VALUE ENGINEERING SUMMARY OF
 US 119/ZEBULON TO BENT MT. WPI NO. 12-308.1 \& 308.2
 PIKE COUNTY, KENTUCKY

JANUARY 6-14, 1997

Prepared by:
Ventry Engineering
In Association With:

Kentucky Transportation Cabinet, Department of Highways

TABLE OF CONTENTS
ITEM NO. DESCRIPTION PAGE NO.
I. LOCATION OF PROJECT 1
II. TEAM MEMBERS AND PROJECT DESCRIPTION 4
III. INVESTIGATION PHASE 10
IV. SPECULATION PHASE 15
V. EVALUATION PHASE 18
A. ALTERNATIVES 19
B. ADVANTAGES AND DISADVANTAGES 22
VI. DEVELOPMENT PHASE 28
A. EXCAVATION 29
(1) AS PROPOSED 30
(2) V.E. ALTERNATIVES 36
B. STRUCTURES 48
(1) AS PROPOSED 49
(2) V.E. ALTERNATIVES 52
C. US 119 AT BURNING FORK APPROACH 58
(1) AS PROPOSED 59
(2) V.E. ALTERNATIVES 66
D. RACCOON CREEK APPROACH 71
(1) AS PROPOSED 72
(2) V.E. ALTERNATIVES 76
E. WINN BRANCH APPROACH 87
(1) AS PROPOSED 88
(2) V.E. ALTERNATIVES 91
VII. SUMMARY OF RECOMMENDATIONS 96
VIII. APPENDICES 100

I. LOCATION OF PROJECT

II. TEAM MEMBERS AND PROJECT DESCRIPTION

TEAM MEMBERS

NAME	AFFILIATION	EXPERTISE	PHONE
Jack Trickey, P.E. C.V.S.	Ventry Engineering	Team Leader	$904 / 627-3900$
Don Keenan, P.E.	Ventry Engineering	Structural Team Member	$904 / 627-3900$
Ron Whichel, P.E.	Ventry Engineering	Cost Estimating Team Member	$904 / 627-3900$
Dallas Gray	Ventry Engineering	Right of Way Team Member	$904 / 627-3900$
Ken Sperry, P.E.	KY Transportation Cabinet	Highway Design	$502 / 564-3280$
Steve Halloran, P.E.	KY Transportation Cabinct	Construction	$502 / 564-4780$
Daryl Greer, P.E.	KY Transportation Cabinet	Value Engineering	$502 / 564-3280$
Jeff Jasper, E.I.T.	KY Transportation Cabinet	Highway Design	$502 / 564-3280$

PROJECT DESCRIPTION

The project provides for the relocation of 14.3 kilometers (8.9 miles) of U.S. 119 in Pike County, Kentucky. The proposed new alignment is approximately 12 kilometers (7.5 miles) in length. The project relocates existing U.S. 119 from Burning Fork Road to near Bent Mountain.

Four new mainline bridges cross Burning Fork Road, Racoon Creek, Johns Creek and existing U.S. 119. Winn Branch and Scott Fork are crossed with culverts with mainline access provided only to the southeast portion of Winn Branch. Overpasses are called for on the approaches at Raccoon Creek and Johns Creek to eliminate left turning vehicles across the median.

The project is functionally classified as a rural arterial in mountainous terrain.
The proposed typical section provides a 12 meter depressed median with two 7.2 meter roadways and 3.6 meter outside shoulders, with 3.0 meters paved.

The proposed project will displace approximately 116 families, 5 businesses and 213 graves.
This existing and proposed facility serves local traffic, major coal operations and is a major intrastate route.

COST ESTIMATE

Roadway Excavation	$\$ \mathbf{6 4 , 6 2 3 , 0 0 0}$
Drainage	$3,129,000$
Pavement and Base	$8,241,000$
Bridges	$47,459,000$
Compression Station	$\mathbf{6 , 5 0 0 , 0 0 0}$
Miscellaneous	
(Silt checks, Guardrail, End treatments,	$1,164,000$
Staking, R/W Fence, Traffic, Water)	
Mobilization	3.0%
Demobilization	1.5%

Eng. \& Conting. $20 \% \quad 27,403,244$
(Approaches)
Burning Fork $\quad 9,202,000$
Racoon Branch $\quad \mathbf{8 , 4 9 1 , 0 0 0}$
Winn Branch
Johns Creek
3,113,000
Bent Mountain
Subtotal
7,853,000

Total Construction
\$198,225,464

Right of Way
Utility Relocation

$\$ 32,379,000$
$\mathbf{5 , 5 7 0 , 0 0 0}$

Total Project Estimate
$\$ 236.174 .464$

Figure 3
Typical Sections US 119 Corridor US 119
Pike Co., 1996

TYPICAL SECTION WITH 12 m DEPRESSED MEDIAN
PROJECT PLANNING REPORT
TYPICAL SECTIONS

us 119 zebuldon to bent mountain
TYPICAL DECK SECTION

 LTIng6II S
GJSOdOzd
III. INVESTIGATION PHASE

V.E. STUDY BRIEFING

January 7, 1997

NAME	AFFILIATION	PHONE
Jack Trickey	Ventry Engineering	$904 / 627-3900$
Don Keenan	Ventry Engineering	$904 / 627-3900$
Steve Halloran	KTC Construction	$502 / 564-4780$
Steve Hoefler	KTC Highway Design	$502 / 564-3280$
Randy Stephens	Palmer Engineering	$606 / 744-1218$
David Lindeman	Palmer Engineering	$606 / 744-1218$
Charles Reichenbach	KY D.O.H. Dist. \#12	$606 / 433-7791$
Denton Biliter	Chief Dist. Eng., KY D.O.H. Dist. \#12	$606 / 433-7791$
James D. Wright	Dist. Const. Eng.,	$606 / 433-7791$
KY D.O.H. Dist. \#12		
Keith R. Damron	Dist. \#12 Design Engineer	$606 / 433-7791$
Robin R. Justice	Dist. \#12 Design EIT	$606 / 433-7791$
Dallas Gray	Ventry Engineering	$904 / 627-3900$
Ron Whiche!	Ventry Engineering	$904 / 627-3900$
Jeff Jasper	KTC Highway Design	$502 / 564-3280$
Ken Sperry	KTC Highway Design	$502 / 564-3280$
Daryl Greer	KTC Value Engineer	$502 / 564-3280$
Janet R. Coffey	KTC Dist. \#12 Operations	$502 / 564-4556$
Dexter Newman	KTC Dist. \#12 Const.	$606 / 433-7791$

PERSONS CONTACTED

NAME	AFFILIATION	PHONE
Randy Stephens	Palmer Engineering Co.	$606 / 744-1218$
Robert Miller	Tensar, Atlanta, Ga.	$800 / 292-4459$
Jerry Justice	Dist. \#12, R/W	$606 / 433-7765$
Joe Emberson	Tensar, Atlanta, Ga.	$800 / 292-4459$

INVESTIGATION

The following have been identified by the Value Engineering Team as areas of focus and investigation for the Value Engineering process:

Areas identified as high cost items during the investigation phase:

ITEM

EXCAVATION
DRAINAGE
PAV'T \& BASE
RIGHT OF WAY
STRUCTURES
APPROACHES

COST
\$64,600,000
$\$ 3,100,000$
\$8,200,000
$\$ 25,000,000$
$\$ 47,500,000$
$\$ 33,800,000$

FUNCTION
ESTABLISH PROFILE
CONVEY WATER
SUPPORT VEHICLES
PROVIDE LAND

SEPARATE TRAFFIC
PROVIDE ACCESS

FUNCTIONAL ANALYSIS WORKSHEET, INFORMATION PHASE
PROJECT: US 119/ZEBULON TO BENT MOUNTAIN
DATE: JANUARY 6-14, 1997

ITEM	$\frac{\text { FUNCT. }}{\text { VERB }}$	$\frac{\text { FUNCT. }}{\text { NOUN }}$	TYPE	COST	WORTH	VALUE INDEX
EXCAVATION	establish establish accom. facilitate facilitate	profile align. typical access develop.	$\begin{aligned} & \text { B } \\ & \text { S } \end{aligned}$	\$64,600,000	\$60,000,000	1.1
DRAINAGE	convey minimize	water erosion	$\begin{aligned} & \mathbf{B} \\ & \mathbf{B} \end{aligned}$	\$3,100,000	\$3,100,000	1.0
PAV'T AND BASE	support support protect remove increase reduce	vehicles loads base water traction rutting	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	\$8,200,000	\$8,200,000	1.0
RIGHT OF WAY	provide accom.	land design	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	\$25,000,000	\$23,000,000	1.1
STRUCTURES	span separate convey	creek traffic water	$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { B } \end{aligned}$	\$47,500,000	\$44,000,000	1.1
BURNING FORK APPROACH	provide eliminate	access left turns	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~S} \end{aligned}$	\$9,200,000	\$8,200,000	1.1
RACCOON CREEK APPROACH	provide eliminate separate	access left turns traffic	$\begin{aligned} & \text { B } \\ & \mathrm{S} \\ & \mathrm{~S} \end{aligned}$	\$8,500,000	\$8,000,000	1.1
WINN BRANCH APPROACH	provide	access	S	\$3,100,000	\$3,100,000	1.0
JOHNS CREEK APPROACH	provide eliminate separate	access left turns traffic	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~S} \\ & \mathrm{~S} \\ & \hline \end{aligned}$	\$7,900,000	\$7,000.000	1.3
BENT MOUNTAIN APPROACH	provide eliminate	access left turns	$\begin{aligned} & \mathbf{B} \\ & \mathbf{S} \end{aligned}$	\$5,100,000	\$5,100,000	1.0

IV. SPECULATION PHASE

SPECULATION

Ideas generated, utilizing the brainstorming method, for performing the functions of previously identified areas of focus.

EXCAVATION

- Revise the median width from a 12 m depressed median to a 4.2 m paved median with barrier wall throughout except at the Winn Branch Approach
- Revise the alignment between station $505+800$ and station $507+300$ to turn easterly along the hollow then back to the proposed alignment
- Increase the grade between station 508+600 and station $509+750$
- Bifureate the-foadways-in-fill-areas

PAVEMENT AND BASE

- Use-conerete-parement instead-of-asphalt-pavement for the US-119-mainline roodways
- Construet the outside-laneto-be-4.3m(14') wide and-strip the edge-line at 3.6m(12') to provide- on-additional- 0.6 m (2') of full-depth roadway for-edge-of-pavement suppert
- Construet a full depthshoulder to reduee future maintenanee eost eaused by heary trueks

STRUCTURES

- Revise the bridge typical section to only provide a 3.0 m outside shoulder instead of the 3.6 m shoulder proposed

US 119 AT BURNING FORK APPROACH

- Eliminate Ramp D from station $40+000$ to station $40+535$ and utilize Ramp E with a 15 m radius turnlane to provide the WB to NB movement
- Revise the north side of the intersection to reflect a half diamond type interchange with the long radius currently proposed for the SB to WB movement for the heavy trucks and retaining the relocated US 119 configuration currently proposed for the south side of the intersection

RACCOON CREEK APPROACH

- Reduce the number of graves to be removed by using a combination of slope reinforcement and retaining walls on Ramp A and left of mainline station $502+900$

WINN BRANCH APPROACH

- Construct a wagon box to maintain access to Winn Branch Drive and eliminate the proposed approach on the east side of the new mainline US 119

JOHNS CREEK APPROACH

- Use the mainline structures to provide for the separation of traffic between KY 194 and relocated US 119 and eliminate the proposed overpass on the new approach

V. EVALUATION PHASE

V.(a) ALTERNATIVES

ALTERNATIVES

The following alternatives were formulated during the "eliminate and combine" portion of the Evaluation Phase.

A. EXCAVATION

Value Engineering Alternative No. 1-Reduce the median width from a 12 m depressed median to a 4.2 m paved median with barrier wall throughout except at the Winn Branch Approach

Value Engineering Alternative No. 2-Revise the alignment between station $505+800$ and station $507+300$ to turn easterly along the hollow then back to the proposed alignment

Value Engineering Alternative No. 3-Flatten the side slopes in long fill sections (stations $504+800$ to $506+200$ and $508+500$ to $509+100$
B. STRUCTURES

Value Engineering Alternative No. 1-Reduce the shoulder width of the bridge typical section to 3.0 m instead of the proposed 3.6 m
C. US 119 AT BURNING FORK APPROACH

Value Engineering Alternative No. 1-Revise the north side of the intersection eliminating Ramp D to reflect a half diamond type interchange with the same long radius currently proposed for the SB to WB movement for the heavy trucks and also retaining the relocated US 119 configuration currently proposed for the south side of the intersection

D. RACCOON CREEK APPROACH

Value Engineering Alternative No. 1-Reduce the number of graves to be removed by using a combination of slope reinforcement and retaining walls on Ramp A and left of mainline station $502+900$

E. WINN BRANCH APPROACH

Value Engineering Alternative No. 1-Construct a wagon box to maintain access to Winn Branch Drive and eliminate the proposed approach on the east of the new mainline US 119

F. JOHNS CREEK APPROACH

Value Engineering Alternative No. 1-Use the mainline structures to provide for the separation of traffic between KY 194 and relocated US 119 and eliminate the proposed overpass on the new approach

V.(b) ADVANTAGES AND DISADVANTAGES

EVALUATION

The following Advantages and Disadvantages were developed for the Value Engineering Alternatives previously generated during the speculation phase. It also includes the Advantages and Disadvantages for the As Proposed.

A. EXCAVATION

As Proposed Typical Section (12m depressed median)

Advantages

- provides area for snow removal
- simplifies drainage
- reduces runoff on fill sections due to the crowned roadway section
- provides area wide enough to provide a refuge for smaller turning vehicles
- allows for provision of deceleration and acceleration lanes along the median
- a larger volume of excavated material would be utilized in fill sections
- eliminates all obstacles (barrier wall, etc.) from the median
- does not require milling of curb lips and barrier wall in future resurfacing operations

Disadvantages

- increases the amount of excavation required in cut areas
- increases the R/W requirements
- increases the cost of maintenance

Conclusion

Carry Forward for Further Development

Value Engineering Alternative No. 1 - Revise the median width from a 12 m depressed median to a 4.2 m paved median with barrier wall throughout except at the Winn Branch Approach.

Advantages

- reduces the amount of excavation required
- reduces the R / W requirements
- reduces the amount of maintenance required to maintain the median
- still provides enough area for a left turn storage lane
- reduces the potential for head-on collisions due to the addition of the median barrier wall
- would reduce the bridge deck width by 1' $31 / 2^{\prime \prime}$

Disadvantages

- does not provide enough width for refuge of smaller turning vehicles across the median
- barrier wall is considered a obstacle to vehicles
- eliminates some of the area that could be used for storage of snow
- complicates the drainage of the project due to the addition of median drainage boxes and loss of storage area
- requires the draining of pavement runoff across 2 lanes of traffic

Conclusion
Carry Forward for Further Evaluation
Value Engineering Alternative No. 2-Revise the alignment between station $505+800$ and station $507+300$ to turn easterly along the hollow then back to the proposed alignment

Advantages

- will reduce the amount of excavation required
- may reduce the amount of R / W required
- may avoid the gas well at station $506+940$
- allows a flatter profile grade along the mainline

Disadvantages

- will slightly increase the length of the roadway
- adds additional curves (2) to the alignment
- increases the potential impacts to the designated mine area
- eliminates a potential waste site

Conclusion

Carry Forward for Further Evaluation
Value Engineering Alternative No. 3-Flatten the side slopes in long fill sections (stations $504+800$ to $506+200$ and $508+500$ to $509+100$)

Advantages

- reduces the amount of excavated waste
- reduces the area needed for waste disposal
- more conducive to future development
- reduces the amount of guardrail required
- reduces the potential for fill slides

Disadvantages

- may increase the demand for additional access to the mainline roadway
- will increase the amount of drainage structures required
- will increase the amount of backslope that will have to maintained (mowing, etc.)

Conclusion
Carry Forward for Further Evaluation

B. STRUCTURES

Value Engineering Alternative No. 1 -Reduce the shoulder width of the bridge typical section to 3.0 m instead of the proposed 3.6 m

Advantages

- reduces the width of the bridges by 0.6 m (2^{\prime}) each
- discourages the use of the outside shoulder as a traffic lane
- conforms to Kentucky Bridge Standards

Disadvantages

NONE

Conclusion

Carry Forward for Further Evaluation

C. US 119 AT BURNING FORK APPROACH

As Proposed Approach

Advantages

- provides high operating speeds on Ramps C and D

Disadvantages

- requires a larger amount of excavation to construct
- requires a larger amount of pavement to construct
- requires additional R/W to construct
- requires an increased amount of drainage to construct
- design is more complex normally required for this type intersection

Conclusion

Carry Forward for Further Evaluation

Value Engineering Alternative No. 1-Revise the north side of the intersection eliminating Ramp D to reflect a half diamond type interchange with the same long radius currently proposed for the SB to WB movement for the heavy trucks and also retaining the relocated US 119 configuration currently proposed for the south side of the intersection

Advantages

- reduces the amount of excavation required to construct
- reduces the amount of pavement required to construct
- reduces the amount of R / W required to construct
- reduces the amount of drainage required to construct
- design is similar to that normally used for a tight diamond intersection

Disadvantages

- will require a longer acceleration lane
- will reduce the operating speed of the interchange when compared to the As Proposed design

Conclusion

Carry Forward for Further Evaluation

D. RACCOON CREEK APPROACH

Value Engineering Alternative No. 1 -Reduce the number of graves to be removed by using a combination of slope reinforcement and retaining walls on Ramp A and left of mainline station $502+900$

Advantages

- reduces the cost of grave relocation
- may help with public relations by reducing the social impacts of this project
- reduces the potential for project delay due to difficulties with grave relocation

Disadvantages

- increase the amount of waste material that will have to be disposed of elsewhere
- adds an additional cost for slope reinforcement and retaining wall

Conclusion

Carry Forward for Further Evaluation

E. WINN BRANCH APPROACH

Value Engineering Alternative No. 1 - Construct a wagon box to maintain access to Winn Branch Drive and eliminate the proposed approach on the east of the new mainline US 119

Advantages

- eliminates the only proposed at-grade crossing involving left turns in this project
- may decrease the amount of waste material
- retains the same access currently available to all the residents of Winn Branch Road

Disadvantages

- does not provide direct access to mainline US 119
- may increase the cost of construction, including drainage

Conclusion

Carry Forward for further Evaluation

F. JOHNS CREEK APPROACH

Value Engineering Alternative No. 1 - Use the mainline structures to provide for the separation of traffic between KY 194 and relocated US 119 and eliminate the proposed overpass on the new approach

Advantages

- eliminates the proposed overpass structure on the Johns Creek Approach
- may reduce the R / W requirements

Disadvantages

- may increase the length of the mainline structures

Conclusion
Drop From Further Consideration
VI. DEVELOPMENT PHASE

VI.(a) EXCAVATION

VI.(a)(1) AS PROPOSED

MEDIAN WIDTH

"AS PROPOSED" 12.0 m

The as proposed typical section incorporates four lanes at 3.6 m , two median shoulders of 1.2 m paved and .6 m unpaved, two exterior shoulders at 3.0 m paved and .6 m unpaved. The median is a 12 m depressed median. This section provides for drainage of both roadways and provides for snow storage, left turns and storage lanes.

agsodoud sy

FILL SLOPES

"AS PROPOSED"

The proposed alignment provides for a typical section with a maximum slope of 1:2 in fill sections. Guardrail are utilized in areas steeper than $1: 4$ slopes.

ALIGNMENT

"AS PROPOSED"

The alignment between station $505+913$ and station $507+225$ crosses near the top of the mountain. This requires high volume excavation and adds to the waste disposal on the project.

VI.(a)(2) V.E. ALTERNATIVES

MEDIAN WIDTH

V.E. ALTERNATIVE NO. 1

The V.E. alternative typical section incorporates four lanes at 3.6 m , two exterior shoulders at 3.0 m paved and .6 m unpaved. The median is 4.2 m wide with a traffic barrier in the middle of the median. The barrier will be used throughout except where approach roads will have a left turn movement (Winn Branch only).

This typical provides for drainage, left turns and storage lanes.
7ヲSOdOぬd 9NIVヨヨNIONヨ ヨח7V＾

COST COMPARISON

Revised Median Width (12 m vs. 4.2 m)

DESCRIPTION	$\begin{aligned} & \text { UNIT } \\ & \text { COST } \end{aligned}$	PROP'D QTY.	$\begin{aligned} & \text { PROP'D } \\ & \text { COST } \end{aligned}$	$\begin{aligned} & \text { V.E. } \\ & \text { QTY. } \end{aligned}$	$\begin{aligned} & \text { V.E. } \\ & \text { COST } \end{aligned}$
Pavement	\$110/m ${ }^{2}$			11,041	\$1,214,510
Median Barrier Type 300C	\$140/m ${ }^{3}$			10,616	\$ 1,486,240
Crash Cushions	\$20,000/ea			4 ea.	\$ 80,000
Conc. Median Barrier Box Inlet	\$ 9,800/ea			43 ea.	\$ 421,400
Excavation Section 1	\$2.61/m ${ }^{3}$	4,934,235	\$12,878,353	4,749,617	\$12,396,500
Section 2	\$2.61/m ${ }^{3}$	8,194,128	\$21,386,674	7,722,398	\$20,155,458
Section 3	\$2.61/m ${ }^{3}$	6,950,220	\$18,140,074	6,673,785	\$17,418,579
Section 4	\$2.61/m ${ }^{3}$	4,468,968	\$11,664,006	4,210,184	\$10,988,580
Subtotal		24,547,551	\$64,069,107	23,355,984	\$64,161,267
Bridge Conc.	\$3.50/CY			148 C.Y.	\$ -51,800
Bridge Rebars	\$.55/LB			35,900 LB	\$ -19,745
TOTAL			\$64,069,107		\$64,089,722

FILL SLOPES

V.E. ALTERNATIVE NO. 2

The V.E. team recommends a typical section to provide modified slopes that will allow for the utilization of additional excavated material from station $504+800$ to station 505 +260 , station $505+460$ to station $506+200$ and station $508+640$ to station $509+060$. This will reduce the amount of waste, the waste area required, and guardrail necessary.

Left Sa guadrack eliminated by waste usage or flattering slopes
=tat quaturer sos End

$$
\begin{aligned}
& 504+880 \\
& 505+220 \\
& 505+460>340 \mathrm{~m} \\
& 506+160 \\
& 508+640>300 \mathrm{~m} \\
& 509+020
\end{aligned}
$$

End

Right side guardrail einimatet
start flattened slope
End
=tent
End
Start

$$
\begin{align*}
& 504+800 \\
& 505+280 \\
& 505+460 \\
& 506+200 \\
& 508+640 \\
& 509+060
\end{align*}>420 \mathrm{~m}
$$

Total Saved

$$
\begin{array}{r}
3240 \mathrm{~m} \\
\approx 10,800 \mathrm{ft}
\end{array}
$$

cu．m

$\begin{aligned} & \underline{\omega} \\ & \vdots \\ & \vdots \end{aligned}$			$\begin{array}{ll} 8 \\ Q_{0} \\ \infty \\ \infty \\ \mathbb{N} \end{array}$	8 8 N N	$\begin{aligned} & \hline 8 \\ & 户 \\ & 0 \\ & \end{aligned}$	O N N	$\begin{aligned} & O_{N} \\ & N \\ & N \\ & N \end{aligned}$	으N	O N N	$\begin{aligned} & \frac{8}{9} \\ & 8 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathbf{8} \\ & \mathrm{g} \\ & \mathbf{N} \\ & \mathrm{~N} \end{aligned}$	$\frac{Q}{\mathbf{C}}$	$\begin{aligned} & \text { 品 } \\ & 0 \\ & 0 \\ & 寸 \\ & \hline \end{aligned}$			8 		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & 0 \\ & 0 \\ & \hline 0 \end{aligned}$	8 0 0 0 \vdots																
$\frac{\stackrel{\varangle}{\mathbf{~}}}{\frac{\mathbf{\alpha}}{\mathbf{\alpha}}}$		$\begin{gathered} 9 \\ \% \\ \% \\ \% \end{gathered}$	$\begin{aligned} & \infty \\ & \sim \\ & \sim \end{aligned}$	$\frac{19}{T}$	$\frac{\Psi}{\infty}$	$\frac{\square}{2}$	$\begin{aligned} & 0 \\ & \sim \\ & \sim \end{aligned}$	$\begin{aligned} & 0 \\ & \underset{\sim}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \substack{8 \\ N \\ \hline} \end{aligned}$	0	$\stackrel{\oplus}{T}$	$\begin{aligned} & \mathbf{N} \\ & \mathbf{0} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \boldsymbol{N} \\ & \mathbf{N} \\ & \underset{N}{2} \end{aligned}$	$\stackrel{M}{N}$	$\begin{aligned} & \infty \\ & \\ & \hline \end{aligned}$	옹	\％	$\underset{\sim}{\text { N}}$	品	$\stackrel{\infty}{N}$	옹																		
$\frac{Z}{\bar{O}}$	$\begin{aligned} & \text { N } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		8 8 0 0 8 8 0	0 8 0 0 0 0	\circ 0 0 0 0	$\begin{gathered} \text { N } \\ \mathbf{N} \\ \mathbf{o} \\ \mathbf{n} \end{gathered}$	$\begin{aligned} & 9 \\ & N \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\left\lvert\, \begin{aligned} & 8 \\ & 0 \\ & \text { no } \\ & 0 \\ & 0 \end{aligned}\right.$	8 0 0 0 0	只	品 品 品	$\begin{aligned} & 8 \\ & \mathbf{8} \\ & \mathbf{8} \\ & \mathbf{0} \end{aligned}$	O 0 0 0 0 0	号	0 0 0 0 0	肙 0 0 0		O	号	夺	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$																	
																																						5 3 3	
		9 8 8 0			$\begin{gathered} 0 \\ \text { N } \\ \text { N } \\ \hline \end{gathered}$	$\begin{aligned} & \text { O } \\ & \text { 品 } \end{aligned}$			$\begin{aligned} & R \\ & N \\ & \hline \end{aligned}$				$\begin{aligned} & 8 \\ & 8_{1} \\ & \mathbf{N}_{1} \\ & \end{aligned}$			号号	$\begin{aligned} & \text { 응 } \\ & \text { 品 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { O } \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	\square \sim N N		$\begin{aligned} & \text { 号 } \\ & { }_{0}^{2} \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{g} \\ & \stackrel{y}{N} \end{aligned}$	$\begin{aligned} & \dot{\infty} \\ & \stackrel{\infty}{N} \end{aligned}$	$\begin{aligned} & \stackrel{9}{2} \\ & \hline ⿴ 囗 ⿱ 一 一 ⿻ 上 丨 \end{aligned}$	$\underset{\sim}{\infty}$	$\begin{aligned} & 8 \\ & \stackrel{8}{\sigma} \\ & \hline \end{aligned}$		8 $\stackrel{8}{9}$ N	$\begin{aligned} & \mathbf{Q}^{2} \\ & \underset{N}{N} \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \stackrel{N}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \mathbf{D}_{0} \\ & N \\ & N \\ & N \\ & \\ & \end{aligned}$			号			
			䏩宫	\|o	c	$\begin{aligned} & \mathbf{N} \\ & \stackrel{y}{N} \\ & \stackrel{y}{N} \end{aligned}$	$\begin{aligned} & \mathbf{N} \\ & \mathbf{N} \\ & \mathbf{N} \end{aligned}$	$\stackrel{\infty}{\infty}$	$\begin{aligned} & \infty \\ & \substack{0 \\ N} \end{aligned}$	$\begin{aligned} & \mathbf{8} \\ & \underset{N}{N} \\ & \hline \end{aligned}$	$\underset{\sim}{\boldsymbol{\omega}}$	$\underset{\sim}{N}$	$\begin{aligned} & n \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathbf{~} \\ & \stackrel{n}{2} \end{aligned}$	$\stackrel{\rightharpoonup}{\sim}$	$\underset{\sim}{\sim}$	$\left\lvert\, \begin{array}{c\|c} \infty \\ \underset{\sim}{\infty} \\ \hline \end{array}\right.$	$\begin{aligned} & \mathbf{W} \\ & \hline \mathbf{\infty} \\ & \hline \end{aligned}$		$\underset{\sim}{\infty}$	융		응	$\begin{aligned} & \infty \\ & \mathbb{N} \\ & \hline \end{aligned}$	$\begin{aligned} & N \\ & \infty \\ & \text { J } \end{aligned}$	\%	$\stackrel{-}{8}$		（N	$\underline{0}$	స్సّ	¢	옹	$\begin{aligned} & \infty \\ & \hline \end{aligned}$	¢	¢	$\begin{gathered} 10 \\ 2 \\ 2 \\ 2 \end{gathered}$		
			9 0 0 4 0 0	웅 0 0 0		O 品 in	0 0 0 0 0 0	品 0 0 0 n	8 0 0 0 0	N 号 0 0	9 0 0 0 0	8 0 0 0 0 0	品 号 in	8 0 0 0 0	0 2 N 0 0 5		0 0 0 0 0		$\begin{aligned} & \text { 只 } \\ & \infty \\ & 0 \\ & 0 \\ & n \end{aligned}$		P 0 0 0 0 0 0	0 8 0 0 0 0		0 0 0 0 0	9	8 0 0 0 0	¢	$\begin{aligned} & 8 \\ & \hline 8 \\ & 8 \\ & 0 \\ & n \end{aligned}$	0 0 0 0 0 n	$\begin{array}{\|} \hline 9 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\frac{8}{8}$	N $\stackrel{y}{\circ}$ \vdots \vdots	웅웅				
																										3 3 3													
		8		N	$\stackrel{p}{\text { N}}$	$\begin{aligned} & 8 \\ & 0 \\ & n \\ & n \end{aligned}$	$\underset{N}{N}$	$\frac{0}{\infty}$	$\begin{aligned} & \text { 으N } \\ & \mathbf{O} \\ & \hline \end{aligned}$		$\begin{aligned} & \text { N } \\ & \text { N̦ } \end{aligned}$	$\begin{aligned} & 8 \\ & \mathbf{N} \\ & \mathbf{2} \end{aligned}$	$\begin{array}{\|l\|} \hline 8 \\ 0 \\ 0 \\ \hline \end{array}$	윰					$\begin{aligned} & 0 \\ & 0 \\ & N \\ & m \end{aligned}$			O 0 0 N		$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$	$\frac{\underset{寸}{N}}{\frac{9}{\top}}$													
	0	∞	Iq		$\underset{N}{\sim}$	$\left\|\begin{array}{c} n \\ \cdots \\ m \end{array}\right\|$	$\left\lvert\, \begin{aligned} & n \\ & \infty \\ & 0 \end{aligned}\right.$	$\begin{aligned} & \text { On } \\ & \text { N } \end{aligned}$	∞	$\frac{N}{n}$	0	$\frac{\pi}{N}$	$\bar{\infty}$	$\mathbf{D}_{\mathbf{\circ}}^{\mathbf{8}}$	$\frac{91}{5}$	$\stackrel{\square}{\text { ¢ }}$	$\frac{\square}{\square}$		$\begin{aligned} & \mathbf{N} \\ & \mathbf{O} \\ & \mathbf{N} \end{aligned}$	N：	$\begin{aligned} & \mathbf{N}_{1} \\ & \mathbf{N} \end{aligned}$	3	$\begin{array}{\|c\|} \mathbf{N} \\ \mathbf{q} \\ \hline \end{array}$	$\begin{aligned} & 8 \\ & 8 \\ & \hline \end{aligned}$		\pm													
$\begin{aligned} & \mathbf{z} \\ & \mathbf{O} \\ & \mathbf{V} \\ & \mathfrak{c} \\ & \hline \end{aligned}$			N 0 0 \mathbf{S}_{0} 0	品	0 0 0 0 0	0 0 0 品		N 号 员	号		\square	8 8 0 0 0	$\begin{aligned} & \text { N} \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$						$\frac{0}{9}$		8 N N n		$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \\ & \mathrm{n} \end{aligned}$	505260	$\begin{aligned} & \text { Q } \\ & \text { N } \\ & \text { No } \\ & \text { N } \end{aligned}$														

Flatten Fill Slopes

DESCRIPTION	UNIT COST	PROP'D QTY.	PROP'D COST	V.E. QTY.	V.E. COST
Guardrail	$\$ 8.47 / \mathrm{ft}$.	$14,600 \mathrm{ft}$	$\$ 123,662$	3800 ft	$\$ 32,186$

Possible Savings $\quad \$ 91,476$

ALIGNMENT

V.E. ALTERNATIVE NO. 3

The V.E. team recommends that the alignment be relocated through the saddle located southerly of the proposed alignment. This greatly reduces excavation and the volume of waste.

V.E. Alternative No. 3

Alignment Revision

DESCRIPTION	UNIT COST	PROP'D QTY.	$\begin{aligned} & \text { PROP'D } \\ & \text { COST } \end{aligned}$	$\begin{aligned} & \text { V.E. } \\ & \text { QTY. } \end{aligned}$	$\begin{aligned} & \text { V.E. } \\ & \text { COST } \end{aligned}$
Roadway Pavement	\$6.81 Lin.M	1312 M	\$ 893,472	1376 M	\$ 937,056
Excavation	\$2.61 Cu. M	6,152,513	\$16,058,000	4,015,143	\$10,479,523
Drainage	\$224 Lin.M	1312 M	\$ 293,888	1376 M	\$ 308,224
TOTAL			\$17,245,360		\$11,724,803

Possible Savings $\quad \$ \mathbf{5 , 5 2 0 , 5 5 4}$

VI.(b) STRUCTURES

VI.(b)(1) AS PROPOSED

BRIDGE TYPICAL
 (EXTERIOR SHOULDER 3.6 VS. 3.0)

"AS PROPOSED"

The As Proposed Typical for the bridges incorporates 3.6 m exterior shoulders, two 3.6 m lanes, a 1.8 m interior shoulder and two barriers at .5 m each. This typical is for each bridge. The 3.6 m exterior shoulder could encourage people to use this as a travel lane. (See AASHTO Geometric Design Chap. IV, Pg. 338).
OヨSOdOyd S甘

VI.(b)(2) V.E. ALTERNATIVES

V.E. ALTERNATIVE NO. 1

The V.E. Alternative incorporates 3.0 m exterior shoulders, two 3.6 m lanes, a 1.8 m interior shoulder and two barriers at .5 m each. This typical reduces each bridge by .6 m each. A 3.0 m shoulder is adequate for emergency use and is consistent with the typical section for the adjacent Bent Mountain project and with the Basic Geometric Design Standards (Exhibit 66-03-06).
$7 \forall S O d O y d$ ONIUヨヨNIONヨ ヨП7ヲ＾
13. Space is provided for bus stops.
14. Improved lateral placement of vehicles and space for occasional encroachment of vehicles is provided.

For further information on other uses of shoulders, refer to NCHRP 254 (3).

Urban highways generally have curbs along the outer lanes. A stalled vehicle during peak hours disturbs traffic flow in all lanes in that direction when the outer lane serves through traffic. Where on-street parking is permitted, the parking lane provides some of the same services listed above for shoulders. Parking lanes are discussed further in the section "On-street Parking."

Width of Shoulders

Desirably, a vehicle stopped on the shoulder should clear the pavement edge by at least 0.3 m . preferably by 0.6 m . This preference has led to the adoption of 3.0 m as the normal shoulder width that should be provided along high-type facilities. In difficult terrain and on low-volume highways, shoulders of this width may not be feasible. A minimum shoulder width of 0.6 m should be considered for the lowest-type highway, and a 1.8 to 2.4 m width would be preferable. Heavily traveled and high-speed highwavs and those carrving large numbers of trucks should have usable shoulders at leass 3.0 m and preferably 3.6 m wide; however, widths greater than 3.0 m mav encourage unauthorized use as a travel lane. Where bicyclists are to be accommodated. a minimum shoulder width of 1.2 m should be utilized. Shoulder widths for specific classes of highways are enumerated as parts of the total cross sections discussed in following chapters.

Where roadside barriers, walls. or other vertical elements are used, it is desirable to have a graded shoulder wide enough that these vertical elements can be offset a minimum of 0.6 m from the outer edge of the usable shoulder. It may be necessary to provide a graded shouider wider than used elsewhere to provide lateral support for guardrail posts and/or clear space for lateral dynamic deflection required by the particular barrier in use. On low-volume roads, roadside barriers may be placed at the outer edge of the shoulder: however. a minimum of 1.2 m should be provided from the traveled way to the barrier.

Although it is desirable that a shoulder be wide enough for a vehicle to be drivencompletely off the traveled way, narrower shoulders are better than none at all. When a vehicle making an emergency stop can drive onto the shoulder to occupy only 0.3 to 1.2 m of a traveled way of adequate width, the remaining traveled way width can be used by passing vehicles. Partial shoulders are

multi-lane brides
OTHER THAN URBRN-MANOATOPY
URBAN-DESIRABLE

NOTE:
On frcervays exception is to be mode for major long-spen structures which warrant independent analyses for bridge-widm determination.

STRUCTURES COST COMPARISON

V.E. Alternative No. 1

Revising Bridge Typical (Exterior Shoulder 3.6 vs. 3.0)

DESCRIPTION	$\begin{array}{\|l\|} \hline \text { UNIT } \\ \text { COST } \\ \hline \end{array}$	PROP'D QTY.	$\begin{aligned} & \text { PROP'D } \\ & \text { COST } \end{aligned}$	$\begin{aligned} & \text { V.E. } \\ & \text { QTY. } \end{aligned}$	$\begin{aligned} & \text { V.E. } \\ & \text { COST } \end{aligned}$
Burning Fork Conc.	\$3.50/CY			93.2 CY	\$ 32,620
Burning Fork Steel	\$.55/LB			22,600 LB	\$ 12,430
Racoon Creek Conc.	\$3.50/CY			160 CY	\$ 56,000
Racoon Creek Steel	\$.55/LB			38,880 LB	\$ 21,380
Johns Creek Conc.	\$3.50/CY			154 CY	\$ 53,900
Johns Creek Steel	\$.55/LB			37,400 LB	\$ 20,600
Bent Mountain Conc.	\$3.50/CY			44.6 CY	\$ 15,610
Bent Mountain Steel	\$.55/LB			10,800 LB	\$ 5,940
TOTAL					\$218,480

VI.(c) U.S. 119 AT BURNING FORK APPROACH

VI.(c)(1) AS PROPOSED

BURNING FORK

"AS PROPOSED"

The proposed plan provides an off ramp (ramp D) from West to North for old U.S. 119. There is also a West to West ramp (ramp E) for Burning Fork Road South.

VI.(c)(2) V.E. ALTERNATIVES

BURNING FORK

V.E. ALTERNATIVE NO. I

The V.E. team recommends that Ramp D be eliminated from station $40+000$ to $40+535$. Ramp E will be moved southerly toward the mainline and will intersect Ramp C at a more westerly location and closely (southerly) toward the mainline. Access north and south to old U.S. 119 (Burning Fork Road) is provided for west bound traffic along Ramp E. This eliminates more than 400 M of ramp through a cut, reduces right of way requirements and waste.

COST SAVINGS

V.E. Alternative No. 1

Burning Fork

DESCRIPTION	UNIT COST	PROP'D QTY.	PROP'D COST	V.E. QTY.	V.E. COST
Right of Way	$\$ 30,985 /$ Ac.			(RED.) 19.4 Ac	(SAVINGS) $\$ 601,103$
	$\$ 110 / \mathrm{m}^{2}$				
Pavement	$\$ 2.61 / \mathrm{m}^{3}$				
Excavation					
TOTAL					

Possible Savings $\$ 4,488,777$
VI.(d) RACCOON CREEK APPROACH
VI.(d)(1) AS PROPOSED

GRAVE REMOVAL

"AS PROPOSED"

The construction of fills for the proposed alignment and Ramp A at Raccoon Creek will force the relocation of three cemeteries. The cemetery right of station $502+500$ contains 56 graves. The two cemeteries left of station $502+900$ contain 4 and 68 graves respectively.

AS PROPOSED
VI.(d)(2) V.E. ALTERNATIVES

GRAVE REMOVAL

V.E. ALTERNATIVE NO. 1 - Use Retaining Walls \& Steepened Slopes

This alternative uses MSE walls and $1: 1.5$ slopes reinforced with geotextile to reduce the footprint of the fill and avoid grave relocation.

VALUE ENGINEERING ALTERNATIVE
WITH STEEPENED SLOPES AND RETAINING WALLS

$$
\begin{aligned}
& \square \\
& 5 \operatorname{sta} 5.52+700 \\
& \begin{aligned}
3240 \mathrm{~m}^{2} & =\text { Reinf Slope } \approx 35996 \mathrm{ft}^{2} \\
100 \mathrm{~m}^{2} & =\text { Wall } \approx 1111 \mathrm{t}^{3}
\end{aligned}
\end{aligned}
$$

26
052

VALUE ANALYSIS
ALTERNATIVE

250

COST COMPARISON
Cemetery Relocation vs. Ret. Walls \& Steepened Slopes ($1: 1^{1 / 2}$)

DESCRIPTION	UNIT COST	PROP'D QTY.	$\begin{aligned} & \text { PROP'D } \\ & \text { COST } \end{aligned}$	$\begin{aligned} & \text { V.E. } \\ & \text { QTY. } \end{aligned}$	$\begin{aligned} & \text { V.E. } \\ & \text { COST } \end{aligned}$
Grave Relocation	\$3,000/Grave	128	\$384,000		
Reinforced Steepened Slope	\$375/m ${ }^{2}$			$2600 \mathrm{~m}^{2}$	\$ 975,000
Reinforced Steepened Slope	\$375/m ${ }^{2}$			$3240 \mathrm{~m}^{2}$	\$1,218,000
MSE Retaining Walls	\$430/m ${ }^{2}$			$420 \mathrm{~m}^{2}$	\$ 180,600
MSE Retaining Walls	\$430/m ${ }^{2}$			$100 \mathrm{~m}^{2}$	\$ 43,000
TOTAL			\$384,000		\$2,413,600
Conversion Factor $10.76 \mathrm{SF}=\mathrm{Im}^{2}$					

Possible Additional Cost \$2,029,600

GRAVE REMOVAL

V.E. ALTERNATIVE NO. 2 - Steepened Slopes

This alternative uses $1: 1$ slopes reinforced with geotextile to reduce the footprint of the fill and avoid grave relocation.

VALUE ENGINEERING ALTERNATIVE
WITH STEEPENED SLOPES

COST COMPARISON

Cemetery Relocation vs. Steepened Slopes (1:1)

DESCRIPTION	UNIT COST	PROP'D QTY.	PROP'D COST	V.E. QTY.	V.E. COST
Grave Relocation	$\$ 3,000 /$ Grave	128	$\$ 384,000$		
Reinforced Steepened Slope	$\$ 460 / \mathrm{m}^{2}$			$302 \mathrm{~m}^{2}$	$\$ 1,389,200$
Reinforced Steepened Slope	$\$ 460 / \mathrm{m}^{2}$				
TOTAL			$\$ 384,000$		$\$ 1,536,400$

Possible Additional Cost \$ 2,541,600

VI.(c) WINN BRANCH APPROACH

VI.(e)(1) AS PROPOSED

WINN BRANCH

(505 + 300)

"AS PROPOSED"

The mainline alignment intersects Winn Branch Road at Mainline Station $505+300(\pm)$. The as proposed solution is to cut off Winn Branch road on both side of the embankment. Those residences north of the mainline maintain their existing access to the North to old U.S. 119. They would have no direct access to neighbors south of the mainline. Residents south of the mainline would have access to the mainline only by way of a new access road that would intersect the mainline at station $505+575$. The mainline intersection would be at grade and would allow south to west turns across the median. This would be contrary to a project design criteria that stated there should be no median crossings. This intersection would be the only exception on the entire project.

VI.(e)(2) V.E. ALTERNATIVES

WINN BRANCH

V.E. ALTERNATIVE NO. 1

The V.E. alternative provides no access to the mainline but does maintain existing access to old U.S. 119 for all residences on Winn Branch Road. The V.E. alternative eliminates the proposed access road and the at grade intersection on the mainline and utilizes a 8.5 m x 4.8 m Wagon Box through the embankment at station $505+300$. The primary advantages her would be:

1. Maintaining neighborhood integrity.
2. Equal access for all Winn Branch Rd. residences.
3. Elimination of at grade intersection and resultant median crossing.

The primary disadvantages would be:

1. Increased cost.

As proposed $\quad=\$ 2.898(2.124+* 775 \mathrm{R} / \mathrm{W})$
V.E. Alternative $=\$ 4.714$
2. No direct access to new facility.

* $\mathrm{R} / \mathrm{W}=25$ Acres @ $\$ 30,985 /$ Acre

COST COMPARISON

Winn Branch

DESCRIPTION	$\begin{aligned} & \text { UNIT } \\ & \text { COST } \end{aligned}$	PROP'D QTY.	$\begin{aligned} & \text { PROP'D } \\ & \text { COST } \end{aligned}$	$\begin{aligned} & \text { V.E. } \\ & \text { QTY. } \end{aligned}$	$\begin{aligned} & \text { V.E. } \\ & \text { COST } \end{aligned}$
Access Road			\$2,123,375	0	0
Wagon Box		0	0		\$4,714,000
Right of Way	30,985 Ac	25	\$ 774,625	0	0
TOTAL			\$2,898,000		\$4,714,000

Possible Additional Cost \$ 1,816,000

VII. SUMMARY OF RECOMMENDATIONS

SUMMARY OF RECOMMENDATIONS

It is the recommendation of the Value Engineering Team that the following Value Engineering Alternatives be carried into the Project Development process for further development.

EXCAVATION

Recommendation No. 1

The Value Engineering Team recommends that Value Engineering Alternative No. 2 be implemented. This alternative is to flatten the fill slopes in areas with long fills to a 1:6 slope, reducing the amount of waste material.

If this recommendation can be implemented, there is a potential savings of $\$ 91,476$.
Recommendation No. 2
The Value Engineering Team recommends that Value Engineering Alternative No. 3 be implemented. This alternative is to revise the alignment between stations $505+800$ and $507+300$.

If this recommendation can be implemented, there is a potential savings of \$5,520,554.

STRUCTURES

Recommendation No. 3

The Value Engineering Team recommends that Value Engineering Alternative No. 1 be implemented. This alternative is to reduce the bridge shoulder widths to 3.0 m (10 feet).

If this recommendation can be implemented, there is a potential savings of $\mathbf{\$ 2 1 8 , 4 8 0}$.

US 119 AT BURNING FORK

Recommendation No. 4
The Value Engineering Team recommends that Value Engineering Alternative No. 1 be implemented. This alternative is to revise the design of the US 119 at Burning Fork Road interchange.

If this recommendation can be implemented, there is a potential savings of $\$ 4,488,777$.

WINN BRANCH APPROACH

Recommendation No. 5

The Value Engineering Team recommends that Value Engineering Alternative No. 1 be implemented. This alternative is to eliminate the proposed at-grade intersection and construct a wagon box along Winn Branch Road.

If this recommendation can be implemented, there is an additional cost of $\$ 1,816,000$.

If all these recommendations are implemented, there is a potential total savings of approximately $\$ 8,503,287$.

NAME	AFFILIATION	PHONE
Jack Trickey	Ventry Engineering	$904 / 627-3900$
Ron Whichel	Ventry Engineering	$904 / 627-3900$
Dallas Gray	Ventry Engineering	$904 / 627-3900$
Daryl Greer	KTC Co. Hwy. Design	$502 / 564-3280$
Ken Sperry	KTC Co. Design	$502 / 564-3280$
Don Keenan	Ventry Engineering	$904 / 627-3900$
David Lindeman	Palmer Engineering	$606 / 744-1218$
Randy Stephens	Palmer Engineering	$606 / 744-1218$
John Sacksteder	KTC - Design	$502 / 564-3280$
Bill Hornbeck	KTC - Bridge Design	$502 / 564-4560$
Joette Fields	KTC - Design	$502-564-3280$
Charles Briggs	Div. Operations	$506 / 564-4556$
Keith R. Damron	Dist. Design Engineer	$606 / 433-7791$

VIII. APPENDICES

PIKE COUNTY US 199

GRAND TOTAL
-

CONSTAUCTION COST ESTIMATEALTEANATE BCONSTRUCTION SECTION 2STA. $503+480-306+320$LENGTH $=(2840 \mathrm{~m})(2.840 \mathrm{~km})-(9317 \mathrm{~m})(1.76 \mathrm{mi})$				
			UNIT	
DESCRIPTION	OUANTITY	UFIT	Cost	TOTAL
EXCAYATION	7.739,105	CU. METEA	52.61	\$20.199,064
STTUATION SIZE CROSS ETAMINS	LS	LS	LS	584,307
MEOLAN CROSS GRAIMS	LS	LS	LS	\$101.049
MEDIAN BOXS	35.	EACH	52,300.00	\$80.500
PEAFORAJED PIPE UNDERORAIN 4'	37,289	LIN. FT.	\$5,00	\$186,340
CHANNEL CHANGE		CU.YD.	52.01	50
CHANNEL LINING CLASS 4	3,550	TON	\$3.58	312.736
CLEAAING AND GAUEAINO		ACAES	51,200.00	50
SILT CHECKS	20	EA.	540.47	\$969
GUARDRAIL	3,200	LIN.F.F.	5.47	527.104
END TREATMENTS	14	EA,	\$500,00	\$7.000
STAKINE	1.76	MILE	545,000.00	379.200
AW FENCE -	11,434	UIN.F.	\$3.06	\$57,393
MAINTAIN ANO CONTAOL TAAFFIC	1	LUMP	\$50,000.00	550,000
WATER	2,000	MGAL	32.40	54.880
4° DGA	18,871	TON	\$12.00	\$228,452
9: DRAINAGE BLANKET	23,504	TON	521.00	5493,584
10° BASE	34,996	TON	525.37	\$607, 240
$1.5^{\text {a }}$ EITUMINOUS CONC. SUAFACE	0,033	TON	524.83	\$105,381
FUUL DEPTH DESA	14677		\$11.36	\$132.651
EITUMINOUS MATENTAL POA TACK	63	TON	\$230.75	\$15,017
EMLLSIIFIED ASPHALT AS.2	40	TON	\$291.19	\$11,560
GITUMINOU'S SEAL RGGREGATE	331	TON	\$25.97	58,506
SEED AND PROTEECTİON		SO.YD.	\$0.18	50
SUB TOTAL				\$22,831,713
MOEILIZATION 3\%				S604.959
OEMOPILIZATION 1.5\%				\$542. 476
SUB TOTAL				\$23,859,140
ENGINEER 8 CONTINO. 20%				54,771,821
BAINLINE TOTAL *				\$28,630,968
- DOES NOT Include approachs	BAICGES			
APPROACH	WINN BR	NCH		
APPPROACH RT. STA. $503+575$		\$2,12	4,121	Z-7C4EI2
APPROACM LI. STA. 505*575		\$2,00	6,110	
TURN LANES (2)		512	, 966	$12+76$
BRIOGE		510.9	7,775	10207-7
CULVEAT		s981	,000	5044000
GRAND TOTAL				

* Preferboder.

