
DIVERGING DIAMOND INTERCHANGES

Project Management Team

History

- Mt. Zion at I-75 interchange opened in 1994.
- Original traffic projections in 1994 on I-75 were 88,000 for year 2007.
- Within 5 years, traffic exceeded 88,000 ADT on I-75.
- □ 2006: 104,000 ADT on I-75
- 2006: 24,174 ADT on KY 536 (Mt. Zion Road)

HNTB

DIVERGING DIAMOND INTERCHANGES

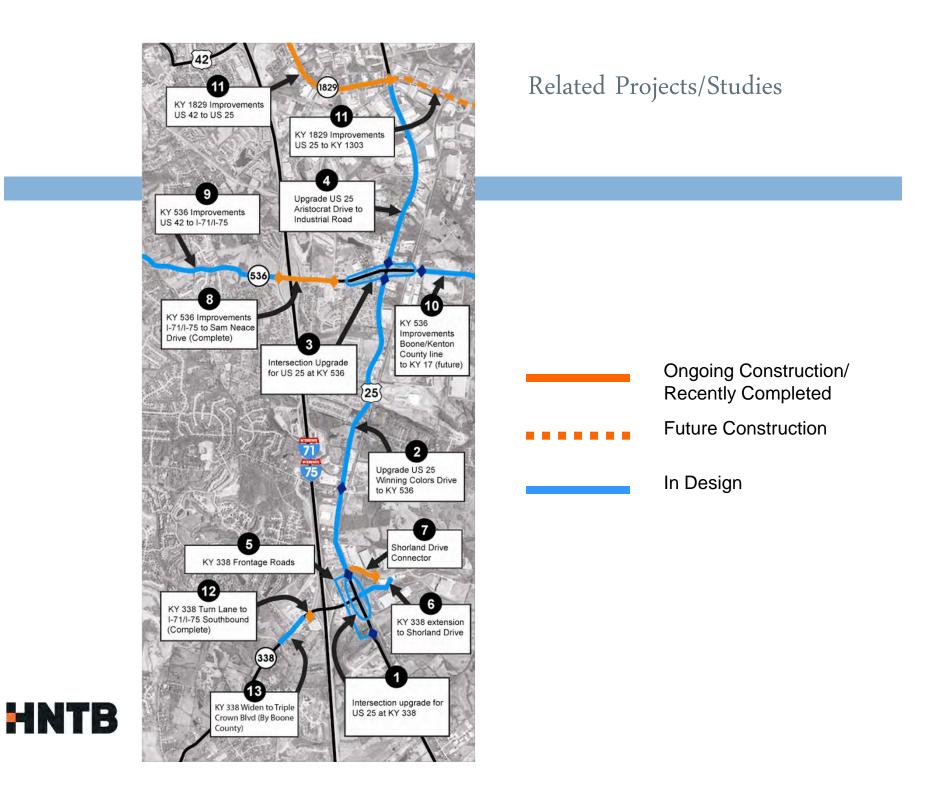
Existing Geometry

Description	I-71/I-75 Mainline	KY 536 (Mt. Zion Road)	
Functional Classification	Urban Interstate	Urban Arterial	
Number of Lanes	3-4 in each direction	4	
Posted Speed	70 mph	35-45 mph	
Lane Width	12'	11-12'	
Shoulder Width	14'-8"	6'-8'	
Maximum Grade	2.75%	4.00%	
Non-Passing Sight Distance	689'	537'	

Land Use

Table 1. Existing (2007) Land Use within the Study Area

Land Use	Approximate percentage	Approximate Acreage 412	
Agricultural	19%		
Commercial	2%	48	
Industrial	6%	129	
Public/Institutional	<1%	3	
Recreational	<1%	10	
Residential	21%	468	
Transportation	47%	1,057	
Woodlands	4%	86	


Table 2. Future (2030) Land Use within the Study Area

Land Use	Approximate percentage	Approximate Acreage
Commercial	4%	77
Developmentally sensitive*	1%	23
Industrial	17%	389
Public/Institutional	<1%	3
Recreational	<1%	7
Residential	44%	977
Rural land**	<1%	2
Transportation	33%	735

* can include areas with an existing slope which limits urban development

"can include wooded, agricultural, recreation or low density residential areas

Public Involvement

The project team held 3 Stakeholder Advisory Council (SAC) Meetings consisting of:

- Federal Highway Administration (FHWA)
- Kentucky Transportation Cabinet (KYTC)
- Northern Kentucky Area Planning Commission
- Northern Kentucky Chamber of Commerce
- Northern Kentucky Tri-County Economic Development Corporation
- Ohio-Kentucky-Indiana Regional Council of Governments (OKI)
- Transit Authority of Northern Kentucky (TANK)

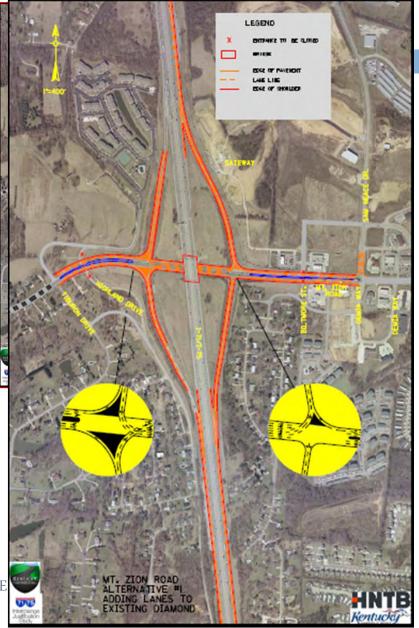
- Boone County Administration
- Office of Judge Executive
- Boone County Planning Commission
- Boone County Public Works
- □ City of Florence
- City of Union
- City of Walton
- Norfolk Southern Corporation
- Local Citizens and Business Leaders

Traffic - Existing Conditions

- Turning movements at Peak Hours
- Existing signal timing
- Crash Data
- Evaluation using
 - HCS: capacity
 - Synchro: signal timing
 - Paramics: micro-simulation and visualization

Traffic Projections

3 Sources


- OKI Travel Demand Model
- Boone County Transportation Plan
- Other design documents
- Result: annual growth rate=3.5%

Alternatives

No Build

- 1 Additional Lanes to Existing Diamond
- 2 Eastbound/Northbound Loop Ramp
- 3 Eastbound/Northbound & Southbound/ Eastbound Loop Ramps
- 4 Partial Cloverleaf
- 5 (Diverging Diamond Interchange (DDI)
- 6 Single Point Urban Interchange (SPUI)
- 7 Double Roundabout
- 8 Directional Fly-Over

DIVERGING DIAMOND INTE

Evaluation Criteria

Financial Measures

Construction Costs

Right of Way Costs

Safety Benefits

Improvements to High Accident Locations

Acceleration

Conflict Points

Improves Incident Management

Levels of Service/ Mobility

Improves Travel Time (Capacity Constraints)

Freeway LOS & V/C

Local LOS & V/C

Suitable Local and Interstate Truck Access

Design

Efficient with Heavy Truck Volumes

Meets Current Design Standards

Provides for Pedestrians

Socioeconomic -Environmental

Relocations

Access to/from Community Facilities

Access to/from Businesses

Natural Areas

Noise/Air Quality

Access to Public Transportation

Equity (Environmental Justice)

Equitable Distribution of Benefits

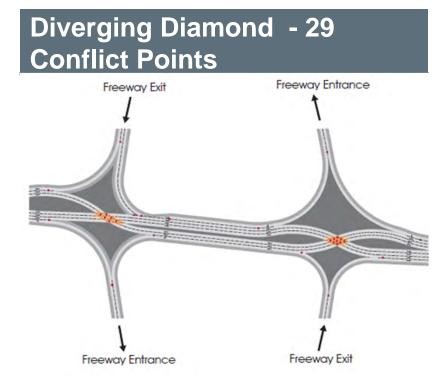
Equitable Distribution of Impacts

Implementation

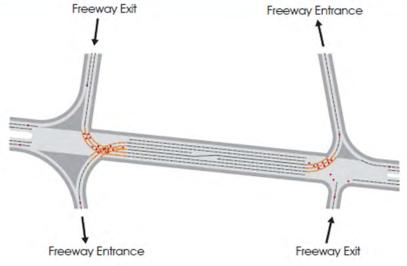
Schedule

Maintain Traffic on KY 536

Maintain Traffic on I-75


Traffic Comparison

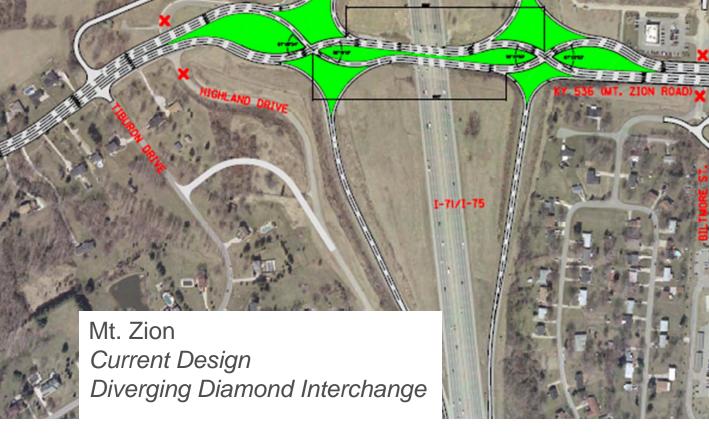
- \Box LOS C = Desired
- □ LOS D = Minimum Acceptable
- \Box Targeting a V/C< 1.0

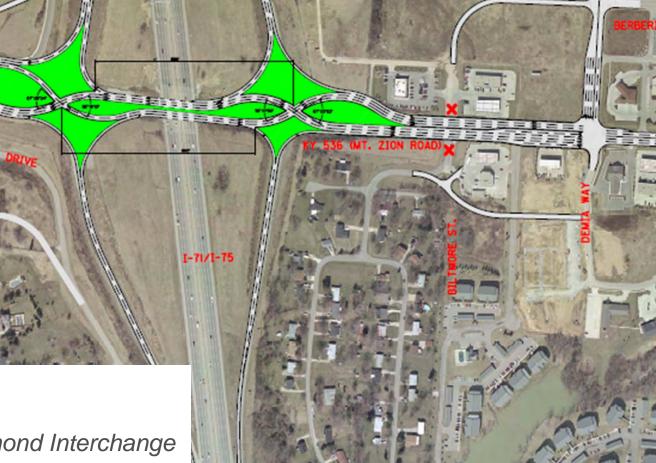

		Traditional Widening (9 lanes)		Diverging Diamond Interchange (8 lanes)	
		West	East	West	East
Mt. Zion	AM	C	В	В	В
MT. Zion	PM	C	В	B	В

Safety Comparison

Traditional Widening – 36 Conflict Points

DIVERGING DIAMOND INTERCHANGES


Construction Cost


- Traditional Widening
 - Construction = \$23M
 - **ROW = \$2.9M**
 - Utilities = \$1.8M

- Diverging Diamond
 - Construction = \$16M
 - □ ROW = \$2.9M
 - Utilities = \$1.8M

Cost Difference = \$7M

DDI's typically work better than other options (SPUIS, tight diamonds) when traffic is unbalanced. In our case, a heavy left movement makes the DDI a better solution. Minimum 50 degree intersection skew angle 600' minimum storage between ramps. Left turn lane capacity is roughly 2x that of a normal left turn lane. Considered safer for pedestrians. HNTE

Design Lessons Learned

DIVERGING DIAMOND INTERCHANGES

© 2007 - 2008 HNTB Companies. All Rights reserved.

Software used to create this material is Patent Pending.

Confidential and Proprietary materials of HNTB Companies.

No use of this material permitted without prior written permission of HNTB Companies.

Project Management Team

Thank you

