Performance-Based Analysis of Roadway Geometric Design

2016 ACEC-KY/FHWA/KYTC Partnering Conference
September, 2016

Brian L. Ray, PE
Kittelson & Associates, Inc.
bray@kittelson.com
Module Outline

➤ Geometric Highway Design...how did we get here?

➤ What’s in and how to use NCHRP Report 785

➤ Connections to:
 - Context Sensitive Solutions (CSS)
 - Flexibility in design
 - Performance based practical design

➤ A look to the future...
What are the origins of our “standards”?

- Railroad engineering
- Early motoring

What were the design controls back in the day?
What are “standards”?

- Uniform approaches to provide consistency in design
- Tools to match criteria to similar design environments
- Representative approaches that represent the standards of care of our profession
- Anything else?
What are “standards”?

“Standards” have become safety surrogates

Are the following true?

- If it meets standards it must be safe
- If it doesn’t meet standards it is not safe
- If there is no standard for it, it must not be allowable
- If a design exception is needed it must be “bad”
- If we meet standards, we won’t be sued

...but what is the research behind our standards?
What are the origins of our “standards”?

Late 1930s and 1940s
Bureau of Public Roads and AASHO

- Looking for uniformity on roadway designs
- No research done to establish “standards of care”
- A synthesis of practical knowledge to address issues
 - i.e., Physics to cover vehicles in motion on a curve
- “Pamphlets” based on consensus of the practice
- Compiled in a 3 ring notebooks

These were combined to form “policies” based on committees, agency leaders, and professionals consensus of the practice
What are the origins of our “standards”?

Late 1950s and 1970s

- Interstate system founded on military applications
 - Pavement studies
 - Roadway clearances
 - Bridge capacities
- Initially primarily focused on rural design (“blue book”) but urban freeways and arterials needs expanded (“red book”)

Need for consistency in Interstate system led to policies that were still not based on research
What are the origins of our “standards”?

1980s The origins of AASHTO’s “Green Book”

▷ Combine “Blue Book” and “Red Book”
▷ “Purple Book” at that time was for 3-R Guidance
▷ Hence the birth of the “Green Book” in 1984

1980s-1990s

▷ NCHRP research efforts on new and emerging topics; exploring basis of some existing topics (i.e., SSD)

2000’s

▷ Numerous supplemental guidance documents for topics of interest.
Recent National Funding Acts

2005 – Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users (SAFETEA-LU)

2012 – Moving Ahead for Progress in the 21st Century Act (MAP-21)
 - Performance Measures

2015 – Fixing America’s Surface Transportation Act (FAST Act)
 - Recognition of NACTO Urban Street Design Guide
 - Application of Highway Safety Manual

Keys: Multimodal, Safety, Urban Form, Environment, Freight Movement, Economic Vitality, and Implementation

Soft performance metrics such as livability, heritage, community values is fueling flexible design demands
Module Outline

➤ Geometric Highway Design...how did we get here?

➤ What’s in and how to use NCHRP Report 785

➤ Connections to:
 - Context Sensitive Solutions (CSS)
 - Flexibility in design
 - Performance based practical design

➤ A look to the future...
NCHRP Report 785
Performance-Based Analysis of Geometric Designs of Highways and Streets

(Terrible title....excellent framework)
Chapter 1 – Introduction

Chapter 2 – Overview

Chapter 3 – Identify Project Outcomes

Chapter 4 – Geometric Design Elements

Chapter 5 – Process Framework

Chapter 6 – Project Examples
NCHRP Report 785 Model

Fundamental model of the approach
Overview of geometric design decisions
Relationship between project-level and performance measures
Chapter 3 – Identify Project Outcomes

Fundamentally: Whom are we serving?

- Whom are we serving?
 - Identifying the key road users and stakeholders for a given project and project context

- What are we trying to achieve?
 - Identifying and articulating the core desired outcomes from the project

Establishing project context—Users and Performance
Chapter 3 – Identify Project Outcomes

• Defining Project Performance – Goals and Measures

➢ US DOT’s Strategic Plan for 2012-2016
 ▪ Economic competitiveness
 ▪ Environmental sustainability
 ▪ Livable communities
 ▪ Organizational excellence
 ▪ Safety
 ▪ State of good repair

➢ Moving Ahead for Progress in the 21st Century Act (MAP-21)
 ▪ Congestion Reduction
 ▪ Infrastructure Condition
 ▪ Environmental Sustainability
 ▪ Freight Movement and Economic Vitality
 ▪ Reduced Project Delivery Delays
 ▪ Safety
 ▪ System Reliability

The continued shift to softer performance measures...
Geometric Design Performance Categories

- **Accessibility**
 - Ability to approach a desired destination or potential opportunity for activity using highways and streets (including the sidewalks and/or bicycle lanes).

- **Mobility**
 - Ability to move various users efficiently from one place to another using highways and streets.

- **Quality of Service**
 - Perceived quality of travel by a road user.

- **Reliability**
 - Consistency of performance over a series of time periods.

- **Safety**
 - Expected frequency and severity of crashes occurring on highways and streets.
Chapter 3 – Identify Project Outcomes

Role and Influence of Geometric Design Features

<table>
<thead>
<tr>
<th>Performance Category</th>
<th>Defined Role/Influence of Geometric Design Features</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Well Documented</td>
</tr>
<tr>
<td>Accessibility</td>
<td></td>
</tr>
<tr>
<td>Mobility</td>
<td>X</td>
</tr>
<tr>
<td>Reliability</td>
<td></td>
</tr>
<tr>
<td>Safety</td>
<td></td>
</tr>
<tr>
<td>Quality of Service</td>
<td></td>
</tr>
</tbody>
</table>
Geometric Design Decisions

- Consider overall intended project outcomes, project performance, and transportation performance.
 - How do the features influence performance measures related to accessibility, mobility, quality of service, reliability, and safety?
- May have incremental and cumulative effects
- Discrete choices may impact broader concepts
 - Sustainability, economic competitiveness, or livability
- Identifying project design controls
 - Leads to appropriate design criteria to meet those design control needs
Introduction

- Summarize critical or high priority known relationships between design elements and performance
- Document the general relationship
- Identify possibly performance trade-offs
- Present resources and tools that can be used

This information can be expanded with future research
Expected relationships between geometric design elements and performance categories

- Segments
- Nodes – Intersections and Interchanges

● = expected direct effect
☐ = expected indirect effect
-- = expected not to have an effect
* = relationship can be directly estimated by existing performance prediction tools
◊ = relationship can be indirectly estimated using more than one existing tool
x = relationship cannot be estimated by existing tools

WARNING: SCARY SLIDE AHEAD!!!!
<table>
<thead>
<tr>
<th>Segment Geometric Elements/Characteristics</th>
<th>Accessibility</th>
<th>Mobility</th>
<th>Quality of Service</th>
<th>Reliability</th>
<th>Safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access points and density</td>
<td>●*</td>
<td>●*</td>
<td>●*</td>
<td>□</td>
<td>●*</td>
</tr>
<tr>
<td>Design speed and target speed</td>
<td>--</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□*</td>
</tr>
<tr>
<td>Horizontal alignment</td>
<td>--</td>
<td>●</td>
<td>●</td>
<td>□</td>
<td>●*</td>
</tr>
<tr>
<td>Number of travel lanes</td>
<td>●*</td>
<td>●*</td>
<td>●</td>
<td>□</td>
<td>●*</td>
</tr>
<tr>
<td>Sidewalk and pedestrian facilities</td>
<td>□</td>
<td>●</td>
<td>●</td>
<td>□</td>
<td>○</td>
</tr>
<tr>
<td>Bicycle accommodation features</td>
<td>●</td>
<td>●*</td>
<td>●</td>
<td>□</td>
<td>○</td>
</tr>
<tr>
<td>Median provisions</td>
<td>●□</td>
<td>●*</td>
<td>●</td>
<td>□</td>
<td>●*</td>
</tr>
<tr>
<td>Travel lane width(s)</td>
<td>●□</td>
<td>●*</td>
<td>●</td>
<td>□</td>
<td>●*</td>
</tr>
<tr>
<td>Auxiliary lane width(s)</td>
<td>●□</td>
<td>●*</td>
<td>●</td>
<td>□</td>
<td>●*</td>
</tr>
<tr>
<td>Type and location of auxiliary lanes</td>
<td>●□</td>
<td>●*</td>
<td>●</td>
<td>□</td>
<td>●*</td>
</tr>
<tr>
<td>Shoulder width(s) and composition</td>
<td>●□</td>
<td>●*</td>
<td>●</td>
<td>□</td>
<td>●*</td>
</tr>
<tr>
<td>Shoulder type(s)</td>
<td>●^</td>
<td>●</td>
<td>●</td>
<td>□</td>
<td>●*</td>
</tr>
<tr>
<td>Lane & shoulder cross slopes</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>□</td>
<td>○</td>
</tr>
<tr>
<td>Superelevation</td>
<td>--</td>
<td>●</td>
<td>●</td>
<td>□</td>
<td>●*</td>
</tr>
<tr>
<td>Roadside design features</td>
<td>●□</td>
<td>●</td>
<td>●</td>
<td>□</td>
<td>●*</td>
</tr>
<tr>
<td>Roadside barriers</td>
<td>□</td>
<td>●</td>
<td>●</td>
<td>□</td>
<td>●*</td>
</tr>
<tr>
<td>Minimum horizontal clearances</td>
<td>●□</td>
<td>●</td>
<td>●</td>
<td>□</td>
<td>●*</td>
</tr>
<tr>
<td>Minimum sight distance</td>
<td>□</td>
<td>●</td>
<td>●</td>
<td>□</td>
<td>●*</td>
</tr>
<tr>
<td>Maximum grade(s)</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□*</td>
</tr>
<tr>
<td>Minimum vertical clearances</td>
<td>●□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□*</td>
</tr>
<tr>
<td>Vertical alignment(s)</td>
<td>--</td>
<td>●</td>
<td>●</td>
<td>□</td>
<td>●*</td>
</tr>
<tr>
<td>Bridge cross section</td>
<td>●□</td>
<td>●</td>
<td>●</td>
<td>□</td>
<td>●*</td>
</tr>
<tr>
<td>Bridge length/ termini</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>□</td>
<td>●*</td>
</tr>
<tr>
<td>Rumble strips</td>
<td>●□</td>
<td>--</td>
<td>--</td>
<td>□</td>
<td>●*</td>
</tr>
</tbody>
</table>
Tables summarize the design elements/decisions and their relationship to performance measures from each of the transportation performance categories:

- Accessibility
- Mobility
- Quality of Service
- Reliability
- Safety

For example: Accessibility
Chapter 4 – Geometric Design Elements Accessibility

<table>
<thead>
<tr>
<th>Facility Type</th>
<th>Performance Measure</th>
<th>Definition</th>
<th>Geometric Design Elements</th>
<th>Basic Relationship</th>
<th>Potential Performance Tradeoffs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segment</td>
<td>Driveway Density</td>
<td>Number of driveways per mile</td>
<td>Access points and density</td>
<td>Higher density of driveways associated with higher motor vehicle access</td>
<td>Degrade bicycle LOS, Increase crash likelihood, Increase average travel speed</td>
</tr>
<tr>
<td>Urban/Suburban Segment</td>
<td>Transit stop spacing</td>
<td>Distance between transit stops along a roadway segment</td>
<td>Transit accommodation features</td>
<td>Higher frequency increases access for transit riders</td>
<td>Increases transit travel time and may degrade mobility for other vehicle modes</td>
</tr>
<tr>
<td>Segment</td>
<td>Presence of Pedestrian Facility</td>
<td>Presence of a sidewalk, multiuse path or shoulder</td>
<td>Sidewalk and pedestrian facilities</td>
<td>Greater connectivity and continuity of pedestrian network increases access for pedestrians</td>
<td>Implementing pedestrian facilities in a constrained environment may require removing capacity or parking for vehicle mode</td>
</tr>
<tr>
<td>Segment</td>
<td>Presence of Bicycle Facility</td>
<td>Presence of bicycle lanes, multiuse path, or shoulder</td>
<td>Bicycle accommodation features</td>
<td>Greater connectivity and continuity of bicycle network increases access for bicyclists</td>
<td>Implementing bicycle facilities in a constrained environment may require removing capacity or parking for vehicle mode</td>
</tr>
</tbody>
</table>
Chapter 5 – Process Framework

Project Initialization

Concept Development

Evaluation & Selection

Refine

Project Context

Intended Outcomes

Geometric Influences

Potential Solutions

Estimated Performance

Financial Feasibility

Selected Alternative
Chapter 5 – Process Framework

Project Initiation

- Project Context
 - Existing site constraints
 - Current performance
 - Surrounding land uses
 - Planned improvements
 - Anticipated form and function

- Intended Outcomes
 - Clarity of the characteristics defining the current and desired future of the site;
 - A clear and concise understanding of the primary project purpose; and
 - A set of performance measures to be used to evaluate a design’s impact on the desired project purpose.
Chapter 5 – Process Framework

Concept Development

- Geometric Influences
 - Identify the geometric characteristics that influence a project’s performance
 - Identify the geometric characteristics or decisions influenced by the desired performance of a project.

- Potential Solutions – specific awareness of the:
 - Project context
 - Intended outcomes
 - Geometric characteristics and decisions
Chapter 5 – Process Framework

Evaluation and Selection

- Estimated Project Performance
 - Selecting the evaluation resource
 - For the stage in the project development process.
 - Applicable to the project context

- Financial Feasibility
 - Total construction and maintenance cost
 - Cost effectiveness
 - Benefit/Cost ratio (B/C ratio)

- Interpreting Results
 - Estimated Project Performance
 - Financial Feasibility
Chapter 5 – Process Framework

Selection

- Are the performance evaluation results making progress towards the intended project outcomes?
- Do the alternatives serve the target audience and achieve the desired objectives?
- Are there reasonable adjustments that can be made to the geometric design elements most significantly influencing project performance?
- Do the performance measures help differentiate between the alternatives?

Environmental Review Process

- Environmental checklists, assessments and impact statements
Chapter 6 – Project Examples

<table>
<thead>
<tr>
<th>Example#</th>
<th>Site - Area and Facility Type</th>
<th>Project Development Stage</th>
<th>Performance Categories</th>
<th>Project Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>US 21/Sanderson Road - Rural Collector (Two-Lane Highway)</td>
<td>Alternatives Identification and Evaluation</td>
<td>Safety</td>
<td>Intersection – Consider alternative intersection control to improve safety.</td>
</tr>
<tr>
<td>2</td>
<td>Richter Pass Road - Rural Collector</td>
<td>Preliminary Design</td>
<td>Safety, Mobility</td>
<td>Segment – Consider alternative horizontal curve radii to improve safety while minimizing costs and maintaining appropriate speed.</td>
</tr>
<tr>
<td>3</td>
<td>Cascade Ave - Suburban/Urban Arterial</td>
<td>Preliminary Design</td>
<td>Safety, Mobility, Reliability, Accessibility, Quality of Service</td>
<td>Corridor – Retrofitting an existing auto-oriented urban arterial to incorporate complete street attributes. Focus on alternative street cross-sections.</td>
</tr>
<tr>
<td>4</td>
<td>SR 4 - Rural Collector</td>
<td>Preliminary Design</td>
<td>Safety, Reliability, Quality of Service</td>
<td>Segment – Consider alternative shoulder widths and sideslopes to minimize impact to an environmentally sensitive area.</td>
</tr>
<tr>
<td>5</td>
<td>27th Avenue - Urban Minor Arterial</td>
<td>Alternatives Identification and Evaluation</td>
<td>Quality of Service, Safety, Accessibility</td>
<td>Segment – Alignment and cross-section considerations for new urban minor arterial being constructed to entice employers to a newly zoned industrial area.</td>
</tr>
<tr>
<td>6</td>
<td>US 6/Stonebrook Road - Rural Interchange</td>
<td>Alternatives Identification and Evaluation</td>
<td>Safety, Mobility</td>
<td>Interchange - Converting an at-grade intersection to a grade-separated interchange. Focus on selecting the appropriate interchange form and location</td>
</tr>
</tbody>
</table>
Module Outline

➢ Geometric Highway Design...how did we get here?

➢ What’s in and how to use NCHRP Report 785

➢ Connections to:
 ▪ Context Sensitive Solutions (CSS)
 ▪ Flexibility in design
 ▪ Performance based practical design

➢ A look to the future...
“Thinking Beyond the Pavement” and Context Sensitive Solutions:

- “Context Sensitive Design”
- “Context Sensitive Solutions”
- “Common Sense Solutions”
- “Community-based Solutions”
- “Thinking Beyond the Pavement”

It’s all the same thing: Good Products and Processes

Performance-based analysis supports adaptive solutions

Kentucky has been an early implementer of CSS
What is CSS?

- A collaborative, interdisciplinary approach that involves all stakeholders to develop a transportation facility that fits its physical setting, and preserves scenic, aesthetic, historic, and environmental resources, while maintaining safety and mobility.

Why is CSS Important?

- CSS Provides a balance between:
 - Mobility
 - Safety
 - Enhancing the Natural Environment
 - Preserving Community Values

- Can eliminate potential conflicts during the project development process and does not delay projects.
Module Outline

- Geometric Highway Design...how did we get here?
- Performance based highway design overview
- What’s in and how to use NCHRP Report 785
- Connections to:
 - Context Sensitive Solutions (CSS)
 - Flexibility in design
 - Performance based practical design
- A look to the future...
What if we can’t meet “standards”?—Flexibility In Design

- Confirm “controls” to select appropriate design values
- Employ your “engineering judgment”
- Apply fundamental operations and design principles for that condition
- Evaluate and understand safety and operational trade offs of your choices
- Document your decisions
FHWA Controlling Criteria

- Created in 1985 following publication of first Green Book
- 13 criteria
- Design exceptions required if values not met on National Highway System (NHS)
- Changed in 2016
 - Reduced from 13 to 10 for NHS facilities with design speeds of 50 MPH or greater (and all Interstates)
 - Reduced from 13 to 2 for NHS facilities with design speeds under 50 MPH

Fewer controlling criteria increase the opportunity for flexibility
FHWA Controlling Criteria

1985
▷ Design speed
▷ Lane width
▷ Shoulder width
▷ Bridge width
▷ Horizontal alignment
▷ Superelevation
▷ Vertical alignment
▷ Grade
▷ Stopping sight distance
▷ Cross slope
▷ Vertical clearance
▷ Lateral offset to obstruction
▷ Structural capacity

2016
▷ Design speed
▷ Lane width
▷ Shoulder width
▷ Horizontal curve radius
▷ Superelevation
▷ Maximum Grade
▷ Stopping sight distance
▷ Cross slope
▷ Vertical clearance
▷ Design Loading Structural Capacity
Flexible Design Implementation

- Generally incorporates “practical” limitations such as cost, time, and ability to implement
- Incorporates performance analysis, such as safety and valuations (“bang for the buck”)
- Based on fundamentally understanding design controls and then establishing the corresponding design values
- Best supported by performance-based analysis
- Emphasized as Performance Based Practical Design (PBPD)
Module Outline

- Geometric Highway Design...how did we get here?
- Performance based highway design overview
- What’s in and how to use NCHRP Report 785
- Connections to:
 - Context Sensitive Solutions (CSS)
 - Flexibility in design
 - Performance based practical design
- A look to the future...
THE CHALLENGE FACED BY DOTS

- Ever-expanding surface transportation system
- Need to provide increased mobility and safety
- Need to address all users
- Decreasing Finances & Resources
PBPD is a decision making approach that helps agencies better manage transportation investments and serve system-level needs and performance priorities with limited resources.
If 100% of the program were delivered in any given year at 90% of the cost, then the left-over money is available to invest in more improvements to the system.
In 2005, Missouri DOT began implementing Practical Design
- Focused attention on “cost drivers” while still serving user needs
- Stressed:
 - No compromise on safety
 - Collaboration on solutions
- Notable example:
 - Design speed = posted speed
WHAT ARE KEY EXAMPLES OF “PRACTICAL DESIGN”?

15 miles of roadway and shoulder improvement versus traditional typical section for fewer miles.
Many States have developed their own version of a Practical Design Program

- Minnesota
- Utah
- Washington
- Oregon
- Kentucky
- Indiana
- Maryland

Others.....
PBPD involves using relevant, objective data to support engineering decisions

- Start with the basics:
 - Determine user needs
 - Determine what the project is trying to provide (purpose & need)

Almost everything else is up for consideration!
GOALS & OBJECTIVES

Sample objectives that are “generic”

- Improve safety
- Reduce congestion
- Improve livability

Sample Objectives that are Specific –

- Improve mainline freeway operations during PM peak hour from current 32 mph average speed to 50 mph
- Remove barriers to pedestrian travel between Elkhorn subdivision and Main Street central business district.
Module Outline

▷ Geometric Highway Design...how did we get here?
▷ Performance based highway design overview
▷ What’s in and how to use NCHRP Report 785
▷ Connections to:
 ▪ Flexibility in design
 ▪ CSS
 ▪ Performance based practical design
▷ A look to the future...
A look to the future

- Focused research by NCHRP and others will continue to expand our knowledge base on new topics

- Close AASHTO and TRB Committee engagement is positive:
 - More research funding is needed to progress us faster
 - States can support by pool funding and participating

- We know safety is our priority and will need to continue to fight our tendency to build bigger

- The term “CSS” may be out, but livability, heritage, community issues are driving projects

- Multimodal considerations will be a priority; we need to reduce the number of severe and fatal crashes

- Service life and value of investment will increasingly guide our decision making as funding remains limited
Questions?

Contact:
Brian L. Ray, PE
bray@kittelson.com
(503) 535-7437