see table 9 page 92 for details on performance / cost.

The cost comparisons reflect a difference or delta between the baseline idea and the VE recommendation or alternative. As the project progresses, these values can be updated to reflect actual implemented results.

The values shown have been adjusted to reflect the additional *cumulative* costs of mobilization, sales tax, design allowance, change order contingency, and construction engineering.

FHWA Functional Benefit Criteria

Each year, State DOT's are required to report on VE Recommendations to FHWA. In addition to cost implications, FHWA requires the DOT's to evaluate each approved recommendation in terms of the project feature or features that recommendation benefits. If a specific recommendation can be shown to provide benefit to more than one feature described below, count the recommendation in *each category that is applicable*. These same criteria can be found on each of the individual recommendations that follow.

- Safety: Recommendations that mitigate or reduce hazards on the facility.
- **Operations:** Recommendations that improve real-time service and/or local, corridor, or regional levels of service of the facility.
- Environment: Recommendations that successfully avoid or mitigate impacts to natural and or cultural resources.
- **Construction:** Recommendations that improve work zone conditions, or expedite the project delivery.

• Right-of-Way: Recommendations that lower the impacts or costs of right-of-way.

Value Engineering Recommendation Approval

The Value Engineering Recommendation form is to aid in annual reporting of VE activities to FHWA. It is the intent that the project manager review and evaluate the VE team's alternatives included in this report. The Project Manager would then complete the Recommendation Approval form provided in the Appendix.

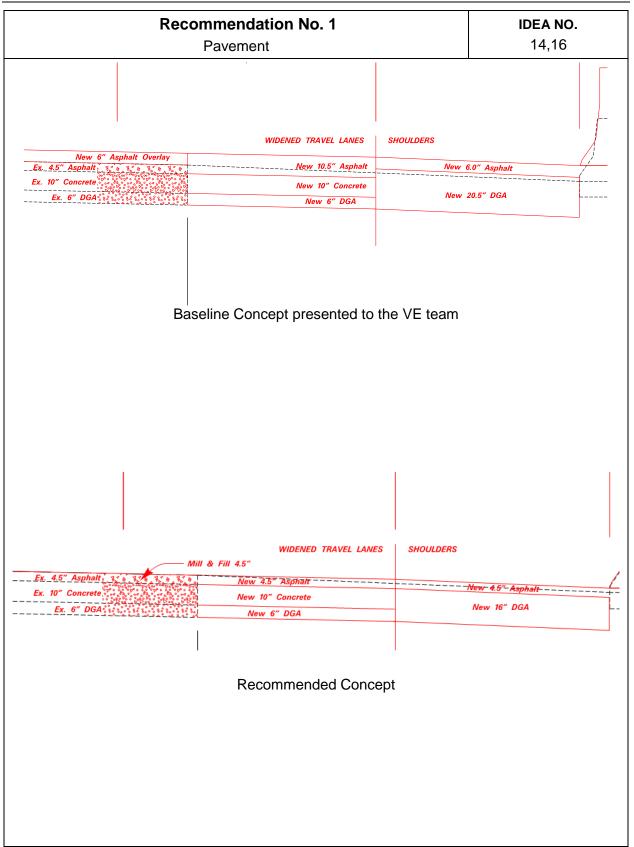
Each alternative that is not approved or is modified by the Project Manager should include a justification (a summary statement explaining the Project Manager's decision not to use the recommendation in the project).

The completed Value Engineering Recommendation Approval form, including justification for any recommendations not approved or modified, shall be sent to the KYTC Value Engineering Manager so the results can be included in the annual VE Report to the Federal Highway Administration (FHWA).

Recommendations

Based on the evaluation process, individual recommendations were developed. Each recommendation consists of a summary of the original concept, a description of the suggested change, a listing of its advantages and disadvantages, and a brief narrative that includes justification, sketches, photos, assumptions and calculations (where applicable) as developed by the VE team.

The recommendations were then incorporated into each of the alternatives. These alternatives was then evaluated for performance and cost to prove best value of the four alternatives evaluated.


	IDEA NO.		
	Pavement		14,16
Baseline			
of asphalt overlay. A	e pavement consist of 10' I baseline alternatives inc g pavement, including a s	clude a six-inch overlay (1.25" surface and 4.75"
Recommendation			
	5" of asphalt of new asphalt (1.25" su deck overlay on existing s		
Advantages		Disadvantages	
 Eliminates brid need to replac Reduces side 	slope fills and	May increase co	ent structural depth Instruction duration nal haul/waste if not
 Reduces amo required for version Sustainability Reduces dead 	uces guardrail length unt of structure raising ertical clearance d load on aging bridges ed to replace bridge rail	 Could expose up existing concrete 	nknown problems with e ridge deck repairs
 Reduces amo required for version Sustainability Reduces dead Eliminates need 	unt of structure raising ertical clearance d load on aging bridges ed to replace bridge rail	 Could expose up existing concrete 	Э
 Reduces amo required for version Sustainability Reduces dead Eliminates need 	unt of structure raising ertical clearance d load on aging bridges ed to replace bridge rail	 Could expose us existing concrete May still need be 	Э
 Reduces amo required for version Sustainability Reduces dead Eliminates need 	unt of structure raising ertical clearance d load on aging bridges ed to replace bridge rail	Could expose un existing concrete May still need by Cost Analysis Cost	Э
 Reduces amo required for version Sustainability Reduces dead Eliminates nersion Reduced cost 	unt of structure raising ertical clearance d load on aging bridges ed to replace bridge rail Summary of	Could expose un existing concrete May still need by Cost Analysis Cost ance	Э
 Reduces amo required for version of the second secon	unt of structure raising ertical clearance d load on aging bridges ed to replace bridge rail Summary of \$ 8,800,000 Cost Avoida	Could expose un existing concrete May still need by Cost Analysis Cost ance ance	Э

seline
n the d ment
ders.
ould Alts 2 ct to I ss of
design

FC

	-	endatio	1 INO. 1				IDEA
	Pav	ement					14,
Assumptions & Calculation	ons						
Alternative 1 – Cost Calcula	tions:						
7-8909 164/175 Split							
Value Planning Meeting							
Alternative 1							
Alternative 1							
ITEM DESCRIPTION	UNIT	ORIGINAL QNT	REVISED QNT	DELTA QNT	UNIT PRICE		TOTAL
PAVEMENT							
SURFACE	TONS	31,832	32,903	1,071	\$ 100.00	\$	107,100
BASE	TONS	130,740	81,439	-49,301	\$ 85.00	\$	(4,190,585)
JPC PAVEMENT	SQYD	63,509	63,509	0	\$ 95.00	\$	-
CRUSHED STONE BASE/DGA	TONS	108,776	87,071	-21,705	\$ 27.00	\$	(586,035)
MILLING	TONS		64,005	64,005	\$ 16.00	\$	1,024,080
STRUCTURES			_				
CANE RUN CREEK	LS	\$ 396,100.00	\$ -	-396,100		\$	(396,100)
NEWTOWN PIKE	LS	\$1,949,550.00	\$1,288,750.00	-660,800		\$	(660,800)
RUSSELL CAVE RD	LS	\$1,036,536.00	\$1,036,536.00	0		\$	-
I-75 OVER PARIS PIKE	LS	\$1,579,050.00	\$ -	-1,579,050		\$	(1,579,050)
BRYAN STATION RD	LS	\$1,036,536.00	\$1,036,536.00	0		\$	-
						ć	(6.001.000)
						\$	(6,281,390)
Subtotal	10%						
Subtotal Contingency Total	40%					\$ \$	(2,512,556) (8,793,946)
Contingency			F			\$	(8,793,946)
Contingency Total							
Contingency Total Alternative 2 — Cost Calcula 7-8909 164/175 Split							
Contingency Total							
Contingency Total Alternative 2 — Cost Calcula 7-8909 164/175 Split Value Planning Meeting Alternative 2	itions:	ORIGINAL	REVISED	DELTA			(8,793,946)
Contingency Total Alternative 2 – Cost Calcula 7-8909 164/175 Split /alue Planning Meeting		ORIGINAL QNT	REVISED QNT	DELTA QNT	UNIT PRICE		
Contingency Total Alternative 2 — Cost Calcula 7-8909 I64/I75 Split Value Planning Meeting Alternative 2 ITEM DESCRIPTION	itions:				UNIT PRICE		(8,793,946)
Contingency Total Alternative 2 — Cost Calcula 7-8909 164/175 Split Value Planning Meeting Alternative 2 ITEM DESCRIPTION	itions:				UNIT PRICE \$ 12.0	\$	(8,793,946)
Contingency Total Alternative 2 — Cost Calcula 7-8909 164/175 Split /alue Planning Meeting Alternative 2 ITEM DESCRIPTION	utions:	QNT	QNT	QNT		\$	(8,793,946) Тотац
Contingency Total Alternative 2 — Cost Calcula 7-8909 164/175 Split /alue Planning Meeting Alternative 2 ITEM DESCRIPTION	utions:	QNT	QNT	QNT		\$ 	(8,793,946) Тотац
Contingency Total Alternative 2 – Cost Calcula 7-8909 164/175 Split Value Planning Meeting Alternative 2 ITEM DESCRIPTION INFACE	UNIT CU YD	QNT 198,240	QNT 208,152	QNT 9,912	\$ 12.0	\$ 	(8,793,946) <i>TOTAL</i> 118,944
Contingency Total Alternative 2 – Cost Calcula 7-8909 164/175 Split Value Planning Meeting Alternative 2 ITEM DESCRIPTION COADWAY ARTHWORK WERACE ASE	UNIT CU YD TONS	QNT 198,240 35,467	QNT 208,152 36,495	QNT 9,912 1,028	\$ 12.0	\$ 	(8,793,946) <i>TOTAL</i> 118,944 102,800
Contingency Total Alternative 2 – Cost Calcula 7-8909 164/175 Split Value Planning Meeting Alternative 2 ITEM DESCRIPTION OADWAY ARTHWORK AVEMENT URFACE ASE PC PAVEMENT	UNIT CU YD TONS TONS	QNT 198,240 35,467 147,535	QNT 208,152 36,495 90,175	QNT 9,912 1,028 -57,360	\$ 12.0 \$ 100.0 \$ 85.0	\$	(8,793,946) TOTAL 118,944 102,800 (4,875,599)
Contingency Total Alternative 2 – Cost Calcula 7-8909 164/175 Split Value Planning Meeting Alternative 2 ITEM DESCRIPTION COADWAY ARTHWORK VAVEMENT URFACE IASE PC PAVEMENT IRUSHED STONE BASE/DGA	UNIT CU YD TONS TONS SQYD	QNT 198,240 35,467 147,535 95,717	QNT 208,152 36,495 90,175 95,717	QNT 9,912 1,028 -57,360 0	\$ 12.0 \$ 12.0 \$ 100.0 \$ 5.00 \$ 95.0	\$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(8,793,946) <i>TOTAL</i> 118,944 102,800 (4,875,599) -
Contingency Total Alternative 2 – Cost Calcula 7-8909 164/175 Split /alue Planning Meeting Alternative 2 ITEM DESCRIPTION ITEM DESC	UNIT CUYD TONS SQYD TONS	QNT 198,240 35,467 147,535 95,717	QNT 208,152 36,495 90,175 95,717 216,508	QNT 9,912 1,028 -57,360 0 -23,495	\$ 12.0 \$ 12.0 \$ 12.0 \$ 5.00.0 \$ 5.00 \$ 95.0 \$ 27.0	\$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(8,793,946) TOTAL 118,944 102,800 (4,875,599) - (634,373)
Contingency Total Alternative 2 – Cost Calcula 7-8909 164/175 Split Value Planning Meeting Alternative 2 ITEM DESCRIPTION COADWAY ARTHWORK ARTHWORK MULTION COADWAY ARTHWORK COADWAY COADWAY ARTHWORK COADWAY ARTHWORK COADWAY	UNIT CUYD TONS SQYD TONS	QNT 198,240 35,467 147,535 95,717	QNT 208,152 36,495 90,175 95,717 216,508 64,939	QNT 9,912 1,028 -57,360 0 -23,495	\$ 12.0 \$ 12.0 \$ 12.0 \$ 5.00.0 \$ 5.00 \$ 95.0 \$ 27.0	\$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(8,793,946) TOTAL 118,944 102,800 (4,875,599) - (634,373)
Contingency Total Alternative 2 – Cost Calcula 7-8909 164/175 Split Value Planning Meeting Alternative 2 ITEM DESCRIPTION ROADWAY ARTHWORK RUMENT URFACE IASE PC PAVEMENT IRUSHED STONE BASE/DGA IILLING ITHUCTURES CANE RUN CREEK	UNIT CU YD TONS TONS SQYD TONS TONS	QNT 198,240 35,467 147,535 95,717 240,003	QNT 208,152 36,495 90,175 95,717 216,508 64,939 \$ 430,000.00	QNT 9,912 1,028 -57,360 0 -23,495 64,939	\$ 12.0 \$ 12.0 \$ 12.0 \$ 5.00.0 \$ 5.00 \$ 95.0 \$ 27.0	\$ 0 0 0 0 5 0 5 0 5 0 5 0 5 0 5 0 5	(8,793,946) TOTAL 118,944 102,800 (4,875,599) - (634,373) 1,039,026
Contingency Total Alternative 2 – Cost Calcula 7-8909 164/175 Split /alue Planning Meeting Alternative 2 ITEM DESCRIPTION OADWAY ARTHWORK OADWAY ARTHWORK IURFACE ASE PC PAVEMENT RUSHED STONE BASE/DGA IILLING TRUCTURES ANE RUN CREEK IEWTOWN PIKE	UNIT UNIT CUYD TONS TONS SQYD TONS TONS LS	QNT 198,240 198,240 35,467 147,535 95,717 240,003 5 709,600.00	QNT 208,152 36,495 90,175 95,717 216,508 64,939 \$ 430,000.00 \$ 1,937,500.00	QNT 9,912 1,028 -57,360 0 -23,495 64,939 -279,600	\$ 12.0 \$ 12.0 \$ 12.0 \$ 5.00.0 \$ 5.00 \$ 95.0 \$ 27.0	\$ 0	(8,793,946) TOTAL 118,944 102,800 (4,875,599) - (634,373) 1,039,026 (279,600)
Contingency Total Alternative 2 – Cost Calcula 7-8909 164/175 Split Value Planning Meeting Alternative 2 ITEM DESCRIPTION ITEM DESC	UNIT UNIT CUYD TONS TONS SQYD TONS TONS LS LS	QNT 198,240 198,240 35,467 147,535 95,717 240,003 5,709,600.00 \$ 2,486,300.00	QNT 208,152 90,175 95,717 216,508 64,939 \$ 430,000.00 \$ 1,937,500.00 \$ 2,675,780.00	QNT 9,912 1,028 -57,360 0 -23,495 64,939 -279,600 -548,800	\$ 12.0 \$ 100.0 \$ 85.0 \$ 95.0 \$ 27.0 \$ 16.0 	\$	(8,793,946) TOTAL 118,944 102,800 (4,875,599) - (634,373) 1,039,026 (279,600)
Contingency Total Alternative 2 — Cost Calcula 7-8909 164/175 Split Value Planning Meeting Alternative 2	UNIT UNIT CU YD TONS SQYD TONS TONS TONS LS LS	QNT 198,240 35,467 147,535 95,717 240,003 \$ 709,600.00 \$ 2,486,300.00 \$ 2,675,780.00	QNT 208,152 36,495 90,175 95,717 216,508 64,939 \$ 430,000.00 \$ 1,937,500.00 \$ 2,675,780.00	QNT 9,912 1,028 -57,360 0 -23,495 64,939 -279,600 -548,800 0	\$ 12.0 \$ 100.0 \$ 85.0 \$ 95.0 \$ 27.0 \$ 16.0 	\$	(8,793,946) TOTAL 118,944 102,800 (4,875,599) (634,373) 1,039,026 (279,600) (548,800) -
Contingency Total Alternative 2 – Cost Calcula 7-8909 164/175 Split /alue Planning Meeting Alternative 2 ITEM DESCRIPTION ITEM DESC	UNIT CU YD TONS TONS TONS TONS TONS LS LS LS	QNT 198,240 35,467 147,535 95,717 240,003 \$ 709,600.00 \$ 2,486,300.00 \$ 2,486,300.00 \$ 2,675,780.00 \$ 2,612,582.00	QNT 208,152 90,175 95,717 216,508 64,939 \$ 430,000.00 \$ 1,937,500.00 \$ 2,675,780.00 \$ 1,528,532.00	QNT 9,912 1,028 -57,360 0 -23,495 64,939 -279,600 -548,800 0 -1,084,050	\$ 12.0 \$ 100.0 \$ 85.0 \$ 95.0 \$ 27.0 \$ 16.0 	\$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(8,793,946) TOTAL 118,944 102,800 (4,875,599) (634,373) 1,039,026 (279,600) (548,800) -
Contingency Total Alternative 2 – Cost Calcula 7-8909 164/175 Split Value Planning Meeting Alternative 2 ITEM DESCRIPTION ROADWAY AATTHWORK ALTHWORK ALTHWORK AVEMENT URFACE IASE PC PAVEMENT IRUSFAC STONE BASE/DGA AILLING TRUCTURES IANE RUN CREEK IEWTOWN PIKE IUSSELL CAVE RD -75 OVER PARIS PIKE	UNIT CU YD TONS TONS TONS TONS TONS LS LS LS	QNT 198,240 35,467 147,535 95,717 240,003 \$ 709,600.00 \$ 2,486,300.00 \$ 2,486,300.00 \$ 2,675,780.00 \$ 2,612,582.00	QNT 208,152 90,175 95,717 216,508 64,939 \$ 430,000.00 \$ 1,937,500.00 \$ 2,675,780.00 \$ 1,528,532.00	QNT 9,912 1,028 -57,360 0 -23,495 64,939 -279,600 -548,800 0 -1,084,050	\$ 12.0 \$ 100.0 \$ 85.0 \$ 95.0 \$ 27.0 \$ 16.0 	\$	(8,793,946) TOTAL 118,944 102,800 (4,875,599) (634,373) 1,039,026 (279,600) (548,800) -
Contingency Total Alternative 2 – Cost Calcula 7-8909 164/175 Split Value Planning Meeting Alternative 2 ITEM DESCRIPTION ROADWAY EARTHWORK ROADWAY EARTHWOR	UNIT CU YD TONS TONS TONS TONS TONS LS LS LS	QNT 198,240 35,467 147,535 95,717 240,003 \$ 709,600.00 \$ 2,486,300.00 \$ 2,486,300.00 \$ 2,675,780.00 \$ 2,612,582.00	QNT 208,152 90,175 95,717 216,508 64,939 \$ 430,000.00 \$ 1,937,500.00 \$ 2,675,780.00 \$ 1,528,532.00	QNT 9,912 1,028 -57,360 0 -23,495 64,939 -279,600 -548,800 0 -1,084,050	\$ 12.0 \$ 100.0 \$ 85.0 \$ 95.0 \$ 27.0 \$ 16.0 	\$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(8,793,946) TOTAL 118,944 118,944 102,800 (4,875,599) - (634,373) 1,039,026 - (279,600) (548,800) - (1,084,050) - -

Rec	omm	endatio	n No. 1				IDE
	Pav	ement					1
Alternative 3 – Cost Calcula	ations:						
7-8909 164/175 Split							
Value Planning Meeting							
Alternative 3							
ITEM DESCRIPTION	UNIT	ORIGINAL QNT	REVISED QNT	DELTA QNT	UNIT PRICE		TOTAL
ROADWAY							
ARTHWORK	CU YD	217,703	228,588	10,885	\$ 12.00	\$	130,622
PAVEMENT							
URFACE	TONS	36,810	38,028	1,218	\$ 100.00	\$	121,800
	TONS	151,861	93,483	-58,378	\$ 85.00	\$ \$	(4,962,105
PC PAVEMENT RUSHED STONE BASE/DGA	SQYD TONS	90,896 266,043	90,896 238,153	-27,890	\$ 95.00 \$ 27.00	\$	(753,038
LLING	TONS	200,045	64,831	64,831	\$ 27.00	\$	1,037,298
· · ·			5.,001	,	, 10.00	1 ×	2,007,200
TRUCTURES					<u> </u>		
ANE RUN CREEK	LS	944,600	\$ 665,000.00	-279,600		\$	(279,600
EWTOWN PIKE	LS	2,946,300	\$ 2,397,500.00	-548,800		\$	(548,800
USSELL CAVE RD	SF	2,769,997	\$ 2,769,997.00	0		\$	-
75 OVER PARIS PIKE	LS	3,385,490	\$ 2,301,440.00	-1,084,050		\$	(1,084,050
	SF	2,466,788	\$ 2,466,788.00	0		\$	-
RYAN STATION RD							
RYAN STATION RD							
						ć	16 227 074
Subtotal						\$	(6,337,874
Contingency Total	40%					\$ \$ \$	(6,337,874 (2,535,150 (8,873,024)
subtotal Contingency Total Alternative 4 – Cost Calcula	40%					\$	(2,535,150
subtotal Contingency Total Iternative 4 – Cost Calcula 7-8909 164/175 Split	40%					\$	(2,535,150
subtotal Contingency Total Alternative 4 — Cost Calcula 7-8909 164/175 Split Value Planning Meeting	40%					\$	(2,535,150
subtotal Contingency Total Ilternative 4 — Cost Calcula -8909 164/175 Split Yalue Planning Meeting	40%					\$	(2,535,150
subtotal Contingency Total Iternative 4 — Cost Calcula -8909 164/175 Split alue Planning Meeting	40%	ORIGINAL QNT	REVISED QNT	DELTA QNT	UNIT PRICE	\$	(2,535,150
subtotal Contingency Total Iternative 4 — Cost Calcula -8909 164/175 Split falue Planning Meeting Iternative 4	40%				UNIT PRICE	\$	(2,535,150 (8,873,024)
subtotal Contingency Total Iternative 4 – Cost Calcula 7-8909 164/175 Split Yalue Planning Meeting Niternative 4 ITEM DESCRIPTION	40% ations:	QNT	QNT	QNT		\$	(2,535,150 (8,873,024)
subtotal Contingency Total Ilternative 4 – Cost Calcula -8909 164/175 Split Yalue Planning Meeting Ilternative 4 ITEM DESCRIPTION	40% Ations: UNIT	QNT 31,832	QNT 32,922	QNT 1,090	\$ 100.00	\$ \$	(2,535,150 (8,873,024) 707AL 109,000
Subtotal Contingency Total NIternative 4 — Cost Calcula V-8909 164/175 Split Value Planning Meeting Niternative 4 ITEM DESCRIPTION AVEMENT URFACE ASE	40% ations: UNIT	QNT 31,832 132,587	QNT 32,922 81,439	QNT 1,090 -51,148	\$ 100.00 \$ 85.00	\$ \$ \$	(2,535,150 (8,873,024)
Subtotal Contingency Total Alternative 4 – Cost Calcula 7-8909 164/175 Split Value Planning Meeting Alternative 4 ITEM DESCRIPTION	40% ations: UNIT TONS TONS SQYD	QNT 31,832 132,587 74,705	QNT 32,922 81,439 74,705	QNT 1,090 -51,148 0	\$ 100.00 \$ 85.00 \$ 95.00	\$ \$ \$ \$ \$ \$	(2,535,150 (8,873,024) <i>TOTAL</i> 109,000 (4,347,580
subtotal Contingency Total Iternative 4 — Cost Calcula -8909 I64/I75 Split falue Planning Meeting Iternative 4 ITEM DESCRIPTION AVEMENT JIRFACE ASE C PAVEMENT RUSHED STONE BASE/DGA	40% ations: UNIT TONS SQYD TONS	QNT 31,832 132,587	QNT 32,922 81,439 74,705 80,312	QNT 1,090 -51,148 0 -19,677	\$ 100.00 \$ 85.00 \$ 95.00 \$ 27.00	\$ \$ \$ \$ \$ \$ \$	(2,535,150 (8,873,024) (8,873,024) TOTAL 109,000 (4,347,580 - (531,279
Subtotal Contingency Total NIternative 4 — Cost Calcula 7-8909 164/175 Split Value Planning Meeting Niternative 4 ITEM DESCRIPTION AVEMENT URFACE ASE C PAVEMENT RUSHED STONE BASE/DGA	40% ations: UNIT TONS TONS SQYD	QNT 31,832 132,587 74,705	QNT 32,922 81,439 74,705	QNT 1,090 -51,148 0	\$ 100.00 \$ 85.00 \$ 95.00	\$ \$ \$ \$ \$ \$ \$	(2,535,150 (8,873,024) <i>TOTAL</i> 109,000 (4,347,580
Subtotal Contingency Total Alternative 4 — Cost Calcula 7-8909 164/175 Split /alue Planning Meeting Alternative 4 ITEM DESCRIPTION URFACE ASE PC PAVEMENT RUSHED STONE BASE/DGA MILLING	40% ations: UNIT TONS SQYD TONS	QNT 31,832 132,587 74,705	QNT 32,922 81,439 74,705 80,312	QNT 1,090 -51,148 0 -19,677	\$ 100.00 \$ 85.00 \$ 95.00 \$ 27.00	\$ \$ \$ \$ \$ \$ \$	(2,535,150 (8,873,024) (8,873,024) TOTAL 109,000 (4,347,580 - (531,279
Subtotal Contingency Total	40% ations: UNIT TONS SQYD TONS	QNT 31,832 132,587 74,705	QNT 32,922 81,439 74,705 80,312	QNT 1,090 -51,148 0 -19,677	\$ 100.00 \$ 85.00 \$ 95.00 \$ 27.00	\$ \$ \$ \$ \$ \$ \$	(2,535,150 (8,873,024) (8,873,024) TOTAL 109,000 (4,347,580 - (531,279
Subtotal Contingency Total Alternative 4 – Cost Calcula 7-8909 164/175 Split /alue Planning Meeting Alternative 4 ITEM DESCRIPTION INFACE ASE PC PAVEMENT RUSHED STONE BASE/DGA ILLING ITRUCTURES ANE RUN CREEK	40% ations: UNIT TONS TONS SQYD TONS TONS	QNT 31,832 132,587 74,705 99,989	QNT 32,922 81,439 74,705 80,312 64,005	QNT 1,090 -51,148 0 -19,677 64,005	\$ 100.00 \$ 85.00 \$ 95.00 \$ 27.00	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	(2,535,150 (8,873,024) (8,873,024) TOTAL 109,000 (4,347,580 - (531,279 1,024,082
Subtotal Contingency Total Alternative 4 — Cost Calcula 7-8909 164/175 Split Value Planning Meeting Alternative 4 ITEM DESCRIPTION ITEM DESCRIPTION	40% ations: UNIT TONS TONS SQYD TONS TONS LS	QNT 31,832 132,587 74,705 99,989 	QNT 32,922 81,439 74,705 80,312 64,005 \$	QNT 1,090 -51,148 0 -19,677 64,005 -396,100	\$ 100.00 \$ 85.00 \$ 95.00 \$ 27.00	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	(2,535,150 (8,873,024) (8,873,024) <i>TOTAL</i> 109,000 (4,347,580 - (531,279 1,024,082 (396,100
Subtotal Contingency Total Iternative 4 – Cost Calcula -8909 I64/175 Split Value Planning Meeting Iternative 4 ITEM DESCRIPTION AVEMENT URFACE ASE C PAVEMENT USHED STONE BASE/DGA ILLING ILLIN	40% Ations: UNIT TONS TONS SQYD TONS TONS TONS TONS LS LS LS	QNT 31,832 132,587 74,705 99,989 396,100 1,949,550	QNT 32,922 81,439 74,705 80,312 64,005 \$ \$ \$1,400,750.00	QNT 1,090 -51,148 0 -19,677 64,005 -396,100 -548,800	\$ 100.00 \$ 85.00 \$ 95.00 \$ 27.00	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	(2,535,150 (8,873,024) (8,873,024) <i>TOTAL</i> 109,000 (4,347,580 - (531,279 1,024,082 (396,100
subtotal Contingency Total Alternative 4 — Cost Calcula 7-8909 164/175 Split Value Planning Meeting Alternative 4	40% Ations: UNIT TONS TONS SQYD TONS TONS TONS LS LS	QNT 31,832 132,587 74,705 99,989 396,100 1,949,550 1,036,536	QNT 32,922 81,439 74,705 80,312 64,005 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	QNT 1,090 -51,148 0 -19,677 64,005 -396,100 -548,800 0	\$ 100.00 \$ 85.00 \$ 95.00 \$ 27.00	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	(2,535,150 (8,873,024) (8,873,024) TOTAL 109,000 (4,347,580
Subtotal Contingency Total	40% Ations: UNIT TONS TONS SQYD TONS TONS TONS TONS LS LS LS	QNT 31,832 132,587 74,705 99,989 396,100 1,949,550 1,036,536 1,579,050	QNT 32,922 81,439 74,705 80,312 64,005 \$ \$ \$1,400,750.00 \$ 1,036,536.00 \$ -	QNT 1,090 -51,148 0 -19,677 64,005 -396,100 -548,800 0 -1,579,050	\$ 100.00 \$ 85.00 \$ 95.00 \$ 27.00	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	(2,535,150 (8,873,024) (8,873,024) 109,000 (4,347,580 - (531,279 1,024,082 (396,100 (548,800 - (1,579,050 -
Subtotal Contingency Total Alternative 4 – Cost Calcula 7-8909 164/175 Split Value Planning Meeting Alternative 4 ITEM DESCRIPTION PAVEMENT URFACE BASE PC PAVEMENT CRUSHED STONE BASE/DGA MILLING TRUCTURES CANE RUN CREEK LEWTOWN PIKE RUSSELL CAVE RD -75 OVER PARIS PIKE RUSSELL CAVE	40% Ations: UNIT TONS TONS SQYD TONS TONS TONS LS LS LS LS LS SF	QNT 31,832 132,587 74,705 99,989 396,100 1,949,550 1,036,536 1,579,050	QNT 32,922 81,439 74,705 80,312 64,005 \$ \$ \$1,400,750.00 \$ 1,036,536.00 \$ -	QNT 1,090 -51,148 0 -19,677 64,005 -396,100 -548,800 0 -1,579,050	\$ 100.00 \$ 85.00 \$ 95.00 \$ 27.00	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	(2,535,150 (8,873,024) (8,873,024) (8,873,024) (0,000 (4,347,580 (531,27) (
Subtotal Contingency Total Alternative 4 – Cost Calcula 7-8909 164/175 Split Value Planning Meeting Alternative 4 ITEM DESCRIPTION ITEM DESCRIPTION ITEM DESCRIPTION ITEM DESCRIPTION ITEM DESCRIPTION	40% Ations: UNIT TONS TONS SQYD TONS TONS TONS TONS LS LS LS	QNT 31,832 132,587 74,705 99,989 396,100 1,949,550 1,036,536 1,579,050	QNT 32,922 81,439 74,705 80,312 64,005 \$ \$ \$1,400,750.00 \$ 1,036,536.00 \$ -	QNT 1,090 -51,148 0 -19,677 64,005 -396,100 -548,800 0 -1,579,050	\$ 100.00 \$ 85.00 \$ 95.00 \$ 27.00	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	(2,535,150 (8,873,024) (8,873,024) 109,000 (4,347,580 - (531,279 1,024,082 (396,100 (548,800 - (1,579,050 -

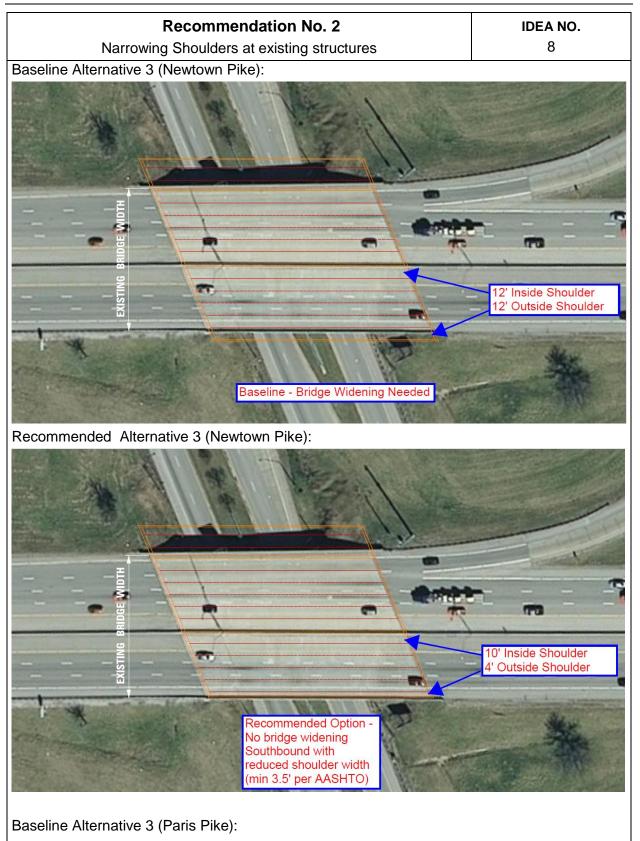
This page is intentionally left blank.

	Bacommondation		IDEA NO.
Narrow	Recommendation N ing Shoulders at existing	-	IDEA NO. 8
		Siluciules	0
between 4ft and 12ft outside shoulder. The bridge structures (Ca width and the additio of these bridges to a Recommendation Based upon AASHTC In an effort to reduce	oosed baseline alternative along the entire length of ese shoulders would also ane Run Bridge, Newtown n of a travel lane several ccommodate the cross se O Interstate Guidelines, s the cost of the baseline o Iders within the guideline	the corridor and a consta include the shoulders on Pike Bridge, and Paris P of the alternatives require action(s).	ant 12ft (10ft paved) the three existing Pike Bridge). Due to this the widening of some ctures can be reduced. es, it is recommended
Advantages Reduce bridge Eliminates wide end of their set 	ening bridges nearing the	 Russell Cave and Brya Introduces fixed objective shoulder width on stru Roadway will "hourgla" 	ass" in and out across the late the narrow shoulders
Reduce bridge Eliminates wide	ening bridges nearing the rvice life	 Doesn't correct vertine Russell Cave and Bryater Introduces fixed objects shoulder width on struter Roadway will "hourglater bridges to accommode the strute the st	an Station overpasses. act and reduces existing actures ass" in and out across the late the narrow shoulders
Reduce bridge Eliminates wide	ening bridges nearing the rvice life	 Doesn't correct verti Russell Cave and Brya Introduces fixed obje shoulder width on stru Roadway will "hourgla bridges to accommod on the bridge structure 	an Station overpasses. act and reduces existing actures ass" in and out across the late the narrow shoulders
Reduce bridge Eliminates wide	ening bridges nearing the rvice life	 Doesn't correct verti Russell Cave and Brya Introduces fixed objes shoulder width on stru Roadway will "hourgla bridges to accommod on the bridge structure 	an Station overpasses. act and reduces existing actures ass" in and out across the late the narrow shoulders
 Reduce bridge Eliminates wide end of their set 	ening bridges nearing the rvice life Summary of	 Doesn't correct verti Russell Cave and Bry; Introduces fixed obje shoulder width on stru Roadway will "hourgla bridges to accommod on the bridge structure 	an Station overpasses. act and reduces existing actures ass" in and out across the late the narrow shoulders
Reduce bridge Eliminates wide end of their ser Alternative 1	ening bridges nearing the rvice life Summary of N/A	Doesn't correct verti Russell Cave and Brya Introduces fixed obje shoulder width on stru Roadway will "hourgla bridges to accommod on the bridge structure Cost Analysis Cost	an Station overpasses. act and reduces existing actures ass" in and out across the late the narrow shoulders

Comments/Justification Sketches

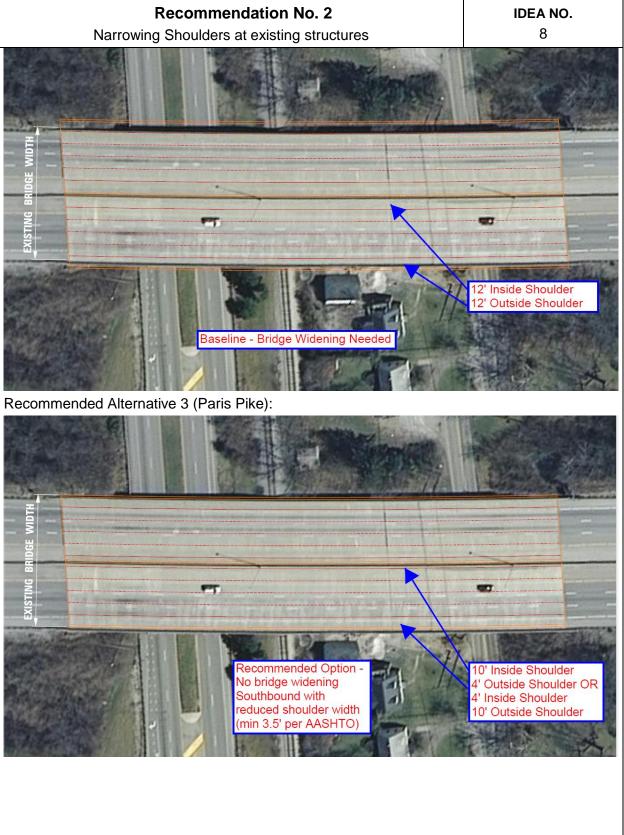
The AASHTO guidelines designate the shoulder width based upon the structure length (long bridges >200ft and short bridges < 200ft), based on KYTC Design Memorandum 02-14 the KYTC standards are in concurrence with the long bridge standards but not specifically the short bridge standards proposed in the AASHTO guidance.

Based upon the AASHTO and KYTC guidelines these are the following requirements for shoulders on existing structures:


- Long Bridges:
 - Inside Shoulder: 3.5'
 - Outside Shoulder: 3.5'
- Short Bridges:
 - Inside Shoulder: 10' (*AASHTO allows for 3.5', but not explicitly stated in KYTC Design Memorandum so it was left as the standard width for this analysis)
 - Outside Shoulder: 10'

Based upon the evaluation of the three structures and the existing available roadway widths, it is proposed that the Paris Pike bridge (NB & SB) and the SB Newtown Pike bridge use existing width bridge decks.

The other structures – NB Newtown Pike, Cane Run bridges (NB & SB) cannot be accommodated by the narrow shoulders due to the short bridge requirements (Cane Run) and the needed build modifications to the NB Newtown Pike On-Ramp.


One disadvantage to consider from a design and user perspective is the tapering in and out of the inside and outside edge lines to accommodate the bridge decking and narrow shoulder allowances. To mitigate this, as both the inside and outside shoulder requirements are 3.5' on the existing long bridge structures, it may be preferred during design that the inside shoulder be maintained on Alternative 2 at 8', and a reduced 10' shoulder on Alternative 3 leaving the outside shoulders to be 6' and 4' respectively. This would reduce the tapering in and out effect noticed by the drivers and make the cross-sectional elements more consistent.

FX

Narrowing Shoulders at existing structures

Assumptions & Calculations

AASHTO Interstate Design Guidelines excerpt from page 8 of the "A Policy on Design Standards – Interstate System" May 2016 regarding the shoulders on existing structures:

Existing Bridges to Remain in Place

Mainline bridges on the Interstate system and bridges on routes to be incorporated into the system may remain in place if, as a minimum, they meet all of the following criteria:

- For bridges less than or equal to 200 ft (60 m) in length, the bridge cross section consists of at least 12 ft (3.6 m) lanes, 10 ft (3.0 m) shoulder on the right and 3.5 ft (1.1 m) shoulder on the left;
- For long bridges, shoulder width on both the left and right is at least 3.5 ft (1.1 m) measured from the edge of the nearest travel lane; and
- Bridge railing meets or will be upgraded to current standards.

KYTC Design Memorandum 02-14 excerpt regarding the required shoulder widths on the existing structures (<u>https://transportation.ky.gov/Highway-Design/Memos/02-14.pdf</u>):

The Minimum Usable Shoulder widths should be continued across all new structures. Per AASHTO Guidance, on long bridges (in excess of 200') it may be acceptable to have bridge shoulder widths less than the approach roadway shoulder widths.

Typically on Interstate Highways with a 4-lane section, the Minimum Usable Shoulder Width shall be paved and not less than 4' on the left side and not less than 10' on the right side. On sections with six or more lanes, a 10' paved usable left shoulder should be provided. Where truck traffic exceeds 250 DDHV, a paved (usable) width of 12' should be considered.

	Bas	eline Cros	s-Section El	ements	AA	SHTO Intersta	ate Guidelin	es	Reduced	Shoulders
	Inside	Lane Width	Outside	Proposed Cross- Section width (per dir)	Inside (Long Bridges)	Inside (Short Bridges) *	Outside (Long Bridge)	Outside (Short Bridge)	(Long Bridge) - Cross Section (per dir)	(Short Bridge) - Cross Section (per dir)
Unit	ft	ft	ft	ft	ft	ft	ft	ft	ft	ft
Alt 1	8.667	11	10	62.667					51	64
Alt 2	8	12	10	66	25	10	25	10	55	68
Alt 3	12	12	10	70	3.5	10	3.5	10	55	68
Alt 4	4.667	12	10	62.667					55	68
* KYT(C Design M	emo does	not specific	cally designate	the width a	llowed on sho	orter bridge	s (default i	nterstate gui	idance

Bridge and Alternative Cross-Sectional Calculations:

would be 10' inside)

Narrowing Shoulders at existing structures

Paris Pike Bridge Data:

	Paris Pike Bridge	е	
Length	492'		
Туре	Long		
	Direction	NB	SB
Alternate	Existing Useable Bridge Width	62.3	62.3
Alt 1	Baseline	62	62
AILI	Narrow Shoulders	51	51
Alt 2	Baseline	66	66
AIT Z	Narrow Shoulders	55	55
Alt 3	Baseline	70	70
AIL 3	Narrow Shoulders	55	55
Alt 4	Baseline	62	62
AIL 4	Narrow Shoulders	55	55

As shown, adhering to the long bridge dimensions, each alternative should fit within the existing bridge deck width.

Newtown Pike Bridge:

	Newtown Pike Bri	dge	
Length	220'		
Туре	Long		
	Direction	NB*	SB
Alternate	Existing Useable Bridge Width	<mark>62.3</mark>	62.3
Alt 1	Baseline	<mark>62.667</mark>	62
AILI	Narrow Shoulders	<mark>N/A</mark>	51
Alt 2	Baseline	<mark>66</mark>	66
AIT Z	Narrow Shoulders	<mark>N/A</mark>	55
Alt 3	Baseline	<mark>70</mark>	70
AIL 5	Narrow Shoulders	<mark>N/A</mark>	55
Alt 4	Baseline	<mark>62.667</mark>	62
Ait 4	Narrow Shoulders	<mark>N/A</mark>	55

*NB bridge will include the addition of the separated on-ramp which is not included in the ML cross sectional width

Due to the expansion of the NB Newtown Pike bridge to separate the NB on-ramp, using narrow shoulders to fit within the existing roadway deck width is not feasible and therefore was not considered/included.

	Recomme	endation	No. 2
	Narrowing Shoulders	s at existin	n structur
			y Structur
Cane Run E	Bridge:		
	Cane Run Bridge		
Length	117		
Туре	Short		
	Direction	NB	SB*
	Existing Useable Bridge		
Alternate	Width	62.3	78
Alt 1	Baseline	62.667	73.667
AILT	Narrow Shoulders	64	75
Alt 2	Baseline	66	78
AIL Z	Narrow Shoulders	68	80
Alt 3	Baseline	70	82
Alt 3	Narrow Shoulders	68	80
Alt 4	Baseline	62.667	74.667
AIL 4	Narrow Shoulders	68	80
* SB is / lane	s in existing and will be 5 la	nos in the ha	solino

* SB is 4 lanes in existing and will be 5 lanes in the baseline

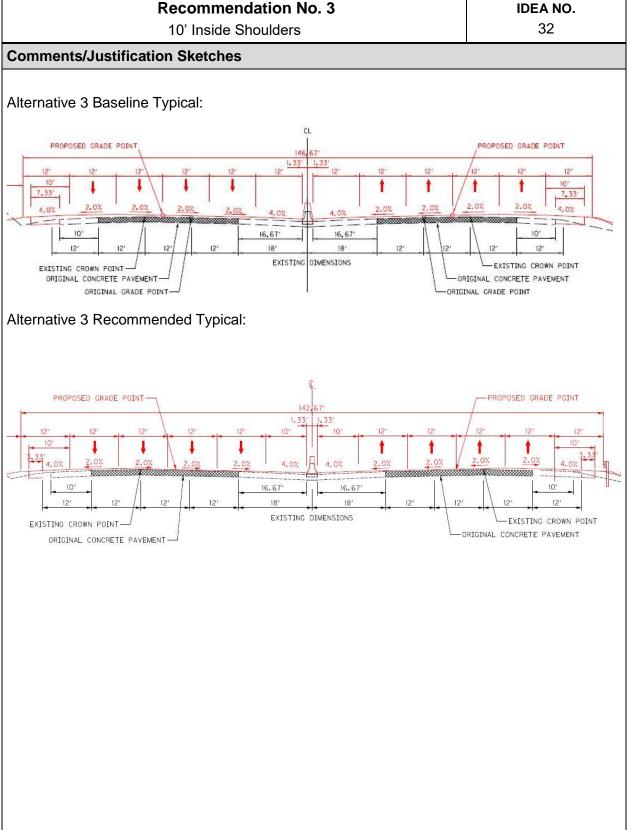
As shown, neither the NB or SB Cane Run bridges are able to maintain the bridge decks on any of the proposed alternatives which require expansion

To meet the minimum required shoulder criteria and utilize the full existing bridge deck it is proposed that the inside shoulder be set to 10' and outside shoulder set to 4' for both the SB Newtown Pike and Paris Pike bridges.

For Paris Pike bridges it may be advisable to shift lanes and put the 10' shoulder on the outside due to the merging "on ramp" and have a 4' inside shoulder. This configuration would also meet the AASHTO guidelines.

The cost savings associated with the changes to the bridge widening costs/quantities is outlined in the tables below for each alternative (should be noted that the bridges that can be remedied by the narrow shoulders will only be expanded in Alt 2 & 3. Additionally the cost of overlays and barrier upgrades are included on those bridges where the existing footprints can be utilized with narrow shoulders):

Alternative 2:



Narrowing Sh	ommo	endation	No. 2				IDEA N
	oulder	s at existir	ng structu	ires			8
-8909 164/175 Split							
alue Planning Meeting							
liternative 2							
ITEM DESCRIPTION	LINIT	ORIGINAL QNT	REVISED QNT	DEL TA QNT	UNIT PRICE		TOTAL
STRUCTURES CANE RUN CREEK	LS	* 709 C00 00	\$ 709,600.00	0		4	-
JEWTOWN PIKE	LS		\$ 2,189,550.00	-296,750		\$	(296,750)
RUSSELL CAVE RD	LS		\$2,675,780.00	-230,730		\$	[230,730]
75 OVER PARIS PIKE	LS		\$1,579,050.00	-1,033,532	-	\$	(1,033,532)
RYAN STATION RD	SF		\$ 2,381,136.00	-1,033,332	-	\$	(1,033,332)
TANJIATUNID		a 2,001,100.00	φ 2,301,130.00	U	-	4	-
Subtotal						\$	(1,330,282)
Cantingency	40%					\$	(532,113)
	460.2				_		
Total						\$	(1,862,395)
ternative 3: 8909 164/175 Split alue Planning Meeting							
Alternative 3							
ITEM DESCRIPTION	LINIT	ORIGINAL QNT	REVISED QNT	DEL TA QNT	UNIT PRICE		TETTAL
STRUCTURES							
ANE RUN CREEK	LS	944,600	944,600	0		\$	
EWTOWN PIKE		2,946,300		-521,500			(521,500)
EWTUWN PIKE	LS		2,424,800			\$	[521,500]
	SF	2,769,997	\$2,769,997.00	0		\$	-
	LS	3,385,490	\$ 1,579,050.00	-1,806,440		\$	(1,806,440)
75 OVER PARIS PIKE							- 11
75 OVER PARIS PIKE	SF	2,466,788	\$2,466,788.00	0		\$	
75 OVER PARIS PIKE		2,466,788	\$2,466,788.00	0		Φ	
USSELL CAVE RD 75 OVER PARIS PIKE RYAN STATION RD Subbital		2,466,788	\$2,466,788.00	U			
75 OVER PARIS PIKE RYAN STATION RD Subtoral	SF	2,466,788	\$2,466,788.00	0		\$	(2,327,940)
75 OVER PARIS PIKE RYAN STATION RD		2,466,788	\$2,466,788.00	0			

	Recommendation N 10' Inside Shoulders	0. 3	IDEA NO. 32
Baseline			
The baseline alternation and shoulders (inside	ive 3 accommodates the f and outside) being 12' la to the heavy vehicle/truc	nes, 12' inside shoulders	s (based on the
Recommendation			
3 to change from a 12	ment, earthwork, & ROW 2' inside shoulder to 10' is delines, the required insic	recommended. Based o	on the revised AASHTO
Advantages		Disadvantages	
 Reduces paven costs 	required FHWA standards nent, earthwork, and ROW g lane joints closer to anes	consideration inside s	ures for all inside shoulder
	Summary of	Cost Analysis	
		Cost	
Alternative 1	N/A		
Alternative 2	N/A		
Alternative 3	\$2,500,000 Cost Avoida	nce	
Alternative 4	N/A		
L			

10' Inside Shoulders

Assumptions & Calculations

From the AASHTO Interstate Design Guidelines excerpt from page 8 of the "A Policy on Design Standards – Interstate System" May 2016 regarding the shoulders:

Shoulders

Minimum paved shoulder widths in each direction of travel as a function of terrain and the number of through lanes shall be in accordance with the following table:

Table 3. Minimum Paved Shoulder Widths

One-Direction- al No. Through lanes	Terrain	Left Shoulder (ft)	Right Shoulder (ft)	Left Shoulder (m)	Right Shoulder (m)
2-lane	Level or Rolling	4	10	1.2	3.0
3-lane or more	Level or Rolling	10	10	3.0	3.0
2 or 3-lane	Mountainous	4	8	1.2	2.4
4-lane or more	Mountainous	8	8	2.4	2.4

Where truck traffic exceeds 250 DDHV, additional shoulder width may be beneficial. Refer to AASHTO's *Green Book* for more information. Additional guidance on shoulder widths for tunnels and long bridges [overall length over 200 ft (60 m)] is provided later in this document.

The 12' inside shoulder as an FHWA standard for Alternative 3 was developed based on the guidance documented on

(https://safety.fhwa.dot.gov/geometric/pubs/mitigationstrategies/chapter3/3_shoulderwidth.cfm

). This is a document that pre-dates the 2016 guidelines, but has the same values for inside shoulders. However, it recommends the wider width to accommodate truck traffic, which exceeds the 250DDHV in both directions.

Clarification: Minimum Shoulder Widths for Interstate Highways

One clarification for shoulder width design exceptions relates to the requirements for Interstates with six or more lanes. The adopted criteria for Interstates specify that the payed width of the right shoulder shall not be less than 10 feet (3.0 meters). Where truck traffic exceeds 250 DDHV (the design hourly volume for one direction), a paved shoulder width of 12 feet (3.6 meters) should be considered. On a four-lane section, the paved width of the left shoulder shall be at least 4 feet (1.2 meters). On sections with six or more lanes, a 10-foot (3.0-meter) paved width for the left shoulder should be provided. Where truck traffic exceeds 250 DDHV, a paved width of 12 feet (3.6 meters) should be considered.

Regardless of the differences in language used in the adopted criteria ("shall," "should be considered," etc.) all of the shoulder widths described above have become standards for the Interstate System by virtue of their adoption by FHWA, and they are the minimum values for each condition described. Therefore, a project designed for the Interstate System that does not provide the applicable shoulder widths would require a formal design exception.

In addition, the incorporation of high occupancy vehicle (HOV) lanes is now common practice on many urban freeways. Lower-cost design solutions have in many cases resulted in the conversion of an existing full-width (12-foot) shoulder to a designated HOV lane. Where conversion of a shoulder to HOV use is being considered and replacement or construction of a new shoulder is not proposed, a design exception is required (potentially for both shoulder width and lateral offset to obstruction).

Both guidance documents recommend that the 12' or wider shoulder be "considered" but are not a requirement. The recommended consideration language beyond the 10' requirement for the inside shoulder is not consistent between documents and the most current version only recommends that a wider shoulder may be beneficial. In consideration for the 12'

KENTUCKY INANSPORTATION CABINET	FDS
Recommendation No. 3	IDEA NO.
10' Inside Shoulders	32
recommendation due to the truck traffic, as well as for maintenance con inside shoulder was included in the baseline Alternative 3.	nsiderations, the 12'
Maintenance	
While a 12' inside shoulder will allow for more maintenance space on the is additional FHWA guidance (https://safety.fhwa.dot.gov/geometric/pubs/mitigationstrategies/fhwa_states adocuments 8' of inside shoulder being sufficient for enforcement and mean providing a 10' shoulder provides more room than this recommendation accommodate these activities.	a <u>07011.pdf</u>) which aintenance activities.
District 7 maintenance indicated that lane closures for maintenance of a feet would be required.	shoulder less than 12
Shoulder Width	

Shoulders provide a number of important functions. Safety and efficient traffic operations can be adversely affected if any of the following functions are compromised:

- Shoulders provide space for emergency storage of disabled vehicles (Figure 7). Particularly on high-speed, high-volume highways such as urban freeways, the ability to move a disabled vehicle off the travel lanes reduces the risk of rear-end crashes and can prevent a lane from being closed, which can cause severe congestion and safety problems on these facilities.
- Shoulders provide space for enforcement activities (Figure 7). This is particularly important for the outside (right) shoulder because law enforcement personnel prefer to conduct enforcement activities in this location. Shoulder widths of approximately 8 feet or greater are normally required for this function.
- Shoulders provide space for maintenance activities (Figure 7). If routine maintenance work can be conducted without closing a travel lane, both safety and operations will be improved. Shoulder widths of approximately 8 feet or greater are normally required for this function. In northern regions, shoulders also provide space for storing snow that has been cleared from the travel lanes.

32

U.S. Department of Transportation Federal Highway Administration

Recommendation Cost:

The simplified cost savings for this recommendation was determined based on splitting the cost difference between the baseline alternative 2 and 3 as the only difference between them was the inside shoulder widths of 8' and 12', respectively.

The difference between Alternative 2 and Alternative 3 baseline costs is approximately \$5 million and based on the changes in pavement, earthwork, and ROW it is reasonable to assume that this 10' inside shoulder recommendation would fall at the approximate midpoint of these options. Thus resulting in a cost savings from Alternative 3 of approximately \$2.5 million.

Reduction of Right-of-Way Impacts

27,28,29,30

FX

Baseline

The Baseline design as presented below is an evaluation of 4 Typical Sections all of which increase capacity within the limits of the study area. Alternative 1 has 4-11 foot lanes in each direction, 12 foot outside shoulder and 8.67 foot inside shoulder. Alternative 2 has 4-12 foot lanes in each direction, 12 foot outside shoulder and 8.0 foot inside shoulder. Alternative 3 has 4-12 foot lanes in each direction, 12 foot outside shoulder and 12 foot inside shoulder. <u>This is the Full Interstate Design Standards Typical.</u> Alternative 4 has 3-12 foot lanes in each direction, 12 foot outside shoulder and a "Hard Running" Inside Shoulder that is controlled by an ITS Network that opens and closes this 4th inside lane.

Recommendation

This recommendation looks at eliminating right of way acquisition by constructing a combination noise/retaining wall in cut sections, a noise wall or short retaining wall near the top of a fill section, narrowed ditches in cut sections and steeper fill slopes with the installation of guardrail.

		Diagduantanag
Advantages		Disadvantages
 Reduces risk of acquisition. Reduces risk of 	f Way acquisition. delay due to right of way potential 4(f) impacts. unknown utility impacts.	 Would require physical barrier due to reduction of clear zone. Addition of a fixed object where guardrail is installed. More complex construction with addition of pile and lag at the noise wall and construction of retaining walls in tight areas between steep slopes and right of way boundary. Qualitative considerations are guardrail through cut sections and loss of ditch flow capacity with shallower ditches (more storm sewer)
	Summary of	Cost Analysis
		Cost
Alternative 1	\$21,157 Cost Increase	
Alternative 2	\$166,418 Cost Avoidance	ce
Alternative 3	\$656,365 Cost Increase	
Alternative 4	\$21,157 Cost Increase	

Reduction of Right-of-Way Impacts

IDEA NO.

27,28,29,30

Comments/Justification Sketches

The tasks involved with this recommendation were to eliminate R/W acquisition as much as possible considering and evaluating the 4 ideas listed below:

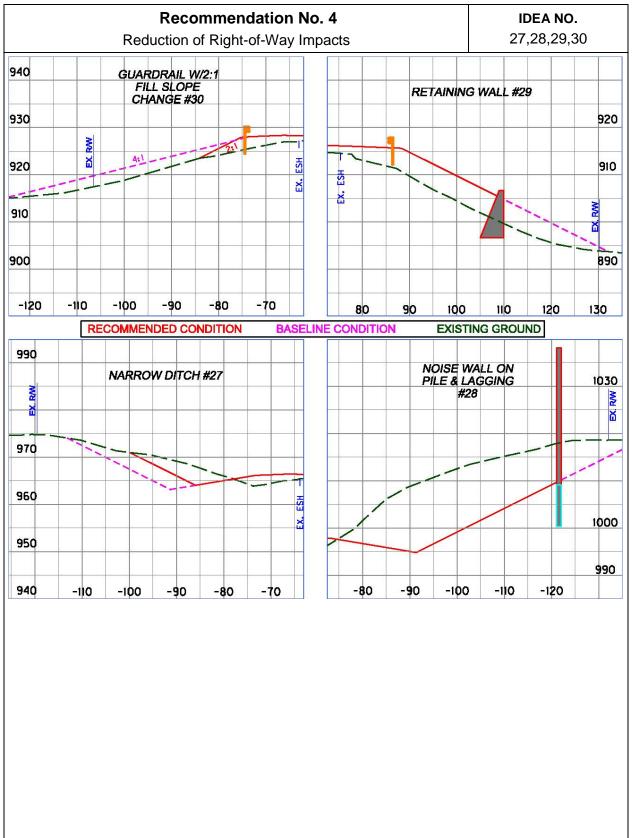
IDEA #27: Consider using narrow ditches in cut sections with guardrail added.

IDEA #28: Consider using a Noise Wall on Pile & Lagging in cut situations near the top of cut. IDEA #29: Consider using small/short retaining walls in fill areas.

IDEA #30: Consider using guardrail placed at the top of a fill slope to allow steepening of fill slope.

Cross Sections were evaluated considering the 4 ideas mentioned above. In addition to the above ideas, we also recommend refining cut and fill slopes where there is a <u>very</u> minor disturbance outside of the existing right of way line.

An assumption and thought for consideration not reflected within the calculations and estimates made, is that the project could move along faster with reduced environmental impacts and minimal right of way acquisition.


The table below reflects a decrease in the number of parcels affected for each Alternative after applying one or more of VE Ideas 27, 28, 29 and 30. If funding through an INFRA grant is awarded, the project could be positioned to move rapidly to construction.

	Alt 1	Alt 2	Alt 3	Alt 4
Baseline Parcels	4	32	46	4
Recommended Avoided	1	24	38	1
Recommended Remaining	3	8	8	3

ADDITIONAL COMMENTS

There may be some negative safety implications of adding guardrail where it is not present otherwise. Based on Highway Safety Manual equations implemented by ISATe an approximate 7% increase in crashes (12' outside shoulder) on segments with guardrail versus segments without guardrail and 30' clear zone could be anticipated. This 7% increase in crashes would be property damage only or minor injury. Any additional guardrail would increase overall maintenance.

							on No. /ay Imp	-					EA NO. 28,29,30
45	ssumption	s & (Calcu	latio	ns								
	Station to Station	Length	Noise Wall Height (FT)	Noise Wall Area (SF)	Gravity Retaining Wall (SF)	Gravity Retaining Wall (CY)		Paved Shoulder (SY)	Guardrail (LF)	RW Reduction Area (AC)	Idea No.	Baseline Condition	Proposed Condition
100.00	LTERNATIVES 1 &	4											
· ·	75 MAINLINE			1									1
	71+00 - 74+50 181+50 - 184+50	3 50						67	100	-0.06	27		Modifiy Ditches. 2:1 fill slope & GR
		300						67	400	-0.064	30	4:1 Fill Slope	Retaining wall near
Lt	293+25 - 295+60	235			12	105				-0.057	29	2:1 fill slope	back of guardrail.
	Tota			0		105	0	67	400	-0.181			
1-7	75 MAINLINE												Detaining wall 100
Lt	62+50 - 63+50	100			9	34				-0.073	29	2:1 Fill Slope	Retaining wall 100- 110' Lt
Rt	71+00 - 74+50	3 50								-0.06	27	Baseline Ditch	Modifiy Ditches.
Rt	84+50 - 89+00	450			16	267				-0.147	29	2:1 Fill Slope	Retaining wall 100-
10000		400						90	500			Baseline Ditch	110' Lt
Rt	94+50 - 98+50 119+00 - 136+00	1700						89 378	500 1,200	-0.096 -0.546	27 30	4:1 Fill Slope	Modifiy Ditches. 2:1 fill slope & GR
_	134+00 - 137+00	300						67	300	-0.062	30	4:1 Fill Slope	2:1 fill slope & GR
	181+00 - 194+00	1300						289	1,400	-0.285	30	4:1 Fill Slope	2:1 fill slope & GR
-	205+00 - 210+00	500						112	600	-0.87	27	Baseline Ditch	Modifiy Ditches.
_	212+00 - 214+00	200						45	400	-0.038	30	4:1 Fill Slope	2:1 fill slope & GR
Lt	240+15 – 240+70	55								-0.0155	27	Noise Wall	Refine design of backslopes.
Rt	241+55 – 242+85	130	5	650						-0.0282	28	Noise Wall	Pile & Lag noise wal
Lt	291+80 - 296+00	420			21	327				-0.1315	29	2:1 fill slope	Retaining wall
Lt	308+70 - 313+00	430	6	2,580						-0.1261	28	Noise Wall	Pile & Lag noise wal
Rt	314+05 - 316+85	280	5	1,400			-390			-0.0902	28	Noise Wall	Pile & Lag noise wal
DI													
	36+50 - 38+70	220						49	30	-0.1028	30	4:1 fill slope	Install guardrail & use 2:1 fill slopes.
Rt	42+35 - 48+25	590									-		Need R/W for Bridge & Approaches.
Rt	51+25 - 54+20	295									Υ.		Need R/W for Bridge & Approaches.
Lt	58+80 - 60+00	120					-145			-0.0913	27	12 ft ditch	Narrow Ditches.
Rt	59+40 - 60+00	60					-67			-0.0139	27	12 ft ditch	Refine design of backslopes.
p,	RYAN STATION												
	43+30 - 48+25	495									-		Need R/W for Bridg & Approaches
Lt	51+00 – 56+65	565									-		Need R/W for Bridg & Approaches
	Tota			4,630		628	-602	1,029	4,430	-2.7765			

		Red	-	comr on of R			-					IDEA N 27,28,29
		Noise	Noise			-	-					, -,
Station to Station	Length	Wall Height	Wall Area	Gravity Retaining Wall (SF)	Gravity Retaining Wall (CY)	Earthwork Adjust (CY)	Paved Shoulder (SY)	Guardrail (LF)	RW Reduction Area (AC)	Idea No.	Baseline Condition	Proposed Condition
LTERNATIVE 3		(FT)	(SF)		to dil (cr)	(er)	(51)		Area (Ae)			
-75 MAINLINE												
t 62+00 – 64+50	250			16	475				-0.073	29	2:1 Fill Slope	Retaining wall 100- 110' Lt
t 67+00 – 70+00	300						67	200	-0.126	30	4:1 Fill Slope	2:1 fill slope
t $70+00 - 78+00$	800					-445	124	300	-0.151	27	Baseline Dite	
T. 78+00 - 84+00 Rt 71+00 - 74+00	600 300						134	300	-0.207 -0.06	30 27	4:1 Fill Slope Baseline Dite	2:1 fill slope Modifiy Ditches.
Rt 82+00 - 90+00	800			16	297				-0.213	29	2:1 Fill Slope	Retaining wall 105-
Rt 93+50 - 99+50	600			9	50	-1,711	134	500	-0.135	29	Baseline Dite	ricested active
tt 119+00 - 122+50	350						78	350	-0.126	30	4:1 Fill Slope	2:1 fill slope
tt 122+50 – 127+50	500			9	217		112	550	-0.255	29	2:1 Fill Slope	Retaining wall 105- 125' Rt
tt 127+50 – 136+00	850								-0.185	30	4:1 Fill Slope	2:1 fill slope
Rt 138+00 - 143+00	500			9	234				-0.11	29	2:1 Fill Slope	Retaining wall 105- 108' Rt
tt 143+00 – 144+50	150								-0.04	30	4:1 Fill Slope	A CONTRACTOR AND A
Rt 144+50 – 146+50	200			9	79				-0.051	29	2:1 Fill Slope	Retaining wall 105 Rt
tt 146+50 – 153+00	650								-0.075	30	4:1 Fill Slope	
tt 180+50 - 195+50	1500					3.070	334	1,500	-0.398	30	4:1 Fill Slope	
t 203+00 - 210+00 t 211+00 - 215+00	700 400					-3,970	156 89	700 600	-0.2383 -0.085	27 30	Baseline Dite 4:1 Fill Slope	
t 240+15 - 240+70	55						89	000	-0.085	27	Noise Wall	Refine design of
tt 240+60 - 243+35	275	7	1,925						-0.0787	28	Noise Wall	backslopes. Pile & Lag noise wall.
t 291+80 - 301+50	970		2,523	27	970		_		-0.3174	28	2:1 fill slope	Retaining wall
tt 301+55 - 302+20	65				570	-12			-0.0104	27	Noise Wall	Refine design of
t 302+85 - 303+80	95					-18			-0.008	27	Noise Wall	backslopes. Refine design of
tt 304+50 – 306+75		5	1,125						-0.0507	28	Noise Wall	backslopes. Pile & Lag noise wall.
t 307+80 - 314+60	680	10	6,800						-0.2836	28	Noise Wall	Pile & Lag noise wall.
									1			-
kt 309+40 – 311+05	165	5	825						-0.042	28	Noise Wall	Pile & Lag noise wall.
tt 313+40 – 317+80	440	5	2,200						-0.1284	28	Noise Wall	Pile & Lag noise wall.
t 318+90 – 320+30	140	5	700						-0.02	28	Noise Wall	Pile & Lag noise wall.
RUSSELL CAVE			I				L				1	
t 36+50 – 38+70	220						49	30	-0.1028	30	4:1 fill slope	Install guardrail and use 2:1 fill slopes.
Rt 42+35 - 48+25	590									-		Need R/W for Bridge & Approaches.
Rt 51+25 - 54+20	295											Need R/W for Bridge & Approaches.
t 58+80 – 60+00	120					-145			-0.0913	27	12 ft ditch	Narrow Ditches to 8 ft to closely match existing condition.
tt 59+40 – 60+00	60					-67			-0.0139	27	12 ft ditch	Refined design to match existing
BRYAN STATION												
t 43+30 – 48+25	495									-		Need R/W for Bridge & Approaches
t 51+00 – 56+65	565									÷		Need R/W for Bridge & Approaches
Total		•	13,575		2,322	-6,368	1,153	4,730	-3.6976			

Recommendation No. 4 Reduction of Right-of-Way Impacts 2 ALTERNATIVES 1 & 4 2											
ALTERNATIVES 1 & 4											
ITEM DESCRIPTION	UNIT	DELTA QNT	UNI	T PRICE	Т	OTAL					
ROADWAY		4									
EARTHWORK	CU YD	0	\$	12.00	\$	-					
GUARDRAIL	LF	400	\$	16.00	\$	6,400					
PAVEMENT											
SURFACE	TONS	6	\$	100.00	\$	553					
BASE	TONS	17	\$	85.00	\$	1,410					
STRUCTURES											
NOISE WALL-PILE AND LAG	SF	0	\$	30.00		-					
GRAVITY RETAINING WALL	CY	105	\$	375.00	\$	39,375					
RIGHT OF WAY	4.0050	0.1010	64.20	000.00	¢	122 6251					
Perm. R/W Added R/W Labor Savings	ACRES PARCEL	-0.1810			\$ \$	(22,625) (10,000)					
Added ty w Labor Savings	PARCEL	-1		bTotal	ې \$	15,112					
		40		tingency		6,045					
				otal	\$	21,157					
					22						
ALTERNATIVE 2		0.0174									
ITEM DESCRIPTION	UNIT	DELTA QNT	UNI	T PRICE	T	OTAL					
ROADWAY		QNI									
EARTHWORK	CU YD	-602	\$	12.00	\$	(7,224)					
GUARDRAIL	LF	4,430	\$	16.00	\$	70,880					
PAVEMENT											
SURFACE	TONS	85	\$	100.00	\$	8,489					
BASE	TONS	255	\$	85.00	\$	21,648					
STRUCTURES											
NOISE WALL-PILE AND LAG	SF	4,630	\$	30.00		138,900					
GRAVITY RETAINING WALL	CY	628	\$	375.00	\$	235,500					
RIGHT OF WAY	L		1.4.4.								
Perm. R/W	ACRES	-2.7765	-	5,000.00		347,063)					
Added R/W Labor Savings	PARCEL	-24		0,000.00 bTotal		<mark>240,000)</mark> 118,870)					
		40		tingency							
				Total		166,418)					
ALTERNATIVE 3	_	05/74			·						
ITEM DESCRIPTION	UNIT	DELTA QNT	UNI	T PRICE	Т	OTAL					
ROADWAY											
EARTHWORK	CU YD	-6,368	\$	12.00		(76,416)					
GUARDRAIL	LF	4,730	\$	16.00	\$	75,680					
PAVEMENT											
SURFACE	TONS	95	\$	100.00		9,512					
BASE	TONS	285	\$	85.00	\$	24,256					
STRUCTURES			1.								
NOISE WALL-PILE AND LAG	SF	13,575	\$	30.00		407,250					
GRAVITY RETAINING WALL	CY	2,322	\$	375.00	\$	870,750					
RIGHT OF WAY	40050	2 0070	64.24	000 00	e 1	102 2001					
Perm. R/W Added R/W Labor Savings	ACRES	-3.6976		5,000.00 0,000.00		462,200) 380,000)					
Added by W Labor Savings	PARCEL	-38		bTotal		468,832					
		40		ntingency							
		-+0		- ocney	4						
			1	otal	\$	656,365					

ommendation No. 5		IDEA NO.
reas at ramps where ne	eeded (Paris Pike)	9
The baseline design conditions for each of the build alternatives through the corridor maintains the existing ramp merge/ diverge design at each of the four ramps at the Paris Pike interchange. It is assumed that the existing cross section of the mainline will tie into the ramps at the same locations and therefore the ramps will maintain their existing designs with regard to approach and exit curvatures, accelerations/decelerations, and taper lengths. These existing lengths are based on the previous design requirements from the year the interchange was originally designed.		
Recommendation		
The recommendation is to extend the merge and diverge areas for all four of the existing ramps to accommodate the current design standards for interstates, where needed. These improvements would marginally improve both safety and operations for the ramps and influence areas. The anticipated safety improvements would result in a reduction of crashes in the ramp area of approximately 15%, resulting in approximately 3-6 crashes per year (of which most are property damage only). Operational benefits would improve the speed within the ramp areas (2 – 3 mph) as it allows vehicles to get to higher speeds before merging and offers more merging distance and a reduction in density (approximately 5-7%) through the ramp influence area.		
in approximately 3-6 c enefits would improve the higher speeds before n	rashes per year (of wh ne speed within the ra nerging and offers mo	nich most are property imp areas (2 – 3 mph) ire merging distance
in approximately 3-6 c enefits would improve the higher speeds before n	rashes per year (of whe speed within the ran nerging and offers moough the ramp influence Disadvantages	hich most are property imp areas (2 – 3 mph) ire merging distance ce area.
in approximately 3-6 c enefits would improve the higher speeds before n	rashes per year (of whe speed within the ran nerging and offers moough the ramp influence Disadvantages	nich most are property mp areas (2 – 3 mph) re merging distance
in approximately 3-6 c enefits would improve the higher speeds before no proximately 5-7%) through e distances to improve	rashes per year (of when speed within the ran erging and offers mo bugh the ramp influence Disadvantages Will require addi widening costs	nich most are property imp areas (2 – 3 mph) ire merging distance ce area.
in approximately 3-6 c enefits would improve the higher speeds before no proximately 5-7%) through e distances to improve s crashes) and	rashes per year (of when speed within the ran erging and offers mo bugh the ramp influence Disadvantages Will require addi widening costs	hich most are property imp areas (2 – 3 mph) ire merging distance ce area.
in approximately 3-6 c enefits would improve the higher speeds before no proximately 5-7%) through e distances to improve s crashes) and	rashes per year (of whe speed within the ranerging and offers mo ough the ramp influence Disadvantages • Will require addi widening costs t Analysis Cost	hich most are property imp areas (2 – 3 mph) ire merging distance ce area.
in approximately 3-6 c enefits would improve the higher speeds before no proximately 5-7%) through e distances to improve s crashes) and Summary of Cost	rashes per year (of when speed within the random speed	hich most are property imp areas (2 – 3 mph) ire merging distance ce area.
in approximately 3-6 c enefits would improve the higher speeds before no proximately 5-7%) through e distances to improve s crashes) and Summary of Cost \$2,303,099 Cost Incre	rashes per year (of when e speed within the ran erging and offers more bugh the ramp influence Disadvantages Will require additional widening costs t Analysis Cost ase ase	hich most are property imp areas (2 – 3 mph) ire merging distance ce area.
	reas at ramps where ne hs for each of the build arge design at each of t g cross section of the m imps will maintain their tions/decelerations, and n requirements from the tend the merge and div design standards for inf	reas at ramps where needed (Paris Pike) hs for each of the build alternatives through the erge design at each of the four ramps at the F g cross section of the mainline will tie into the imps will maintain their existing designs with tions/decelerations, and taper lengths. These in requirements from the year the interchange tend the merge and diverge areas for all four design standards for interstates, where need

Baseline Concept presented to the VE team

Recommended Concept

Recommendation No. 5

Lengthen merge/diverge areas at ramps where needed (Paris Pike)

FJS

The below table details the existing ramp dimensions and current standards (based on the AASHTO Green Book 2011 Table 10-3: Minimum Acceleration Lengths for Entrance Terminals with Flat Grades of 2% or Less & 10-4: Speed Change Lane Adjustment Factors as a Function of Grade)

Ramp	Existing Taper Length	Existing Type	Current Standard Taper Length	Proposed Ramp Type
SB Paris Pike Off-Ramp	608'	Taper	390'	N/A
SB Paris Pike On-Ramp	900'	Taper	2200'	Taper
NB Paris Pike Off-Ramp	608'	Taper	610'	N/A
NB Paris Pike On-Ramp	900'	Taper	492'	N/A

The only ramp at this interchange that is falling below the current standards is the **SB On-Ramp**. It is recommended that this ramp acceleration lane be extended to meet the current standards as shown to better accommodate traffic merging and roadway safety (reducing crashes from improved standards). This will involve additional roadway pavement, bridge decking across the Paris Pike bridge (SB only), and potentially additional ROW as compared with the baseline alternative.

Recomm	nendati	on No. 5				IDI	IDEA NO.	
Lengthen merge/diverge areas	at ramps	s where ne	edeo	d (Paris	Pike)		9	
Alternative 1 – SB Paris Pike On F	Ramp Co	ost Calcula	tions	S:				
7-8909 164/175 Split		10						
Value Planning Meeting								
Alternative 1								
ITEM DESCRIPTION	UNIT	DELTA QNT	UN	IIT PRICE		TOTAL		
ROADWAY	3		-					
EARTHWORK	CU YD	2,928	\$	12.00	\$	35,136		
PAVEMENT			10					
SURFACE	TONS	129	\$	100.00	\$	12,900		
BASE	TONS	700	\$	85.00	\$	59,500		
JPC PAVEMENT	SQYD	1,264	\$	95.00	\$	120,080		
CRUSHED STONE BASE/DGA	TONS	1,165	\$	27.00	\$	31,455		
STRUCTURES								
I-75 OVER PARIS PIKE	LS	1,386,000			\$	1,386,000		
Subtotal					\$	1,645,071		
Contingency	40%				\$	658,028		
Total					Ś	2,303,099		

Alternative 2 – SB Paris Pike On Ramp Cost Calculations:

7-8909 164/175 Split						
Value Planning Meeting						
Alternative 2						
ITEM DESCRIPTION	UNIT	DELTA QNT	UN	IT PRICE	9 2	TOTAL
ROADWAY						
EARTHWORK	CU YD	3,224	\$	12.00	\$	38,688
PAVEMENT		3	10			
SURFACE	TONS	89	\$	100.00	\$	8,900
BASE	TONS	500	\$	85.00	\$	42,500
JPC PAVEMENT	SQYD	990	\$	95.00	\$	94,050
CRUSHED STONE BASE/DGA	TONS	701	\$	27.00	\$	18,927
STRUCTURES						
I-75 OVER PARIS PIKE	LS	1,386,000	19		\$	1,386,000
Subtotal					\$	1,589,065
Contingency	40%				\$	635,626
Total					\$	2,224,691

Recomm	nendati	on No. 5					IDEA N	О.
Lengthen merge/diverge areas	at ramps	s where ne	ede	ed (Paris	Pike	e)	9	
Alternative 3 – SB Paris Pike On F	Ramp Co	ost Calcula	atior	าร:				
7-8909 164/175 Split								
Value Planning Meeting								
Alternative 3								
ITEM DESCRIPTION	UNIT	DELTA QNT	L	JNIT PRICE		TOTAL		
ROADWAY		-	-		i.c.			
EARTHWORK	CU YD	3,673	\$	12.00	\$		44,076	
PAVEMENT		2	1		1			
SURFACE	TONS	86	\$	100.00	\$		8,600	
BASE	TONS	492	\$	85.00	\$		41,820	
JPC PAVEMENT	SQYD	990	\$	95.00	\$		94,050	
CRUSHED STONE BASE/DGA	TONS	664	\$	27.00	\$		17,928	
STRUCTURES			1		1			
I-75 OVER PARIS PIKE	LS	1,386,000			\$	1,3	386,000	
RIGHT OF WAY			-		-			
PURCHASE	ACRES	0.1	\$	125,000.00	\$		12,500	
Subtotal		7	-		\$	1,0	504,974	
Contingency	40%	5 			\$		541,990	
Total					Ś	2.24	5,964	

Alternative 4 – SB Paris Pike On Ramp Cost Calculations:

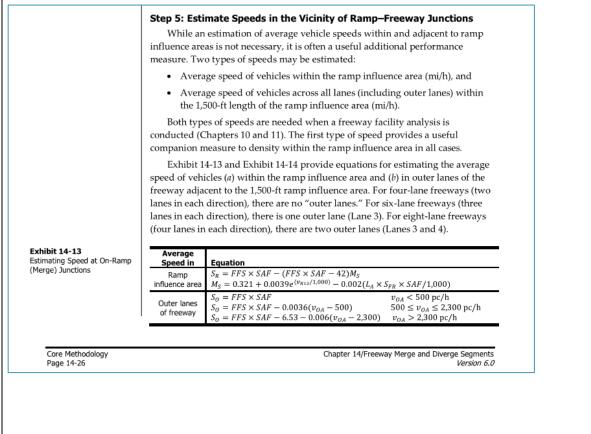
7-8909 164/175 Split						
Value Planning Meeting						
Alternative 4						
ITEM DESCRIPTION	UNIT	DELTA QNT	UN	IT PRICE	8	TOTAL
ROADWAY	0					
EARTHWORK	CU YD	2,928	\$	12.00	\$	35,136
PAVEMENT		8			8	
SURFACE	TONS	129	\$	100.00	\$	12,900
BASE	TONS	700	\$	85.00	\$	59,500
JPC PAVEMENT	SQYD	1,264	\$	95.00	\$	120,080
CRUSHED STONE BASE/DGA	TONS	1,165	\$	27.00	\$	31,455
STRUCTURES	0					
I-75 OVER PARIS PIKE	LS	1,386,000			\$	1,386,000
Subtotal		-			\$	1,645,071
Contingency	40%				\$	658,028
Total					\$	2,303,099

Recommendation No. 5	IDEA NO.				
Lengthen merge/diverge areas at ramps where needed (Paris Pike)	9				
Assumptions					
<u>SB On-Ramp:</u>					
Assumed initial speed entering ramp taper - 25mph based on curve advis	sory speed				
Assumed Roadway Design Speed – 70mph					
Based upon 2011 Green Book Table 10-3 – required Acceleration Length	(L _A): 1420'				
Based on the mainline upgrade the adjustment factor from Table 10-4: 1.8	55				
The resulting adjusted L _A value: 2200'					
According to the Green Book the L _A should begin at a point after the ramp curvature or when the ramp curvature exceeds a radius of 300'.					
This would result in starting the L_A 550' prior to the current gore point, thus taper length adjacent to the mainline prior to tapering in.	s requiring 1650' of				
Safety Calculation:					
This increase in costs will also come with an improvement in performance operational and roadway safety perspective. From a safety standpoint, the ramp acceleration distance (speed change lane) will result in a reduction baseline (existing) configuration by approximately 15% through the ramp upon the uncalibrated results of the ISATe analysis, it can be assumed th 3-6 fewer crashes per year through this area – of which they are primarily	e extension of the of crashes from the influence area. Based at this may translate to				
To quantify the safety benefit a simple example ISATe predictive analysis baseline and extended merge configuration were developed with other vac constant to analyze the resulting amount of predicted crashes in each scen number of crashes from this analysis was compared to determine the differ crashes between the baseline and proposed scenario. The following screares results for each of the analyses.	lues being held enario. The resulting erence (percentile) in				
Baseline:					
Estimated Oracle Statistics					

Estimated Crash Statistics							
Crashes for Entire Facility		Total	K	Α	в	С	PDO
Estimated number of crashes during Study Period, o	327.1	1.4	3.7	23.5	74.0	224.5	
Estimated average crash freq. during Study Period, crashes/yr:		15.6	0.1	0.2	1.1	3.5	10.7
Crashes by Facility Component	Nbr. Sites	Total	K	Α	в	С	PDO
Freeway segments, crashes:	2	327.1	1.4	3.7	23.5	74.0	224.5
Ramp segments, crashes:	0	0.0	0.0	0.0	0.0	0.0	0.0
Crossroad ramp terminals, crashes:	0	0.0	0.0	0.0	0.0	0.0	0.0
· · · _ · _ · · · · ·	i i			. 1	_	-	

Recommendation No. 5

Lengthen merge/diverge areas at ramps where needed (Paris Pike)


Extended Ramp:

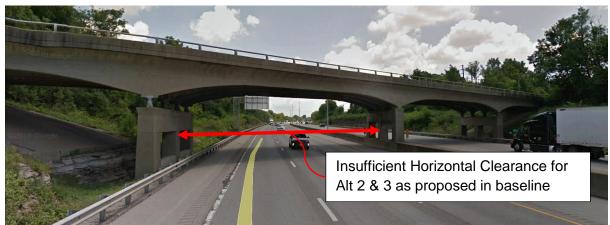
· · · · · · · · · · · · · · · · · · ·										
Estimated Crash Statistics										
Crashes for Entire Facility			ĸ	Α	В	С	PDO			
Estimated number of crashes during Study Period	278.3	1.2	3.2	20.5	64.4	189.1				
Estimated average crash freq. during Study Period, crashes/yr: Crashes by Facility Component Nbr. Sites		13.3	0.1	0.2	1.0	3.1	9.0			
		Total	ĸ	Α	В	C	PDO			
Freeway segments, crashes:	1	278.3	1.2	3.2	20.5	64.4	189.1			
Ramp segments, crashes:	0	0.0	0.0	0.0	0.0	0.0	0.0			
Crossroad ramp terminals, crashes:	0	0.0	0.0	0.0	0.0	0.0	0.0			

Traffic Operations Calculation:

From an operational standpoint, the longer merge area will provide marginal operational benefit. Basic VISSIM analysis and HCM calculations for density indicate that there is a slight improvement to density and speed through the influence area, but it is not enough to numerically justify.

Some HCM calculations based on HCM6 – Chapter 14 (Exhibits 14-13-14-15) determining the speed and density increases through the influence area:

	Rec	ommendatio	n No. 5		IDEA NO.			
Lengthen m	erge/diverge a	reas at ramps v	where needed (Paris	Pike)	9			
Value Average flow in outer voa (pc/h) Average speed for on (merge) junction (mi/h)	in outer lanes $v_{OA} = \frac{v_F - v_{12}}{N_O}$ d for on-ramp junctions $S = \frac{v_{R12} + v_{OA}N_O}{\left(\frac{v_{R12}}{P_O}\right) + \left(\frac{v_OAN_O}{P_O}\right)}$			e flow in outer lanes $v_{OA} = \frac{v_F - v_{12}}{N_O}$ Estim $v_{OA}(pc/h)$ Estim All Ve Junct speed for on-ramp erge) junctions $S = \frac{v_{R12} + v_{OA}N_O}{(v_{R12})_+ (v_{OA}N_O)}$				e Speed of p-Freeway
Average speed for off (diverge) junction (mi/h)	-ramp ns	$S = \frac{v_{12} + v_{OA}N}{\left(\frac{v_{12}}{S_R}\right) + \left(\frac{V_{OA}N}{S_O}\right)}$	Vol					
	Base	Extended						
FFS	76	76						
SAF	0.95	0.95						
Ms	0.442023	0.306388						
Vr12	4010	4011	-					
V12	2830	2830	—					
Vr	1180	1181						
La	900	2200						
Sfr	55	55						
Sr	58.85091	62.94708						
Voa	2555	2554.5						
Vf	6290	6290						
NO	2	2						
Speed	65.65217	67.81579						
V	1867.5	1867.75						
Density	28.44536	27.54152						



	esign Recommendatic Shoulders at Existing B		IDEA NO. 32
Baseline			
and 12' inside should Russell Cave Road a	d 3, the proposed typical er, respectively. As a res nd Bryan Station Road a at the existing bridge pier	ult, two new offline bridge re included in the baselin	e replacements at e due to insufficient
Recommendation			
bridge piers at Russe be re-used and total	8, narrow the proposed shell Cave Road and Bryan stridge replacement is not replaced to address vertic	Station Rd., so that the ex needed. However, the s	xisting substructure can superstructure would
Advantages		Disadvantages	
Minimizes cons			
	struction schedule	 Does not allow for on I-75 (requires in near bridge) Substructure (55 yreplaced in approximation) 	eed to be closed during
 Minimizes cons 	struction schedule y relocations	 Does not allow for on I-75 (requires in near bridge) Substructure (55 yreplaced in approx Both side roads not 	nterstate shoulder tapers years old) may need to be x. 30 years. eed to be closed during
Minimizes cons	struction schedule y relocations	 Does not allow for on I-75 (requires in near bridge) Substructure (55 yreplaced in approx Both side roads not construction and t 	nterstate shoulder tapers years old) may need to be x. 30 years. eed to be closed during
 Minimizes cons 	struction schedule y relocations Summary of	 Does not allow for on I-75 (requires in near bridge) Substructure (55 yreplaced in approx Both side roads not construction and t 	nterstate shoulder tapers years old) may need to be x. 30 years. eed to be closed during raffic detoured
Minimizes cons Minimizes utility	struction schedule y relocations Summary of	 Does not allow for on I-75 (requires in near bridge) Substructure (55 yreplaced in approx Both side roads not construction and t Cost Analysis	nterstate shoulder tapers years old) may need to be x. 30 years. eed to be closed during raffic detoured
Minimizes cons Minimizes utility	struction schedule y relocations Summary of N/A (re-using the existin	 Does not allow for on I-75 (requires in near bridge) Substructure (55 yreplaced in approx Both side roads not construction and t Cost Analysis	nterstate shoulder tapers years old) may need to be x. 30 years. eed to be closed during raffic detoured

Comments/Justification Sketches

Below is a photo of the existing Bryan Station Road Bridge. As you can see, adding a fourth lane in between the existing piers is tight. By reducing the proposed shoulder widths, the fourth lane can be added without total bridge replacement. However, the superstructure would still need to be raised or replaced in order to address the vertical clearance issues.

Reducing the proposed shoulders allows the re-use of the substructure. Similar ideas have been implemented on I-64 in the Louisville, KY area. See photo below.

To address the verical clearance issue, the supersturcture will either have to be raised or replaced. See photo below of similar project where superstructure was replaced and existing piers re-used (higher beam seats). This idea was validated in Design Validation No.1 of this VE Planning Study, "Bridge Raising".

Design Recommendation No. 6 Narrow Shoulders at Existing Bridge Piers

IDEA NO.

32

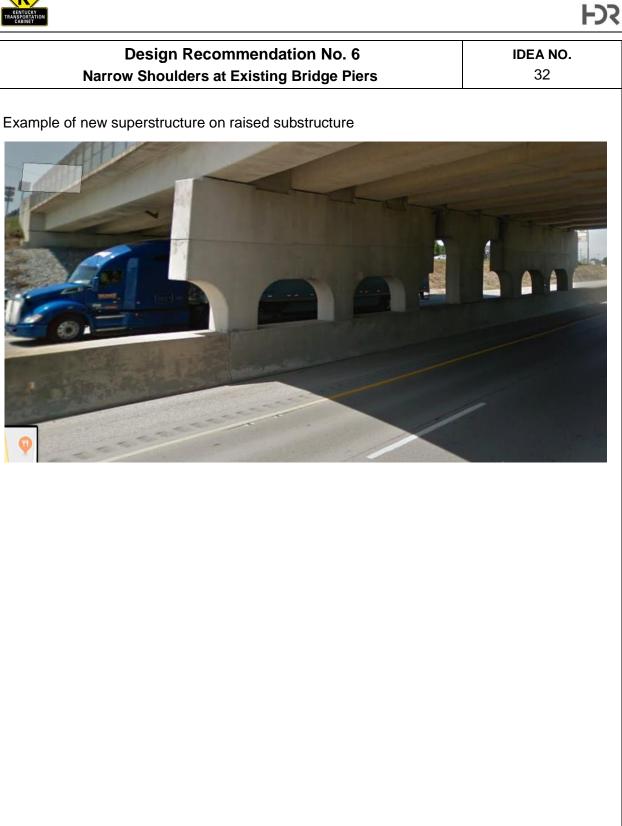
Assumptions & Calculations

Baseline for Alternative 2 and 3:

			Total	Total					
	Route Under		Length	Width	Total Deck	Number	Max. Span	Unit Cost	Replacement
Route Carried By Bridge	Bridge	Superstr. Type	(ft)	(ft)	Area (SF)	of Spans	Length (ft)	(\$ / SF)	Cost
Russel Cave Rd. (KY 353)Alt. #3	I-75	PC Box Beams	294	44	12936	4	90	\$214	\$2,769,997
Bryan Station Rd. (KY 57)Alt. #3	I-75	PC Box Beams	288	40	11520	4	86	\$214	\$2,466,788

Total costs (Russel Cave Bridge + Bryan Station Bridge + roadway, utilities, and ROW): 2,769,997 + 2,466,788 + 2,462,000 = **\$7,698,786**

Cost of superstructure replacement:


Modification	Unit Cost	Count	Units	Total Cost		
Remove Superstructure	\$60,000	1	LS	\$60,000		
HN 36 PCI Beams	\$491.00	1080	LF	\$530,280		
Concrete deck	\$1,000	241	CY	\$241,200		
Deck reinforcement	\$1.20	35102	LB	\$42,122		
2 barriers	\$95	540	LF	\$51,300		
Concrete Diaphragms	\$950	38	CY	\$36,021		
Built Up Beam Seats at Piers	\$950	35	CY	\$33,250		
Reinforcement in Substructure	\$1.15	8682	LB	\$9,985		
Patching of Existing Substructure	\$50,000	1	LS	\$50,000		
				\$1,054,158	total, per	bridge
Area of new deck	9720	SF		\$108	per SF	

Cost of bid prices is based on KYTC average unit bid prices for 2017 (most recent available) and then adjusted for estimated inflation. The estimated costs for approach roadway work, ROW, and utilities at two bridges totals \$300,000 (assuming worst case of raising existing superstructure).

Total costs (Bryan Station Bridge + Russel Cave Bridge + Roadway, Utilities, and ROW): 2(1,054,158) + 300,000 = **\$2,408,315**

A superstructure replacement would avoid save \$5.3M compared to the cost of replacing both bridges completely.

Design Validation No. 1

IDEA NO. 23

Baseline

Alternatives 1 and 4:

Permanently raise two bridges (Russell Cave Road and Bryan Station Road) approximately 2.5 feet in elevation in order to provide vertical clearance over the proposed I-75 roadway. This would also require re-construction of the approach roadway at the end of each bridge.

Approx. Structure Costs: \$2,088,535 Approx. Roadway, ROW, and Utility Costs: \$478,000

Existing Bridge Carrying Bryan Station Road (Russell Cave Road similar):

As part of our due diligence on this matter, we conversed with a local contractor that specializes in this special type of construction activity. They were confident in the ability to raise these structures to the required height. A basic cost estimate was given to us by the contractor. A risk factor was added to the documented estimates in this report.

TRANSPORTATION CABINET		רא	
Design Validatio	Design Validation No. 1		
Recommendation			
The recommendation is to keep the raising estimate that the remaining service life of t after this modification.			
Advantages	Disadvantages		
 Minimizes construction costs Minimizes construction schedule 	 the interstate in earaising/jacking op Does not allow for shoulder widths o Maintenance/reharsome uncertainty bridges 	es can be maintained on ach direction during erations r standard lane and n I-75 ab needs in future have for these 60 year old nay need to be closed	

	side roads						
	Summary of Cost Analysis						
Cost							
Alternative 1 \$0							
Alternative 2	N/A (replacing these two bridges is part of this alternative)						
Alternative 3	N/A (replacing these two bridges is part of this alternative)						
Alternative 4	\$0						

Design Validation No. 1

IDEA NO. 23

Comments/Justification Sketches

Photo of similar project where superstucture was temporarily supported by falsework:

Photo of similar project where superstructure was raised and placed on higher beam seats.

Design Validation No. 1 IDEA NO. 23 **Assumptions & Calculations** Baseline for Alternatives 1 and 4: Russel Cave Road Bridge Modification Unit Cost Count Units Total Cost Jack and Temporarily Support Bridge \$200,000 5 each \$1,000,000 Build up the concrete beam seats \$950 14 CY \$13,634 New wing walls at Abut's. \$950 12 CY \$11,611 Raise Abutment Backwalls \$950 8 CY \$8,022 Replace joints at each abutment \$500 2 each \$1,000 Replace bearings \$500 20 each \$10,000 \$1,044,268 total Bryan Station Road Bridge Modification Unit Cost Count Units Total Cost Jack and Temporarily Support Bridge \$200,000 5 each \$1,000,000 Build up the concrete beam seats \$950 14 CY \$13,634 New wing walls at Abut's. \$950 12 CY \$11,611 Raise Abutment Backwalls \$950 8 CY \$8,022 2 Replace joints at each abutment \$500 each \$1,000 Replace bearings \$500 20 each \$10,000 \$1,044,268 total

Total costs (bridge + roadway, utilities, and ROW): Alt. 1: 2x(1,044,268) + 241,000 + 237,000 = **\$2,566,535**

Cost of full replacement (assuming phased construction):

			Total	Total				Depth of		
	Route Under		Length	Width	Total Deck	Number	Max. Span	Superstr.	Unit Cost	Replacement
Route Carried By Bridge	Bridge	Superstr. Type	(ft)	(ft)	Area (SF)	of Spans	Length (ft)	(ft)	(\$ / SF)	Cost
Bryan Station Rd. (KY 57)Alt. #2	I-75	PC Box Beams	278	40	11120	4	81	5.8	\$214	\$2,381,136
Bryan Station Rd. (KY 57)Alt. #3	I-75	PC Box Beams	288	40	11520	4	86	5.8	\$214	\$2,466,788
Russel Cave Rd. (KY 353)Alt. #2	I-75	PC Box Beams	284	44	12496	4	85	5.8	\$214	\$2,675,780
Russel Cave Rd. (KY 353)Alt. #3	I-75	PC Box Beams	294	44	12936	4	90	6.3	\$214	\$2,769,997

Cost (\$ per SF) are based on KYTC publication by Div. of Structural Design (adjusted for inflation).

Alternative 2 allows for $4 \sim 12$ ' lanes with reduced shoulder widths. Alternative 3 allows for $4 \sim 12$ ' lanes with full shoulder widths.

Roadway costs for approach work at two bridges totals \$2.462M (both Alternatives 2 and 3).

Total costs (Bryan Station Bridge + Russel Cave Bridge + Roadway, Utilities, and ROW): *Alt. 2:* 2,381,136 + 2,675,780 + 2,462,000 = **\$7,518,916** *Alt. 3:* 2,466,788 + 2,769,997 + 2,462,000 = **\$7,698,785**

Alternative #3 would cost approx. \$5.1M more than Alternative #1.

In addition to the VE recommendations and the design validation the team identified a number of design considerations to be evaluated throughout the design process. Additional information about these design considerations can be found in the evaluations section of this report.

- Only pave widened areas that have not recently been rehabbed
- Advanced signing / road markings for lane choice
- Legacy trail structure revisions to prevent 4-F impacts
- Ramp metering at interchanges
- · Break and seat existing concrete with overlay
- Widening without concrete base

The following is a detailed design consideration to further define how the potential 4-F impacts at legacy Trail can be avoided.

Detailed Design Consideration No. 1	IDEA NO.				
Legacy Trail Wagon-Box Head & Wing Wall Extensions	24				
Baseline					
A wagon-box structure passes below mainline I-75/I-64, accommodating pedestrian traffic for					

the city's Legacy Trail. Alternatives 2 and 3 widen both the northbound and southbound sections. This will result in an offset of the 2:1 fill slopes and require modifications at the end of the wagon-box. Any disruption to the trail might be considered a 4(f) environmental impact.

Recommendation

Widening of the interstate above the wagon-box can certainly be performed. However, a more detailed engineering design will be required to determine which solutions are feasible and which is the overall best solution. The following options could be evaluated in order of least impact to the trail:

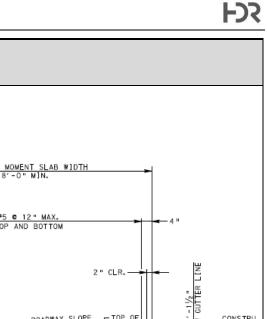
- 1. Utilize a Moment Slab Toe Wall similar to the PennDOT Standard Drawing, as shown in Figure 1. This system acts as a retaining wall at the edge of the widened roadway for limited heights below the pavement. If engineering design proves this will work, it will result in no impact to the wagon-box/trail.
- 2. Extend the vertical heights of the parapet and wingwalls to receive the widened 2:1 slopes, as shown in Figure 2. The widening will result in an additional 4ft of height. Using rough numbers, this essentially doubles the moment demand at the base of the wingwalls. It will also significantly increase the maximum bearing pressure and increase the likelihood of overturning. The original plans for these wing walls have not yet been located. The situation might be improved by obtaining refined geotechnical information, the use of lightweight fill, and exploiting potential conservatism in the original design. The wingwalls could be thickened to handle the increased forces. However, upgrades to foundations are typically not economical or easy to construct.
- Extend the wagon-box the length of the widened slopes. Of the three options, this will
 result in the most impact to the trail. The existing grade of the trail can be built into the
 barrel, avoiding impacts outside of ROW. If sight distance for trail users or farm
 vehicles is a concern, due to the 90° turn at one end, the barrel could be flared to
 accommodate better line of sight.

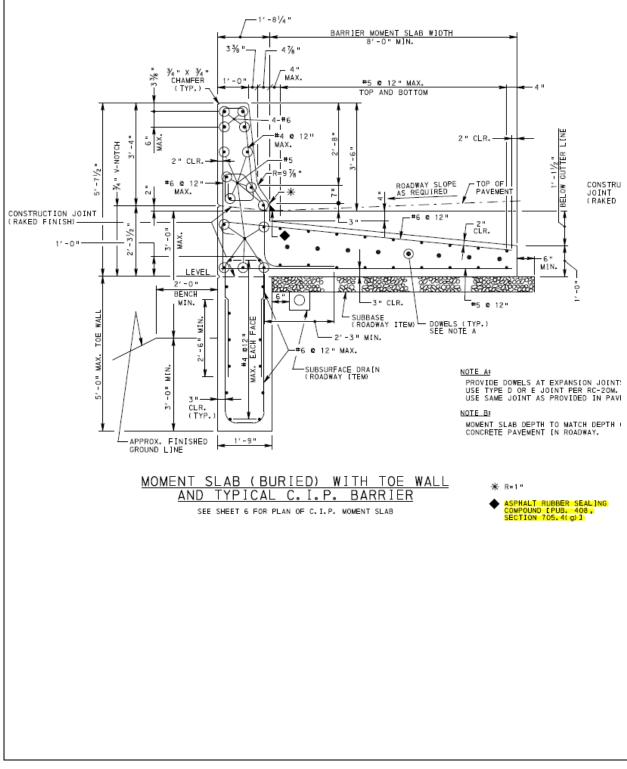
TRACEPUREY CABINET		FS
Detailed Design Considera	ation No. 1	IDEA NO.
Legacy Trail Wagon-Box Head & Wing	Wall Extensions	24
Advantages	Disadvantages	
 Moment Slab: No impact to wagon-box or trail. All work will involve relatively easy access along the interstate Vertical Extension of Wings and Headwalls: Limited impact to trail during construction (compared to full extension) Less construction cost (compared to full extension) Shorter construction duration (compared to full extension) Full Extension: Most conventional option Will certainly work from a structural design standpoint (there is some question with other options) 	is less than 5ft Vertical Extension of Wing Design may show Partial closure of intermittent full clo construction. Farm-to-farm accube difficult if not in during a significar Could result in cost	it to be unfeasible trail required, with osures during ess for large vehicles will npossible to maintain nt portion of construction. stly foundation upgrades. cost than full extension trail required, with

construction.

Farm-to-farm access for large vehicles will

be difficult if not impossible to maintain


 during construction. Most expensive option Longest construction duration 				
	Summary of Cost Analysis			
	Cost			
Alternative 1	N/A			
Alternative 2	To be determined during design phase			
Alternative 3	Iternative 3 To be determined during design phase			
Alternative 4	N/A			


٠

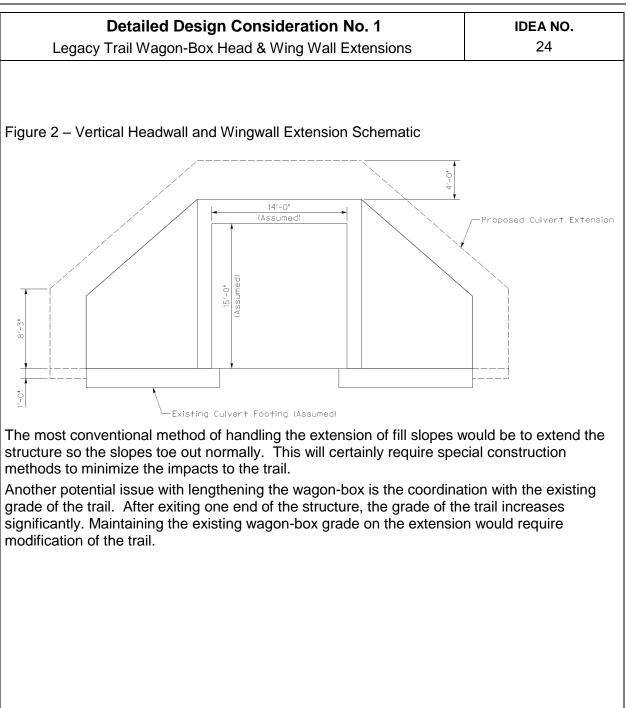

Comments/Justification Sketches

Figure 1 – Moment Slab Toe Wall

FOR

Scoring Performance for Alternatives with VE Recommendations.

To develop the total performance score for each of the four alternatives presented, the VE team used the weighting and scoring criteria to score each of the attributes.

Alternative 1 VE		
PERFORMANCE MEASURES Attributes and Rating Rationale	Performance	Score
Mainline Operations	Rating	6.5
 Design exceptions – lane 11 ft Design exception – inside shoulder 8.7 ft Full outside shoulder Exceeds LOS C in design year Increased ramp merge at Paris Pike 	Weight Contribution	28.6 185.9
Local Operations	Rating	6
 Russell Cave and Bryan Station – raising structures therefore no 	Weight	19.0
 adjustments to lane or shoulder widths Does not Commitment satisfy commitment to provide bike and pedestrian access Russell Cave road 	Contribution	114.0
Maintainability	Rating	4
 Similar maintenance to existing facility 	Weight	23.8
 Maintenance has expressed concerns for inside shoulder maintenance activities – would require lane closures Raising structures built in late 60s may have additional maintenance Additional walls/guardrail 	Contribution	95.2
Construction Impacts	Rating	6
 Maintain 2-3 lanes in each direction throughout construction with 	Weight	14.2
 Maintain 2-3 failes in each direction throughout construction with interim night closures Addition of ramp merge could add additional structure construction time. Construction time/interim ramp closure 	Contribution	85.2
Environmental Impacts	Rating	6
 Assumes noise walls where required 	Weight	9.5
 Stays mostly within existing right of way Used mitigation measures to minimize right of way impacts 	Contribution	57.0
Reduce Risk	Rating	5
	Weight	4.7
 Risk of additional cost to repair existing structures Stays within existing roadway prism, minimizing risk to environmental, right of way and utilities Will require design exceptions for lane and shoulder widths Raising structures Does not address lane balance at northern split 	Contribution	23.5
Tota	Performance:	561

Alternative 2 VE					
PERFORMANCE MEASURES					
Attributes and Rating Rationale	Performance	Score			
Mainline Operations	Rating	8			
 Design exception – inside shoulder 8 ft with 4ft across existing structures Full outside shoulder Exceeds LOS C in design year Increased ramp merge at Paris Pike 	Weight Contribution	28.6 228.8			
Local Operations	Rating	8			
	Weight	19.0			
 Russell Cave and Bryan Station – replaces super structures with adjustments to lane or shoulder widths 	Contribution	152			
Maintainability	Rating	4			
 Similar maintenance to existing facility 	Weight	23.8			
 Maintenance has expressed concerns for inside shoulder maintenance activities – would require lane closures Replacing structures built in late 60s will have less maintenance Additional walls/guardrail Narrower shoulders across existing structures, may potentially require a lane closure for maintenance on structures 	Contribution	95.2			
Construction Impacts	Rating	6			
 Maintain 2-3 lanes in each direction throughout construction with interim night closures Addition of ramp merge could add additional structure construction time. Construction time/interim ramp closure Additional wall/guardrail construction time Reduction in construction time duration for bridge work 	Weight Contribution	14.2 85.2			
Environmental Impacts	Rating	5.8			
 Assumes noise walls where required Some right of way required Outside widening throughout Added shoulder or sidewalk on Russell Cave and Bryan Station Used mitigation measures to minimize right of way impacts 	Weight Contribution	9.5 55.1			
Reduce Risk	Rating	5.5			
 Risk of additional cost to repair existing structures Will require design exceptions for shoulder widths Widening outside of current right of way has been mitigated with VE Rec 4 Does not address lane balance at northern split 	Weight Contribution	4.7 25.9			
Tota	I Performance:	642			

Alternative 3 VE							
PERFORMANCE MEASURES	PERFORMANCE MEASURES Performance Score						
Attributes and Rating Rationale	renormance	30016					
Mainline Operations	Rating	9.5					
 No design exceptions Reduces shoulders on existing bridges to 4'/10' Reduce inside shoulder to ASHTO 10' requirement Exceeds LOS C in design year Increased ramp merge at Paris Pike 	Weight Contribution	28.6 271.7					
Local Operations	Rating	8					
 Russell Cave and Bryan Station – replaces super structures with 	Weight	19.0					
adjustments to lane or shoulder widths	Contribution	152.0					
Maintainability	Rating	4.5					
 Similar maintenance to existing facility 	Weight	23.8					
 Replacing structures built in late 60s will have less maintenance Additional walls/guardrail Narrower shoulders across existing structures, may potentially require a lane closure for maintenance on structures 10' inside shoulder reduced from 12' due to VE 	Contribution	107.1					
Construction Impacts	Rating	6					
• Maintain 2-3 lanes in each direction throughout construction with	Weight	14.2					
 interim night closures May not require outside shoulder widening for stage 1 construction Added drainage/slope construction work on outside could add to construction duration Addition of ramp merge could add additional structure construction time. Construction time/interim ramp closure Additional wall/guardrail construction time Reduction in construction time duration for bridge work 	Contribution	85.2					
Environmental Impacts	Rating	5.8					
 Assumes noise walls where required 	Weight	9.5					
 Additional right of way required Outside widening throughout Added shoulder or sidewalk on Russell Cave and Bryan Station Potential 4f impacts has been mitigated Used mitigation measures to minimize right of way impacts Reduced roadway width with VE (inside shoulder) 	Contribution	55.1					
Reduce Risk	Rating	6.5					
 Risk of additional cost to repair existing structures 	Weight	4.7					
 Outside of current right of way has been mitigated with VE Rec 4 Does not address lane balance at northern split 	Contribution	30.6					
Tota	Performance:	702					

Alternative 4 VE						
PERFORMANCE MEASURES Attributes and Rating Rationale	Performance	Score				
Mainline Operations	Rating	4.5				
 Design exception – inside shoulder 4.7 ft during peak hours, 16.7 f off peak Full outside shoulder 	Weight	28.6				
 Opening and closing of lanes could cause operational issues Reliability of ITS may affect lane operations Complicates merge on southern split May have inside shoulder reduction in areas of overhead signing (ITS Increased ramp merge at Paris Pike) Contribution	127.8				
Local Operations	Rating	6				
 Russell Cave and Bryan Station – raising structures therefore no 	Weight	19.0				
 adjustments to lane or shoulder widths Does not Commitment satisfy commitment to provide bike and pedestrian access Russell Cave road 		114.0				
Maintainability	Rating	2				
Maintenance has expressed concerns for inside shoulder maintenance activities – would require lane closures Raising structures built in late 60s may have additional maintenance Maintaining ITS components significant Maintenance of hard shoulder running lane between peak hours Additional walls/guardrail	Weight	23.8				
	Contribution	47.6				
Construction Impacts	Rating	6				
 Maintain 2-3 lanes in each direction throughout construction with 	Woight	14.2				
 Maintain 2-3 raries in each direction throughout construction with interim night closures Addition of ramp merge could add additional structure construction time. Construction time/interim ramp closure 		85.2				
Environmental Impacts	Rating	6				
 Assumes noise walls where required 	Weight	9.5				
 Stays mostly within existing right of way Used mitigation measures to minimize right of way impacts 	Contribution	57.0				

R	Reduce Risk	Rating	5	
•	Risk of additional cost to repair existing structures Stays within existing roadway prism, minimizing risk to environmental, right of way and utilities Will require design exceptions for shoulder widths Raising structures Does not address lane balance at northern split Coordination and operation of ITS Opening and transitioning of inside lane on southern split	Weight Contribution	4.7 22.1	
Total Performance:				

	Alternative Summary								
	Alternatives	Performance (P)	% Change Performance	Cost (C) \$ millions	Cost Change \$ millions	% Change Cost	Value Index	% Value Improvement	
1	Alternative 1	547		\$64.5	\$64.46		8.48		
2	Alternative 2	646		\$85.8	\$85.84		7.53		
3	Alternative 3	699		\$90.2	\$90.21		7.75		
4	Alternative 4	442		\$78.1	\$78.13		5.65		
5	VE Alternative 1	561	+2.6%	\$58.0	(\$6.48)	-10.1%	9.67	+14.1%	
6	VE Alternative 2	642	-0.7%	\$72.1	(\$13.75)	-16.0%	8.91	+18.3%	
7	VE Alternative 3	702	+0.4%	\$73.1	(\$17.09)	-18.9%	9.60	+23.9%	
8	VE Alternative 4	456	+3.2%	\$71.7	(\$6.48)	-8.3%	6.36	+12.6%	

Table 9 Value Index

The value engineering recommendations was able to reduce cost by 8.3% to 18.9% without significant sacrifices in performance. Alternative 1 with the VE recommendations is the lowest cost at \$58.0 Million but Alternative 3 with the VE recommendations had a much higher performance making it a very viable alternative as well.

Appendix

- VE Recommendation Approval Form
- VE Study Agenda
- VE Study Attendee List
- VE Study Report Out Presentation
- Project Presentation to VE Team
- Value Engineering Process

This page is intentionally left blank.

VE Study Recommendation Approval Form

Project: 164 / 175 Widening

VE Study Date: January 28-February 1, 2019

		FHWA Functional Benefit							
Rec	ommendation	Approved Y/N	Safety	Operations	Environment	Construction	Right-of-Way	VE Team Estimated Cost Avoidance or Cost Added	Actual Estimated Cost Avoidance or Cost Added
1	Pavement							\$8.6M – \$8.9M	
2	Narrowing Shoulders at existing structures							\$1.9M-\$3.5M	
3	10' Inside Shoulders							\$2.5M	
4	Reduction of Right-of-Way Impacts							\$0.17M - <mark>\$0.66M</mark>	
5	5 Lengthen merge/diverge areas at ramps where needed (Paris Pike)							\$2.2M -\$2.3M	
6	Narrow Shoulders at Existing Bridge Piers							\$5.3M	

Please provide justification if the value engineering workshop recommendations are <u>not</u> approved or are implemented in a modified form.

The Project Manager will review and evaluate the VE team's recommendation(s) that are included in the Final Report. The Project Manager shall complete the VE Recommendation Approval form that is included in this report.

For each recommendation that is not approved or is modified by the Project Manager, justification needs to be provided. This justification shall include a summary statement containing the Project Manager's decision not to use the recommendation in the project.

The completed VE Recommendation Approval form including justification for any recommendations not approved or modified shall be sent to the KTC VE Office so the results can be included in the annual Value Engineering Report to FHWA.

Signature Project Manager

Date

Name (please print)

FHWA Functional Benefit Criteria

Each year, State DOT's are required to report on VE recommendations to FHWA. In addition to cost implications, FHWA requires the DOT's to evaluate each approved recommendation in terms of the project feature or features that recommendation benefits. If a specific recommendation can be shown to provide benefit to more than one feature described below, count the recommendation in **each category that is applicable.**

Safety: Recommendations that mitigate or reduce hazards on the facility.

Operations: Recommendations that improve real-time service and/or local, corridor, or regional levels of service of the facility.

Environment: Recommendations that successfully avoid or mitigate impacts to natural and or cultural resources.

Construction: Recommendations that improve work zone conditions, or expedite the project delivery.

Right-of-Way: Recommendations that lower the impacts or costs of right-of-way.

VE Study Agenda

Agenda Memo

Date:	Friday, January 25, 2019
Project:	I-64 / I-75 Split
To:	VE Team Members
From:	Ken L. Smith, PE, CVS®

Subject: Value Planning alternative evaluation study

This memo is to introduce some of the expectations for the upcoming Value Planning alternative evaluation study. I'm looking forward to working with you on this endeavor. My hope is that this memo will provide information to you about the project and our work together.

If you have any questions, please direct them to me, Ken Smith, at 360-451-2527, or e-mail: <u>ken.l.smith@hdrinc.com</u>.

PROJECT BACKGROUND

THE PURPOSE OF THE PROPOSED PROJECT IS TO DECREASE CONGESTION AND IMPROVE SAFETY, OPERATIONS, AND ROADWAY TRAFFIC CAPACITY ON THE COMBINED I-75/I-64 INTERSTATE ROUTE AROUND LEXINGTON. THE PROJECT IS NEEDED TO ADDRESS THE INCREASED TRAFFIC ALONG THE PROJECT CORRIDOR IN RECENT YEARS AS WELL AS ANTICIPATED CONTINUED POPULATION GROWTH IN FAYETTE AND SURROUNDING COUNTIES.

STUDY DATES AND LOCATION

The Opening session will be held January 28, 2019 at

HDR 2517 Sir Barton Way Lexington, KY 40509

The closing session will be held February 1, 2019 at

KYTC District 7 800 Newtown Circle Lexington, KY 40511

The workshop will be held Monday Jan-28 through Feb-1 2019 at

HDR 2517 Sir Barton Way Lexington, KY 40509

WHAT TO BRING

Be sure to bring your normal tools of the trade (e.g., calculator, laptop computer [if possible], scale, etc.). Bring a creative and open mind. These types of studies are a lot of work, but you will have a good time and a rewarding experience.

GROUND RULES

The study follows a process that has been proven over many years to produce the best results. This process needs the team members to be fully engaged and have an open mind to "step" outside of the box throughout the week.

To maintain our schedule and provide the best results to the project team, I ask that we follow some basic ground rules:

1. **Please be prepared to attend all five days.** You were selected to assist on this team based on your expertise. If you cannot be in attendance for the entire time, then please contact me prior to the study so we can make the appropriate arrangements.

When team members leave part way through, or come and go frequently, the team can lose its momentum and cohesiveness.

- 2. Please turn your cell phones to vibrate mode during the study. Unless it is information to assist the team, please try to wait until breaks to return phone calls, check on messages, or sort through e-mails.
- 3. **No dress code.** I want everyone to be comfortable. The dress is what some would call business casual (no ties required).
- 4. If you have a laptop <u>please bring it</u>. I have found most team members are more comfortable developing their write-ups and ideas on a computer. The facilities we use don't always have network connections, so the memory stick is usually the network of choice for sharing files.
- 5. Our success will be evaluated based on the level of contribution that we bring to the project. Remember that the goal is to "add value" to the project and saving money is just a byproduct. We want to make recommendations based on solid engineering judgment that will result in an improved overall project.

I'm looking forward to working with you on this study and I really appreciate each of you blocking time out of your busy schedule to participate. Please don't hesitate to call or e-mail me if you have any questions.

Sincerely,

Ken & Swith

Ken L. Smith, PE, CVS Vice President Senior Value Engineering & Project Risk Manager

HDR 905 Plum Street Suite 200, Olympia, WA 98501-1516 M 360-451-2527 ken.l.smith@hdrinc.com

Day 1	Monday, January 28 Objective for the day: Learn about the project and alternatives	
08:30 AM	 Team Introductions Team "meet and greet" Study kickoff Team introductions 	Project Team/designer
08:45 AM	 Process Overview An instructional presentation on the process for the study 	Facilitator: Ken Smith, PE, CVS
09:15 AM	 Project documentation review for each alternative Rough order of magnitude costs Traffic information Concerns and issues 	Project Team/designer
10:00 AM	Break	
11:00 AM	 Begin Risk Elicitation for each alternative Define risks for each alternative Develop responses strategies 	Facilitator Team
12:00 PM	Lunch	All Audiences
01:00 PM	Team Introductions and Project Overview• Roadway Design • Traffic Analysis • Structures • Structures • Drainage/Hydraulics • Utilities • Railroad (Third Party) • Environmental Conditions • Constraints • Present each of the three current Alternatives • Google Earth walk through• Roadway Design • Traffic Analysis 	All Audiences: Project Owner, management, stakeholders, designers, etc.
02:00 PM	 Discuss Project documentation review for each alternative Rough order of magnitude costs Traffic information Concerns and issues 	All Audiences
02:30 PM	Complete Risk Elicitation for each alternative Define risks for each alternative	Facilitator
05:00 PM	Develop responses strategies Adjourn	All Audiences

Day 2	Tuesday January 29	
08:30 AM	 Review and refine Evaluation criteria Review how each alternative will be evaluated and score Revise criteria and build consensus 	Team
09:00 AM	 Creative Phase Brainstorm alternative ways to perform key functions Brainstorm ways to improve value of key functions 	Team
12:00 AM	Lunch	
01:00 PM	 Sub team break-out Incorporate key brainstorm alternatives into each alternative Develop conceptual layout and cross sections for alternative Define how total project can be phased or staged Develop delivery schedules Refine base costs 	Sub Teams
05:00 PM	Adjourn	

Day 3	Wednesday January 30 Continue Developing	
08:30 AM Development Phase	 Develop Ideas into Recommendations Individual/team assignments Development of recommendations: Test design feasibility Design analysis Technical narratives Further discussion on advantages and disadvantages Cost analysis (life cycle cost comparison) 	Sub teams
12:00 AM	Lunch	
01:00 PM	Continue Development Wrap up Recommendations write-ups	Sub Teams
05:00 PM	Adjourn	

Day 4	Error! Reference source not found.	
08:30 AM	Revisit RiskRevise risk profile for revised alternatives	Team
12:00 AM	Lunch	
01:00 PM	Evaluation of AlternativesReview and score each alternative	Team
03:30 PM	Prepare report out presentation	Team
05:00 PM	Adjourn	
Dav 5	Error! Reference source not found. 1	

10:30 AM Presentation Phase	Objective for the day: Deliver Close-out Presentation Finalize Close-out Presentation Team Rehearsal	Alignment Review/VE team
1:00 PM Presentation Phase	 Presentation of VE Findings Team presents recommendations to management Questions and answers 	All Audiences: Project owner, management, stakeholders, designers, etc.
	Adjourn	

This page is intentionally left blank.

	VE Study Attendees I-64 / I-75 Split, Fayette County, KY									
								TELEPHONE		
Jai	January/ February 2019				NAME		POSITION/DISCIPLINE	Office	Cell	
28	29	30	31	1	NAME	ORGANIZATION	POSITION/DISCIPLINE	E-MAIL		
	1								360-451-2527	
\checkmark	V	✓	\checkmark	✓	Ken Smith	HDR	Facilitator	Ken.I.smith	@hdrinc.com	
\checkmark	./	\checkmark	\checkmark	\checkmark	Den Edelen	HDR		859-629-4833	859-221-3266	
v	v	v	v	v	Ben Edelen	HUK	Project manager	Ben.edelen	@hdrinc.com	
	\checkmark				David Lindeman	Palmer Engineering	Highway Design	859-744-1218		
	•					Faimer Engineening	Thighway Design	dlindeman@	palmernet.com	
\checkmark	\checkmark		\checkmark		Joshua Samples	KYTC District 7	Project Manager	859-246-2355		
•	•		•					Joshua.sam	ples@ky.gov	
\checkmark					Tony McGaha	KYTC District 7		859-246-2355		
•								Tony.mcga	aha@ky.gov	
\checkmark					Keith Caudill	KYTC District 7		859-246-2355		
•								Keith.cau	dill@ky.gov	
\checkmark					Daniel Kucela	KYTC District 7		859-246-2355		
									1	
\checkmark					Natalia McMillan	KYTC District 7	Traffic	859-246-2355		
								Natalia.mcmillan@ky.gov		
\checkmark					Patrick Perry	KYTC Central Office	Location Engineer	502-564-3280		
					- ,			Patrick.pe	<u>rry@ky.gov</u>	

	VE Study Attendees I-64 / I-75 Split, Fayette County, KY								
									PHONE
Jar	nuary/	Febr	uary 20	19				Office Cell	
					NAME	ORGANIZATION	POSITION/DISCIPLINE	E-MAIL	
28	29	30	31	1					
\checkmark					Aaron Buckner	FHWA		502-223-6749	
•					Aaron Buckher			Aaron.buck	ner@dot.gov
\checkmark					Doug Burton	LFUCG		859-258-3410	
·					Doug Durton			dburton@lexingto	nky.gov
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Jim Guinn	HDR	Project Manager	859-629-4842	
•			•	•				<u>Jim.guinn@</u>	hdrinc.com
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Joe Cochran	HDR	Roadway Engineer	859-629-4836	
·	•		•	•				Joe.cochran	@hdrinc.com
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Matt Newman	HDR	Design Engineer	502-909-6258	502-420-8500
·	•		•		mattreeman			Matt.newmar	n@hdrinc.com
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Allison Westcote	HDR	Roadway Engineer	859-629-4875	
·	•	•	•	•		HER	Roddway Engineer	Allison.westco	te@hdrinc.com
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Philip Pfaffenberger	HDR	Roadway Design	502-909-3259	
•	•	•	•					Philip.pfaffenbe	rger@hdrinc.com
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Adam Hedges	HDR	Traffic Engineer	859-629-4872	
-		-		-				Adam.hedge	s@hdrinc.com
\checkmark					Rob Frazier	HDR	Traffic Lead	816-309-2907	
ŗ								Robert.frazie	r@hdrinc.com

						VE Study Attend I-64 / I-75 Split, Fayette C				
								TELEPHONE		
Jai	nuary/	/ Febr	uary 20	019				Office	Cell	
28	29	30	31	1	NAME	ORGANIZATION	POSITION/DISCIPLINE	E-M	IAIL	
\checkmark								859-629-4860		
V	v	V	V	✓	Wes Hagerman	HDR	Bridge Engineer	Wesley.hagerm	an@hdrinc.com	
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Jeff Cowan	Palmer Engineering	Project Manager	859-744-1218		
•	V	•	•	•			Project Manager	jcowan@pa	Imernet.com	
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Bob Nunley	Civil Design Inc.	Project Manager	502-242-9057	859-494-4869	
•	•	·	•	•	bob Numey	Civil Design Inc.	i roject manager	bnunley@civil	designinc.com	
\checkmark					Kevin Damron	Palmer Engineering	Safety / HSM	859-744-1218	859-537-6657	
•								kdamron@pa	almernet.com	
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Jody Barker	Palmer Engineering	Design/Drafting	889-744-1218		
•	•		•	•	July Darker		Design/Draning	jbarker@pa	mernet.com	
\checkmark					Rebecca Colin	HDR	Environmental	859-629-4848	859-619-8004	
•						HBR	Environmental	Rebecca.colir	<u>@hdrinc.com</u>	
\checkmark		\checkmark			David Deitz	Palmer Engineering	Structures	859-744-1218	859-227-5908	
								ddeitz@pal	mernet.com	
\checkmark					Michael Loysell	FHWA	Major Projects Engineer	502-223-6748		
								Michael.loys	ell@dot.gov	
\checkmark					Tracy Louel	КҮТС				
								Tracy.loue	el@ky.gov	

						VE Study Attend I-64 / I-75 Split, Fayette C			
						TELEPHONE			
Ja	nuary/	Febr	uary 20	019				Office	Cell
					NAME	ORGANIZATION	POSITION/DISCIPLINE	_	
28	29	30	31	1				E-M	AIL
	\checkmark							859-744-1218	859-492-0199
	•				Stephen Sewell	Palmer Engineering	Design / Traffic	ssewell@pa	Imernet.com

Value Engineering Report Out

Value Engineering Report Out

February 1st, 2019

Jody Barker

FS

- Joe Cochran
- Jeff Cowan
- Ben Edelen
- Jim Guinn
- Wes Hagerman
- Adam Hedges
- Matt Newman
- Bob Nunley
- Philip Pfaffenberger
- · Ken L. Smith VE team leader
- Allison Westcote

Introductions & Value Engineering Team

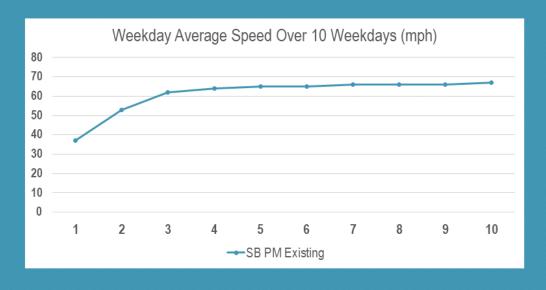
Project Purpose

The purpose of the proposed project is to decrease congestion and improve safety, operations, and roadway traffic capacity on the combined I-75/I-64 interstate route around Lexington. The project is needed to address the increased traffic along the project corridor in recent years as well as anticipated continued population growth in Fayette and surrounding counties.

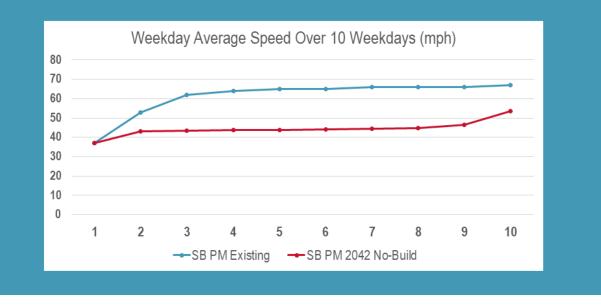
FX

From the North I-64/I-75 split to Newtown Pike I/C

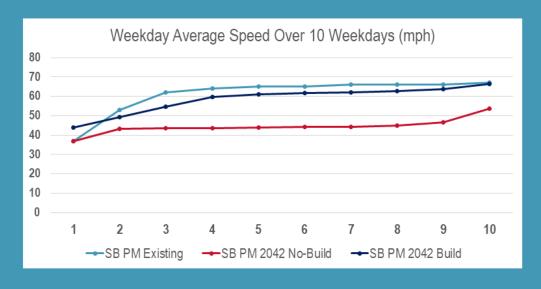
I-64/I-75 from Newtown Pike I/C to South I-64/ I-75



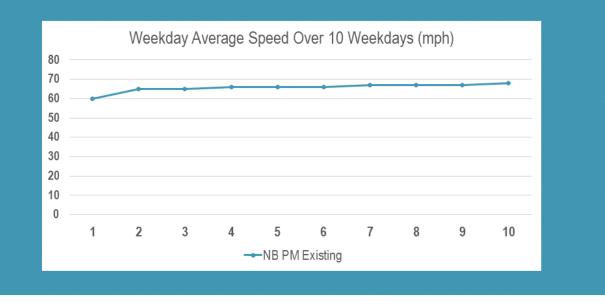
Traffic Operations & Safety Data / Tools


Crash Crash	Data Counts / Forecasts Origin-Destination Speeds (two sets) Crash	Traffic Operations Tools FREEVAL Vissim Synchro	Safety Tools ISATe (Highway Safety Manual) CRF (Critical Rate Factor)
-------------	---	---	--

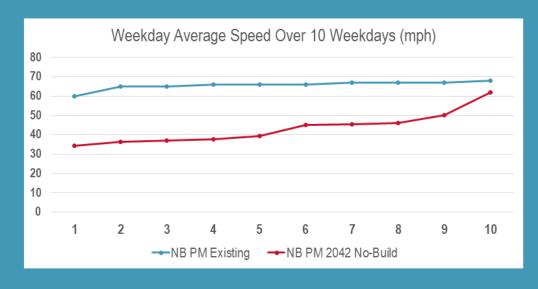
Traffic Operations & Safety SB PM Speeds



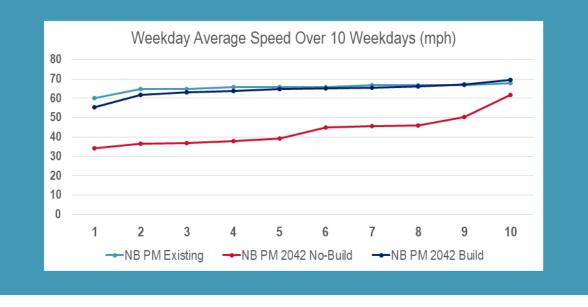
Traffic Operations & Safety SB PM Speeds



Traffic Operations & Safety SB PM Speeds



Traffic Operations & Safety NB PM Speeds

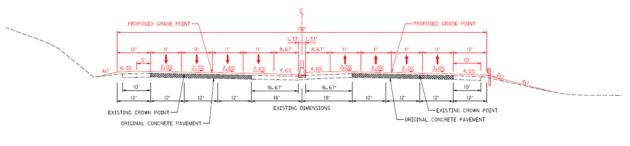


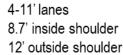
Traffic Operations & Safety NB PM Speeds

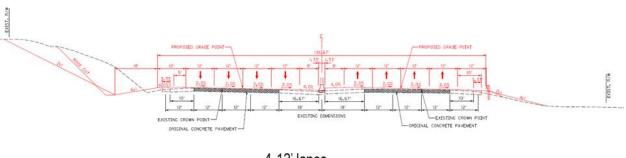
Traffic Operations & Safety NB PM Speeds

	Operat Speed P																	
Existing (2018)	Analysis Pendo #1 15 00 - 15 15 #2 15 15 15 15 30 #3 15 30 - 15 45 #4 15 45 16 00 #5 16 00 - 16 15 #6 16 15 - 16 30 #7 16 30 - 16 45 #8 16 45 - 17 00 #9 17 100 - 17 15 #10 17 15 - 17 30 #11 17 30 - 17 45 #12 17 45 - 18 00	Seg. 1 70.8 72.3 70.3 69.9 70.8 69.9 68.3 68.9 67.1 69.3 69.8 72.6	849.2 65.4 65.5 65.4 65.4 65.4 65.4 65.4 65.4	Seg 3 73 3 74 4 73 0 72 7 73 3 72 7 73 3 72 7 70 8 72 3 72 6 74 5	Seg. 4 67. 7 69.6 67.2 66.8 67.8 66.7 64.8 65.6 63.5 66.0 66.6 69.8	3eg 5 68.2 70.1 67.6 67.2 68.2 67.1 65.2 65.9 63.8 66.4 67.0 70.3	Seg 6 67 7 69 6 67 2 66 8 67 8 66 7 64 8 65 6 63 5 66 0 66 6 69 8	Seg. 7 67.3 69.2 66.7 66.3 67.4 66.2 64.3 65.0 62.9 65.4 66.1 69.4	Seq. 8 59.6 60.7 59.2 59.0 59.7 58.9 57.8 58.2 56.9 58.5 58.9 60.9	Seg. 9 64.4 66.1 63.9 63.6 64.5 63.5 62.0 62.6 60.9 62.9 63.4 66.3	Seg. 10 64.4 66.1 63.9 63.6 64.5 63.5 62.0 62.6 60.9 62.9 63.4 66.1	Sec 11 65.1 66.6 64.3 65.1 64.2 62.8 63.3 61.8 63.6 64.1 66.8	940, 12 61,0 62,0 60,7 60,5 61,1 60,5 58,8 59,7 57,4 60,1 60,4 62,1	Seg 13 62 0 64.1 61.4 61.0 62.1 60.9 58.8 59.7 57.4 60.1 60.7 64.4	Seg. 14 67.4 68.8 66.9 66.6 67.4 66.6 65.2 65.7 64.2 66.0 66.5 69.0	Seg 15 67 0 68.3 66.5 66.2 67 0 66.2 64.9 65.4 63.9 65.7 66.1 68.5	Seg 15 66.9 68.3 66.4 66.2 66.9 66.1 64.8 65.3 63.8 65.6 66.0 68.4	Seg. 17 66.9 68.3 66.4 66.2 66.9 66.1 64.8 65.3 63.8 65.6 66.0 68.4
2042 No-Build	Anapsis Peedo 11 15:00 - 15:15 #2 15:15 - 15:30 #3 15:30 - 15:45 #4 15:45 - 16:30 #5 16:00 - 18:15 #6 16:15 - 16:30 #7 16:30 - 16:45 #8 16:45 - 17:00 #9 17:00 - 17:15 #10 17:15 - 17:30 #11 17:30 - 17:45 #12 17:45 - 18:00	8eg 1 57 5 61 4 56 5 57 6 55 3 51 6 53 0 48 8 53 9 55 2 61 9	Seg. 2 65.0 65.2 65.0 65.0 65.0 65.0 65.0 65.0 65.0 65.0 65.0 65.0 64.9 64.9 65.0 65.0 65.0 65.0 65.0 65.0 65.0 65.0 65.0 65.2	8eg.3 64.0 66.7 63.2 62.5 64.1 57.2 55.9 56.4 53.3 61.6 60.3 67.1	Seg. 4 52.2 56.7 50.8 45.9 39.1 32.3 39.4 39.2 29.7 41.3 42.8 55.8	Seg 5 52.3 56.9 50.9 36.7 32.6 38.2 36.6 37.1 35.6 38.8 37.1 45.6	Seg. 6 52.2 56.7 56.1 29.4 27.7 39.6 29.5 37.3 33.3 32.3 28.4 30.1	Seg 7 49 6 47,1 31 5 30.8 32 1 33.8 30.1 32.2 30.9 31.8 31.9 32.5	Seg 8 48 5 36 5 36 5 36 5 36 1 37 7 34 4 39 1 37 2 36.6 37 1 40.0	Seg. 9 46.3 36.9 37.1 37.0 37.1 37.1 37.1 37.1 37.3 37.4 37.1 37.4 37.4 37.4	Seg 10 36.0 27.9 28.0 27.9 27.9 27.9 28.0 27.8 28.0 27.8 28.0 27.9 27.9 27.9 27.6	Seg 11 22.8 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4	Seg. 12 58.0 58.1 58.1 58.1 58.1 58.1 58.1 58.1 58.1	8eg. 13 58.0 58.1 58.1 58.1 58.1 58.1 58.1 58.1 58.1	Seg. 14 64.6 64.7 64.7 64.7 64.7 64.7 64.7 64.	Seg 15 64.3 64.4 64.4 64.4 64.4 64.4 64.4 64.4	849.18 62.9 63.4 62.8 62.8 63.0 62.7 62.4 62.5 62.1 62.6 62.7 62.6 62.7 63.5	Seg 17 62 9 63 4 62 8 63 8 62 8 63 0 62 7 62 4 62 2 5 62 1 62 6 62 7 63 5 5
2042 Build	Analysis Period #1 15:00 - 15:15 #2 15:15 - 15:30 #3 15:30 - 15:45 #4 15:45 - 16:00 #5 16:00 - 16:15 #6 16:15 - 16:30 #7 16:30 - 16:45 #8 16:45 - 17:00 #9 17:00 - 17:15 #10 17:15 - 17:30 #11 17:30 - 17:45	Seg 1 57 5 61.4 56.4 55.5 57.6 55.3 51.6 53.0 48.8 53.9 55.2 61.9	Seg 2 65 0 65 2 65 0 65 0 65 0 65 0 64 9 64 9 64 9 64 9 65 0 65 0 65 0 65 0 65 2	Seg 3 64 0 66 7 63 2 62 5 64 1 62 4 59 7 60 7 57 6 61.4 62 2 67.1	Seg 4 64.4 66.8 63.7 63.1 64.5 63.0 61.9 62.3 61.2 62.5 62.8 64.7	Seg 5 64 8 67 3 64 0 63 5 64 8 63 3 62 2 62 6 61 5 62 8 63 1 65 1	Seg 6 64 4 66.8 63 7 63 1 64 5 63 0 61 9 62 3 61 2 62 5 62 8 64 7	549.7 66.3 65.6 65.1 66.3 65.0 64.1 64.4 63.5 64.6 64.9 66.6	Sep 8 72 6 73 3 72 4 72 3 72 6 72 2 71 9 72 0 71 7 72 1 72 1 72 2 72 7	Seg. 9 67.0 68.4 66.6 66.3 67.0 66.2 65.6 65.8 65.2 65.9 66.1 67.2	Seg 10 67.0 68.4 66.6 66.3 67.0 66.2 65.6 65.8 65.8 65.2 65.9 66.1 67.2	Seg. 11 67.5 68.8 67.1 66.8 67.5 66.7 66.1 66.4 65.8 66.5 66.5 66.6 67.7	Seg 12 63.3 64.2 63.0 62.8 63.3 62.7 62.0 62.3 61.6 62.5 62.7 63.8	Seg 13 64 4 66 4 63 9 63 4 64 5 63 4 64 5 63 4 62 3 62 7 61 6 62 9 63 2 65 2	Seg 14 56 4 59 5 55 5 54 8 56 4 54 7 53 0 53 6 51 9 54 0 54 5 57 5	Seq. 15 56.3 59.3 55.4 54.8 56.4 54.7 53.0 53.6 51.9 54.0 54.4 57.4	Seg 16 56 0 59 0 55 0 54 4 56 0 54 2 52 3 53 0 51 0 53 4 54 0 57 5	Seg 17 56.0 59.0 55.0 54.4 56.0 54.2 52.3 53.0 51.0 53.4 53.4 54.0 57.5
	Opera Speed P				75 Ramp	AT B		wtow On-Ra		e		^p aris Dn-Ra						
	1					Sec 5 68.2 70.1 67.6 67.2 66.2 67.1 65.2 65.9 63.8 66.4 8 66.4 67.0 70.3				8 8 6 6 6 7 6 7 6 7 6 7 7 6 7 7 7 7 7 7 7 7				Sec. 13 62.0 64.1 61.4 61.4 60.9 58.7 59.7 57.4 60.7 64.4	500 14 67 4 66 9 66 6 67 4 66 6 65 2 65 7 64 2 66 0 66 5 65 5 69 0	Seg. 15 67.0 68.3 665 662 67.0 662 649 654 639 654 639 651 685	\$49,16 66.9 66.3 66.4 66.2 66.9 66.1 64.8 65.3 63.8 65.6 85.3 63.8 65.6 9 66.0 68.4	549, 17 66, 9 68, 3 66, 4 66, 2 66, 9 66, 1 64, 8 65, 3 64, 8 65, 6 66, 0 68, 4
SB PM S	Analysis Period #1 15 00 - 15 15 #1 15 00 - 15 15 #3 15 30 - 15 45 #4 15 45 - 16 40 #5 16 00 - 16 15 #6 16 15 - 16 30 #7 16 30 - 16 45 #8 16 45 - 17 00 #9 17 00 - 17 15 #10 17 15 - 17 30	Seg. 1 70.8 72.3 70.3 69.9 70.8 69.9 68.3 68.9 67.1 69.3	849.2 85.4 65.5 65.4 65.4 65.4 65.4 65.4 65.4 6	On-F 300 733 744 730 727 733 727 716 720 708 723	Seg. 4 67. 7 69. 6 67. 2 66. 8 67. 8 66. 7 64. 8 65. 6 63. 5 66. 0 66. 6	68.2 70.1 67.6 67.2 68.2 67.1 65.2 65.9 63.8 66.4 67.0	Seg 6 67.7 69.6 67.2 66.8 67.8 66.7 8 66.7 8 65.6 63.5 66.0 5 66.6	Seg. 7 67.3 69.2 66.7 66.3 67.4 66.3 67.4 66.3 65.0 62.9 65.0 62.9 65.1	Seg. 8 59.6 60.7 59.2 59.0 59.7 59.7 57.8 58.2 56.5 58.9	3eg.9 64.4 661 83.9 63.6 64.5 63.6 64.5 62.0 62.6 60.9 62.9 63.4	Sec. 10 64.4 66.1 63.6 63.6 64.5 63.5 62.0 62.0 62.6 62.0 62.6 60.9 62.9 63.4	Seg 11 65.1 66.6 64.6 64.3 65.1 64.2 62.8 63.3 61.8 63.6 64.4 1	5eg. 12 61.0 62.0 60.5 61.1 60.5 65.8 8 59.7 57.4 60.1 60.4	62.0 64.1 61.4 61.0 62.1 60.9 58.8 59.7 57.4 60.1 60.7	67.4 68.8 66.9 66.6 67.4 66.6 65.2 65.7 64.2 66.0 66.5	67.0 68.3 66.5 66.2 67.0 66.2 64.9 65.4 63.9 65.7 66.1	66.9 68.3 66.4 66.2 66.9 66.1 64.8 65.3 63.8 65.6 66.0	66.9 68.3 66.4 66.2 66.9 66.1 64.8 65.3 63.8 65.6 66.0

Traffic NB PM S			es		4 On	-Ram													
Existing (2018)	Anahasa Pennod #1 15:000 - 15:15 #2 15:15 - 15:30 #3 15:30 - 15:45 #4 15:45 - 16:00 #5 16:00 - 16:15 #6 16:15 - 16:30 #7 16:30 - 16:45 #8 16:45 - 17:00 #9 17:00 - 17:15 #10 17:15 - 17:30 #11 17:30 - 17:45 #12 17:45 - 18:00	Seg. 1 67, 4 67, 9 68, 0 67, 6 65, 0 64, 8 65, 6 66, 1 68, 6 68, 9 68, 3 67, 6	67 4 67 7 67 7 67 6 65 0 64 8 65 6 66 1 67 8 67 8 67 7 67 6	Seg 3 71.7 72.0 72.0 71.8 70.3 70.2 70.6 70.9 72.4 72.6 72.3 71.8 72.3 71.8	720 706 706 706 706 701 702 703 707 708 707 706	849.5 67.3 67.7 67.9 67.5 64.8 64.6 65.4 65.4 65.9 68.5 68.8 68.8 68.8 68.3 67.5	3eg 6 61 4 61 4 61 4 61 4 61 4 61 4 61 4 61	Sep.7 68.5 68.8 69.0 68.7 66.2 66.1 66.8 67.3 69.5 69.8 69.8 69.3 68.6	Seg. 8 67. 7 67. 8 67. 9 67. 8 67. 1 67. 1 67. 1 67. 3 67. 4 68. 0 68. 1 67. 9 67. 8	Sep. 9 68 6 69 0 69 2 68 8 66 4 66 3 66 9 67 5 69 7 70 0 69 5 68 8	66.7 66.7 66.8 66.7 66.5 66.6 66.6 66.6 66.8 66.8 66.8 66.8	849.11 70.8 71.1 71.2 71.0 69.2 69.1 89.6 70.0 71.6 71.8 71.8 71.5 70.9	66.1 67.0 66.9 66.2 66.1 66.3 66.5 67.1 67.2 67.1 66.9	66 2 66 3 66 3 65 8 65 8 65 8 65 9 66 0 66 4 66 5 66 4 66 5 66 4 66 3	8eg 14 68 3 68 6 68 8 68 4 66 1 66 0 66 6 67 1 69 3 69 6 69 9 69 9 68 4	65 3 65 7 65 8 65 5 63 0 62 9 63 5 64 1 66 3 66 7 66 2 65 4	74 0 74 1 74 2 74 1 73 2 73 1 73 4 73 6 74 4 74 5 74 4 74 1	Seg. 17 66 9 66 9 66 9 66 9 66 7 66 7 66 7 66	710 712 713 751 694 692 698 701 717 719 716 711
2042 No-Build	Autopia Period 41 15:00 - 15:15 42 15:15 - 15:30 43 15:30 - 15:45 44 15:45 - 16:00 45 16:00 - 16:15 46 16:15 - 16:30 47 16:30 - 16:45 48 16:45 - 17:00 49 17:00 - 17:15 40 17:15 - 17:30 41 17:30 - 17:45 41 217:45 - 18:00	9+9 1 49 8 50 9 51 4 50 3 45 3 45 3 45 3 51 5 53 5 52 1 50 2	849.2 49.8 50.9 51.4 50.3 45.3 45.3 45.3 45.3 45.3 51.5 53.5 52.1 50.2	Seg 3 60.9 61.6 59.6 49.9 48.5 48.7 48.7 50.6 50.5 50.5 50.0	Seg.4 34.2 104 19/9 12/9 12/9 12/9 12/9 12/9 12/9 12/9	549,5 54,6 54,7 54,7 54,7 54,7 54,7 54,7 54,7 54,7	Sep 8 61 1 61 1 61 1 61 1 61 1 61 1 61 1 61	549 7 57 4 57 5 57 5 57 5 57 5 57 5 57 5 57	Seg 8 63.7 63.9 63.8 63.8 63.3 63.3 63.3 63.5 63.6 64.0 64.1 64.0 63.8	Seg 9 56.7 57.0 56.9 56.2 56.2 56.3 56.5 57.1 57.2 57.1 57.2 57.1 56.9	Seg 10 63.5 63.7 63.6 63.1 63.1 63.3 63.4 63.8 63.9 63.8 63.6	549.11 62.2 62.4 62.3 61.8 61.8 61.9 62.0 62.4 62.5 62.4 62.3	549 12 61.2 62.3 62.4 62.2 61.1 61.4 61.6 62.6 62.7 62.5 62.2	Seg 13 63.4 63.6 63.7 63.6 62.2 62.2 62.2 62.5 62.8 63.8 63.8 63.8 63.7 63.6	Seg. 14 55.6 56.0 56.1 55.8 53.9 53.9 54.3 54.7 56.6 56.9 56.4 55.8	Seg 15 51.7 52.1 52.3 51.9 49.8 50.3 50.7 52.7 53.0 52.6 51.9	Sec. 16 68.8 69.1 68.9 68.1 68.3 68.5 69.2 69.4 69.2 69.0	549 17 65 6 65 6 65 6 65 3 65 3 65 4 65 4 65 4 65 4 65 7 65 8 65 7 65 8	Seg 16 612 617 61.7 61.7 59.5 59.6 60.0 60.3 62.1 62.4 62.0 61.5
2042 Build																			
Traffic NB PM S				I-6	4 On	-Ram	۱p		^D aris On-R	Pike amp		Ĵ	New Oi	town n-Rai			.75 Ramp		
			es	I-6 Seg 3 71,7 72,0 71,8 70,3 70,2 70,6 70,9 72,4 72,6 72,9 72,4 72,6 72,3 72,7 72,0 71,8 8		-Ram 673 677 679 675 648 646 659 6654 659 685 685 688 5 688 5 688 5 688 5 687 5	<u> </u>				5+0, 10 66 7 66 7 66 8 66 7 66 5 66 5 66 8 66 8 66 8 66 8 66 8 66 8	949 11 70.8 71 1 71 2 71 0 69 2 69 1 89 6 70 0 71 6 71 8 71 8 71 5 70 9	0	n-Rai	np		Ramp		5eg 18 71 9 71 2 71 3 71 4 71 4 71 4 99 2 99 8 70 1 71 7 71 9 71 9 71 4
NB PM S	Authors Period Authors Period #1 15:00 - 15:15 #2 15:15 - 15:30 #3 15:30 - 15:45 #4 15:45 - 16:00 #5 16:00 - 16:15 #6 16:15 - 16:30 #7 16:30 - 16:45 #8 16:45 - 17:00 #9 77:00 - 17:15 #10 17:15 - 17:30	ofile Seg.1 67.4 67.9 68.0 67.6 65.0 64.8 65.6 66.1 68.6 66.1 68.6 68.9 68.3	895 869.2 67.7 67.7 67.6 65.0 64.8 65.6 064.8 65.6 061.1 67.8 67.8 67.7		549.4 720 708 708 708 708 708 701 701 701 702 703 707 708	849.5 67.3 67.7 67.9 67.5 64.8 64.6 65.4 65.4 65.9 68.5 68.8 68.3	3eg.6 61.4 61.4 61.4 61.4 61.4 61.4 61.4 61	Seg.7 685 688 690 687 662 661 668 673 695 698 693	On-R 5eg 8 67 7 67 8 67 9 67 8 67 1 67 1 67 1 67 1 67 1 67 4 68 0 68 1 67 9	amp 589,9 68,6 69,0 69,2 68,8 66,4 66,3 66,9 67,5 69,7 70,0 69,5	667 667 668 667 665 665 665 666 668 668 668 668 668 668	849 11 70.8 71 1 71 2 71 0 69 2 69 1 69 6	OI 869,12 866,1 67,0 667,0 666,9 666,9 666,1 866,3 866,5 67,1 67,2 67,1	Seg 13 66 2 66 3 66 3 66 3 65 8 65 8 65 8 65 9 66 0 66 4 66 5 66 4	Seg. 14 68.3 68.6 68.8 68.4 66.1 66.0 66.0 66.0 66.0 66.0 67.1 69.3 69.6 69.1	Off- 653 657 658 655 630 629 635 641 663 667 662	Ramp	Seg. 17 66.9 66.9 66.9 66.7 66.7 66.7 66.7 66.	71.0 71.2 71.3 71.1 69.4 69.2

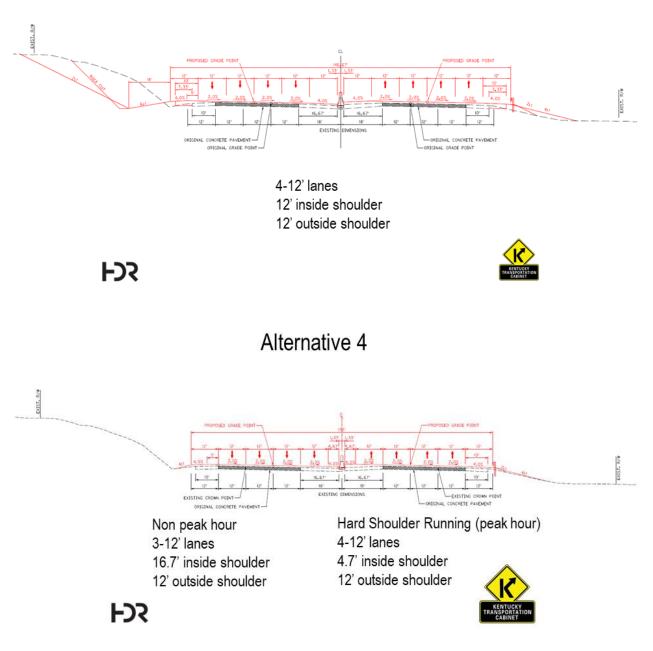

Traffic NB PM S			es			-Ran	<u> </u>		On-R	Pike lamp			0	n-Ra	10	Off	-75 Ram		
Existing (2018)	Anabyaa Peneod ##1 15:000 - 15:15 #2 15:15 - 15:30 #3 15:30 - 15:45 #4 15:45 - 16:00 #5 16:00 - 16:15 #6 16:15 - 16:30 #7 16:30 - 16:45 #8 16:45 - 17:00 #9 17:00 - 17:15 #10 17:15 - 17:30 #11 17:30 - 17:45 - 18:00	Seg 1 67.4 67.9 68.0 67.6 65.0 64.8 65.6 66.1 68.6 68.9 68.3 67.6	Seg 2 67 4 67 7 67 7 67 6 65 0 64 8 65 6 66 1 67 8 67 8 67 8 67 7 67 6	8eg.3 71.7 72.0 72.0 71.8 70.3 70.2 70.6 70.9 72.4 72.6 72.3 71.8	Seg 4 72 0 70 6 70 6 70 6 70 6 70 1 70 1 70 1 70 2 70 3 70 7 70 8 70 7 70 6	549.5 67.3 67.7 67.9 67.5 64.8 64.6 65.4 65.9 68.5 68.8 68.3 67.5	Sec 6 61.4 61.4 61.4 61.4 61.4 61.4 61.4 61.	Sec. 7 688 5 688 8 699 0 688 7 666 2 666 1 666 8 67 3 69 5 69 8 69 3 688 6	Seg 8 67 7 67 8 67 9 67 8 67 1 67 1 67 1 67 1 67 4 68 0 68 1 67 9 67 8	5eg.9 68.6 69.0 69.2 68.8 66.4 66.3 66.9 67.5 69.7 70.0 69.5 68.8	849 10 66 7 66 7 66 8 66 7 66 5 66 5 66 5 66 6 66 8 66 8 66 8 66 8	Seg 11 70.8 71.1 71.2 71.0 69.2 69.1 89.6 70.0 71.6 71.8 71.5 70.9	Seg 12 66 1 67 0 66 9 66 2 66 2 66 1 866 3 66 5 67 1 67 2 67 1 67 2 67 1 66 9	Sep 13 66.2 66.3 66.3 65.8 65.8 65.9 66.0 66.4 66.5 66.4 66.3	Seg 14 68 3 68 6 68 8 68 4 66 1 66 0 66 6 67 1 69 3 69 6 69 1 68 4	8e9.15 65.3 65.7 65.8 65.5 63.0 62.9 63.5 64.1 66.3 66.7 66.2 65.4	Seg. 16 74 0 74 1 74 2 74 1 73 2 73 1 73 4 73 6 74 4 74 5 74 4 74 1	Seg 17 66 9 66 9 66 9 66 7 66 7 66 8 67 0 67 0 66 9	Seg 19 71 0 71 2 71 3 71 1 69 4 69 2 69 8 70 1 71 7 71 9 71 6 71 1
2042 No-Build	Anatyse Penod #1 15:00 - 15:15 #2 15:15 - 15:30 #3 15:30 - 15:45 #4 15:45 - 16:30 #6 16:15 - 16:30 #6 16:15 - 16:30 #7 16:30 - 16:45 #8 16:45 - 17:00 #9 17:00 - 17:15 #10 17:15 - 17:30 #11 17:30 - 17:45 #12 17:45 - 18:00	Sec.1 0.95 0.94 0.93 0.94 1.01 1.00 0.98 0.92 0.91 0.92 0.95	S49.2 0.95 0.94 0.93 0.94 1.01 1.00 0.98 0.92 0.91 0.92 0.95	\$49.3 0.78 0.77 0.76 0.77 0.83 0.83 0.83 0.82 0.81 0.75 0.74 0.75 0.77	Seg. 4 0.69 0.68 0.69 0.74 0.74 0.73 0.72 0.67 0.66 0.67 0.69	9eg 5 189 0.99 0.98 1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 0	Sec 6 0.92 0.91 0.90 0.92 0.98 0.99 0.99 0.96 0.88 0.89 0.88 0.89 0.88 0.89 0.92	S+9,7 0.92 0.91 0.90 0.91 0.98 0.98 0.98 0.97 0.95 0.89 0.87 0.89 0.91	543.8 0.90 0.89 0.88 0.96 0.96 0.96 0.93 0.87 0.86 0.87 0.86 0.87 0.89	8+9 9 0.97 0.95 0.96 1.09 1.09 1.09 1.09 1.09 0.93 0.92 0.94 0.96	Seg. 10 0.90 0.89 0.88 0.96 0.96 0.95 0.93 0.87 0.86 0.87 0.86 0.87	Seg. 11 0.81 0.80 0.79 0.80 0.86 0.86 0.86 0.86 0.85 0.84 0.78 0.77 0.78 0.77	540 12 0.87 0.86 0.85 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93	Seg. 13 0.88 0.87 0.87 0.88 0.94 0.94 0.93 0.91 0.85 0.84 0.86 0.88	Sec. 14 0.96 0.95 0.94 0.95 1.03 1.03 1.03 1.03 1.03 0.99 0.93 0.91 0.93 0.95	0.99 0.98 0.97 0.99 1.05 1.05 1.05 0.96 0.94 0.96 0.99	Seg 15 0.67 0.65 0.66 0.71 0.71 0.71 0.70 0.69 0.64 0.63 0.65 0.66	5+9, 17 0.64 0.63 0.63 0.69 0.69 0.69 0.67 0.67 0.67 0.62 0.61 0.62 0.64	Seg. 18 0.80 0.79 0.80 0.86 0.86 0.86 0.86 0.84 0.83 0.77 0.76 0.78 0.80
2042 Build	Anatolia Period #1 15:00-15:15 #2 15:15-15:30 #3 15:30-15:45 #4 15:45-16:00 #5 16:00-16:15 #6 16:15:16:30 #7 16:30-16:45 #8 16:45:17:00 #9 17:00-17:15 #10 17:15:17:30 #11 17:30-17:45 #12 17:45-18:00	849.1 49.8 50.9 51.4 50.3 45.3 45.3 45.5 46.7 52.6 53.5 52.1 50.2	Seg. 2 49.8 50.9 51.4 50.3 45.3 45.5 46.7 52.6 53.5 52.1 50.2	8eg 3 60.9 61.6 61.2 58.1 58.1 58.2 59.0 62.7 63.3 62.4 61.2	8eg 4 75.2 75.4 75.3 74.5 74.5 74.6 74.8 75.6 75.7 75.5 75.3	Seg 8 66.1 66.6 66.8 66.3 63.8 63.8 63.8 63.7 64.0 64.6 67.4 67.8 67.2 66.3	Seg 8 64 2 64 3 64 2 64 3 64 2 64 0 63 9 64 0 64 0 64 3 64 4 64 3 64 2	Seg. 7 67.4 67.9 68.1 67.6 65.4 65.6 65.6 66.2 68.6 69.0 68.4 67.6	Seg 8 68 9 69 0 69 0 68 9 68 4 68 4 68 5 68 6 69 2 69 2 69 2 69 1 68 9	3eg.9 67.6 68.1 68.3 67.8 65.5 65.4 65.8 66.3 68.8 69.2 68.6 67.8	Seg 10 67 6 67 6 67 7 67 6 67 2 67 2 67 3 67 3 67 3 67 8 67 8 67 8 67 6	Seg 11 70 1 70 5 70 6 70 3 68 6 68 6 68 8 69 2 71 0 71 2 70 8 70 3	849 12 66.8 67.5 67.6 67.5 66.6 66.6 66.8 67.0 67.8 67.9 67.7 67.5	8e9 13 67 5 67 6 67 6 67 7 67 1 67 1 67 1 67 2 67 3 67 7 67 8 67 7 67 8	8ep 14 67 3 67 7 67 9 67 5 65 2 65 1 65 5 66 0 68 4 68 8 68 2 67 5	Seg 15 64.2 64.7 64.9 64.5 62.0 61.9 62.4 62.9 65.4 65.8 65.3 64.5	8eg 16 67 4 67 9 68 1 67 6 65 3 65 3 65 3 65 6 66 2 68 5 68 9 68 4 67 7	\$e9.17 65.3 65.4 65.4 65.3 64.6 64.7 64.8 64.9 65.5 65.7 65.5 85.3	Seg. 18 59.2 60.1 60.3 59.6 55.5 55.6 56.2 57.1 61.1 61.8 60.8 59.6
		50.2																	
Traffic NB PM S	Operat		s 8		afe	ety											LEGEND • A Density H - L · L · A SOURCE Ka		ġ.
NB PM S	Operat speeds	ion:			afe		SENTONN PINE		AE ND	A BARNESS CONTRACTOR		The second se			and a contract of the second se	Ball Ball	LEGEND • A Density H - L · L · A SOURCE Ka	II Crashes igher ower ministration Transport	ġ.



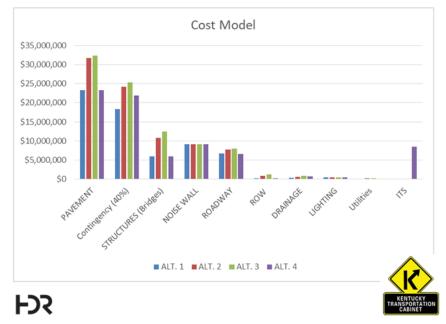

Alternative 1

FX

Alternative 2


4-12' lanes8' inside shoulder12' outside shoulder

FJS



Alternative 3

Costs

Performance Based VE

Value Engineering is not just about reducing project costs, but can also improve project performance

- · Mainline Operations
- Local Operations
- Maintainability
- Construction Impacts
- Environmental Impacts
- Reduce Risk

FX

Performance Attributes

Performance Attribute	Description
Main Line Operations	An assessment of traffic operations and safety on the main line within the project limits. Operational considerations include level of service relative to the 20- year traffic projections, as well as geometric considerations such as design speed, sight distance, and lane and shoulder widths.
Local Operations	An assessment of traffic operations and safety on the local roadway infrastructure. Local Operations include frontage roads as well as cross roads. Operational considerations include level of service relative to the 20- year traffic projections; geometric considerations such as design speed, sight distance, lane and shoulder widths; bicycle and pedestrian operations and access.
Maintainability	An assessment of the long-term maintainability of the facilities and equipment. Maintenance considerations include the overall durability, longevity, and maintainability of structures and systems; ease of maintenance; accessibility and safety considerations for maintenance personnel.
Construction Impacts	An assessment of the temporary impacts to the public during construction related to traffic disruptions, detours and delays; impacts to existing utilities; impacts to businesses and residents relative to access, visual effects, noise, vibration, dust, and construction traffic; environmental impacts.
Environmental Impacts	An assessment of the permanent impacts to the environment including ecological (i.e., flora, fauna, air quality, water quality, visual, noise); socioeconomic impacts; impacts to shore edge; impacts to cultural, recreational and historic resources.
Reduce Risk	An assessment of reducing project risks concept through construction

FSS

		Perfo	rmance A	ttributes	Criteria I	Matrix			
								Total points	% of Total
Main Line Operations	Α	Α	Α	A	A	A		6.0	29 %
Local Operations		в	с	в	в	в	Ī	4	19%
Maintainabi	lity		с	с	с	с	Ī	5.0	24%
Constructi	on Impac	ts		D	D	D	Ī	3.0	14%
Enviro	nmental li	mpacts			E	E	Ī	2.0	10%
	Reduc	æ Risk				F		1.0	5%
							Total	21.0	100%

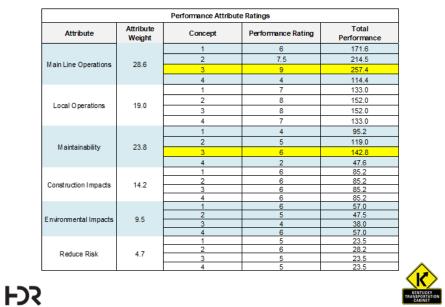
FC

PERFORMANCE CRITERIA RATING

Following are definitions and stips scales for the standardized performance criteria. Use the following scoring when there isn't a "baseline" to compare ideas too.

Criteria	Definition	Rating Scale	Unit of Measure/Quantification	
Mainline Operations	An assessment of traffic operations and safety	10	Free flow - excellent operation	
,	on the mainline facility(s), including off-	9	Full Design standards	
	ramps, and collector- distributor roads.	8	Stable flow - very good operation	
	Operational	7	Minor design exceptions	Performance
	considerations include level of service relative	6	Stable flow - good operation	Performance
	to the 20 year traffic projections as well as	5	Approaching unstable flow - fair operation	Rating scales
	geometric considerations such as	4	Design exceptions (geometry, sight distance)	defined for each
	design speed, sight distance, lane widths	3	Unstable flow - poor operation	defined for each
	and shoulder widths.	2	Major Design exceptions (weaving and merging)	Attribute
		1	Traffic congestion	
.ocal Operations	An assessment of traffic	10	Free flow - excellent operation	
perations	operations and safety on the local roadway	9	Full Design standards	
	infrastructure, including on-ramps and frontage roads. Operational	8	Stable flow - very good operation	
	considerations include	7	Minor design exceptions	
	level of service relative to the 20 year traffic	6	Stable flow - good operation	
	projections; geometric considerations such as	5	Approaching unstable flow - fair operation	
	design speed, sight distance, lane widths;	4	Design exceptions (geometry, sight distance)	
	bicycle and pedestrian operations and access.	3	Unstable flow - poor operation	
		2	Major Design exceptions (weaving and merging)	
		1	Traffic congestion	(

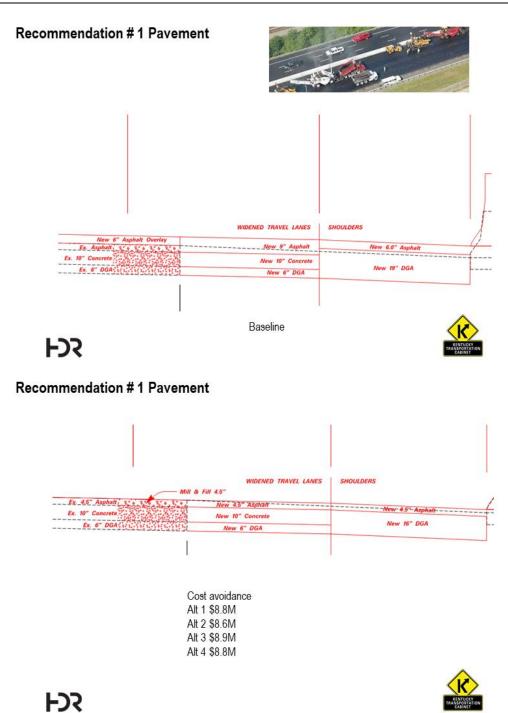
FX


Evaluate and Scoring Baseline **Alternatives**

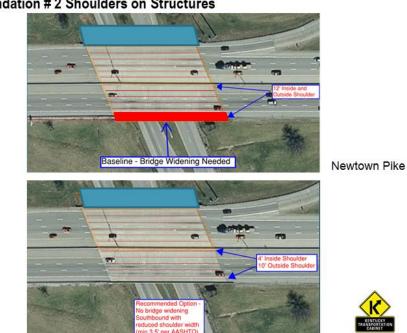
Alternative 1		
PERFORMANCE MEA SURES Attributes and Rating Rationale	Performance	Score
Mainline Operations	Rating	6
 Design exceptions – lane 11 ft Design exception – inside shoulder 8.7 ft Full outside shoulder 	Weight	28.6
Exceeds LOS C in design year	Contribution	171.6
Local Operations	Rating	7
 Russell Cave and Bryan Station – raising structures therefore no adjustments to lane or shoulder widths 	Weight	19.0
	Contribution	133.0
Maintainability	Rating	4
 Similar maintenance to existing facility Maintenance has expressed concerns for inside shoulder maintenance act vities – would require lane closures 	Weight	23.8
 Raising structures built in late 60s may have additional maintenance 	Contribution	95.2
Construction Impacts	Rating	6
 Maintain 2-3 lanes in each direction throughout construction with interim night dosures 	Weight	14.2
	Contribution	85.2
Environmental Impacts	Rating	6
Assumes noise walls where required Stays mostly within existing right of way	Weight	9.5
 Stays mosey within external right of way 	Contribution	57.0
Reduce Risk	Rating	5
 Risk of additional cost to repair existing structures Stays within existing roadway prism, minimizing risk to environmental, right of way and utilifies 	Weight	4.7
 Will require design exceptions for lane and shoulder widths Raising structures Does not address lane balance at northern split 	Contribution	23.5
Tota	Performance:	566

FX

Summary of Performance


Recommendation Summary

	Alt 1	Alt 2	Alt 3	Alt 4
Pavement	✓	~	✓	✓
Bridge Shoulders		~	✓	
Inside Shoulders			✓	
Reduce ROW Impacts	✓	~	✓	✓
Ramp Merge	✓	~	✓	✓
Narrow Shoulders at Existing Bridge Piers		\checkmark	\checkmark	

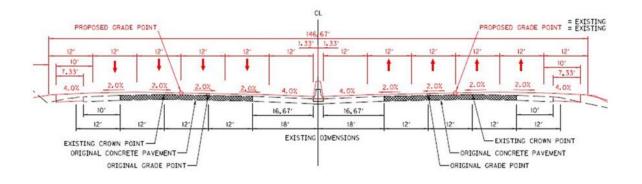


FSS

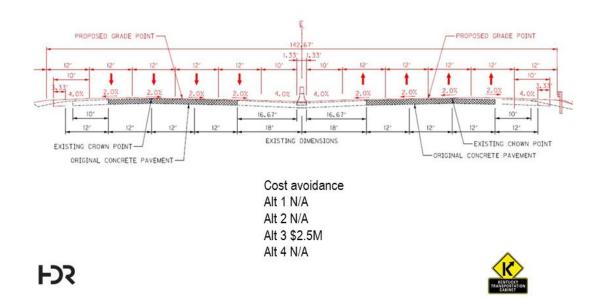
Recommendation # 2 Shoulders on Structures

Recommendation # 2 Shoulders on Structures

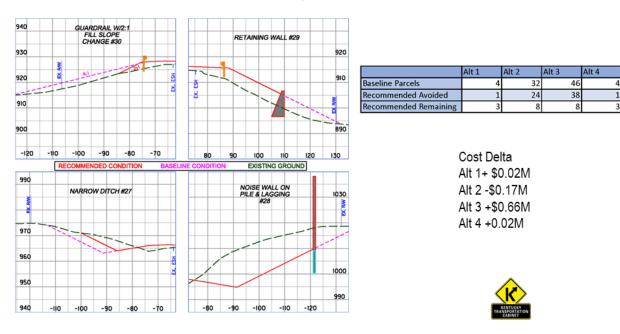
Paris Pike


Cost avoidance Alt 1 N/A Alt 2 \$1.9M Alt 3 \$3.3M Alt 4 N/A

FJS



Recommendation #3 Inside Shoulders


FJS

Recommendation #3 Inside Shoulders

Recommendation #4 Reduce ROW Impacts

Recommendation # 5 Ramp Merge Paris Pike

Added Costs Alt 1 \$2.30M Alt 2 \$2.22M Alt 3 \$2.25M Alt 4 \$2.30M

FJS

Recommendation #6 Narrow Shoulders at Existing Bridge Piers

Design Validation - Bridge Raising

FJS

Performance / Value Pre- VE

	Alternative Summary											
	Alternatives	Performance (P)	Cost (C) \$ millions	Cost Change \$ millions	Value Index							
1	Alternative 1	547	\$64.5	\$64.46	8.48							
2	Alternative 2	646	\$85.8	\$85.84	7.53							
3	Alternative 3	699	\$90.2	\$90.21	7.75							
4	Alternative 4	442	\$78.1	\$78.13	5.65							

FC

Value = $\frac{\text{Performance}}{2}$

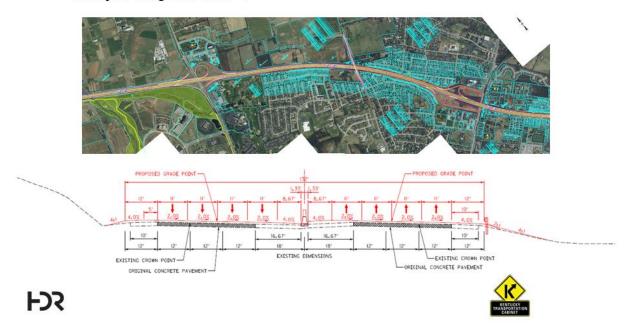
		Vall	Cost						
		AI	ternative Su	mmary					
	Alternatives	Performance (P)	% Change Performance	Cost (C) \$ millions	Cost Change \$ millions	% Change Cost	Value Index	% Value Improvement	
1	Alternative 1	547		\$64.5	\$64.46		8.48		
2	Alternative 2	646		\$85.8	\$85.84		7.53		
3	Alternative 3	699		\$90.2	\$90.21		7.75		
4	Alternative 4	442		\$78.1	\$78.13		5.65		
5	VE Alternative 1	561	+2.6%	\$58.0	(\$6.48)	-10.1%	9.67	+14.1%	
6	VE Alternative 2	642	-0.7%	\$72.1	(\$13.75)	-16.0%	8.91	+18.3%	
7	VE Alternative 3	702	+0.4%	\$73.1	(\$17.09)	-18.9%	9.60	+23.9%	
8	VE Alternative 4	456	+3.2%	\$71.7	(\$6.48)	-8.3%	6.36	+12.6%	

FC

Northern split 3 lane widening (I-75N/I-75S)

Flyover southern split

Future Design Considerations


- · Only pave widened areas that have not recently been rehabbed
- · Advanced signing / road markings for lane choice
- · Legacy trail structure revisions to prevent 4-F impacts
- Ramp metering at interchanges
- · Break and seat existing concrete with overlay
- · Widening without concrete base

FSS

What you can get for \$30M +/-

Questions ?

This page is intentionally left blank.

Value Engineering (VE) is a systematic process using a multidisciplinary team to improve the value of a project through the analysis of its functions. The VE process incorporates, to the extent possible, the values of design; construction; maintenance; contractor; state, local and federal approval agencies; other stakeholders; and the public.

The primary objective of a VE workshop is value improvement. The value improvements might relate to scope definition, functional design, constructability, coordination (both internal and external), or the schedule for project development. Other possible value improvements are reduced environmental impacts, reduced public inconvenience, or reduced project cost.

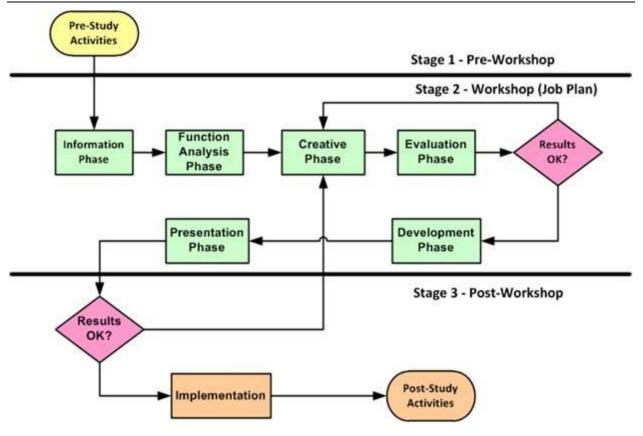
Value Methodology Job Plan

The Value Methodology Job Plan was employed in analyzing the project. This process is recommended by SAVE International[®] and is composed of the following phases:

Information - The objective of this phase was to obtain a thorough understanding of the project's design criteria and objectives by reviewing the project's documents and drawings, cost estimates, and schedules.

Function Analysis - The purpose of this phase was to identify and define the primary and secondary functions of the project. A Function Analysis System Technique (FAST) was used to quickly define the functions of the project.

Creative - During this phase the team employed creative techniques such as team brainstorming to develop a number of alternative concepts that satisfy the project's primary functions.


Evaluation - The purpose of this phase was to evaluate the alternative concepts developed by the VE team during the brainstorming sessions. The team used a number of tools to determine the qualitative and quantitative merits of each concept.

Development - Those concepts that ranked highest in the evaluation were further developed into VE recommendations. Narratives, drawings, calculations, and cost estimates were prepared for each recommendation.

Presentation - The VE team presented their finding in the form of a written report. In addition, an oral presentation was made to the owner and the design team to discuss the VE recommendations.

Implementation/Resolution - Evaluate, resolve, document and implement all approved recommendations.

Methodology Job Plan

Reporting

Following the VE workshop, the Team Leader assembles all workshop documentation into the draft/final reports:

 Publish Results – Prepare a draft and a final VE workshop Report; distribute printed and electronic copies as needed.

The VE workshop is complete when the report is issued as a record of the VE team's analysis and development work, as well as the Project Team's implementation dispositions for the recommendations.

7-8909 164/175 Split						
Value Planning Meeting						
Alternative 1						
ITEM DESCRIPTION	UNIT	QNT		UNIT PRICE		TOTAL
ROADWAY						
EARTHWORK	CU YD	109,955	\$	12.00	\$	1,319,460
CONCRETE MEDIAN BARRIER 50" WALL	LF	32,575	\$	145.00	\$	4,723,375
GUARDRAIL SIGNING	LF SF	25,268 9,319	\$ \$	16.00 25.00	\$ \$	404,288
	JF	9,519	Ş	23.00	Ş	232,573
NOISE WALL	SF	305,500	\$	30.00	\$	9,165,000
PAVEMENT						
SURFACE	TONS	31,832	\$	100.00	\$	3,183,200
BASE	TONS	130,740	\$	85.00	\$	11,112,900
JPC PAVEMENT	SQYD	63,509	\$	95.00	\$	6,033,355
CRUSHED STONE BASE/DGA	TONS	108,776	\$	27.00	\$	2,936,952
DRAINAGE						
MEDIAN BARRIER BOX INLETS	EACH	4	\$	5,000.00	\$	20,000
MODIFY MEDIAN BARRIER BOX INLETS	EACH	50	\$	3,800.00	\$	190,000
PIPE CULVERTS						
15"	LF	0	\$	90.00	\$	-
18"	LF	50	\$	105.00	\$	5,250
24"	LF	0	\$	108.00	\$	-
30"	LF	0	\$	115.00	\$	-
36"	LF	0	\$	120.00	\$	-
42"	LF	0	\$	125.00	\$	-
48"	LF	20	\$	150.00	\$	3,000
54"	LF	0	\$	200.00	\$	-
60" 72"	LF	0	\$ \$	250.00	\$ \$	-
BOX CULVERTS	LF	0		300.00	Ş	-
Sta. 62+00 8'x4' RCBC	LF	0	\$	1,625.00	\$	-
Sta. 87+90 14'x14' RCBC (LEGACY TRAIL)	LF	0	\$	6,000.00	\$	-
Sta. 89+64 14'x3' RCBC	LF	0	\$	3,100.00	\$	-
Sta. 109+99 16'x5' RCBC	LF	0	\$	3,700.00	\$	-
Sta. 135+65 4'x4' RCBC	LF	16	\$	1,000.00	\$	16,000
Sta. 153+65 8'x4' RCBC	LF	45	\$	1,625.00	\$	73,125
Sta. 228+04 8'x4' RCBC	LF	0	\$	1,625.00	\$	-
Sta. 246+43 4'x4' RCBC	LF	0	\$	1,000.00	\$	-
Sta. 261+08 5'x5' RCBC	LF	0	\$	1,250.00	\$	-
Sta. 278+50 8'x5' RCBC	LF	0	\$	1,875.00	\$	-
Sta. 354+20 6'x3' RCBC	LF	0	\$	1,125.00	\$	-
STRUCTURES						
CANE RUN CREEK	LS	1	\$	396,100.00	\$	396,100
NEWTOWN PIKE	LS	1	\$	1,949,550.00	\$	1,949,550
RUSSELL CAVE RD	LS	1	\$	1,036,536.00	\$	1,036,536
I-75 OVER PARIS PIKE	LS	1	\$	1,579,050.00	\$	1,579,050
BRYAN STATION RD	LS	1	\$	1,036,536.00	\$	1,036,536
LIGHTING						
LUMINAIRE POLE	EACH	125	\$	3,500.00	\$	437,500
HIGH MAST POLE	EACH	0	\$	30,000.00	\$	-
Subtotal					\$	45,854,152
Contingency	40%				\$	18,341,661
Total					\$	64,195,813

7-8909 164/175 Split						
Value Planning Meeting						
Alternative 2						
ITEM DESCRIPTION	UNIT	QNT		UNIT PRICE		TOTAL
ROADWAY EARTHWORK		108.240	~	12.00	ć	2 270 000
CONCRETE MEDIAN BARRIER 50" WALL	CU YD LF	198,240 32,661	\$	12.00	\$ \$	2,378,880
GUARDRAIL	LF	25,435	\$	145.00	\$	4,735,845
SIGNING	SF	10,587	\$	25.00	\$	264,675
NOISE WALL	SF	305,500	\$	30.00	\$	9,165,000
PAVEMENT						
SURFACE	TONS	35,467	\$	100.00	\$	3,546,700
BASE	TONS	147,535	\$	85.00	\$	12,540,475
JPC PAVEMENT	SQYD	95,717	\$	95.00	\$	9,093,115
CRUSHED STONE BASE/DGA	TONS	240,003	\$	27.00	\$	6,480,081
DRAINAGE			_			
DRAINAGE MEDIAN BARRIER BOX INLETS	EACH	7	\$	5,000.00	\$	35,000
MODIFY MEDIAN BARRIER BOX INLETS	EACH	50	\$	3,800.00	ş S	190,000
PIPE CULVERTS	EACH	50	Ş	5,800.00	Ş	190,000
15"	LF	95	\$	90.00	\$	8,550
18"	LF	279	\$	105.00	\$	29,295
24"	LF	0	\$	108.00	\$	-
30"	LF	40	\$	115.00	\$	4,600
36"	LF	0	\$	120.00	\$	-
42"	LF	0	\$	125.00	\$	-
48"	LF	40	\$	150.00	\$	6,000
54"	LF	0	\$	200.00	\$	-
60"	LF	0	\$	250.00	\$	-
72"	LF	0	\$	300.00	\$	-
BOX CULVERTS			_			
Sta. 62+00 8'x4' RCBC	LF	8	\$	1,625.00	\$	13,000
Sta. 87+90 14'x14' RCBC (LEGACY TRAIL)	LF	15	\$	6,000.00	\$	90,000
Sta. 89+64 14'x3' RCBC	LF	19	\$	3,100.00	\$	58,900
Sta. 109+99 16'x5' RCBC	LF	17	\$	3,700.00	\$	62,900
Sta. 135+65 4'x4' RCBC	LF	33	\$	1,000.00	\$	33,000
Sta. 153+65 8'x4' RCBC	LF	49	\$	1,625.00		79,625
Sta. 228+04 8'x4' RCBC 4'x4' RCBC Sta. 246+43 Ext.		0	\$ \$	1,625.00	\$ \$	-
5'x5' RCBC Sta. 261+08 Ext.	LF	0	\$	1,000.00		-
8'x5' RCBC Sta. 278+50 Ext.	LF	0	\$	1,230.00		
6'x3' RCBC Sta. 354+20 Ext.	LF	0	\$	1,125.00	\$	-
STRUCTURES			-			
CANE RUN CREEK	LS	1	\$	709,600.00	\$	709,600
NEWTOWN PIKE	LS	1		2,486,300.00	\$ ¢	2,486,300
RUSSELL CAVE RD	LS	1	\$	2,675,780.00	\$ \$	2,675,780
I-75 OVER PARIS PIKE BRYAN STATION RD	SF	1		2,612,582.00 2,381,136.00	\$ \$	2,381,136
			, 	2,551,150.00	\$	-
LIGHTING						
LUMINAIRE POLE	EACH	134	\$	3,500.00	\$	469,000
HIGH MAST POLE	EACH	0	\$	30,000.00	\$	-
Subtotal					\$	60,556,999
Contingency	40%				\$	24,222,800
Total					\$	84,779,799

7-8909 164/175 Split						
Value Planning Meeting						
Alternative 3						
ITEM DESCRIPTION	UNIT	QNT		UNIT PRICE		TOTAL
ROADWAY EARTHWORK	CU YD	217,703	\$	12.00	\$	2,612,436
CONCRETE MEDIAN BARRIER 50" WALL	LF	32,608	\$	145.00	\$	4,728,160
GUARDRAIL	LF	25,965	\$	16.00	\$	415,440
SIGNING	SF	10,587	\$	25.00	\$	264,675
NOISE WALL	SF	305,500	\$	30.00	\$	9,165,000
PAVEMENT			-			
SURFACE	TONS	36,810	\$	100.00	\$	3,681,000
BASE	TONS	151,861	\$	85.00	\$	12,908,185
JPC PAVEMENT	SQYD	90,896	\$	95.00	\$	8,635,120
CRUSHED STONE BASE/DGA	TONS	266,043	\$	27.00	\$	7,183,161
DRAINAGE						
MEDIAN BARRIER BOX INLETS	EACH	0	\$	5,000.00	\$	
MODIFY MEDIAN BARRIER BOX INLETS	EACH	50	\$	3,800.00	\$	190,000
PIPE CULVERTS	Entern	50		3,000.00	Ť	130,000
15"	LF	126	\$	90.00	\$	11,340
18"	LF	354	\$	105.00	\$	37,170
24"	LF	34	\$	108.00	\$	3,672
30"	LF	40	\$	115.00	\$	4,600
36"	LF	0	\$	120.00	\$	-
42"	LF	0	\$	125.00	\$	-
48"	LF	50	\$	150.00	\$	7,500
54"	LF	0	\$	200.00	\$	-
60"	LF	0	\$	250.00	\$	-
72" BOX CULVERTS	LF	0	\$	300.00	\$	-
	15	0	\$	1 (25 00	\$	12.000
Sta. 62+00 8'x4' RCBC Sta. 87+90 14'x14' RCBC (LEGACY TRAIL)	LF	8 23	\$	1,625.00 6,000.00	\$ \$	13,000 138,000
Sta. 89+64 14'x3' RCBC	LF	23	\$	3,100.00	\$	83,700
Sta. 109+99 16'x5' RCBC	LF	27	\$	3,700.00	\$	81,400
Sta. 135+65 4'x4' RCBC	LF	41	Ś	1.000.00	Ś	41,000
Sta. 153+65 8'x4' RCBC	LF	51	\$	1,625.00	'	82,875
Sta. 228+04 8'x4' RCBC	LF	11	\$	1,625.00		17,875
4'x4' RCBC Sta. 246+43 Ext.	LF	14	\$	1,000.00		14,000
5'x5' RCBC Sta. 261+08 Ext.	LF	0	\$	1,250.00	\$	-
8'x5' RCBC Sta. 278+50 Ext.	LF	40	\$	1,875.00		75,000
6'x3' RCBC Sta. 354+20 Ext.	LF	0	\$	1,125.00	\$	-
STRUCTURES			-			
CANE RUN CREEK	LS	1	\$	944,600.00	\$	944,600
NEWTOWN PIKE	LS	1	\$	2,946,300.00		2,946,300
RUSSELL CAVE RD	SF	1	\$	2,769,997.00		2,769,997
I-75 OVER PARIS PIKE	LS	1	\$	3,385,490.00		3,385,490
BRYAN STATION RD	SF	1	\$	2,466,788.00	\$	2,466,788
LIGHTING			+		\$	-
LUMINAIRE POLE	EACH	134	\$	3,500.00	\$	469,000
HIGH MAST POLE	EACH	0	\$	30,000.00	\$	-
Subtotal	400/				\$	63,376,484
Contingency	40%				\$	25,350,594
Total					\$	88,727,078

Value Planning Meeting Alternative 4						
ITEM DESCRIPTION	UNIT	QNT		UNIT PRICE		TOTAL
ROADWAY						
EARTHWORK	CU YD	102,880	\$	12.00	\$	1,234,560.00
CONCRETE MEDIAN BARRIER 50" WALL	LF	32,575	\$	145.00	\$	4,723,375.00
GUARDRAIL	LF	25,268	\$	16.00	\$	404,288.00
SIGNING	SF	7,777	\$	25.00	\$	194,425.00
NOISE WALL	SF	305,500	\$	30.00	\$	9,165,000.00
PAVEMENT						
SURFACE	TONS	31,832	\$	100.00	\$	3,183,200.00
BASE	TONS	132,587	\$	85.00	\$	11,269,895.00
IPC PAVEMENT	SQYD	74,705	\$	95.00	\$	7,096,975.00
CRUSHED STONE BASE/DGA	TONS	99,989	\$	27.00	\$	2,699,703.00
DRAINAGE						
MEDIAN BARRIER BOX INLETS	EACH	93	\$	5,000.00	\$	465,000.00
MODIFY MEDIAN BARRIER BOX INLETS	EACH	50	Ś	3,800.00	\$	190,000.00
PIPE CULVERTS				-)	Ŧ	
15"	LF		\$	90.00	\$	-
18"	LF	50	\$	105.00	\$	5,250.00
24"	LF		\$	108.00	\$	-
30"	LF		\$	115.00	\$	-
36"	LF		\$	120.00	\$	-
42"	LF		\$	125.00	\$	-
48"	LF	20	\$	150.00	\$	3,000.00
54"	LF		\$	200.00	\$	-
60"	LF		\$	250.00	\$	-
72"	LF		\$	300.00	\$	-
BOX CULVERTS						
Sta. 62+00 8'x4' RCBC	LF		\$	1,625.00	\$	-
Sta. 87+90 14'x14' RCBC (LEGACY TRAIL)	LF		\$	6,000.00	\$	-
Sta. 89+64 14'x3' RCBC Sta. 109+99 16'x5' RCBC	LF		\$ \$	3,100.00	\$	-
Sta. 135+65 4'x4' RCBC	LF	16	\$	3,700.00	\$ \$	- 16,000.00
Sta. 153+65 8'x4' RCBC	LF	45	\$	1,625.00		73,125.00
Sta. 228+04 8'x4' RCBC	LF	45	\$	1,625.00		/ 3,125.00
4'x4' RCBC Approx. Sta. 246+43	LF		\$	1,000.00		
5'x5' RCBC Approx. Sta. 261+08	LF		\$	1,250.00		-
8'x5' RCBC Approx. Sta. 278+50	LF		\$	1,875.00		-
6'x3' RCBC Approx. Sta. 354+20	LF		\$	1,125.00	\$	-
STRUCTURES						
CANE RUN CREEK	LS	1	\$	396,100.00	\$	396,100.00
NEWTOWN PIKE	LS	1	· ·	1,949,550.00		1,949,550.00
RUSSELL CAVE RD	LS	1	\$	1,036,536.00	\$	1,036,536.00
-75 OVER PARIS PIKE	LS	1		1,579,050.00	\$	1,579,050
BRYAN STATION RD	SF	1	\$	1,036,536.00	\$	1,036,536.00
LIGHTING						
	EACH	125	\$	3,500.00	\$	437,500.00
T	LS	125		8,460,000.00	\$	8,460,000.00
HIGH MAST POLE	EACH	0	\$	30,000.00	\$	-
Subtotal					\$	55,619,068.00
Contingency	40%				\$	22,247,627.20