VALUE ENGINEERING SUMMARY OF
 US 119/BENT MT. TO COBURN MT. WPI NO. 12-264.01
 PIKE COUNTY, KENTUCKY

DECEMBER 5-13, 1996

Prepared by:
Ventry Engineering
In Association With:

Kentucky Transportation Cabinet, Department of Highways

TABLE OF CONTENTS

ITEM NO. DESCRIPTION PAGENO.
I. LOCATION OF PROJECT 1
II. TEAM MEMBERS, PROJECT DESCRIPTION, \& PERSONS CONTACTED 4
III. INVESTIGATION PHASE 19
IV. SPECULATION PHASE 23
V. EVALUATION PHASE 26
A. ALTERNATIVES 27
B. ADVANTAGES AND DISADVANTAGES 29
C. EVALUATION MATRICE 36
VI. DEVELOPMENT PHASE 38
A. GRADES 39
(1) AS PROPOSED 40
(2) V.E. ALTERNATIVES 44
B. ACCESS/INTERSECTION/INTERCHANGE 50
(1) AS PROPOSED 51
(2) V.E. ALTERNATIVES 56
C. STRUCTURES 68
(1) AS PROPOSED 69
(2) V.E. ALTERNATIVES 74
D. TYPICAL SECTION 84
(1) AS PROPOSED 85
(2) V.E. ALTERNATIVES 88
VII. SUMMARY OF RECOMMENDATIONS 96
VIII. APPENDICES 100

1. LOCATION OF PROJECT

II. TEAM MEMBERS, PROJECT DESCRIPTION AND PERSONS CONTACTED

TEAM MEMBERS

NAME	AFFILIATION	EXPERTISE	PHONE
Jack Trickey, P.E.	Ventry Engineering	Team Leader	$904 / 627-3900$
Don Keenan, P.E.	Ventry Engineering	Structural Team Member	$904 / 627-3900$
William Nickas, P.E.	Ventry Engineering	Roadway Team Member	$904 / 627-3900$
Tom Howard, R.L.S.	Ventry Engineering	Right of Way Team Member	$904 / 627-3900$
Doug Smith	KY Transportation Cabinet	Geotechnical	$502 / 564-2374$
Steve Criswell, P.E.	KY Transportation Cabinet	Construction	$502 / 564-4780$

PROJECT DESCRIPTION

A 5.9 kilometer (3.65 mile) highway improvement is proposed for east-central Pike County, Kentucky. The project calls for relocation of existing U.S. 119 from road fork to Big Creek (Sta. $21+214$) to just west of Chapman Hollow (Sta. $26+998.192$).

The proposed alignment for the most part, is located on steep slopes typically within 150300 meters of U.S. and should have very little impact on local traffic during construction.

The proposed project is functionally classified as a rural arturial in mountainous terrain.
The project as proposed will entail two bridges over existing U.S. 119 of approximately 193 and 164 meters in length. The proposed project will also require numerous box and pipe culverts as well as a few channel changes.

There are two major at grade connections proposed to existing U.S. 119 as well as several at grade connections for community roads.

The proposed typical section consist of a 4.3 m flush median and two 7.2 m roadways with 3.0 m shoulders. Median barrier is proposed at strategic locations. The project will displace approximately 42 families, 5 businesses and 44 graves. Three gas well will also be affected.

The existing and proposed facility not only serves local traffic, but is a major route for many coal operations located throughout the area.

ORELIMINARY ESTIMATE

PIKE COUNTY，US 119 ，SECTION I
FOAD FOAK to BIG CREEK；STA $21+214$ ： 2 23＋220
FO52 0980119015.020 APD 0505008
NET LENGTH 2.0 km
GAADE AND DRAIN

RUPAL ARTE	ITEM	UNIT	QUANTITY	SNIT COST	COST
	Mainline Paving	km	0.74	\＄950，000	\＄703，000
	Approach Paving	kTH	0.87	\＄190．000	\＄155 300
462	Culvert Pipe－ 450 mm	meter	0	\＄105．00	so
		meter	160	\＄130．c0	520，800
464	Culver Pipe 6000 mm	neter	50	\＄150．00	\＄7．500
466	Culvert Pipe $\cdot 750 \mathrm{~mm}$	meter	55	\＄170．00	59，350
468	Culvert Pipe ． 900 mm	merer	0	\＄200．00	50
469	Culvert Pipe＊ 1050 mm	nexer	0	5270.00	50
471	Culvert Pipe－ 1350 mm	meter	－0	\＄440．00	\＄22，000
474	Culvert Pioe－ 1800 mm	meter	－	S40．00	
475	Culver：Pipe－ 1950 mm	meter	0	\＄490．00	
1490	Drop Box Iniet Typa 1	จacn	4	52，000．00	58，000
1450		eacn	\square	\＄1，500．00	30
；451	5\＆F Gox Inlet－Outiet－ 600 mm	each	2	\＄1，900，00	\＄3，800
1452		each	1	52，200．00	\＄2，200
！ 453	S\＆F Eex Inlet－Outlet－900mm	each	＋	\＄2，500．00	\＄2．500
； 955	Concrete Median Earner－Type 300C：	meter	1070	\＄13000	\＄139，100
2200	Readway Excavation	cu m	3135000	55.00	\＄15，675，000
2351	Steel＂W＂Beam Guardral（Single Face）	metar	1800	\＄30．00	\＄54．000
	Guardrail End Treatment Type 4A	each	13	\＄450．00	\＄5，350
2387		each	8	\＄300．00	\＄2，400
2545	G．rall Connector to Bridge End，Type A－1 Clearing \＆Grubbing	Ip sum	1	\＄190．000	\＄150，000
	Mobilization	10 sum	1	\＄ 564,118	\＄6E4：15
2568	Mobilization	ip sum	1	\＄332，050	5332.058
2569	Demobilization	cu m	560	\＄36000	\＄208800
8100	Concrete Class ${ }^{\text {A }}$		\％80co	51.20	\＄09，600
8150	26－35－35－29m Type IV Mod．FCIB Bridge 32－36－38－32m Type V Mod．PCIE Bridge	ip sum	1	\＄2，300，000	\＄2，360，000
		ip sum	1	\＄2．570．000	62，570，000
	32－36－38－32m Type V Mod．PCi日 Bricge				323，155 374
	ENGA \＆CONTG（15\％）				\＄3．470．006
	TOTAL COST				\＄25，625，380

－FIKE COUNTY，US 119，SECTON II
BIG CREEK to 1.9 km east of KY 3154；STA $23+220$ to $26+996$
FD52 098 $0119015-020$ APD 0506008
Ocrober 15， 1998
NET LENGTH 3.78 km
GRADE AND DRAIN
RURAL ARTERIAL

ITEM CODE	ITEM	UNIT	QUANTITY	UNIT COST	Cost
	Mainline Paving	km	0	\＄950，000	50
	Approach Paving	km	1.85	\＄190，000	\＄351，500
462	Culvert Pipe $\mathbf{4 5 0 \mathrm { mm }}$	meter	230	5105.00	324，150
464	Culvert Pipe－ 800 mm	meter	250	\＄130．00	\＄32，500
466	Culvar Pipe－ 750 mm	meter	190	\＄150．00	528，500
468	Culvert Pipa $=900 \mathrm{~mm}$	meter	0	\＄170．00	\＄0
469	Culvert Pipe－ 1050 mm	meter	80	5200．00	\＄16，000
471	Culvart Pipe－ 1350 mm	meter	80	5270．00	\＄21，600
474	Cuivert Pipe－ 1800 mm	meter	0	\＄440．00	\＄0
475	Culvert Pipe－ 1950 mm	meter	230	\＄490．00	5112，700
1490	Drop Box Inlet Type 1	－ach	7	\＄2，000．00	\＄14，000
1450	S\＆F Eox Inlet－Outlet－450mm	each	3	\＄9，500．00	\＄4，500
1451	S\＆F Bax Inlat－Outtet－600mm	aach	3	\＄1，900．00	55.700
1452	S\＆F Box Inlet－Outlet－ 750 mm	each	3	\＄2，200．00	\＄6，600
1453	S\＆F Eox inlet－Outtet－ 900 mm	each	0	\＄2．500．00	30
1955	Concrate Macian Barrier－Type 300C1	mater	2190	\＄130．00	3284，700
2200	Roadway Excervation	cu m	3910000	\＄5．00	\＄19，550，000
2351	Stoel＂W＇Beam Guardrail（Single Face）	meter	3400	\＄30．00	\＄102，000
	Guardrail End Traetrnent Typa 4A	each	25	\＄450．00	\＄11．250
2387	G．rail Connector to Bridge End，Type A－1	each	0	\＄300．00	50
2545	Cieaning \＆Grubbing	Ip sum	1	\＄190，000	\＄360，000
2568	Mobilization	Ip sum	1	\＄629．574	5629，574
2569	Demobilization	lp sum	1	\＄314，787	\＄314，787
8100	Conerete Class＇A＇	cu m	1110	\＄380．00	5399，600
8150	Steel Reinforcement	kg	111000	\＄1．20	5133，200
	SUETOTAL				\＄22，402，86！
	ENGR．\＆CONTG．（15\％）				53，289，524
	TOTAL COST				\＄25，692，365

PAELIMINARY ESTIMATE

PIKE COUNTY，US 119 ，SECTION III
ROAD FORK to 1.9 km east of KY 3154，STA $21+214$ to $26+998$
FD52 $0980119015-020$ APD 0506008
Oc：ober 15， 1996
NET LENGTH $\mathbf{5 . 7 8} \mathrm{km}$
SURFACING
RURAL ARTERIAL

ITEM CODE	ITEM	UNIT	QUANTITY	UNTT COST	COST
	Mainine Faving	km	4.94	\＄950，000	\＄4，653，000
	Approach Paving	km	0	\＄190，000	so
2568	Mobilization	ip sum	9	\＄140，790	\＄140，750
2569	Demobilization	ip sum	1	570，395	\＄70，395
8100	Concrete Class＇A＇	cum	0	\＄360．00	\＄0
8150	Steel Painforcament	kg	0	\＄1．20	so
	SUATOTAL				S4，904，185
	ENGR．\＆CONTG．（10\％）				\＄490，419
	TOTAL COST				35，394．604

Roadway Exc. \$32,862,169
Mainline Pavement 5,130,000
Approach Pavement 507,000
Bridge Structures 6,525,000
Box Culvert 226,000
Median Barrier 630,000
Concrete Pipes 225,000
Guardrail 151,000
Clearing and Grubbing 550,000
Drop Box Inlets 22,000
S \& F Box Inlets 25,300
Crash Cushions 56,000
Guardrail End Treatment 17,100
Mobilization 1,375,212
Demobilization 687,606
Subtotal $\$ 49,558,201$
Eng. And Conting. (10\%)
Total Construction$\$ 54,514,021$
Right of Way
Utility Relocation
\$11,605,000
$1,500,000$

PERSONS CONTACTED

NAME	AFFILIATION	PHONE
Zane Young	Haworth,Meyer \& Boleyn	$502 / 695-9800$
Bryan Stopper	Haworth,Meyer \& Boleyn	$502 / 695-9800$
Earl Wright	KY Transportation Cabinet Materials	$502 / 564-2374$
Gary Sharpe	KY Transportation Cabinet Pavement Design	$502 / 564-3280$
Leo Frank	KY Transportation Cabinet Pavement Design	$502 / 564-3280$
Dan Height	KY Transportation Cabinet Pavement Design	$502 / 564-3280$
John Bowlin	KY Transportation Cabinet Dist. 12	$606 / 433-7791$

III. INVESTIGATION PHASE

US 19/BENT MOUNTAIN TO COBURN MOUNTAIN
V.E. STUDY BRIEFING

December 6, 1996

NAME	REPRESENTING	PHONE
JACK TRICKEY	VENTRY ENGINEERING	$904 / 627-3900$
TOM HOWARD	VENTRY ENGINEERING	$904 / 627-3900$
WILLIAM NICKAS	VENTRY ENGINEERING	$904 / 627-3900$
DON KEENAN	VENTRY ENGINEERING	$904 / 627-3900$
JOHN BOWLIN	KY D.O.T. DIST. \#12	$606 / 433-7791$
STEVEN CRISWELL	CENTRAL OFFICE CONSTRUCTION	$502 / 564-4780$
DOUG SMITH	CENTRAL OFFICE GEOTECH	$502 / 564-2374$
DEXTER NEWMAN	DIST.\# 12 CONSTRUCTION	$606 / 433-7791$
BRYAN STOPPER	 BOLEYN	$502 / 695-9800$
ZANE T. YOUNG	 BOLEYN	$502 / 695-9800$
CHARLES	KY D.O.H. DIST.\# 12 PRECONSTRUCTION	$606 / 433-7791$
DARYL GREER	C.O.• HIGHWAY DESIGN	$502 / 564-3280$
DENTON BILITER	CH. DIST. ENGINEER DIST.\# 12	$606 / 433-7791$

FUNCTIONAL ANALYSIS WORKSHEET, INFORMATION PHASE PROJECT: US 119/BENT MOUNTAIN TO COBURN MOUNTAIN DATE: DECEMBER 5-13, 1996

	FUNCT. VERB	FUNCT. NOUN	TYPE	COST	WORTH	VALUE INDEX
ROADWAY EXC.	establish provide facilitate	align (vert) rdwy typ develop.	B B S	$\$ 32,900,000$	$\$ 25,000,000$	1.3
RIGHT OF WAY	provides provides compensate	rdwy area waste site damages	B S S	$\$ 11,605,000$	$\$ 11,000,000$	1.1
MAIN LINE PAV'T.	support	loads wheel	B	$\$ 5,130,000$	$\$ 5,130,000$	1.0
BRIDGE STRUCT.	span separate	creek roadways	B B	$\$ 6,525,000$	$\$ 6,000,000$	1.1
UTILITY RELOC.	maintain	service	B	$\$ 1,500,000$	$\$ 1,500,000$	1.0
BOX CULVERT	convey span	water creek	S B	$\$ 226,500$	$\$ 175,000$	1.3
MEDIAN BARRIER	separate redirect	traffic vehicle	B B	$\$ 630,000$	$\$ 630,000$	1.0
APPROACH	provide	access	B	$\$ 507,000$	$\$ 150,000$	3.4
PAV'T.						

INVESTIGATION

The following have been identified by the Value Engineering Team as areas of focus and investigation for the Value Engineering process:

Areas identified as high cost items during the investigation phase:

ITEM	COST	FUNCTION
ROADWAY EXC.	$\$ 32,900,000$	ESTABLISH VERTICAL ALIGNMENT FACILITATE TYPICAL SECTION
RIGHT OF WAY	$\$ 11,600,000$	PROVIDE LAND AREA
STRUCTURES	$\$ 6,750,000$	SEPARATE ROADWAYS CONVEY WATER
SPAN CREEKS		

ACCESS/INTERSECTION/INTERCHANGE PROVIDE ACCESS

(This area was included due to a concern with allowing left turns across the median of relocated U.S. 119 at at-grade intersections.)

IV. SPECULATION PHASE

SPECULATION

Ideas generated, utilizing the brainstorming method, for performing the functions of previously identified areas of focus.

ROADWAY EXC. (GRADES)

- revise the grade and alignment to reduce the volume of roadway excavation required
- bifurcate the roadways where possible to reduce the volume of excavation required
- reduce the median width to 3.2 m from 4.3 m in the areas where median barrier is included.
- steepening-fill-stopes-t0-1:1-1/2
- reinforec-fill-stopes to-allow for 1:1-stopes
- ase oldmines for-dispesal-sites
- remove-exess material by rail-shipping
- steepening-out-slopes
- revisethe alignment between the beginning of the project-and-Reed Fork-togemore easterly deress the motntain

STRUCTURES

- reduce the length of bridge structures by using retaining wall and additional fill
- reduee the number-of-e日lumis-in-the bents-
- use a steel superstructure to reduce the number of bents required
- eliminate the box culvert on the access road by using a bridge

TYPICAL SECTION

- reduce the amount of barrier wall by eliminating sections in areas with flat grades and tangent alignment
- use-double faee-guardrail-instead-of-enerete median barrier
- allow precast barrier wall as an alternate to cast-in-place barrier wall in the bid package (Design Comment)
- use concrete for mainline pavement instead of asphalt

CONCRETE PIPE

- allow alternate pipe materials as bid alternates in the bid package (Design Comment)

RIGHT-OF-WAY

- use-retaining-walls-to-reduee-the-right-of-way-requirements
- provide new hemesites-for-the-people-being relecated

V. EVALUATION PHASE

V.(a) ALTERNATIVES

ALTERNATIVES

The following alternatives were formulated during the "eliminate and combine" portion of the Evaluation Phase.

GRADES

1. Revise the grades and alignment to reduce the volume of roadway excavation required
2. Bifurcate the roadways where possible to reduce the volume of excavation required

ACCESS/INTERSECTIONS/INTERCHANGES

1. Utilize the two grade separations crossing existing US 119 to provide split access to the relocated US 119 and eliminate the two proposed at-grade intersections
2. Move the access to existing US 119 to the area around $24+200 \pm$ and provide a diamond type interchange.

STRUCTURES

1. Reduce the length of bridge structures over existing US 119 by using retaining wall and additional fill
2. Use a steel superstructure to reduce the number of bents required in the two US 119 overpasses
3. Eliminate the box culvert on the access road by using a bridge to span the creek

TYPICAL SECTION

1. Reduce the amount of barrier wall by eliminating sections in areas with flat grades and tangent alignment
2. Reduce the median width to 3.2 m from 4.3 m in the areas where median barrier is included.
3. Use concrete pavement for mainline paving instead of asphalt

V.(b) ADVANTAGES AND DISADVANTAGES

EVALUATION

The following Advantages and Disadvantages were developed for the Value Engineering Alternatives previously generated during the speculation phase. It also includes the Advantages and Disadvantages for the As Proposed Design.

A. GRADES

As Proposed Grades

Advantages

- only uses a maximum grade of 4.8% at one location with a majority of grades less than 3.0%
- allows relative easy access to existing US 119
- relocations to residences due to roadway construction are reduced

Disadvantages

- requires large disposal areas for excess material
- requires additional construction time due to large cuts
- increased impacts to the environment due to large cuts and large waste sites
- grades in combination with superelevation exceed normal cross slopes at one of the bridges

Revise the grades and alignment to reduce the volume of roadway excavation required

Advantages

- reduces the amount of roadway excavation required
- reduces the environmental impacts due to reduction of cuts and size of disposal areas
- reduces the time required for construction
- would reduce the amount of property being landlocked on the high side of the roadway
- may allow flatter grades at the bridges

Disadvantages

- may impact the project design schedule
- would introduce more curves into the alignment
- makes it more difficult to provide access to existing US 119

Conclusion

Carry forward for further consideration
Bifurcate the roadways where possible to reduce the volume of excavation required

Advantages

- may reduce the amount of roadway excavation required
- may reduce the amount of excess material requiring disposal

Disadvantages

- requires provision for rock falls on both roadways
- will increase the grades for both termini
- precludes at-grade intersection construction
- may adversely affect the horizontal alignment
- would increase the difficulty of construction

Conclusion

Drop from further consideration

B. ACCESS/INTERSECTIONS/INTERCHANGES

As Proposed Intersections

Advantages

- allows easier disposal of cut material produced from roadway construction
- provides a connection to existing US 119 at each end of the project

Disadvantages

- uses valuable property to support the high fills on the access sections
- adds to the number of relocations for both businesses and residences
- at-grade design allows left turns across the median of the mainline roadway
- west connection requires the construction of a large box culvert
- maintenance of traffic will be increased due to the construction of large fills on each side of existing US 119

Conclusion

Carry forward for further consideration
Utilize the two proposed grade separations crossing existing US 119 to provide split access to the relocated US 119 and eliminate the two proposed at-grade intersections

Advantages

- would allow elimination of the two proposed at-grade intersections at sta. $21+965$ and sta. $25+950$
- would reduce the number of r / w parcels required
- eliminates the large box culvert
- reduces the time required for construction
- would allow elimination of the two at-grade intersections and their associated provision for left turns
- retains more of existing US 119 with its reduced impact to the residences and businesses

Disadvantages

- require additional acceleration and deceleration lanes on the mainline
- would increase the amount roadway excavation
- does not meet normal driver expectations for a full interchange due to the split/multi-point access
- would require a bridge structure on the entrance ramp from existing US 119 to span Big Creek
- may require the use of additional retaining walls on the ramps

Conclusion

Carry forward for further consideration
Move the access to existing US 119 to the area around $24+200+/-$ and provide a diamond type interchange.

Advantages

- more centrally located in the project
- does not require left turns across the median
- use normal design practices and approaches to interchange design
- would eliminate the need for the box culvert
- utilizes more of the existing US 119 roadway with a reduction in impacts to residents

Disadvantages

- requires a longer haul for trucks accessing the mines on the west end of the project to/from the relocated US 119
- requires additional structures and retaining walls
- would increase roadway excavation due to the addition of acceleration and deceleration lanes

Conclusion

Carry forward for further consideration

C. STRUCTURES

As Proposed Bridge Structures

Advantages

- uses standard KTC design practices and processes

Disadvantages

- appears to be longer than necessary
- concrete design may cost more than a steel design due to the number of bents and the high skew angle
- the current design allows superelevation on the bridge that combined with the grade exceeds standards (8.8% vs.8.0\%)

Conclusion

Carry forward for further evaluation
Reduce the length of bridge structures by using retaining wall and additional fill

Advantages

- would reduce the amount of structure required
- would utilize more of the surplus material in the construction of the roadway
- may improve the aesthetics

Disadvantages

- increases the concern about the stability of high fills and retaining walls

Conclusion

Carry forward for further evaluation
Use a steel superstructure to reduce the number of bents required

Advantages

- allows the use of longer span lengths
- reduces the amount of substructure required
- allows the use of flatter skew angles

Disadvantages

- may increase the time required for construction
- increases the cost of routine maintenance due to the requirement to paint the steel

Conclusion

Carry forward for further evaluation
Eliminate the box culvert on the access road by using a bridge to span the creek

Advantages

- more environmental acceptable due to reduced disturbance to the steam bed
- would not require relocation of the creek channel
- would provide more vertical clearance

Disadvantages

- may increase the time required for construction

Conclusion

Carry forward for further consideration

D. TYPICAL SECTION

Reduce the amount of barrier wall by eliminating it in areas with flat grades and tangent horizontal alignment

Advantages

- easier to complete future resurfacing operations
- would increase access to adjacent properties
- may reduce the cost barrier wall end treatment
- reduces the time required for construction
- would allow conversion to a future left turn lane

Disadvantages

- increases the potential for head on crashes
- may require the use of wider median

Conclusion

Drop from further consideration
Reduce the median width to $3.2 m$ from $4.3 m$ in the areas where median barrier is included.

Advantages

- reduces the amount of roadway excavation required
- reduces the amount of surplus material to be disposed of
- reduces the amount of pavement and base required
- reduces the width of the two bridges
- provides continuity to the adjoining section on the west end that uses a 3.2 m median width with barrier wall

Disadvantages

- would not allow for removal of barrier wall and construction of a median left turn lane in the future
- may increase the number of drop boxes required for drainage in superelevated sections

Conclusion

Carry forward for further evaluation
Use concrete for the mainline pavement instead of asphalt

Advantages

- provides a longer lasting pavement
- reduces impact to the traveling public due to the reduction in rehabilitation activities required
- provides additional subgrade bridging

Disadvantages

- has a higher initial cost to construct
- more complex to construct
- may increase the time required to construct the pavement
- local industry and contract administration personnel may not be familiar with concrete pavement construction and inspection
- maintenance of joints during construction will add to complexity of construction

Conclusion
Carry forward for further evaluation

V.(c) EVALUATION MATRICE

*NOTE: Matrices are used to determine a preferred alternative when more than one competing Alternative to the "As Proposed" Alternative survives the advantages and disadvantages process.
ACCLSS/INTERSECTIONS/INVERCHAI

VI. DEVELOPMENT PHASE

VI.(a) GRADES

VI.(a)(1) AS PROPOSED

GRADES

"AS PROPOSED"

The major cost item in this project is roadway excavation at $\$ 32,800,000$. The vertical alignment as depicted utilized a maximum grade of 4.8%. The consultant indicated that they had raised the grades in some areas and the quantities had changed, reducing the excess material to $5,245,000 \mathrm{~m}^{3}$ from $7,045,000 \mathrm{~m}^{3}$. The grades depicted were controlled at the two intersections and fill heights at the two bridge structures. The profile has few P.I.'s and low K's.

V.(a)(2) V.E. ALTERNATIVES

GRADES

"V.E. ALTERNATIVES"

The V.E. team considered a new profile that basically ramped up at the beginning project, crossed the existing roadway at higher elevations and dipped at a centralized prospective interchange location. The profile which was studied then rose at a 6% grade after Sta. $24+200$ for 550 meters. The horizontal alignment was shifted 10 meters left from Sta. $24+063$ to Sta. $25+371$. This shift would move the revised grade higher up the mountain reducing the volume of roadway excavation. The horizontal curve lengths were not changed because all delta angles were not revised. The number of V.P.I.'s and vertical curves were increased by 40% over the proposed design.

The earthwork was recalculated with the revised profile and indicated a savings in cut and spoil material. (See below table).

	AS PROPOSED:	V.E. ALTERNATIVE:
CUT:	$\mathbf{6 , 2 6 5 , 3 3 4} \mathrm{Cu} . \mathrm{M}$.	$4,467,129 \mathrm{Cu} . \mathrm{M}$.
FILL:	$\mathbf{1 , 0 2 0 , 2 4 7 \mathrm { Cu } . \mathrm { M } .}$	$2,119,296 \mathrm{Cu} . \mathrm{M}$.
EXCESS:	$\mathbf{5 , 2 4 5 , 0 8 7 \mathrm { Cu } . \mathrm { M } .}$	$2,347,833 \mathrm{Cu} . \mathrm{M}$.

The team then reviewed the toe of slope locations to establish any right-of-way changes. This grade revision resulted in the addition of $\$ 500,000$ of retaining walls (or MSE walls). The V.E. alternative also required the bridges to be lengthened at both crossings. This resulted in the addition of $\$ 4,747,000$ of additional structure. While this alternative would save approximately $\$ 4.5$ million, the V.E. team does not recommend it, due to concerns with retaining wall on fill, the increased fill heights, additional roller coaster effect and longer bridge lengths at intersections.

Held
$26+998.192 \quad 295.347$


```
21+550 co 22+470
```

ORIGINAL:

CuT: $1,045,317.05 \mathrm{cu} \mathrm{m}$ FILL: $\quad 75.576 .63 \mathrm{cu} \mathrm{m}$ NET: $\quad 969.740 .41 \mathrm{cu} \mathrm{m}$
$22+650$ 上o $23+000$

ORIGINAL:

CIT: $1,653,017.70 \mathrm{cu} \mathrm{m}$ FILL: $\quad 1.347 .35 \mathrm{cu} \mathrm{m}$ NET: 1.651.670.35 cu m
$23+200$ to 26*980

ORIGINAL:

CUT: 3,566,999.89 cu m 2,790,572.12 cu m FILL: 943.323 .28 cu m 1.779.582.16 cu m NET: 2,623,676.61 cu m 1,010,989.96 cu m

TOTAL:
ORIGINAL:
REVISED:
CUT: 6,265,334.64 cu m 4,467,129.97 m m FILL: 1.020.247.26 cu m 2.119.296.27 cu m NET. 5, 245,087, 38 cu m 2,347, 833,70 Cu m

COST COMPARISON

DESCRIPTION	UNIT COST	PROP'D QTY.	PROP'D COST	V.E. QTY.	V.E. COST
ROADWAY EXCAVATION	$\$ 5.00 /$ Cu.M	$6,295,334$	$31,476,670$	$4,467,129$	$22,340,000$
BRIDGE 1			$3,551,000$		
BRIDGE 2			$2,973,000$		$5,483,000$
WALLS					430,000
REVISED TYPICAL					
(ADD SH'DR)			500,000		0

VI.(b) ACCESS/INTERSECTIONS/INTERCHANGE

VI.(b)(1) AS PROPOSED

ACCESS/INTERSECTIONS/INTERCHANGE

"AS PROPOSED"

The proposed project contains an at-grade connector at station $21+965.552$ which connects existing U.S. 119. The connector is 500 meters in length which requires construction of an embankment, maximum height of 19 meters. Right-of-way will require the purchase of two parcels and will relocate 7 families (6 trailers and one house). A double $3.65 \mathrm{~m} \times 2.4 \mathrm{mX} \mathrm{76m}$ R.A.B.C. will be constructed at station $1+125.20$ at a cost of $\$ 226,500$. The construction phasing of the access roads may have considerable impact on traffic during construction.

An additional at-grade intersection is being added at sta. $26+920$ on the east end of the project. Both crossing will require extensive reconstruction of existing U.S. 119 in order to ramp up to the new mountain alignment. The differential grades requires a $500+$ meter roadway to be constructed at 8% grades to bring the local traffic up to the new four lane section. The consultant provided a verbal description of the configuration of the intersection at the end of the job. The V.E. team then approximated the right-of-way impacts, fill volumes and pavement areas. The total dollars saved if both intersections were eliminated would be $\$ 1,490,000$.

VI.(b)(2) V.E. ALTERNATIVES

ACCESS/INTERSECTIONS/INTERCHANGE

"V.E. ALTERNATIVES"

The value engineering alternative is a grade separation interchange at approximately station $24+000 \pm$ which would eliminate the two at-grade connectors at station $21+965.552$ and sta. $29+200 \pm$. This interchange would require a single span bridge with four ramps. The approach embankments will require retaining walls on each side to allow placement of the ramps. Approximately 120 meters of roadway will be necessary to connect the existing U.S. 119 to the proposed alignment.

The team reviewed documentation provided from department staff and news media about concerns about traffic crossing the new highway at intersections. This concern centered about coal trucks turning across traffic out into mainline without acceleration lanes from a stop condition.

The V.E. team then compared alternate interchange sites and a proposed split interchange concept. The tight diamond interchange was studied in depth at Sta. $24+200$. The team first reviewed the cost of right-of-way and construction of the current intersection designs and the two existing bridge sites.

Split Access Interchange

The team felt the ability to utilize the existing grade separations should offer an economical solution. During the evaluation phase this split concept dropped out as a result of the matrix evaluation. This was not carried forward to the development phase. During the presentation it was noted that the split concept interchange with the northbound exit located at Sta. $21+600$; southbound entrance located at Sta. $22+500$; and northbound entrance and southbound exit at Sta. $23+050$, may have strong possibilities. This concept would require one additional structure for the SB on-ramp over Road Fork Creek at sta. $21+600$. The grades as depicted upon first glance are workable with the southbound entrance ramp needing some acceleration lane requirements.

Tight Diamond Interchange

The team located a prospective interchange site at Sta. $24+200$. This site was located and the revised grades discussed in a previous V.E. alternative were set to facilitate their design. The reason this site was located was due to the reduced right-of-way impacts, flatter site available and a more centralized location.

ELEVATION

InTERCHANGE AT STA $24+200$ I

Concept 1 (8\% Grade of Connector Road) With Walls

This concept involved the shortest bridge with walls carrying mainline over the access road. It did require the highest grades from the existing U.S. 119 to the interchange site. This team felt the 105 meter distance at a 8% grade could be undesirable with the high coal truck traffic. The cost was estimated at an additional $\$ 14,751,000$.

Concept 2 (5.5\% Grade of Connector Road)

This concept required a longer bridge due to the limitation of MSE wall height to ten meters. This alternative increase the cut volume also. This concept would require an increase in cut material. The cost was estimated to be $\$ 16,790,000$ more than the at grade intersections.

Concept 3 (8\% grade with Fill Slopes)
This concept came about after noticing the total wall and bridge cost for either of the two above described concepts was between 11 and 12 million dollars.

The last quick look at interchanges involved the use of spill through abutments at the bridge ends and side slopes. The foot print of this interchange is much larger than the previously discussed alternatives. The cut material dramatically increases with the project cost increasing by $\$ 11.8$ million. This cost is being driven by the cut volume and spoil area location.

The tight diamond interchange provides a good cost effective solution for trucks to safely transition in and out of mainline traffic. However, the connector road and some of the ramp grades were very steep (76%) and also included stop conditions at their termini. The selected site of an interchange will have unique problems that must be carefully reviewed. The V.E. team attempted to locate a site that would minimize the trip length for any vehicle going North or South.

The studies provided did not include accident reports, traffic counts, etc. So, therefore, our group could not evaluate user type costs. NO RECOMMENDATION WAS MADE BY THE V.E. TEAM WITH REGARD TO INTERCHANGES ALONG THE U.S. 119 CORRIDOR, DUE TO THE CONCERN WITH HEAVY TRUCKS AND THE STEEP APPROACH GRADES.

$ص \square$

To
Ramp -

CONCEPT 1
(8\% GRADE OF CONNECTION ROAD W/ WALLS) COST COMPARISON

DESCRIPTION	UNIT COST	PROP'D QTY.	PROP'D COST	V.E. QTY.	V.E. COST
RIGHT-OF-WAY COSTS	\$74,400/ ACRE	12.5 ACRES	$\$ 930,000$		
PAVING	$\$ 38.80 / \mathbf{M}^{2}$	$14,831.98$	$+575,481$		
FILL (DISPOSABLE COST NEG SAVINGS)	$\$ 0.25 / \mathrm{M}^{3}$	968,196 Cu.M	$-242,049$		
BOX CULVERT					
FILL CUT					
PAVING					
WALLS					

CONCEPT 2
(5\% APPROACH GRADE) COST COMPARISON

DESCRIPTION	UNIT COST	PROP'D QTY.	PROP'D COST	V.E. QTY.	V.E. COST
RIGHT-OF-WAY COSTS	\$74,400/ ACRES	12.5 ACRES	$\$ 930,000$		
PAVING	$\$ 38.80 / \mathrm{M}^{2}$	$14,831.98$	$+575,481$		
FILL					
(DISPOSABLE COST NEG					
SAVINGS)					

CONCEPT 3
(8\% GRADE W/ FILL SLOPES) COST COMPARISON

DESCRIPTION	UNIT COST	PROP’D QTY.	PROP'D COST	V.E. QTY.	V.E. COST
RIGHT-OF-WAY COSTS	$\$ 74,400 /$ ACRE	12.5 ACRES	$\$ 930,000$		
PAVING	$\$ 38.80 / \mathrm{M}^{2}$	$14,831.98$	$+575,481$		
FILL (DISPOSABLE COST NEG SAVINGS)	$\$ 0.25 / \mathrm{M}^{3}$	968,196 Cu.M	$-242,049$		
BOX CULVERT				226,500	
FILL CUT					
PAVING					
WALLS					

Possible Additional Costs $\mathbf{\$ 1 1 , 8 9 0 , 0 6 8}$

VI.(c) STRUCTURES

VI.(c)(1) AS PROPOSED

"AS PROPOSED"

The proposed route for relocated U.S. 119 includes the construction of two bridge structures.

The first structure at Sta. $22+550$ is a six span (24000×4 spans @ 35000×29000) structure utilizing 72" modified Type IV P.C.I. beams. The bridge spans Road Ford and existing U.S. 119. The bridge is on a 51° skew to the right. It is anticipated that all the piers will utilize spread footers on rock and the foundation design for the abutments will be determined after the subsurface data has been gathered. The anticipated cost of this structure is $\$ 3,551,194.00$.

The second structure at Sta. $23+100$ is a five span (29000-3 spans @ 35500-26500) structure utilizing 72" modified Type IV P.C.I. beams. This structure spans Big Creek and existing U.S. 119 , with a skew which varies from 25° to 40° left. While the subsurface information is not yet complete, it is anticipated that the foundations for piers 1 thru 3 will be spread footers on rock and pier 4 will be on H-Piles on point bearing, as well as end ?bent? two. It is anticipated that the beginning of the bridge will be an abutment on rock. The anticipated cost of this structure is $\$ 2,974,000.00$.

Both bridges will have 4-3.6 meter driving lanes, a 4.3 meter median with a median barrier wall and a 3.0 meter outside shoulders.

The proposed box culvert is a double $3.65 \mathrm{~m} \times 2.4 \mathrm{~m} \times 76 \mathrm{~m}$ R.C.B.C. at sta. $1+125.20$ on the connection right of sta. $21+965.552$. The embankment height at the culvert location is 19 meters. The estimated cost of the culvert is $\mathbf{\$ 2 2 6 , 5 0 0}$.

- - Fivetion

V.E. ALTERNATIVE

The V.E. alternative for Bridge 1 (at Sta. $22+550$) is to use a four span bride (4 @ 35 m) and retaining walls at the abutments. This structure will be shorter than the "As Proposed".

This alternative will cost approximately $\$ 3,211,500$.
V.E. ALTERNATIVE

COST COMPARISON

DESCRIPTION	UNIT COST	PROP'D QTY.	PROP'D COST	V.E. QTY.	V.E. COST
6 Span Bridge 26-4 @ 35-29 Type IV Mod.	$\$ 716 / \mathrm{M}^{2}$	4960 M	$\$ 3,551,360$		
4 Span Bridge 4 @ 37 Type IV Mod.	$\$ 716 / \mathrm{M}^{2}$			3804	$\$ 2,723,664$
Retaining Walls	$\$ 430 / \mathrm{M}^{2}$			1012	$\$ 435,160$
Asphalt, Base, etc.	$38.80 / \mathrm{M}^{2}$			13585	$\$ 52,710$

Possible Savings $\quad \mathbf{3 3 9 , 8 2 6}$

V.E. ALTERNATIVE

The V.E. alternative for Bridge 2 (at Sta. $23+100$) is to use a four span bridge (3 @ 35.5 - 26.5) and retaining wall at abutment 1 . This structure will be shorter than the "As Proposed".

This alternative will cost approximately $\$ 2,717,600$.

COST COMPARISON

DESCRIPTION	UNIT COST	PROP'D QTY.	PROP'D COST	V.E. QTY.	V.E. COST
5 Span Bridge $29-3 @ 35.5-26.5$	$\$ 714 / \mathrm{M}^{2}$	4163	$\$ 2,972,382$		
4 Span Bridge 3 @ 35.5-26.5	$\$ 714 / \mathrm{M}^{2}$			3418	$\$ 2,440,452$
Retaining Walls	$\$ 430 / \mathrm{M}^{2}$			580	$\$ 249,400$
Asphalt, Base, etc.	$\$ 38.80 / \mathrm{M}^{2}$			716	$\$ 27,781$

Possible Savings \$ 254,749

STRUCTURES

"V.E. ALTERNATIVES"

The Value Engineering alternative is to replace the R.C.B.C. with a three span concrete bridge. The length of the bridge would be 72.5 meters and the cost would be $\$ 612,538$.

V.E. ALTERNATIVE STRUCTURE 3
 COST COMPARISON

$\left.\begin{array}{||l|l|l|l|l|l||}\hline \text { DESCRIPTION } & \begin{array}{l}\text { UNIT } \\ \text { COST }\end{array} & \begin{array}{l}\text { PROP'D } \\ \text { QTY. }\end{array} & \begin{array}{l}\text { PROP'D } \\ \text { COST }\end{array} & \begin{array}{l}\text { V.E. } \\ \text { QTY. }\end{array} & \begin{array}{l}\text { V.E. } \\ \text { COST }\end{array} \\ \hline \text { Db!' 3.65 x 2.4 R.C.B.C. } & \begin{array}{l}\$ 360 / \mathrm{m}^{3} \\ \$ 1.20 / \mathrm{kg}\end{array} & \begin{array}{l}493.7 \mathrm{~m} 3 \\ 40,566 \mathrm{~kg}\end{array} & \begin{array}{l}\$ 177,842 \\ \$ 48,679\end{array} & & \\ \hline 3 \text { Span Bridge } & \$ 7.16 / \mathrm{m}^{2} & & & 855.5 \mathrm{~m}^{2} & \$ 612,538 \\ \hline \begin{array}{l}\text { Asphalt, 5" Base, 8" Base } \\ \text { 24" Roadbed }\end{array} & \$ 38.80 / \mathrm{m}^{2} & 768.5 \mathrm{~m}^{2} & \$ 29,818 & & \\ \hline \text { Fill } & \$.25 / \mathrm{m}^{3} & & & \mathbf{2 2 , 5 9 1} & \$ 5,648 \\ \mathrm{~m}^{3}\end{array}\right]$

Possible Addition Cost: $\mathbf{\$ 3 6 1 , 8 4 7}$

VI.(d) TYPICAL SECTION

VI.(d)(1) AS PROPOSED

"AS PROPOSED"
The mainline typical as depicted in the construction plans has a 4.3 m (14 feet) flush median with a median barrier wall in most of the project. The project to the south of this one has a 10.5 ft (3.18 meter) median with a median barrier wall. This 4.3 meter typical section facilitates the development of a left turn lane in the median in the areas where access is being provided. The current plans indicate the following barrier wall requirements for this project from Road Fork to 1.9 kilometer east of KY 3154:

BARRIER WALL LOCATION

Sta. $22+132$ Begin Barrier (after U.S. 119 Connector at Road Fork)
Sta. $24+762$ End Barrier (before Reed Fork approach)
Sta. $25+132$ Begin Barrier (after Reed Fork approach)
Sta. $25+775$ End Barrier (before Brunty Ford approach)
Leave flush median without barrier to end of project. Barrier wall resumes 675 meters into the adjoining Canada to Huddy Project.

The break in barrier at the beginning of the project allows for the major intersection at Sta. $21+962$ right. The second brake in wall facilitates another major connection to old U.S. 119. The wall ends before Brunty Fork to allow access across the median at three existing locations on the right side of the roadway.

VI.(d)(2) V.E. ALTERNATIVES

TYPICAL SECTION

"V.E. ALTERNATIVES"

The V.E. team recognized the difference in typical sections of the adjoining project on the west end and this project during the field review of this Pike County project. After review of the as-built plans the team decided to pursue the reduction of earthwork this change would create.

REDUCE MEDIAN WIDTH TO 3.2M IN AREAS WITH MEDIAN BARRIER WALL COST COMPARISON

DESCRIPTION	UNIT COST	PROP'D QTY.	PROP'D COST	V.E. QTY.	V.E. COST
Pavement Reduction	$38.82 \mathrm{~m}^{2}$			3600	$\$ 139,764$
Bridge Area Reduction	$710.05 \mathrm{~m}^{2}$			212.3 $\frac{180.4}{392}$	$\$ 278,837$
Roadway Exc. Reduction	$5.00 \mathrm{~m}^{3}$			76,429	$\$ 382,147$

PAVEMENT LCC

During the V.E. study, an alternative considered was to use concrete pavement instead of asphalt for this project. The Pavement Design Section was contacted and asked to provide equivalent pavement designs for both asphalt pavement and for concrete pavement. Due to the fact that no traffic projection information was available to determine the total Equivalent single Axle Loads (ESAL'S) during the expected 40 year economic life of this roadway, only educated guesses could be made. The two equivalent designs were then used to calculate the cost to construct one mile of pavement using the same typical section as proposed for this project. In addition, it was also requested that the rehabilitation activity required to extend each of the competing sections to a life 40 years be defined. For asphalt pavement, it was assumed that to mill $1^{\prime \prime}$ and provide a $21 / 2^{\prime \prime}$ overlay at year 10,20 and 30 would provide a 40 year economic life. For concrete pavement it was assumed that the only rehabilitation activities required would be to reseal the joints at year 10,20 and 30 .

With these assumptions noted above, the total Life Cycle Cost was then calculated using a 5\% and a 7% discount rate to determine the total Present Worth of each alternative over a 40 year life.

AK/S $10^{\prime} \times 5,280^{\circ} \div 9 \times 110 \mathrm{bs} \times 11_{2 \prime \prime}^{\prime \prime} \div 2000 \times 2=959 \tan x=2$

$$
\therefore 7, \because ン=-151,431+57,124=256,937
$$

\qquad $\frac{A}{3}$

RME

$$
\therefore 2 \times 5050-9 \times 115 \times<2010=8365061=
$$

$$
\begin{gathered}
124,542+776,396+100,392=4,001,030 \\
\text { TOTA, 地H }
\end{gathered}
$$

TUTAC ASOH / MILE $=\frac{254,937}{1001030}$

$$
\frac{1,001,030}{1,257967}
$$

Rertare
liviel $62^{\prime} \times 5,250^{\circ} \times 11016 \times 1^{\prime \prime}-2000=2001$ Ti0e $\times 25^{500}$
ㅂins $\quad 62 \times 5,210 \times 11016 \times 2 \frac{1}{2} \div 2000=5011+\pi \times 4 / 50$

$$
022^{5} 3,025+20,42=-57,567
$$

P@ $5 \% 1,25,967+156,854+95,026+57,068=1,566,915$
? $70 / 1,257.961+129,779+661.819+31,79=1,484,361$

$\frac{\text { arer }}{7}$

$$
\begin{aligned}
& 1 \because 5,20 \div 9 \times 2 \times 3=0=3015+67 \\
& 12^{\prime} 5,280 \div 9 \times 115 \times 9^{11}=2000 \times 2 \times 11=31,150
\end{aligned}
$$

MFIM保ME

$$
\begin{aligned}
& 6=\times 5290^{\prime} \div 9 \times 41.20=15 \sqrt{2} \times 1 \\
& 22 \times 5,250 \div 9 \times 15 \times 4 \div 2000 \times 11=9=155
\end{aligned}
$$

Tyser Tortre
1005. $6 \times 5,50 \times=63700$

Trie $=50 \div 5 \times 2=\frac{75,3 x}{112,736}$

列65\% $=2,060,773+86,358+51,747+30,499=2,229,377$

$$
P(1 a) 7 \%=2,060,773+71,405+35,144+10,711=2,184,033
$$

VII. SUMMARY OF RECOMMENDATIONS

SUMMARY OF RECOMMENDATIONS

It is the recommendation of the Value Engineering Team that the following Value Engineering Alternatives be carried into the Project Development process for further development.

Recommendation No. 1
The V.E. Team recommends that the median shoulder width be reduced from 1.8 m to 1.2 m in those areas where median barrier wall is installed.

If this recommendatin can be implemented, there is a potential savings of approximately $\$ 800,000$.

Recommendatin No. 2

The V.E. Team recommends that the two bridge structures separating the new roadway and old US 119 be reduced in length by the use of retaining walls.

If this recommendation can be implemented, there is a potential savings of approximately $\$ \mathbf{5 9 5 , 0 0 0}$.

If both of these recommendations can be implemented, there is a potential savings of $\$ 1,395,000$.

VE REVIEW OF US 119, PIKE COUNTY, KY DECEMBER 13, 1996

AGENDA

Introduction of Guests and Team Members	Daryl Greer, KTC
Project Description \& Cost Estimate	Doug Smith, KTC

VE Alternatives Evaluated

1. Pavement

Jack Trickey, Ventry Eng.
A. Asphalt vs. Concrete
2. Structures

Don Keenan, Ventry Eng.
A. Reduce length of structures using retaining walls
B. Use bridge instead of box culvert
3. Typical Section

Steve Criswell, KTC
A. Reduce median shoulder widths to 1.2 m instead of 1.8 m in the areas where median barrier walls are to be installed.
4. Grades and Alignment William Nickas, Ventry Eng.
A. Revise grades and alignment to reduce the amount of road way excavation required.
5. Interchanges

William Nickas, Ventry Eng.
A. Multi-point access using proposed grade separation over US 119
B. Full diamond type interchange at Sta. $24+200 \pm$

Summary and VE Recommendations
Jack Trickey, Ventry Eng.

NAME	AFFILIATION	PHONE
JACK TRICKEY	VENTRY ENGINEERING	$904 / 627-3900$
DON KEENAN	VENTRY ENGINEERING	$904 / 627-3900$
TOM HOWARD	VENTRY ENGINEERING	$904 / 627-3900$
DOUG SMITH	KY T.C. - HWY DESIGN	$502 / 564 \cdot 2374$
BUAN SMITH	FWHA	$502 / 223-6740$
WILLIAM NICKAS	VENTRY ENGINEERING	$904 / 627-3900$
DARYL GREER	KY T.C. - HWY DESIGN	$502 / 564-3280$
STEVEN CRISWELL	KY T.C. - HWY CONSTR	$502 / 564-4780$
STEVE HOEFLER	KY T.C. - HWY DESIGN	$502 / 564-3280$
BILL HORNBECK	DIV. OF BRDG. DESIGN	$502 / 564-4560$
BOB CRISCILLIS	H.M.B.	$502 / 695-9800$
BRYAN STOPPER	H.M.B.	$502 / 695-9800$
JOETTE FIELDS	KY T.C. - HWY DESIGN	$502 / 564-3280$
CHARLES REICHENBACH	KY D.O.H. DIST.\#12	$606 / 433-7791$
PRECONSTR ENGINEER		
CHARLES BRIGGS	DN OPERATIONS	$502 / 564-4556$
BRAD HAMBLIN	KY T.C. - CONSTR	$502 / 564-4780$
RALPH DIVINE	KY T.C. - R/W \& UTIL.	$502 / 564-3210$
JOHN SACKSTEDER	KY T.C. - HWY DESIGN	$502 / 564-3280$

VIII. APPENDICES

ENDORSEMENT TO: Mr. Zane Young, P. E.
Haworth, Meyer. \& Boleyn, In cD
September 14.1993
DATE:

SUBJECT:

Pike County
FP 0980119 015-020 155 D 00APD 0506009
Pikeville-Williamson Road
Item No. 12-264.00
The report of the Preliminary Line \& Grade Inspection held on July 30, 1993, has been reviewed and is approved with the following comments:

Alternate No. 2 is the preferred alignment to be used for the development of Final Plans.
Maintenance of traffic, avoidance and minimization oi water related impacts, waste considerations and geotechnical considerations were discussed in the Preliminary Line \& Grade Report submitted with the Preliminary Plans.

There are no known wetlands on this project; however, there is involvement with channelization and blue line streams. Provide floodway analysis for all drainage areas equal to or greater than one square mile.

Estimates are as follows:
Original (2) Revised (2) Six Year Plan

C $\quad 43,180,081$
52,693.521
$36,000,000$
R 11,605,000
11,605,000
15,500,000
U
$\frac{1,500,000}{-76,285,081}$
$\frac{1,500,000}{65,798,521}$
1,750,000
53,250,000

Commonwealth Of Kentucky

DON C．KELLY，P．E． こRETARY OF TRANSPORTATION

TRANSPORTATION CABINET FRANKFORT，KENTUCXY 40622

BRERETON C．JONES COVERNOR

JERRY D．ANGLIN DEPUTY SECRETARY

AND
OMMISSIONER OF HIGHWAYS
MEMORANDUM：
50：

$20,3=00505009$
 컈に of Nay EsE＝macき

シ ニ2，ここミ，000
$\therefore 1$＝ヨェスatき $\ddagger 2$
$\because \therefore-205.200$
－NJ／島aca
ミc：Charies iv．天eicienoaci Filo

James C. Codell, III Secretary of Transportation

T. Kevin Flanery Deputy Secretary

Mr. Phil Boleyn, P.E.
Haworth, Meyer \& Boleyn, Inc.
3 HMB Circle
Frankfort, Kentucky 40601
Dear Mr. Boleyn:
SUBJECT: Pike County, US 119
Pikeville - South Williamson
Item No. 12-264.01
We appreciate your meeting with us on short notice yesterday. We hope you understand how important it is for us to finalize work on US 119, particularly the section for which your firm has a contract for providing construction plans. We discussed several actions that need to be resolved to allow you to provide right of way plans for Section 1 at the end of next February and for Section 2 at the end of next April. Those plans must be provided within these timeframes.

One issue which we understand has not been resolved involves interchanges or grade separations for coal truck traffic at designated locations. The primary purpose is to eliminate the left turns across the new four-lane road. There is no typical detail for this method of coal truck traffic access, and some work is required before it can be resolved. Therefore, we agree that any work required for this new type of access accommodation can be handled through a right of way plan change. The critical action is to define the right of way required for mainline construction. This needs to be our primary focus at this time.

This appears to be a project which has been designated for review under the Federal Value Engineering requirements. We will take those steps necessary to

Mr. Phil Boleyn, P.E. November 15, 1996
Page 2
ensure that these requirements will not impact your proposed schedule for providing right of way plans as set forth above.

One of the most pressing concerns which you raised is the response from our staff on the preferred location of the alignment. No additional comments were received; therefore, you should finalize the alignment based on the recorded minutes of the October meeting. Along those lines, you noted a need for cooperation in setting inspection dates as quickly as possible. The person designated as the Project Manager for this project will cooperate to the fullest extent on that matter.

As a result of our discussion on these issues and commitments as outlined above, right of way plans for Section 1 and Section 2 are to be provided by the end of February 1997 and the end of April 1997, respectively. A field inspection is set for 9:00 a.m. on January 7, 1997, for the purpose of reviewing information necessary for establishing the bulk of right of way required for this project. Your assistance in providing plans by these dates is expected to ensure that we can fully utilize all funding.

Thank you for your cooperation and willingness to adhere to the schedules requested. We look forward to working with your associates and you in the future.

c: Kevin Flanery
J. M. Yowell

Mike Hancock
Denton Biliter
John Sacksteder ${ }^{2}$
Ralph Divine

