Steven L. Beshear
Governor

Frankfort, Kentucky 40622
www.transportation.ky.gov/

Michael W. Hancock, P.E.
Acting Secretary

```
April 16, 2010
```

CALL NO. 103
CONTRACT ID NO. 101018
ADDENDUM \# 2

```
Subject: Jefferson County, IM 0642 (173)
        Letting April 23, 2010
    (1)Revised - Plan Sheets - R2, R2A, R2B, R2C, R2F, R2G, R2J, R2K, R7, R8, R9,
                R10, R11, R12, R51, & R53
    (2) Revised - Table of Contents - Page 2 of 137
    (3)Added - ITS Notes - Pages 15(a)-15(x) of 137
    (4)Revised - Bid Items - Pages 131-137 of 137
```

Proposal revisions are available at http://transportation.ky.gov/contract/.
plan revisions are available at http://www.lynnimaging.com/kytransportation/.
If you have any questions, please contact us at 502-564-3500.
Sincerely,
Han

Ryan Griffith, P.E.
Director
Division of Construction Procurement

Enclosures
RG: ks

TABLE OF CONTENTS

PART I SCOPE OF WORK
- PROJECT(S), COMPLETION DATE(S), \& LIQUIDATED DAMAGES
- CONTRACT NOTES
- FEDERAL CONTRACT NOTES
- ASPHALT MIXTURE
- DGA BASE
- INCIDENTAL SURFACING
- JPC RIDE QUALITY
- ASPHALT PAVEMENT RIDE QUALITY
- FUEL AND ASPHALT PAY ADJUSTMENT
- OPTION A
- SPECIAL NOTE(S) APPLICABLE TO PROJECT
- INSTALLATION OF TRAFFIC COUNTING INDUCTANCE LOOPS
- RIGHT OF WAY NOTES
- UTILITY CLEARANCE
- KPDES STORM WATER PERMIT, BMP AND NOI
- COMMUNICATING ALL PROMISES
PART II SPECIFICATIONS AND STANDARD DRAWINGS
- SPECIFICATIONS REFERENCE
- SUPPLEMENTAL SPECIFICATIONS
- [SN-1I] PORTABLE CHANGEABLE SIGNS
- [SN-9Y] MATERIAL TRANSFER VEHICLE
- [SN-10T] ACCEPTANCE OF JPC PAVEMENT THICKNESS
PART III EMPLOYMENT, WAGE AND RECORD REQUIREMENTS
- FEDERAL-AID CONSTRUCTION CONTRACTS - FHWA 1273
- NONDISCRIMINATION OF EMPLOYEES
- EXECUTIVE BRANCH CODE OF ETHICS
- PROJECT WAGE RATES
- NOTICE OF REQUIREMENT FOR AFFIRMATIVE ACTION TO ENSURE EEO
PART IV INSURANCE
PART V BID ITEMS

COMMONWEALTH OF KENTUCKY

'TRANSP(OR'TATION CABINET'
 DEPAR'TMEN'I OF HIGHWAYS

JEFFERSONCOUNTY
TRIMARC RELOCATIONONI-64

ITEMNUMBER:5-159.10

TABLE OF CONTENTS

TABLE OF CONTENTS 1
PROJECT DESCRIPTION 2
POLE BASE 5
CCTV CONTROL CABLE 6
COMMUNICATIONS CABLE 6
CONDUIT 7
ELECTRICAL SERVICE 8
FIBER OPTIC CABLE AND FIBER TERMINATION RACK 9
JUNCTION BOX 14
TRANSCEIVERS 15
TRENCHING AND BACKFILLING 18
WIRE AND CABLE 19
GLOSSARY 20

PROJECT DESCRIPTION

GENERAL

This project includes relocating various existing TRIMARC facilities associated with the widening of I-64 Westbound between Hurstbourne Parkway and I-264. See Roadway Plans for details of proposed work.

SYSTEM COMPATIBILITY

The Contractor is responsible for coordinating with TRIMARC to insure equipment compatibility and to complete integration of equipment into the TRIMARC project.

COMMUNICATIONS

Camera shall communicate with the control center over the new phone lines and/or DSL connection and fiber optic (coordinated with the TRIMARC). The Contractor shall be responsible for furnishing and installing all conduits, junction boxes and communication cables installed on Kentucky right-of-way as specified in the plans. The Contractor shall be responsible for the installation and correct operation of all communications systems located in the field cabinet to the field devices. Testing of the Contractor's work will be performed both locally at the cabinet and remotely at the TRIMARC Traffic Operations Center. TRIMARC personnel will assist with any troubleshooting necessary to resolve problems with the communication equipment.

EQUIPMENT AND MATERIALS

All equipment and materials provided by the Contractor shall be new unless existing equipment is to be reused. All equipment shall be the latest model and shall contain the latest firmware unless it can be shown that an earlier version is required for compatibility with existing KYTC communication protocols.

SPECIFICATIONS AND WORKMANSHIP

Unless otherwise specified, all work shall conform to the following:

- Kentucky Standard Specifications for Road and Bridge Construction, latest edition.
- FHWA, Manual on Uniform Traffic Control Devices, latest edition.
- National Electrical Code, latest edition.
- National Electric Safety Code, latest edition.
- KYTC Department of Highways Standard Drawings, current editions.
- KYTC Department of Highways Sepia Drawings, current editions.
- International Municipal Signal Association (IMSA) Specification No. 51-7, current edition.
- AASHTO, Roadside Design Guide, latest edition.
- AASHTO, Standard Specifications for Structural Supports for Highway Signs, Luminaires, and Traffic Signals, latest edition.
- Kentucky Transportation Cabinet, Department of Highways, Special Provisions: Special Provision 13 Crash Cushions

All work shall be performed in a neat and professional manner. The Contractor shall remove debris and trash from work areas during construction. The Contractor shall restore areas to original condition and clean up all debris after construction.

DAMAGE TO EXISTING FACILITIES

The Contractor shall be responsible for locating all underground utilities prior to excavation. The contractor shall repair damage caused to any public or private facilities at his expense. Utilities include but are not limited to telephone, power, water, gas, fiber optic cable, underground vaults, roadway lighting wiring, traffic signal wiring, and roadway drainage systems.

GROUNDING

Unless otherwise specified, the grounding system provided will be as shown in the details provided in the Plans. Minimum ground resistance reading needs to be 10 ohms or less as tested via the 3 point fall of potential test method.

If the installation of the preferred grounding system is not possible due to physical constraints of the location or other extenuating factors, the TRIMARC Systems Engineer may allow for a standard ground installation. The standard installation would be with ground wiring consisting of solid bare copper \#4 AWG and securely connected inside enclosures with \#4 AWG copper clamp connectors. Nuts and washers securing the wire are not acceptable. All grounding shall meet the National Electric Code.
Ground wires shall be exothermically welded to the ground rods. Ground rod clamps are not acceptable. The following devices shall be grounded to an array of two or three, $10^{\prime} \mathrm{X} 1 "$ copper coated steel ground rods:

- Model 336 Enclosures (two ground rods required)
- Camera Poles (three ground rods required)

All ground rods in arrays shall have a minimum of 6' separation.
The resistance to ground shall be less than 10 Ohms as measured with an AEMC clamp on ground resistance meter or equivalent.

Existing grounding systems shall be replaced if the resistance to ground greater than 10 Ohms.

The Contractor shall leave all exothermic welds exposed for inspection by the Engineer before backfilling.

EQUIPMENT LIST

The contractor shall provide an equipment list in Microsoft Excel format to the Engineer containing the following information:

- Type of equipment
- Field location
- Make
- Model
- Serial number
- Date of purchase
- Manufacturer contact information
- Equipment vendor contact information (if different)
- Date of Installation
- Date warranty expires

This list shall be provided to the Division of Traffic Operations and TRIMARC Systems Administrator prior to burn-in testing. See below for TRIMARC Info:

Mr. Todd Hood
TRIMARC Systems Administrator
901 W. Main St.
Louisville, KY 40202
Phone: 502-587-6624
Fax: 502-587-6645
Email: Todd.Hood@ngc.com

WARRANTY

The Contractor shall provide a copy of all equipment warranty information to the Division of Traffic Operations for new equipment only. The Contractor shall provide documentation from the manufacturer that ownership of the warranty is transferred to the following:

Kentucky Transportation Cabinet
Division of Traffic Operations
200 Mero Street
Frankfort, KY 40622

TESTING

The contractor shall demonstrate proper functioning of all devices at the field communications demarcation point. The field communications demarcation point is the location where the communications equipment supplied by TRIMARC is installed. After each device can be successfully operated at the field communications demarcation point the devices will be integrated into the TRIMARC Traffic Operations Center.

The project will be accepted after all devices have completed their test successfully and are functioning in at least pre-construction levels, and acceptable as-built drawings and warranty information have been received.

SHOP DRAWINGS
All items that are used on this project shall have shop drawings sent to Traffic Operations for approval. All items shall be approved before purchase of said items.

AS-BUILT DRAWINGS
The Contractor, at the completion of the project, shall submit as-built drawings. As-built drawings shall be submitted in electronic format such as .pdf, .tiff, .dgn or other standard
image format acceptable to the Engineer. As-built drawings may be scanned from marked up field plans or drawn in MicroStation. As-built drawings shall be scanned at a resolution that will allow them to be clearly legible on a computer display. As-built drawings shall include the exact location of all above ground equipment, underground conduit, wire, sensors and other equipment. Drawings shall indicate any changes to the design including changes to the numbers of conductors, wire gage, splices, additional conduit, etc. Conduit locations shall be drawn to scale or shall be dimensioned and referenced to permanent roadway features. Turns in conduit shall be referenced so that the conduit paths may be derived from the as-built drawings. Existing underground utilities shall be indicated on the drawings. Two copies of the drawings shall be submitted. One copy of the drawings shall be submitted to the Engineer. One copy of the drawings shall be submitted to the KYTC Division of Traffic Operations Design Services Branch. The Contractor shall correct any drawings that are deemed unacceptable to the Engineer. As-built drawings shall be delivered prior to burn-in testing.

TRAFFIC CONTROL PLANS

See the Maintenance of Traffic and Construction Phasing Plans.

POLE BASE

DESCRIPTION

Furnish and install Pole Base in accordance with the plans, specifications and Standard Drawings. Refer to grounding section of this document for additional requirements concerning grounding.

MATERIALS

Pole Base includes concrete, anchor bolts, reinforcing steel, and conduit within base. The Contractor shall submit to material testing at the discretion of the Engineer.

INSTALLATION

The Contractor shall stake all proposed pole base locations and obtain approval before excavation. TRIMARC Engineer will approve locations for all pole bases. The Contractor shall have utilities marked in the field prior to requesting approval. The Contractor shall allow two weeks to schedule the location approval with the TRIMARC Engineer. TRIMARC Engineer approval of field device location does not relieve the contractor from his responsibility to avoid utilities and repair any damage to buried infrastructure. The Contractor shall grade and re-seed all disturbed areas and restore the area to the satisfaction of the Engineer. Poles located behind guardrail shall have a minimum 5' spacing from edge of pole to face of guardrail. Otherwise, poles shall be located as according to the plans sheets or a minimum of 30 ' from all driving lanes. This item includes all excavation including any special equipment required to install the base in rock.

METHOD OF MEASUREMENT AND BASIS OF PAYMENT

Pole Base will be measured for payment per unit each. The Department will make payment for complete, functioning, inspected, and accepted quantities. The Department will consider payment as full compensation for all work required under this section.

CCTV CONTROL CABLE

DESCRIPTION

Furnish and install CCTV Control Cable in accordance with the plans, specifications and Standard Drawings.

MATERIALS

CCTV Control Cable shall be compatible with CCTV Assembly. CCTV control cables shall be a composite cable consisting of one RG59 coax video cable and an appropriate number and size of copper conductors to meet the needs of the camera. Cable shall meet all applicable specifications of UL/NEC/CEC CATV or CM. Cable shall be flame resistant per UL 1581 Vertical Tray. All connectors, terminators, fittings, etc. are incidental to the cost of installing the CCTV control cable and no separate payment will be made.

INSTALLATION

CCTV Control Cable shall be provided on spools of 1000 feet (nominal). The cable shall be of suitable length to allow installation between equipment without exceeding the minimum bend radius as specified by the manufacturer. Connectors shall be installed as necessary and shall match the connector interface requirements for the equipment being connected. Adapters are not acceptable. At the completion of the project, partial spools with a minimum of 50 feet of cable shall become the property of the KYTC.

METHOD OF MEASUREMENT AND BASIS OF PAYMENT

CCTV Control Cable will be measured for payment per unit each 1000 foot spool. The Department will make payment for complete, functioning, inspected, and accepted quantities. The Department will consider payment as full compensation for all work required under this section.

COMMUNICATIONS CABLE

DESCRIPTION

Furnish and install Communications Cable in accordance with the plans, specifications and Standard Drawings.

MATERIALS

Communications cable shall be General Cable GenSpeed 5000 CAT 5e Outside Plant Cable 8 wire PN: 5136100 or approved equal. The cable shall meet or exceed the following specifications:

Performance:

- ANSI/TIA/EIA 568B (Category 5e)
- MIL-C-24640A Water Penetration
- Propagation Delay:
- Return Loss @ 100 MHz :

583 ns @ 100 MHz

- Frequency Range:
$1-350 \mathrm{MHz}$
Physical characteristics:
- Nominal Outside Diameter: 0.230 in
- Insulation Type:
- Maximum Pulling Tension: Polyolefin
- Maximum DC Resistance:
- Mutual Capacitance @ 1 kHz :

25 lbs

- Operating Temperature:
9.38 Ohms/ 100 m
$17 \mathrm{pF} / 100 \mathrm{~m}$
$-45^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$
All connectors, terminators, fittings, etc. shall be incidental to the cost of installing the Communications Cable and no separate payment will be made.

INSTALLATION

Communications Cable shall be furnished on spools of 1000 feet (nominal). The Contractor shall install all cable and wire splice-free from the controller/service location to each cabinet, VMS sign, or CCTV camera the cable or wire is feeding. The Contractor shall not use excessive force when pulling wire through duct. The Contractor shall replace all wire damaged during installation. The Contractor shall submit to material testing at the discretion of the Engineer. Upon completion of the project, partial spools with a minimum of 50 feet of cable shall become the property of the KYTC.

METHOD OF MEASUREMENT AND BASIS OF PAYMENT

Communications Cable will be measured for payment per unit each 1000 foot spool. The Department will make payment for complete, functioning, inspected, and accepted quantities. The Department will consider payment as full compensation for all work required under this section.

CONDUIT

DESCRIPTION

Furnish and install Conduit in accordance with the plans, specifications and Standard Drawings.

MATERIALS

Conduit shall be rigid steel, schedule 40 PVC, or flexible, non-metallic conduit as specified. This item includes fittings, connectors, clamps, caps and other materials necessary for proper installation. The Contractor shall submit to material testing at the discretion of the Engineer.

INSTALLATION

All conduit installed above ground or below ground under pavement shall be rigid steel. All conduit installed below ground, not under pavement shall be PVC. Flexible, nonmetallic conduit shall be used as required. Unused conduits shall be capped on both ends. Conduit containing wire or cable shall be sealed with duct seal putty. All conduits shall be accessible inside junction boxes.

METHOD OF MEASUREMENT AND BASIS OF PAYMENT

Rigid Steel and PVC Conduit will be measured for payment per unit linear foot. The Department will make payment for complete, functioning, inspected, and accepted quantities. The Department will consider payment as full compensation for all work required under this section. A direct measurement will not be made for flexible, nonmetallic conduit. All flexible, non-metallic conduit shall be incidental to the project.

ELECTRICAL SERVICE

DESCRIPTION

Furnish and install Electrical Service in accordance with the plans, specifications and Standard Drawings.

MATERIALS

The Contractor shall coordinate with the local power company to determine the exact materials for the service. The local power company has stated that all new services will be 3 wires and care should be taken to install the meter in a direction it can be easily read. Some locations will require an AWR meter. This includes but is not limited to conduit, meter base, stainless steel disconnect, fused cutout, ground rod, wire, connectors, fittings and all associated hardware required to construct the service. All connections shall be coated with Nolox to prevent corrosion.

INSTALLATION

The Contractor shall coordinate with TRIMARC and the local power company for the exact location of the service. This item also includes all electrical inspection and other fees required to provide electrical service.

METHOD OF MEASUREMENT AND BASIS OF PAYMENT

Electrical Service will be measured for payment per unit each. The Department will make payment for complete, functioning, inspected, and accepted quantities. The Department will consider payment as full compensation for all work required under this section.

FIBER OPTIC CABLE AND FIBER TERMINATION RACK

DESCRIPTION

Furnish and install Fiber Optic Cable and Fiber Termination Rack in accordance with the plans, specifications and Standard Drawings.

MATERIALS

The Contractor shall install specified fiber optic cable and distribution equipment using the stated installation procedures. The fiber termination rack shall include rack enclosure (Corning Fiber CCH01 or approved equal), panel modules 12 fiber (Corning Fiber CCHCP1259 or approved equal), and single mode patch cords (Corning Fiber VDX9YYS3FIS or approved equal).

This shall include furnishing and installing all materials, mounting hardware, and cabling necessary to construct a complete and functional system. This shall also include all labor, tools, equipment, and incidentals necessary to complete the work, including but not limited to integrated fiber optic termination units, connector modules, jumper cables, testing, and documentation.

Fiber optic cable shall be Optical Cable Company BX12 125D SLS 900 OFNR or approved equal. Fiber optic cable, jumper cables, and distribution equipment shall be fabricated by a certified ISO 9001 manufacturer.

All fiber cable provided under this contract shall be from the same manufacturer utilizing identical specifications. Fiber cables shall be dielectric (constructed from non-metallic materials). Fiber cables shall contain single mode optical fibers, loose tube, filled with a water-blocking material, and shall be suitable for installation in underground conduit and field cabinets.

All optical fiber in the cable shall, at a minimum, comply with the following requirements:

- Min. Cladding diameter:

$$
125+/-1.0 \mu \mathrm{~m}
$$

- Core to cladding offset:
$0.8 \mu \mathrm{um}$ maximum
- Maximum attenuation:
$0.5 \mathrm{~dB} / \mathrm{km}$ at 1310 nm $0.5 \mathrm{~dB} / \mathrm{km}$ at 1550 nm
- Maximum chromatic dispersion: $\quad 3.2 \mathrm{ps} /(\mathrm{nm} \times \mathrm{km})$ from 1285 nm to 1330 $\mathrm{nm} \quad 18 \mathrm{ps} /(\mathrm{nm} \times \mathrm{km})$ at 1550 nm
- Fiber polarization mode dispersion: $0.5 \mathrm{ps} /(\mathrm{km}), 2$ maximum
- Coating diameter: $245 \mu \mathrm{~m}+/-10 \mu \mathrm{~m}$

The change in attenuation for single-mode from $0^{\circ} \mathrm{F}$ to $-150^{\circ} \mathrm{F}$ shall not exceed 0.2 $\mathrm{dB} / \mathrm{km}$ at 1550 nm , with 80 percent of the measured values no greater than $0.1 \mathrm{~dB} / \mathrm{km}$ at 1550 nm .

The cable design shall have a life expectancy of 20 years when installed to manufacturer's specifications.

Optical fibers shall be contained inside a loose buffer tube. Each buffer tube shall contain 12 fibers. The buffer tubes shall allow free movement of the fibers without fiber damage during installation or normal operation, including expansion and contraction of the buffer tubes. The diameter of all buffer tubes in a cable shall match.

The cable shall have a central member designed to prevent buckling of the cable.
The cable core interstices shall be filled with a non-nutritive to fungus, electrically nonconductive, water-blocking material such as water-swellable tape that is dry to the touch. The water blocking material shall be free from dirt and foreign matter.

The cable shall contain a least one ripcord under the sheath for easy sheath removal.
The cable shall have tensile strength members that minimize cable elongation due to installation forces and temperature. The cable shall withstand a 600 lb . tensile load applied per EIA-455-33. The change in attenuation shall not exceed 0.2 dB during loading and 0.1 dB after loading. The cable shall be rated for a minimum installed tensile service load of 200 lbs .

The cable shall be dielectric (with no armoring) and be either HDPE or MDPE. Jacketing material shall be applied directly over the tensile strength members and waterblocking material.

The markings on the fiber optic cable shall include cable length markings.

The fiber optic cable shall be capable of withstanding the following conditions without damage or decrease in function:

- Cable freezing per EIA/TIA-455-98
- Total immersion in water with natural mineral and salt contents
- Salt spray or salt water immersion for extended periods
- Wasp and hornet spray

Cable shall be furnished in one continuous length per reel and shall be free from optical splices. A minimum length of six feet on each end of the cable shall be accessible for testing.

Information either stenciled or lettered on the reel or provided on a weatherproof tag firmly attached to the reel shall include the following:

- Factory order number
- Job number
- Ship date
- Manufacturer's cable code
- Type of cable (single mode, outdoor, indoor)
- Beginning and ending length markings
- Measured length and attenuation

FIBER OPTIC DISTRIBUTION EQUIPMENT:

SC type Connectors shall used. The measured attenuation of the connector (inclusive of coupler and mated test connector) shall not exceed an average of 0.3 dB for all connectors provided. Any connector found in excess of 0.5 dB will be rejected. Reflectance shall be less than -40 dB , from $14^{\circ} \mathrm{F}$ to $+140^{\circ} \mathrm{F}$. The manufacturer shall have a program that periodically tests connectors to ensure that, after 1000 re-matings, the attenuation shall not change more than 0.2 dB .

The connector shall be able to withstand an axial pull of 25 lbs . with no physical damage to the connector and no permanent optical degradation more than 0.3 dB . Connectors shall be pre-wired by the manufacturer.

Fiber optic jumper cables shall, at a minimum, comply with the following requirements:

- Have less than 0.2 dB loss when subjected to EIA/TIA-455-1A, 300 cycles, 0.5 kg
- Have an Aramid yarn strength member
- Have a rugged PVC sheathing
- Have a minimum bend radius of 12.5 inches following installation, 25 inches during installation
- Have a minimum tensile strength of 100 lbs
- Have connectors with strain relief pre-wired by the manufacturer
- Comply with NEC requirements for indoor fiber optic cable

Jumper cables shall be either single or duplex. Duplex jumper cables shall have permanent markings to distinguish between the fibers or connectors.

Connector modules shall consist of a connector panel, couplers, and a protective housing. The measured attenuation of the connector module (inclusive of coupler, fiber, and mated ST test connector) shall not exceed an average of 0.3 dB for all connector modules provided. Any connector module found in excess of 0.5 dB will be rejected. Connector modules shall, at a minimum, comply with the following:

- Have 6 couplers for ST applications
- Have 12 couplers for SC applications
- Have a durable housing that provides physical protection and strain relief for the termination of multi-fiber cable to couplers
- Be easily installed and removed from the termination housing
- Be furnished with protective covers for couplers on the jumper cable side
- Comply with NEC requirements for indoor fiber optic cable

There shall be a fixed correlation between each buffered fiber color and coupler position for all connector modules. Fiber color shall meet the requirements for outdoor fiber optic cable.

Fiber optic termination units shall be properly sized for the required number of terminations subject to the minimum requirements stated for each configuration. The fiber optic termination units shall, at a minimum, comply with the following requirements:

- Be rack mounted
- Have front and rear doors or removable panels
- Have a top, bottom, and 4 sides that fully enclose the interior and protect its contents from physical damage
- Be manufactured using 16 gauge aluminum or equivalent and corrosion resistant
- Have provisions for neatly routing cables, buffer tubes and fan-out tubing
- Have cable management brackets or rings integral to the unit to secure and route cables from the connector modules to the vertical rack members while maintaining a minimum 1.5 inch cable radius

INSTALLATION

Fiber optic cable shall be installed in conduit and cabinets. Fiber optic cable shall be installed in accordance with the manufacturer's installation techniques and procedures. The Contractor shall furnish and install all jumper cables and termination equipment necessary to connect fiber optic cable to the equipment.

The Contractor shall install fiber optic cable as a continuous run, without splices, between the cable ends identified. The Contractor shall label fiber optic cables at each end of the cable run, at the points where the cable enters and exits the cabinet for midcable access locations, and in all junction boxes. Labels for fiber optic cable shall identify the cable number and the string numbers of the fiber contained within the cable.

Installation of fiber optic cable and jumper cables shall meet the minimum requirements of local building codes and NEC Article 770. Cable shall not be pulled along the ground, over or around obstructions, over edges or corners, or through unnecessary curves or bends. Bend radius criteria of 10 times the cable diameter no stress and twenty times cable diameter under stress shall not be exceeded. Manufacturer-approved pulling grips, cable guides, feeders, shoes, and bushings shall be used to prevent damage to cable during installation.

When cable is removed from the reel prior to installation, it shall be placed in a "figureeight" configuration to prevent kinking or twisting. Care shall be taken to relieve pressure on the cable by placing cardboard shims at each crossover, by creating additional "figure-eights", or by an approved equivalent method.

Prior to the installation of any fiber optic cable in conduit, the Contractor shall provide the cable manufacturer's recommended and maximum pulling tensions to the Engineer. Included with these pulling tensions shall be a list of the cable manufacturer's approved pulling lubricants. Lubricants shall be used in quantities and in accordance with the procedures recommended by the lubricant manufacturer.

Prior to the installation of any fiber optic cable in conduit, all cable pulling equipment shall be approved by the Engineer. The cable pulling equipment shall include a meter to display pulling tension and a mechanism to ensure that the maximum allowable pulling tension cannot be exceeded at any time during installation.

The Contractor shall furnish attachment hardware, installation guides, and other necessary equipment, not specifically listed herein, as required to install the fiber optic cable.

Fiber optic cable in junction boxes shall be properly looped and attached to the sidewall.
Slack fiber optic cable shall be coiled, labeled, and attached to cable guides.
All fibers, including spares, shall be installed from the connector modules, terminated at the appropriate fibers, and secured neatly within the termination rack.

Fiber terminations shall be neatly and permanently labeled on the connector modules to designate transmit or receive.

Blank connector panels shall be of the same finish and manufacture as the connector modules and shall be installed for all unused connector module spaces.

Prior to the installation of jumper cables, the Contractor shall provide and maintain protective covers over the optical connectors and terminations. Protective covers on unused terminations shall remain.

Jumper cables shall be installed from connector modules to end equipment, and from end equipment to end equipment in multiple cabinet configurations. Jumper cables shall be secured to provide strain relief at both the connector module and the end equipment. Manufacturer recommended installation and minimum bend radius requirements shall be adhered to. Jumper cables shall be labeled at both ends.

Any approved splices shall be made using the fusion splice technique and shall not induce more than 0.1 dB attenuation for each splice nor 0.07 dB average for all splices. Splices that exceed 0.1 dB attenuation shall be re-spliced by the Contractor at no additional cost.

TESTING

Fiber optic cables shall be tested by the manufacturer in conformance with the procedures of TIA/EIA-526-7A. Submittal of test data shall include a summary sheet that clearly illustrates measured loss versus budgeted loss. Each test result on the summary sheet shall be identified by cable number(s) and begin and end locations. The Contractor shall identify any unacceptable losses and perform corrective work at no additional cost. The maximum permissible loss for cables other than jumpers, terminations, and connector modules is 0.05 dB . Any cable not compliant shall be
replaced in its entirely and re-tested for compliance. A copy of the final, summarized, post-installation test results shall be placed in a protective sleeve approved by the Engineer and attached to the rack or door.

Bi-directional (OTDR) tests shall be conducted by the manufacturer for all string paths. The OTDR tests shall document the loss for each component (connector module, jumper cable, etc.). Short runs of fiber shall be tested using a 'lead-in' cable or an 'attenuator' to obtain proper readings from the OTDR. OTDR traces shall be submitted. Each test shall be clearly annotated with the measured loss identified on the OTDR trace. All tests over 0.05 dB shall be identified on the summary sheet.

METHOD OF MEASUREMENT AND BASIS OF PAYMENT

Fiber Optic Cable will be measured for payment per unit linear foot. Termination Fiber Rack will be measured for payment per unit each. The Department will make payment for complete, functioning, inspected, and accepted quantities. The Department will consider payment as full compensation for all work required under this section.

JUNCTION BOX

DESCRIPTION

Furnish and install Junction Box in accordance with the plans, specifications and Standard Drawings.

MATERIALS

Junction box shall meet or exceed ANSI/SCTE 77-2002, tier 15. Junction box covers shall be marked "Traffic." Covers shall be attached with a minimum of two $3 / 8^{\text {" }}$ stainless steel hex bolts.

INSTALLATION

Where required, junction box shall be oriented such that the dimensions comply with the NEC. Junction boxes used as pull boxes along a conduit run shall be spaced at a maximum of 250^{\prime}. Junction boxes shall not be placed in ditch lines or in areas where standing water may accumulate. Junction box covers shall be flush with the finished surface. All conduits shall be marked in the junction box to show the directions (to device or to service). The Contractor shall restore and reseed all disturbed areas to the satisfaction of the Engineer.

METHOD OF MEASUREMENT AND BASIS OF PAYMENT

Junction Box will be measured for payment per unit each. The Department will make payment for complete, functioning, inspected, and accepted quantities. The Department will consider payment as full compensation for all work required under this section.

TRANSCEIVERS

DESCRIPTION

Furnish single channel video over fiber transceiver and single channel data over fiber transceiver to be located in cabinets and trusses for protection of and/or communications to CCTV camera cabinets, VMS Signs, and high mast pole installations.

MATERIALS

SINGLE CHANNEL DATA OVER FIBER TRANSCEIVER
Single Channel Data over Fiber Transceiver shall be IFS, DE7200-S or approved equal.
All fiber optic transceivers shall be supplied from a single manufacturer.
Fiber optic Ethernet media converters shall be provided. The system shall provide realtime 10/100 Base-T and 100 Base-FX performance. The transceiver shall be used as an Ethernet media converter supporting one Ethernet 100 Base-T electrical port and one Ethernet 100 Base-FX optical port. The transceiver shall have auto MDI/MDI-X operation that has the capability of being forced on. The transceiver shall be fully compatible with all standard IEEE 802.3, 802.3u, and 802.3x Ethernet protocols. The transceiver shall have an enhanced mode to provide the back-off algorithm changed from IEEE standard 802.3 binary exponential to aggressive mode, enable half-duplex back-pressure, disable excessive collision drop, and enable jumbo frame for streaming media applications. The transceiver requirements shall be two single mode optical fiber. The transceiver shall have a substantially wide dynamic range so as to never require optical or electrical adjustments. Optical attenuators shall never be required. The transceiver shall provide local diagnostic indicators. The transceiver shall support a remote network management option providing full interoperability with industry standard SNMP/IP protocols. All transceivers shall be available in both card mount and surface mount versions. All transceiver shall have automatic, resettable, polymer fuses on all power rails that shall provide for automatic reset, as well as, transient suppression on all data I/O connections. All card mount transceivers shall have an internal DC power supply. A short circuit in one module shall not affect the operation of other modules powered from the common power supply. All card mount transceivers shall have the ability to be inserted into and removed from the communication management chassis without interrupting power and with no risk of damage to other modules or the communications management chassis during replacement. The system shall have an ambient operating temperature of $-40^{\circ} \mathrm{C}$ to $+74^{\circ} \mathrm{C}$, an ambient storage temperature of $40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, a relative humidity ability of 0% to 95% (non-condensing), have an option for conformal coating, and a MTBF of $>100,000$ hours. The transceiver shall meet or exceed NEMA TS-1/TS-2 and Caltrans Traffic Signal Control Equipment Specifications for operating temperature, humidity, mechanical shock, vibration, and voltage transient protection. The transceiver radiated emissions shall be compliant with FCC Part 15, Class B, and EN55022 specifications. The transceiver shall use lasers that are compliant with FDA Performance Standard for Laser Products, Title 21, Code of Federal Regulations Subchapter J.

SPECIFICATIONS

Data: One (1) channel, bi-directional

DATA SPECIFICATIONS

- Data Protocol:
- Operating Mode:
- Enhanced or standard IEEE
- Data Rate:
- Ethernet Compliance:
- Ethernet Isolation:

Ethernet
Half or full-duplex
802.3

10/100 Mbps
IEEE 802.3, 802.3u, 802.3x
1500 VRMS, One (1) minute

OPTICAL SPECIFICATIONS

- Fiber Type: Single mode
- Wavelength: $1300 / 1550 \mathrm{~nm}$
- Number of Fibers: Two
- Optical Emitter Type: Laser
- Transmitter Output Power: $500 \mu \mathrm{w}(-3 \mathrm{dBm})$
- Receiver Sensitivity: $5 \mu \mathrm{w}(-23 \mathrm{dBm})$
- Optical Power Budget: 20 dB

STATUS INDICATOR SPECIFICATIONS

- Power
- Data Rate
- Auto-Negotiate
- Operating Modes
- Optical Link Detect

SINGLE CHANNEL VIDEO OVER FIBER TRANSCEIVER

Single Channel Video over Fiber Transceiver shall be IFS, VADT/VADR 14130WDM or approved equal.

All fiber optic modules shall be supplied from a single manufacturer.
Digital fiber optic video and data transmitters and receivers shall be provided as required. The transceiver shall transmit a one-way, single channel of high resolution, true broadcast quality, real-time NTSC or PAL color video. The transceiver shall employ 10bit digital encoding for transmission of these signals. The transceiver shall meet the RS250C short-haul standard for video transmission. The transceiver shall provide bidirectional data supporting RS-232, RS-422, or 2 or 4 -wire RS-485 data interfaces. The transceiver shall be transparent to all major data protocols (i.e., Manchester Encoding, Bi-Phase, NRZ, NRZI, etc.). The transceiver requirements shall be one single mode optical fiber. The transceiver shall have a substantially wide dynamic range so as to never require optical or electrical adjustments. Optical attenuators shall never be required. The
transceiver shall provide local diagnostic indicators. The transceiver shall support a remote network management option providing full interoperability with industry standard SNMP/IP protocols. All transceivers shall be available in both card mount and surface mount versions. All transceivers shall have automatic, resettable, polymer fuses on all power rails that shall provide for automatic reset, as well as, transient suppression on all video and data I/O connections. All card mount transceivers shall have an internal DC power supply. A short circuit in one module shall not affect the operation of other modules powered from the common power supply. All card mount transceivers shall have the ability to be inserted into and removed from the communication management chassis without interrupting power and with no risk of damage to other modules or the communications management chassis during replacement. The transceiver shall have an ambient operating temperature of $-40^{\circ} \mathrm{C}$ to $+74^{\circ} \mathrm{C}$, an ambient storage temperature of $40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, a relative humidity ability of 0% to 95% (non-condensing), have an option for conformal coating, and a MTBF of $>100,000$ hours. The transceiver shall meet or exceed NEMA TS-1/TS-2 Equipment Specifications for operating temperature, humidity, mechanical shock, vibration, and voltage transient protection. The transceiver radiated emissions shall be compliant with FCC Part 15, Class B, and EN55022 specifications. The transceivers shall use lasers that are compliant with FDA Performance Standard for Laser Products, Title 21, and Code of Federal Regulations Subchapter J.

SPECIFICATIONS

Video: One (1) channel, one-way
Data: One (1) channel, bi-directional, RS-232, RS-422, or 2 or 4-wire RS-485
VIDEO SPECIFICATIONS

- I/O:
- Bandwidth:
- Differential Gain:
- Differential Phase:
- Tilt:
- Signal-to-Noise Ratio (SNR): 67 dB @ maximum optical loss budget

1 volt pk-pk (75 ohms)
$5 \mathrm{~Hz}-10 \mathrm{MHz}$
$<2 \%$
$<0.7^{\circ}$
$<1 \%$

DATA SPECIFICATIONS

- Data Interface:
- Data Format:
- Data Rate:
- Bit Error Rate (BER):
- Operating Mode:
- Wavelength: $1300 / 1550 \mathrm{~nm}$
- Number of Fibers: One
- Optical Emitter Type: Laser
- Transmitter Output Power: $600 \mu \mathrm{w}(-2 \mathrm{dBm})$
- Receiver Sensitivity: $3 \mu \mathrm{w}(-25 \mathrm{dBm})$
- Optical Power Budget: 23 dB

STATUS INDICATOR SPECIFICATIONS

- Power
- Video Sync
- Data Receive
- Data Transmit
- Optical Link Detect

This item includes cables, connectors, power supplies, and all incidentals required for operation.

INSTALLATION

The Contractor shall single channel data over fiber transceivers and single channel video over fiber transceivers in Model 334/336 enclosures, VMS signs, on poles, and on sign trusses as specified on layout sheets. The Contractor shall be responsible for the transceivers working properly with other equipment.

METHOD OF MEASUREMENT AND BASIS OF PAYMENT

Fiber Transceiver Sign (DATA) and Fiber Transceiver Camera (Video) will be measured for payment per unit each. The Department will make payment for complete, functioning, inspected, and accepted quantities. The Department will consider payment as full compensation for all work required under this section.

TRENCHING AND BACKFILLING

DESCRIPTION

Trenching and Backfilling shall be performed in accordance with the plans, specifications and Standard Drawings.

MATERIALS

All trenches shall be marked with underground utility warning tape.

INSTALLATION

The Contractor shall be responsible for locating all underground utilities prior to excavation. The Contractor shall excavate the trench, place warning tape above the conduit, backfill the trench, reseed, and restore all disturbed areas to the satisfaction of the Engineer. Backfill material shall be placed and compacted in lifts of 9 inches or less. Incidental to this item is any Bore and jack under existing roadway.

METHOD OF MEASUREMENT AND BASIS OF PAYMENT

Trenching and Backfilling will be measured for payment per unit linear foot. The Department will make payment for complete, inspected, and accepted quantities. The Department will consider payment as full compensation for all work required under this section.

WIRE AND CABLE

DESCRIPTION

Furnish and install Wire and Cable in accordance with the plans, specifications and Standard Drawings.

MATERIALS

Unless otherwise specified, wire shall be stranded copper type USE. This item shall include all connectors, splicing and insulating hardware, ties, tape, labels and incidentals required for electrical connections. All connections shall be coated with Nolox to prevent corrosion. The Contractor shall submit to material testing at the discretion of the Engineer.

INSTALLATION

The Contractor shall install all cable or wire runs splice-free from the controller/service location to each cabinet, VMS sign, or CCTV camera the cable or wire is feeding. All wire shall be labeled inside cabinets and junction boxes. The contractor shall not use excessive force when pulling wire through duct. The contractor shall replace all wire damaged during installation. The Engineer may require testing of wiring for damaged insulation. Wire that does not pass an insulation resistance test of a minimum of 100 hundred megohms to ground shall be replaced by the Contractor at his cost.

METHOD OF MEASUREMENT AND BASIS OF PAYMENT

Wire and cable will be measured for payment per unit linear foot. The Department will make payment for complete, functioning, inspected, and accepted quantities. The Department will consider payment as full compensation for all work required under this section.

GLOSSARY

The following acronyms, abbreviations, and definitions shall govern this specification:

- AASHTO - American Association of State Highway and Transportation Officials
- ABS - Acrylonitrile Butadiene Styrene
- AC - Alternating Current
- AlInGaP - Aluminum Indium Gallium Phosphide (refers to the chemical composition of an LED).
- ANSI - American National Standards Institute
- ASCII - American Standard Code for Information Interchange
- ASN. 1 - Abstract Syntax Notation 1
- ASTM - American Society for Testing and Materials
- AWG - American Wire Gauge
- AWS - American Welding Society
- BCD - Binary Coded Decimal
- B frames - Bi-directional Predicted Frames
- BGP - Border Gateway Protocol
- Bin - Group of LEDs categorized and sorted by intensity or color. Each bin has upper and lower intensity or color specifications and contains only LEDs that are measured to be within that range. LED manufacturers sort LEDs into bins to ensure consistent intensity and color properties.
- BOOTP - Bootstrap Protocol
- CALTRANS - California Department of Transportation
- CAN - Control Area Network
- CCTV - Closed Circuit Television
- CDPD - Cellular Digital Packet Data
- CLI - Command Line Interface
- CNC - Computer Network Control
- Control Computer - A desktop or laptop computer used in conjunction with VMS control software to communicate with VMS sign controllers. The control computer can instruct a VMS sign controller to program and control the VMS, monitor VMS status, and run VMS diagnostic tests. A control computer can be used for remote control of one of more VMS, as well as for local control of a single VMS
- DC - Direct Current
- DHCP - Dynamic Host Configuration Protocol
- DMS - Dynamic Message Sign. An industry term that applies to various types of changeable sign technology
- DVI-D - Digital Visual Interface - Digital
- EIA - Electronic Industries Association
- ELFEXT - Equal Level Far End Crosstalk
- EPA - Effective Projected Area
- FCC - Federal Communications Commission
- FDA - Food and Drug Administration
- Font - The style and shape of alphanumeric characters that are displayed on the

VMS matrix to create messages viewed by motorists and travelers

- Frame - see Page
- FSORS - Full, Standardized Object Range Support - an NTCIP term. See the NTCIP standards for additional information.
- GUI - Graphical User Interface
- HDPE - High Density Polyethylene
- HHR - Half Horizontal Resolution
- HTTP - Hypertext Transfer Protocol
- IEEE - Institute of Electrical and Electronic Engineers
- I frames - Intra-frames
- IC - Integrated Circuit
- IGMP
- InGaAlP - Indium Gallium Aluminum Phosphide
- I/O - Input/Output
- IP - Internet Protocol - in transceivers
- IRE - Institute of Radio Engineers
- ISO - International Organization for Standardization
- ITE - Institute of Transportation Engineers
- ITS - Intelligent Transportation System
- Kbps - Kilobits per second
- KYTC - Kentucky Transportation Cabinet
- LAN - Local Area Network
- LCD - Liquid Crystal Display
- LED - Light Emitting Diode
- MDPE - Medium Density Polyethylene
- Message - Information displayed on the VMS for the purpose of visually communicating with motorists. A VMS message can consist of one or more pages of data that are displayed consecutively
- MIB - Management Information Base
- Module - Assembly consisting of a two-dimensional LED pixel array, pixel drive circuitry, and mounting hardware. Modules are installed in the display adjacent to each other to form the display matrix.
- MTBF - Mean Time Between Failures
- MPEG - Moving Picture Experts Group
- NEC - National Electrical Code
- NEMA - National Electrical Manufacturers Association
- NESC - National Electrical Safety Code
- NEXT - Near End Crosstalk
- NCHRP - National Cooperative Highway Research Program
- NRZ - Non Return to Zero
- NRZI - Non Return to Zero Inverted
- NTCIP - National Transportation Communications for ITS Protocol
- NTSC - National Transmission Standards Committee
- Object - An NTCIP term referring to an element of data in an NTCIP-compatible device that can be manipulated to control or monitor the device.
- OER - Octet Encoding Rules
- OSHA - Occupational Safety and Health Administration
- OTDR - Optical Time Domain Reflectometer
- Page - An NTCIP term referring to the data that is displayed on the VMS display matrix at a given moment in time. Also referred to as a frame.
- P frames - Forward Predicted Frames
- PCB - Printed Circuit Board
- Pixel - Picture element. The smallest changeable (programmable) portion of a VMS display matrix
- PMPP - Point to Multi-Point Protocol
- PPP - Point to Point Protocol
- PSELFEXT - Power Sum Equal Level Far End Cross Talk
- PSNEXT - Power Sum Near End Crosstalk
- PTZ - Pan/Tilt/Zoom
- PVC - Polyvinyl Chloride
- PWM - Pulse Width Modulation
- QSIF - Quarter Source Input Format
- RAM - Random Access Memory
- RARP - Reverse Address Resolution Protocol
- RGB - Red-Green-Blue
- Schedule - A set of data that determines the time and date when a VMS sign controller will cause a stored message to be displayed on the VMS
- SDRAM - Synchronous Dynamic Random Access Memory
- SIF - Source Input Format
- SNMP - Simple Network Management Protocol
- STMP - Simple Transportation Management Framework
- Stroke - Refers to the vertical and horizontal width of the lines and curves of a display font. Single stroke denotes character segments that are one pixel wide. Double stroke denotes character segments that are two pixels wide.
- TFTP - Trivial File Transfer Protocol
- TIA - Telecommunications Industry Association
- TMA - Truck Mounted Attenuator
- TOC - Traffic Operations Center
- UL - Underwriters Laboratories
- UPS - Uninterruptible Power Supply
- USB - Universal Serial Bus
- VLAN - Virtual Local Area Network
- VMS - Variable Message Sign. A type of VMS that is fully programmable such that the content of its messages are fully changeable remotely and electronically.
- VMS Controller - A stand-alone computer that is located at a VMS site, which controls a single VMS. A sign controller receives commands from and sends information to a control computer
- WAN - Wide Area Network
- WYSIWYG - What You See Is What You Get. More specifically, what you see on the VMS control computer monitor is a scaled representation of how a message will appear when it is being displayed on the VMS. Similarly, after a pixel diagnostic test routine has been run, what you see on the control computer monitor is a scaled representation of the functional status of each pixel in the VMS display matrix.

CONTRACT ID:	101018
COUNTY: JEFFERSON	
PROPOSAL:	IM $0642(173)$

PROPOSAL: IM 0642(173)

KENTUCKY TRANSPORTATION CABINET
DEPARTMENT OF HIGHWAYS FRANKFORT, KY 40622

SECTION 0001 ROADWAY

0010	\|00001	DGA BASE	16,004.000 TON
0020	\| 00018	DRAINAGE BLANKET-TYPE II-ASPH	4,266.000 TON
0030	\|00022	JPC PAVEMENT DRAINAGE BLANKET	1,693.000 TON

0060	\| 00214	CL3 ASPH BASE 1.00D PG64-22	3,862.000 TON
0070	\|00217	CL4 ASPH BASE 1.00D PG64-22	2,726.000 TON

$0080 \mid 00219$ CL4 ASPH BASE 1.00D PG76-22

0110	\|00342	CL4 ASPH SURF 0.38A PG76-22	636.000 TON	

0120	\|00461	CULVERT PIPE-15 IN	16.000 LF
0130	\|00462	CULVERT PIPE-18 IN	89.000 LF
0140	\|00464	CULVERT PIPE-24 IN	46.000 LF

0150	\| 01000	PERFORATED PIPE-4 IN	9,134.000 LF
	\|		

0160	\| 01010	NON-PERFORATED PIPE-4 IN (REVISED: 4-16-10)	401.000 LF
0170	\| 01015	INSPECT \& CERTIFY EDGE DRAIN SYSTEM	1.00) LS

$0180 \mid 01020$ PERF PIPE HEADWALL TY 1-4 IN \mid

0190	01028	PERF	PIPE HEADWALL TY 3-4 IN (REVISED: 4-16-10)	7.000 EACH
0200	\| 01032	PERF	PIPE HEADWALL TY 4-4 IN (REVISED: 4-16-10)	$6.000 \mathrm{EACH}$

JEFFERSON COUNTY
IM $0642(173)$

JEFFERSON COUNTY
IM $0642(173)$
JEFFERSON COUNTY
IM $0642(173)$

03SI				$\overline{\text { S310N }}$
ขг४	01.691-s	Nosa3. 9 9		
-0N 133 H	-on w3ı!	so 人ınnos		

 mitigation procedures． $\begin{array}{ccc}S L+b S \text { of } S L+9 \varepsilon \text { suo！}+D+S \\ S Z+\varepsilon \varepsilon & O+S L+I \varepsilon & \text { suo！＋D＋S }\end{array}$ dWDy gM b9Z－I of gM b9－I

5．）Foundation embankment benches shall be placed in accordance with Standard
Drowing RGX－010 at the locations listed below and／or as directed by the Engineer

 1．）In accordance with Section 206 of the current Standard Specifications，the
moisture content of embankment material shall not vary from the optimum
moisture content as determined by KM $64-511$ by more than t2 percent or less Sヨ1ON 7VOINHOヨ1Oヨ9

